Chapter 12

The geometry of Euclidean Space

We consider the basic operations of vectors in 3 and 3 dim . space: vector addition, scalar multiplication, dot product and cross product. In section ?? we generalize these notions to n dim'l space.

12.1 3D coordinates

(1) The set of all real numbers is denoted by \mathbb{R}.
(2) The set of all ordered pairs of real numbers (x, y) is denoted by \mathbb{R}^{2}.
(3) The set of all ordered triples of real numbers (x, y, z) is denoted by \mathbb{R}^{3}.

Figure 12.1: quadrant

The planes in \mathbb{R}^{3} determined by $z=0$.(resp. $x=0$ and $y=0$) are called $x y$-plane, (resp. $y z$-plane, $z x$-plane) These planes divides the space into eight parts: Each of them is called octant. If every component is positive, it is called the first octant.

Example 12.1.1. (1) The $x z$-plane is the set of all points with $y=0$:

$$
\{(x, y) \mid y=0\}
$$

(2) Similarly, the $x y$-plane is determined by $z=0$:

$$
\{(x, y, z) \mid z=0\}
$$

(3) x-axis is determined by

$$
\left\{\begin{array}{l}
y=0 \\
z=0
\end{array}\right.
$$

or

$$
\{(x, y, z) \mid y=0, z=0\}
$$

12.2 Vectors in 2, 3 dim space

Definition 12.2.1. A vector in $\mathbb{R}^{n}, n=2,3$ is an ordered pair(triple) of real numbers, such as

$$
\left(u_{1}, u_{2}\right), \text { or }\left(v_{1}, v_{2}, v_{3}\right)
$$

Here u_{1}, u_{2} are called x-coordinate, y-coordinate or x-component, y component of $\left(u_{1}, u_{2}\right)$. The point $(0,0)$ is called the origin and denoted by O.

We use the boldface to denote vectors, e.g, $\mathbf{u}=\left(u_{1}, u_{2}\right)$ or $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$ are standard notations for vectors. The notation \vec{u} is also used. A point P in \mathbb{R}^{n} can be represented by an ordered pair of real numbers $\left(u_{1}, u_{2}\right)$ or $\left(v_{1}, v_{2}, v_{3}\right)$ called Cartesian coordinate) of P. Thus, vectors are identified with points in the plane or space.

$$
\mathbb{R}^{2}=\left\{\left(a_{1}, a_{2}\right) \mid a_{1} \in \mathbb{R}, a_{2} \in \mathbb{R}\right\}
$$

Figure 12.2: Coordinate plane

Vector addition and scalar multiplication-algebraic view

The operation of addition can be extended to \mathbb{R}^{3}. Given two triples, $\mathbf{u}=$ $\left(u_{1}, u_{2}, u_{3}\right), \mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$, we define

$$
\mathbf{u}+\mathbf{v}=\left(u_{1}, u_{2}, u_{3}\right)+\left(v_{1}, v_{2}, v_{3}\right)=\left(u_{1}+v_{1}, u_{2}+v_{2}, u_{3}+v_{3}\right)
$$

to be the sum of $\left(u_{1}, u_{2}, u_{3}\right)$ and $\left(v_{1}, v_{2}, v_{3}\right)$. Thus we see that

$$
\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}
$$

Two vectors $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$ are equal if $u_{1}=v_{1}, u_{2}=v_{2}$ and $u_{3}=v_{3}$. The vector $\mathbf{0}=(0,0,0)$ is the zero element. The vector $-\left(u_{1}, u_{2}, u_{3}\right)=\left(-u_{1},-u_{2},-u_{3}\right)$ is called the additive inverse or negative of $\left(u_{1}, u_{2}, u_{3}\right)$.

Commutative law and associate law for additions:
(i) $(x, y, z)+(u, v, w)=(u, v, w)+(x, y, z) \quad$ (commutative law)
(ii) $((x, y, z)+(u, v, w))+(l, m, n)$

$$
=(x, y, z)+((u, v, w)+(l, m, n)) \quad \text { (associate law) }
$$

The difference is defined as

$$
\left(u_{1}, u_{2}, u_{3}\right)-\left(v_{1}, v_{2}, v_{3}\right)=\left(u_{1}-v_{1}, u_{2}-v_{2}, u_{3}-v_{3}\right)
$$

Example 12.2.2.

$$
\begin{aligned}
(6,0,2)+(-10,3,2) & =(-4,3,4) \\
(3,0,3)-(5,0,-2) & =(-2,0,5) \\
(0,0,0)+(1,3,2) & =(1,3,2)
\end{aligned}
$$

For any real α, and $\left(u_{1}, u_{2}, u_{3}\right)$ in \mathbb{R}^{3}, the scalar multiple $\alpha\left(u_{1}, u_{2}, u_{3}\right)$ is defined as

$$
\alpha\left(u_{1}, u_{2}, u_{3}\right)=\left(\alpha u_{1}, \alpha u_{2}, \alpha u_{3}\right)
$$

Additions and scalar multiplication has the following properties:
(i) $(\alpha \beta)(x, y, z)=\alpha(\beta(x, y, z))$
(ii) $(\alpha+\beta)(x, y, z)=\alpha(x, y, z)+\beta(x, y, z) \quad$ (distributive law)
(iii) $\alpha((x, y, z)+(u, v, w))=\alpha(x, y, z)+\alpha(u, v, w) \quad$ (distributive law)
(iv) $\alpha(0,0,0)=(0,0,0)$
$(\mathrm{v}) 0(x, y, z)=(0,0,0)$
$(\mathbf{v i}) 1(x, y, z)=(x, y, z)$
(associate law)
(property of 0)
(property of 0)
(property of 1)

Example 12.2.3.

$$
\begin{aligned}
3(6,-3,2) & =(18,-9,6) \\
1(3,5,-2) & =(3,5,-2) \\
0(1,3,2) & =(0,0,0) \\
(-2)(-2,1,3) & =(4,-2,-6)
\end{aligned}
$$

Example 12.2.4. Show
(1) $(\alpha+\beta)(x, y)=\alpha(x, y)+\beta(x, y)$
(2) $\alpha((x, y)+(u, v))=\alpha(x, y)+\alpha(u, v)$

Figure 12.3: A point $P\left(u_{1}, u_{2}, u_{3}\right)$ as a vector
sol. (1) LHS is

$$
\begin{aligned}
(\alpha+\beta)(x, y) & =((\alpha+\beta) x,(\alpha+\beta) y) \\
& =(\alpha x+\beta x, \alpha y+\beta y) \\
& =(\alpha x, \alpha y)+(\beta x, \beta y) \\
& =\alpha(x, y)+\beta(x, y)
\end{aligned}
$$

(2) LHS is

$$
\begin{aligned}
\alpha((x, y)+(u, v)) & =\alpha(x+u, y+v) \\
& =(\alpha(x+u), \alpha(y+v)) \\
& =(\alpha x+\alpha u, \alpha y+\alpha v) \\
& =(\alpha x, \alpha y)+(\alpha u, \alpha v) \\
& =\alpha(x, y)+\alpha(u, v)
\end{aligned}
$$

12.2.1 Lines, Planes and the Space

Vectors-Geometric view

We can associate a vector \mathbf{u} with a point $\left(u_{1}, u_{2}, u_{3}\right)$ in the space. For example, we can visualize it with an arrow starting at the origin and ending at the point $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$. One can also interpret a vector as a directed line segment i.e, a line segment with specified magnitude and direction.

Referring to the Figure 12.4, we denote the directed line segment $P Q$ from

Figure 12.4: vector

(1)

(2)

Figure 12.5: sum of two vectors
P to Q by $\overrightarrow{P Q}$. P and Q are called tail and head respectively. A vector with tail at the origin is called a position vector. If two vectors have the same magnitude direction, we regard it as the same vector. In this case two vector can overlap exactly when moved in parallel. Given two points $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$, the displacement vector from P_{1} to P_{2} is

$$
\overrightarrow{P_{1} P_{2}}=\left(x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right) .
$$

Referring to the parallelogram $A B D C$ in Figure 12.4, we see $\overrightarrow{A B}=\overrightarrow{C D}$ and $\overrightarrow{A C}=\overrightarrow{B D}$.

See figure 12.5 (1). If two vectors \mathbf{u}, \mathbf{v} have the same tail P, the sum $\mathbf{u}+\mathbf{v}$ is the vector ending at the opposite vertex of the parallelogram formed by \mathbf{u} and \mathbf{v}.
(i) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
(ii) $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
(commutative law)

Scalar multiple of a vector
For a real number(scalar) s and a vector \mathbf{v}, the scalar multiple $s \mathbf{v}$ (see Fig 1.11) is the vector having magnitude $|s|$ times that of \mathbf{v}, having the same direction

Figure 12.6: scalar multiple of \mathbf{v}
as \mathbf{v} when $s>0$, opposite direction when $s<0$.
The followings hold:
(iii) $(s t) \mathbf{u}=s(t \mathbf{u})$
(iv) $(s+t) \mathbf{u}=s \mathbf{u}+t \mathbf{u}$
(associative law)
$(\mathbf{v}) s(\mathbf{u}+\mathbf{v})=s \mathbf{u}+s \mathbf{v}$
(distributive law)
(distributive law)
(vi) $s 0=0$
(0-vector)
(vii) $0 \mathbf{u}=\mathbf{0}$
(viii) $1 \mathbf{u}=\mathbf{u}$

Example 12.2.5 (3D vectors). A 3D vector is denoted by, say

$$
\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)
$$

Here a_{1}, a_{2}, a_{3} are called x-component, y-component, z-component of a. Let $A=\left(a_{1}, a_{2}, a_{3}\right)$. Shift the line segment $O A$ by b_{1} along x-axis, by b_{2} along y-axis, b_{3} along z-axis respectively. We obtain a vector denoted by $B P$. (See figure 12.7) Then the coordinate of B and P are $\left(b_{1}, b_{2}, b_{3}\right)$ and $\left(a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right)$, and $O B P A$ form a parallelogram. Hence

$$
\overrightarrow{O A}+\overrightarrow{O B}=\overrightarrow{O P}
$$

Standard basis vectors

Definition 12.2.6. The following vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are called (standard basis vector) of \mathbb{R}^{3} (Figure 1.13).

$$
\mathbf{i}=(1,0,0), \mathbf{j}=(0,1,0), \mathbf{k}=(0,0,1)
$$

Figure 12.7: Addition

Figure 12.8: standard basis vector

Remark 12.2.7. (1) For a given $\mathbf{v}=\left(a_{1}, a_{2}, a_{3}\right)$

$$
\left(a_{1}, a_{2}, a_{3}\right)=a_{1}(1,0,0)+a_{2}(0,1,0)+a_{3}(0,0,1)=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}
$$

Example 12.2.8. Write the following using standard basis vectors.
(1) $\mathbf{v}=(-1 / 2,3,5)$.
(2) Express $3 \mathbf{a}-2 \mathbf{b}$ when $\mathbf{a}=(3,5,0), \mathbf{b}=(-4,1,1)$.
(3) Given two points $P(1,4,3)$ and $Q(4,1,2)$, express $\overrightarrow{P Q}$.
(4) Given three points $A(0,-1,4), B(2,4,1)$ and $C(3,0,2)$, express

$$
\frac{1}{2} \overrightarrow{O A}+\frac{1}{3} \overrightarrow{O B}+\frac{1}{6} \overrightarrow{O C}
$$

sol.
(1) $\mathbf{v}=(-1 / 2) \mathbf{i}+3 \mathbf{j}+5 \mathbf{k}$
(2) $3 \mathbf{a}-2 \mathbf{b}=3(3 \mathbf{i}+5 \mathbf{j})-2(-4 \mathbf{i}+\mathbf{j}+\mathbf{k})$

$$
=(9+8) \mathbf{i}+(15-2) \mathbf{j}+(-2) \mathbf{k}=17 \mathbf{i}+13 \mathbf{j}-2 \mathbf{k}
$$

(3) $\overrightarrow{P Q}=(4-1) \mathbf{i}+(1-4) \mathbf{j}+(2-3) \mathbf{k}=3 \mathbf{i}-3 \mathbf{j}-\mathbf{k}$
(4) $(1 / 2) \overrightarrow{O A}+(1 / 3) \overrightarrow{O B}+(1 / 6) \overrightarrow{O C}$

$$
\begin{aligned}
& =(1 / 2)(-\mathbf{j}+4 \mathbf{k})+(1 / 3)(2 \mathbf{i}+4 \mathbf{j}+\mathbf{k})+(1 / 6)(3 \mathbf{i}+2 \mathbf{k}) \\
& =(7 / 6) \mathbf{i}+(5 / 6) \mathbf{j}+(8 / 3) \mathbf{k}
\end{aligned}
$$

12.3 Dot(Inner) product, length, distance

Dot product-Inner product

Definition 12.3.1. Given two vectors $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$ and $\mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}$ we define

$$
a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

to be the dot product or (inner product) of \mathbf{a} and \mathbf{b} and write $\mathbf{a} \cdot \mathbf{b}$.
Example 12.3.2. Let $\mathbf{a}=2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}, \mathbf{b}=\mathbf{i}+2 \mathbf{j}-\mathbf{k}$. Find
(1) $\mathbf{a} \cdot \mathbf{a}$
(2) $\mathbf{a} \cdot \mathbf{b}$
(3) $\mathbf{a} \cdot(\mathbf{a}-3 \mathbf{b})$
(4) $(3 \mathbf{a}+2 \mathbf{b}) \cdot(\mathbf{a}-\mathbf{b})$
sol. (1) $\mathbf{a} \cdot \mathbf{a}=4+9+1=14$
(2) $\mathbf{a} \cdot \mathbf{b}=2-6-1=-5$
(3) $\mathbf{a} \cdot(\mathbf{a}-3 \mathbf{b})=(2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}) \cdot(-\mathbf{i}-9 \mathbf{j}+4 \mathbf{k})$ $=-2+27+4=29$
(4) $(3 \mathbf{a}+2 \mathbf{b}) \cdot(\mathbf{a}-\mathbf{b})=(8 \mathbf{i}-5 \mathbf{j}+\mathbf{k}) \cdot(\mathbf{i}-5 \mathbf{j}+2 \mathbf{k})$

$$
=8+25+2=35
$$

Figure 12.9: Angle between two vectors

Length of vectors

The length, norm of a vector $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ is

$$
\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}
$$

denoted by $\|\mathbf{a}\|$. Also we note that

$$
\|\mathbf{a}\|=(\mathbf{a} \cdot \mathbf{a})^{1 / 2}
$$

Example 12.3.3. Find the lengths of the following vectors.
(1) $\mathbf{a}=(3,2,1)$
(2) $3 \mathbf{i}-4 \mathbf{j}+\mathbf{k}$
(3) $\overrightarrow{A B}$ when $A(2,-1 / 3,-1), B(8 / 3,0,1)$.
sol. (1) $\|\mathbf{a}\|=\sqrt{9+4+1}=\sqrt{14}$
(2) $\|3 \mathbf{i}-4 \mathbf{j}+\mathbf{k}\|=\sqrt{9+16+1}=\sqrt{26}$
(3) $\|\overrightarrow{A B}\|=\sqrt{(8 / 3-2)^{2}+(0-(-1 / 3))^{2}+(1-(-1))^{2}}$

$$
=\sqrt{4 / 9+1 / 9+4}=\sqrt{41} / 3
$$

Definition 12.3.4. A vector with norm 1 is called a unit vector. Any nonzero vector \mathbf{a} can be made into a unit vector by setting $\mathbf{a} /\|\mathbf{a}\|$. This process is called a normalization.

Example 12.3.5. Normalize the followings.
(1) $\mathbf{i}+\mathbf{j}+\mathbf{k}$
(2) $3 \mathbf{i}+4 \mathbf{k}$
(3) $a \mathbf{i}-\mathbf{j}+c \mathbf{k}$
sol. (1) $(1 / \sqrt{3}) \mathbf{i}+(1 / \sqrt{3}) \mathbf{j}+(1 / \sqrt{3}) \mathbf{k}$
(2) $(3 / 5) \mathbf{i}+(4 / 5) \mathbf{k}$
(3) $\left(a / \sqrt{1+a^{2}+c^{2}}\right) \mathbf{i}-\left(1 / \sqrt{1+a^{2}+c^{2}}\right) \mathbf{j}+\left(c / \sqrt{1+a^{2}+c^{2}}\right) \mathbf{k}$

Angle between two vectors

Proposition 12.3.6. Let \mathbf{a}, \mathbf{b} be two nonzero vectors in \mathbb{R}^{2} or \mathbb{R}^{3} and let θ be the angle between them. Then

$$
\mathbf{a} \cdot \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta
$$

and hence

$$
\theta=\cos ^{-1}\left(\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|\|\mathbf{b}\|}\right)
$$

Proof. Let $\mathbf{a}=\overrightarrow{A B}, \mathbf{b}=\overrightarrow{A C}$. Then $\mathbf{a}-\mathbf{b}=\overrightarrow{C B}$. Let $\angle C A B=\theta$. Then by

Figure 12.10: law of cosine
the law of cosine (figure 12.10) we have

$$
\|\mathbf{b}-\mathbf{a}\|^{2}=\|\mathbf{a}\|^{2}+\|\mathbf{b}\|^{2}-2\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta
$$

The left hand side is

$$
\begin{aligned}
\|\mathbf{a}-\mathbf{b}\|^{2} & =(\mathbf{a}-\mathbf{b}) \cdot(\mathbf{a}-\mathbf{b}) \\
& =\mathbf{a} \cdot \mathbf{a}-\mathbf{a} \cdot \mathbf{b}-\mathbf{b} \cdot \mathbf{a}+\mathbf{b} \cdot \mathbf{b} \\
& =\|\mathbf{a}\|^{2}-2 \mathbf{a} \cdot \mathbf{b}+\|\mathbf{b}\|^{2}
\end{aligned}
$$

Hence we obtain

$$
\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta=\mathbf{a} \cdot \mathbf{b}
$$

Corollary 12.3.7. Two nonzero vector \mathbf{a} and \mathbf{b} are perpendicular, orthogonal if and only if $\mathbf{a} \cdot \mathbf{b}=0$.

Example 12.3.8. Find the angle between $\mathbf{i}+\mathbf{j}+2 \mathbf{k}$ and $-\mathbf{i}+2 \mathbf{j}+\mathbf{k}$.
sol. By proposition 1.2.10,

$$
\frac{(\mathbf{i}+\mathbf{j}+2 \mathbf{k}) \cdot(-\mathbf{i}+2 \mathbf{j}+\mathbf{k})}{\|\mathbf{i}+\mathbf{j}+2 \mathbf{k}\|\|-\mathbf{i}+2 \mathbf{j}+\mathbf{k}\|}=\frac{-1+2+2}{\sqrt{1+1+4} \sqrt{1+4+1}}=\frac{3}{6}=\frac{1}{2}
$$

Hence the angle is $\cos ^{-1}(1 / 2)=\pi / 3$.

Corollary 12.3.9. Given two points $A\left(a_{1}, a_{2}, a_{3}\right), B\left(b_{1}, b_{2}, b_{3}\right)$, the area of the triangle $O A B$ is

$$
\frac{1}{2} \sqrt{\left(a_{2} b_{3}-a_{3} b_{2}\right)^{2}+\left(a_{3} b_{1}-a_{1} b_{3}\right)^{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}}
$$

Proof. Let $\overrightarrow{O A}=\mathbf{a}, \overrightarrow{O B}=\mathbf{b}, \angle B O A=\theta$. Then the area of $\triangle O A B$ is

$$
\begin{aligned}
& \frac{1}{2}|O A||O B| \sin \theta \\
= & \frac{1}{2}\|\mathbf{a}\|\|\mathbf{b}\| \sqrt{1-\cos ^{2} \theta} \\
= & \frac{1}{2} \sqrt{\|\mathbf{a}\|^{2}\|\mathbf{b}\|^{2}-(\mathbf{a} \cdot \mathbf{b})^{2}} \\
= & \frac{1}{2} \sqrt{\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)-\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)^{2}} \\
= & \frac{1}{2} \sqrt{\left(a_{2} b_{3}-a_{3} b_{2}\right)^{2}+\left(a_{3} b_{1}-a_{1} b_{3}\right)^{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}} .
\end{aligned}
$$

Example 12.3.10. Find the area of the triangle with vertices $A(a, 0,0), B(0, b, 0), C(0,0, c)$.
sol. Shift(translate) A to the origin, then the points B, C are moved to the points $(-a, b, 0)$ and $(-a, 0, c)$. Hence

$$
\frac{1}{2} \sqrt{(b c-0)^{2}+(0+a c)^{2}+(0+a b)^{2}}=\frac{1}{2} \sqrt{b^{2} c^{2}+c^{2} a^{2}+a^{2} b^{2}}
$$

Proposition 12.3.11 (Properties of Inner Product). For vectors a, b, cand scalar α, the following hold:
(1) $\mathbf{a} \cdot \mathbf{a} \geq 0$ (equality holds only when $\mathbf{a}=\mathbf{0}$)
(2) $\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a}$
(3) $(\mathbf{a}+\mathbf{b}) \cdot \mathbf{c}=\mathbf{a} \cdot \mathbf{c}+\mathbf{b} \cdot \mathbf{c}$
(4) $(\alpha \mathbf{a}) \cdot \mathbf{b}=\alpha(\mathbf{a} \cdot \mathbf{b})$
(5) $\|\mathbf{a}\|=\sqrt{\mathbf{a} \cdot \mathbf{a}}$

Proof. These can be proved easily.

Example 12.3.12. For $\mathbf{a}, \mathbf{b}, \mathbf{c}$ Show the following.
(1) $(\mathbf{a}-\mathbf{b}) \cdot \mathbf{c}=\mathbf{a} \cdot \mathbf{c}-\mathbf{b} \cdot \mathbf{c}$
(2) $\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c}$
(3) $\mathbf{a} \cdot(\mathbf{b}-\mathbf{c})=\mathbf{a} \cdot \mathbf{b}-\mathbf{a} \cdot \mathbf{c}$
(4) $\mathbf{a} \cdot \mathbf{b}=\frac{1}{2}\left(\|\mathbf{a}\|^{2}+\|\mathbf{b}\|^{2}-\|\mathbf{a}-\mathbf{b}\|^{2}\right)$
sol. We see
(1) $(\mathbf{a}-\mathbf{b}) \cdot \mathbf{c}=(\mathbf{a}+(-1) \mathbf{b})) \cdot \mathbf{c}=\mathbf{a} \cdot \mathbf{c}+((-1) \mathbf{b}) \cdot \mathbf{w}$

$$
=\mathbf{a} \cdot \mathbf{c}+(-1) \mathbf{b} \cdot \mathbf{c}=\mathbf{a} \cdot \mathbf{c}-\mathbf{b} \cdot \mathbf{c}
$$

(2) $\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=(\mathbf{b}+\mathbf{c}) \cdot \mathbf{a}=\mathbf{b} \cdot \mathbf{a}+\mathbf{c} \cdot \mathbf{a}=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c}$
(3) $\mathbf{a} \cdot(\mathbf{b}-\mathbf{c})=(\mathbf{b}-\mathbf{c}) \cdot \mathbf{a}=\mathbf{b} \cdot \mathbf{a}-\mathbf{c} \cdot \mathbf{a}=\mathbf{a} \cdot \mathbf{b}-\mathbf{a} \cdot \mathbf{c}$
(4) $\|\mathbf{a}-\mathbf{b}\|^{2}=(\mathbf{a}-\mathbf{b}) \cdot(\mathbf{a}-\mathbf{b})=\mathbf{a} \cdot(\mathbf{a}-\mathbf{b})-\mathbf{b} \cdot(\mathbf{a}-\mathbf{b})$

$$
=\mathbf{a} \cdot \mathbf{a}-\mathbf{a} \cdot \mathbf{b}-\mathbf{b} \cdot \mathbf{a}+\mathbf{b} \cdot \mathbf{b}=\|\mathbf{a}\|^{2}-2 \mathbf{a} \cdot \mathbf{b}+\|\mathbf{b}\|^{2}
$$

Theorem 12.3.13 (Cauchy-Schwarz inequality). For any two vectors a, b

$$
|\mathbf{a} \cdot \mathbf{b}| \leq\|\mathbf{a}\|\|\mathbf{b}\|
$$

holds, and the equality holds iff \mathbf{a} and \mathbf{b} are parallel.

Proof. We may assume \mathbf{a}, \mathbf{b} are nonzero. Let θ be the angle between a and b. Then by prop 12.3.6

$$
|\mathbf{a} \cdot \mathbf{b}|=\|\mathbf{a}\|\|\mathbf{b}\||\cos \theta| \leq\|\mathbf{a}\|\|\mathbf{b}\|
$$

holds. Since $\|\mathbf{a}\|\|\mathbf{b}\| \neq 0$, if equality holds $|\cos \theta|=1$ i.e, $\theta=0$ or π. Hence \mathbf{a} and \mathbf{b} are parallel.

Remark 12.3.14. The Cauchy-Schwarz inequality reads, componentwise, as

$$
(a x+b y+c z)^{2} \leq\left(a^{2}+b^{2}+c^{2}\right)\left(x^{2}+y^{2}+z^{2}\right)
$$

Example 12.3.15. Show Cauchy-Schwarz inequality for $\mathbf{i}+3 \mathbf{j}+2 \mathbf{k},-\mathbf{i}+\mathbf{j}$.
sol. Since the inner product and lengths are

$$
\begin{aligned}
& (\mathbf{i}+3 \mathbf{j}+2 \mathbf{k}) \cdot(-\mathbf{i}+\mathbf{j})=-1+3=2, \\
& \|\mathbf{i}+3 \mathbf{j}+2 \mathbf{k}\|\|-\mathbf{i}+\mathbf{j}\|=\sqrt{1+9+4} \sqrt{1+1}=\sqrt{28}=2 \sqrt{7}
\end{aligned}
$$

we have

$$
|(\mathbf{i}+3 \mathbf{j}+2 \mathbf{k}) \cdot(-\mathbf{i}+\mathbf{j})| \leq\|\mathbf{i}+3 \mathbf{j}+2 \mathbf{k}\|\|-\mathbf{i}+\mathbf{j}\|
$$

Theorem 12.3.16 (Triangle inequality). For any two vector a, b it holds that

$$
\|\mathbf{a}+\mathbf{b}\| \leq\|\mathbf{a}\|+\|\mathbf{b}\|
$$

and equality holds when \mathbf{a}, \mathbf{b} are parallel and having same direction.
Proof. We have

$$
\|\mathbf{a}+\mathbf{b}\|^{2}=(\mathbf{a}+\mathbf{b}) \cdot(\mathbf{a}+\mathbf{b})=\|\mathbf{a}\|^{2}+2 \mathbf{a} \cdot \mathbf{b}+\|\mathbf{b}\|^{2} .
$$

By C-S

$$
\|\mathbf{a}+\mathbf{b}\|^{2} \leq\|\mathbf{a}\|^{2}+2\|\mathbf{a}\|\|\mathbf{b}\|+\|\mathbf{b}\|^{2}=(\|\mathbf{a}\|+\|\mathbf{b}\|)^{2} .
$$

Equality holds iff

$$
\mathbf{a} \cdot \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\|
$$

i.e, the angle is 0 .

Figure 12.11: \mathbf{i}_{θ} and \mathbf{j}_{θ}

Example 12.3.17. Show triangle inequality for $-\mathbf{i}+\mathbf{j}$ and $\mathbf{i}+3 \mathbf{j}+2 \mathbf{k}$.
sol. Sum and difference is

$$
\begin{aligned}
\|(\mathbf{i}+3 \mathbf{j}+2 \mathbf{k})+(-\mathbf{i}+\mathbf{j})\| & =\|4 \mathbf{j}+2 \mathbf{k}\|=\sqrt{16+4} \\
& =2 \sqrt{5}=4.4721 \ldots \\
\|\mathbf{i}+3 \mathbf{j}+2 \mathbf{k}\|+\|-\mathbf{i}+\mathbf{j}\| & =\sqrt{1+9+4}+\sqrt{1+1} \\
& =\sqrt{14}+\sqrt{2}=5.1558 \ldots
\end{aligned}
$$

Hence

$$
\|(\mathbf{i}+3 \mathbf{j}+2 \mathbf{k})+(-\mathbf{i}+\mathbf{j})\| \leq\|\mathbf{i}+3 \mathbf{j}+2 \mathbf{k}\|+\|-\mathbf{i}+\mathbf{j}\| .
$$

Definition 12.3.18. If two vectors \mathbf{a}, \mathbf{b} satisfy $\mathbf{a} \cdot \mathbf{b}=0$ then we say they are orthogonal(perpendicular).

Example 12.3.19. For any real θ, the two vectors $\mathbf{i}_{\theta}=(\cos \theta) \mathbf{i}+(\sin \theta) \mathbf{j}$, $\mathbf{j}_{\theta}=-(\sin \theta) \mathbf{i}+(\cos \theta) \mathbf{j}$ are orthogonal.

Example 12.3.20. Find a unit vector orthogonal to $2 \mathbf{i}-\mathbf{j}+3 \mathbf{k}$ and $\mathbf{i}+2 \mathbf{j}+9 \mathbf{k}$.
sol. Let $a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ be the desired vector. Then a, b, c are determined by

$$
\begin{aligned}
2 a-b+3 c & =0 \text { (orthogonality) } \\
a+2 b+9 c & =0 \text { (orthogonality) } \\
a^{2}+b^{2}+c^{2} & =1 \text { (unicity). }
\end{aligned}
$$

Hence the desired vector is

$$
\pm \frac{1}{\sqrt{19}}(3 \mathbf{i}+3 \mathbf{j}-\mathbf{k})
$$

Orthogonal projection

Given two nonzero vectors \mathbf{a} and \mathbf{b}, we may define the orthogonal projection of \mathbf{b} onto \mathbf{a} to be the vector \mathbf{p} given in the figure 12.12 . Since \mathbf{p} is a scalar multiple of \mathbf{a}, there is a constant c such that $\mathbf{p}=c \mathbf{a}$. We let

$$
\mathbf{b}=c \mathbf{a}+\mathbf{q}
$$

where \mathbf{q} is a vector orthogonal to \mathbf{a}. Taking inner product with \mathbf{a}, we have

$$
\mathbf{a} \cdot \mathbf{b}=c \mathbf{a} \cdot \mathbf{a}
$$

Hence we obtain $c=(\mathbf{a} \cdot \mathbf{b}) /(\mathbf{a} \cdot \mathbf{a})$. Thus the orthogonal projection is

$$
\mathbf{p}=\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|^{2}} \mathbf{a} .
$$

Figure 12.12: Projection of \mathbf{b} onto \mathbf{a}

The length of \mathbf{p} is

$$
\|\mathbf{p}\|=\frac{|\mathbf{a} \cdot \mathbf{b}|}{\|\mathbf{a}\|^{2}}\|\mathbf{a}\|=\frac{|\mathbf{a} \cdot \mathbf{b}|}{\|\mathbf{a}\|}=\|\mathbf{b}\| \cos \theta
$$

This agrees with the geometric interpretation.
Definition 12.3.21. For nonzero vector \mathbf{b} and any vector \mathbf{a}, we define

$$
\operatorname{proj}_{\mathbf{a}} \mathbf{b}=\mathbf{p}=\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|^{2}} \mathbf{a}
$$

We call it orthogonal projection of \mathbf{b} onto \mathbf{a}.
Example 12.3.22. $\mathbf{a}=3 \mathbf{i}+2 \mathbf{j}-\mathbf{k}, \mathbf{b}=\mathbf{i}+\mathbf{j}+2 \mathbf{k}$. Find orthogonal projection of \mathbf{b} onto \mathbf{a}.
sol. The orthogonal projection is

$$
\begin{aligned}
\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|^{2}} \mathbf{a} & =\frac{3 \cdot 1+2 \cdot 1+(-1) \cdot 2}{9+4+1}(3 \mathbf{i}+2 \mathbf{j}-\mathbf{k}) \\
& =\frac{9}{14} \mathbf{i}+\frac{6}{14} \mathbf{j}-\frac{3}{14} \mathbf{k}
\end{aligned}
$$

Theorem 12.3.23. For any two nonzero \mathbf{u} and \mathbf{v}, we can write \mathbf{v} as the sum of two orthogonal vectors $\mathbf{a}+\mathbf{b}$, where \mathbf{a} is the projection of \mathbf{v} onto \mathbf{u} and \mathbf{b} is orthogonal to \mathbf{u}. This decomposition is unique.

Proof. Denote by \mathbf{a} the projection of \mathbf{v} onto \mathbf{u} and let $\mathbf{b}=\mathbf{v}-\mathbf{a}$. Then

$$
\mathbf{v}=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|^{2}} \mathbf{u}+\mathbf{v}-\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|^{2}} \mathbf{u} \equiv \mathbf{a}+\mathbf{b}
$$

We can check \mathbf{b} is orthogonal to \mathbf{u} :

$$
\begin{aligned}
\mathbf{u} \cdot \mathbf{b} & =\mathbf{u} \cdot\left(\mathbf{v}-\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|^{2}} \mathbf{u}\right) \\
& =\mathbf{u} \cdot \mathbf{v}-\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|^{2}} \mathbf{u} \cdot \mathbf{u} \\
& =\mathbf{u} \cdot \mathbf{v}-\mathbf{u} \cdot \mathbf{v}=0
\end{aligned}
$$

This is an orthogonal decomposition. To see the uniqueness, assume there is real number α s.t. $\mathbf{v}=\alpha \mathbf{u}+\mathbf{c}$, with $\mathbf{u} \cdot \mathbf{c}=0$. Then

$$
\mathbf{u} \cdot \mathbf{v}=\mathbf{u} \cdot(\alpha \mathbf{u}+\mathbf{c})=\alpha \mathbf{u} \cdot \mathbf{u}+\mathbf{u} \cdot \mathbf{c}=\alpha\|\mathbf{u}\|^{2}
$$

Hence we see

$$
\begin{gathered}
\alpha \mathbf{u}=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|^{2}} \mathbf{u}=\mathbf{a} \\
\mathbf{c}=\mathbf{v}-\alpha \mathbf{u}=\mathbf{v}-\mathbf{a}=\mathbf{b}
\end{gathered}
$$

Thus the decomposition of \mathbf{v} along \mathbf{u} and its orthogonal component is unique.

Definition 12.3.24. The vector \mathbf{a} is called the component parallel to \mathbf{u} and \mathbf{b} is the component orthogonal to \mathbf{u}.(orthogonal complement).

Example 12.3.25. Find the orthogonal decomposition of $\mathbf{v}=3 \mathbf{i}+5 \mathbf{j}+\mathbf{k}$ w.r.t. $\mathbf{u}=\mathbf{i}+2 \mathbf{j}-\mathbf{k}$.
sol. Let \mathbf{a} be the projection of \mathbf{v} onto \mathbf{u} and $\mathbf{b}=\mathbf{v}-\mathbf{a}$. Then

$$
\begin{aligned}
\mathbf{a} & =\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|^{2}} \mathbf{u} \\
& =\frac{1 \cdot 3+2 \cdot 5+(-1) \cdot 1}{1+4+1}(\mathbf{i}+2 \mathbf{j}-\mathbf{k}) \\
& =2 \mathbf{i}+4 \mathbf{j}-2 \mathbf{k} \\
\mathbf{b} & =(3 \mathbf{i}+5 \mathbf{j}+\mathbf{k})-(2 \mathbf{i}+4 \mathbf{j}-2 \mathbf{k}) \\
& =\mathbf{i}+\mathbf{j}+3 \mathbf{k}
\end{aligned}
$$

Here \mathbf{a} is parallel to \mathbf{u}, \mathbf{b} is orthogonal to \mathbf{u} and $\mathbf{v}=\mathbf{a}+\mathbf{b}$.

Work

Displacement : If an object has moved from P to Q, then $\overrightarrow{P Q}$ is the displacement.

The work done by a constant force of magnitude F in moving an object along a straight line by D is $W=F D$. (Assume the force is directed along the line of motion) When the force is exerted in a different direction than the

Figure 12.13: Work on a line
direction of the object, the work is defined as

$$
\begin{aligned}
\text { Work } & =(\text { scalar compo. of } \mathbf{F} \text { in the direction of } \mathbf{D}) \cdot(\text { length of } \mathbf{D}) \\
& =(|\mathbf{F}| \cos \theta)|\mathbf{D}| \\
& =\mathbf{F} \cdot \mathbf{D}
\end{aligned}
$$

12.4 Cross product

Definition 12.4.1. Let \mathbf{u}, \mathbf{v} be two vectors in $\mathbb{R}^{3}\left(\right.$ not $\left.\mathbb{R}^{2}\right)$. The cross product of \mathbf{u}, \mathbf{v}, denoted by $\mathbf{u} \times \mathbf{v}$ is the vector whose length and direction are given as follows:
(1) The length is the area of the parallelogram spanned by \mathbf{u} and \mathbf{v}.(zero if \mathbf{u}, \mathbf{v} are parallel). Alternatively,

$$
\|\mathbf{u} \times \mathbf{v}\|=\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta
$$

where θ is the angle between \mathbf{u} and \mathbf{v}.
(2) The direction of $\mathbf{u} \times \mathbf{v}$ is perpendicular to \mathbf{u} and \mathbf{v}, and the triple $(\mathbf{u}, \mathbf{v}, \mathbf{u} \times \mathbf{v})$ form a right-handed set of vectors.

Hence we have

$$
\mathbf{u} \times \mathbf{v}=(\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta) \mathbf{n}
$$

Here \mathbf{n} is the unit normal vector together with \mathbf{u}, \mathbf{v} forming a right-handed set of vectors. Algebraic rules:
(1) $\mathbf{u} \times \mathbf{v}=0$, if \mathbf{u}, \mathbf{v} are parallel or one of them is zero.
(2) $\mathbf{u} \times \mathbf{v}=-(\mathbf{v} \times \mathbf{u})$
(3) $\mathbf{u} \times(\mathbf{v}+\mathbf{w})=\mathbf{u} \times \mathbf{v}+\mathbf{u} \times \mathbf{w}$
(4) $(\mathbf{u}+\mathbf{v}) \times \mathbf{w}=\mathbf{u} \times \mathbf{w}+\mathbf{v} \times \mathbf{w}$
(5) $(\alpha \mathbf{u}) \times \mathbf{v}=\alpha(\mathbf{u} \times \mathbf{v})$ for scalar α.

Multiplication rules:
(1) $\mathbf{i} \times \mathbf{j}=\mathbf{k}, \quad \mathbf{j} \times \mathbf{k}=\mathbf{i}, \quad \mathbf{k} \times \mathbf{i}=\mathbf{j}$.
(2) $\mathbf{a} \times \mathbf{b}=-(\mathbf{b} \times \mathbf{a})$
(3) $\mathbf{i} \times \mathbf{i}=\mathbf{j} \times \mathbf{j}=\mathbf{k} \times \mathbf{k}=0$

Note that

$$
\mathbf{a} \times(\mathbf{b} \times \mathbf{c}) \neq(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}
$$

For example

$$
\mathbf{i} \times(\mathbf{i} \times \mathbf{j})=\mathbf{i} \times \mathbf{k}=-\mathbf{j} \neq(\mathbf{i} \times \mathbf{i}) \times \mathbf{j}=0
$$

Proposition 12.4.2. The area of parallelogram determined by the two vectors $a \mathbf{i}+b \mathbf{j}$ and $c \mathbf{i}+d \mathbf{j}$ is $|a d-b c|$. This is the absolute value of the determinant of the matrix determined by two two vectors:

$$
\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Proof. Let $\mathbf{u}=a \mathbf{i}+b \mathbf{j}, \mathbf{v}=c \mathbf{i}+d \mathbf{j}$ and θ be the angle between them. Then the area of the parallelogram is

$$
\begin{aligned}
\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta & =\|\mathbf{u}\|\|\mathbf{v}\| \sqrt{1-\cos ^{2} \theta} \\
& =\sqrt{\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}-(\mathbf{u} \cdot \mathbf{v})^{2}} \\
& =\sqrt{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)-(a c+b d)^{2}} \\
& =\sqrt{a^{2} d^{2}+b^{2} c^{2}-2 a b c d} \\
& =|a d-b c|
\end{aligned}
$$

3×3 matrix

A typical 3×3 matrix is given by

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

The determinant is defined as

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \tag{12.1}\\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{cc}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
$$

The RHS of 12.1 is expansion w.r.t first row. By theorem ??, (1), (2), we can expand w.r.t. any row or column, except we multiply $(-1)^{i+j}$.

Cross product-using determinant

In the previous section, we have defined the cross product using geometry, but did not show how to compute it. Now we can give a formula for the cross product using the determinant:

Definition 12.4.3 (Alternative definition). For $\mathbf{u}=u_{1} \mathbf{i}+u_{2} \mathbf{j}+u_{3} \mathbf{k}$ and $\mathbf{v}=v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}$, the cross product $\mathbf{u} \times \mathbf{v}$ is defined by

$$
\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ll}
u_{2} & u_{3} \tag{12.2}\\
v_{2} & v_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}
u_{1} & u_{3} \\
v_{1} & v_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right| \mathbf{k} .
$$

Using the definition of determinant (12.1) symbolically, we have

$$
\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right| .
$$

Example 12.4.4. $\mathbf{i} \times \mathbf{i}=\mathbf{0}, \quad \mathbf{j} \times \mathbf{j}=\mathbf{0}, \quad \mathbf{k} \times \mathbf{k}=\mathbf{0}$.

Example 12.4.5. Compute $(2 \mathbf{i}-\mathbf{j}+3 \mathbf{k}) \times(\mathbf{i}+\mathbf{j}+2 \mathbf{k})$.
sol. By the definition of cross product, we see

$$
(2 \mathbf{i}-\mathbf{j}+3 \mathbf{k}) \times(\mathbf{i}+\mathbf{j}+2 \mathbf{k})=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & -1 & 3 \\
1 & 1 & 2
\end{array}\right|=-5 \mathbf{i}-\mathbf{j}+3 \mathbf{k}
$$

A geometric meaning of the cross product

To see the relation with the geometric definition of the cross product, we define the triple product of three vectors: Let

$$
\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}, \mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}, \mathbf{c}=c_{1} \mathbf{i}+c_{2} \mathbf{j}+c_{3} \mathbf{k} .
$$

The dot product between $(\mathbf{a} \times \mathbf{b})$ and \mathbf{c} is $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$, called the triple product $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$ of three vectors, \mathbf{a}, \mathbf{b} and \mathbf{c}. We see by definition

$$
\begin{aligned}
(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} & =\left(\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \mathbf{k}\right) \cdot\left(c_{1} \mathbf{i}+c_{2} \mathbf{j}+c_{3} \mathbf{k}\right) \\
& =\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| c_{1}-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| c_{2}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| c_{3} \\
& =\left|\begin{array}{lll}
c_{1} & c_{2} & c_{3} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
\end{aligned}
$$

We observe the following properties of $(\mathbf{a} \times \mathbf{b})$:
(1) If \mathbf{c} is a vector in the plane spanned by \mathbf{a}, \mathbf{b}, then the third row in the determinant is a linear combination of the first and second row, and hence $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}=0$. In other words, the vector $\mathbf{a} \times \mathbf{b}$ is orthogonal to any vector in the plane spanned by \mathbf{a} and \mathbf{b}.
(2) We compute length of $\mathbf{a} \times \mathbf{b}$.

$$
\begin{aligned}
\|\mathbf{a} \times \mathbf{b}\|^{2} & =\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right|^{2}+\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right|^{2}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|^{2} \\
& =\left(a_{2} b_{3}-a_{2} b_{2}\right)^{2}+\left(a_{1} b_{3}-b_{1} a_{3}\right)^{2}+\left(a_{1} b_{2}-b_{1} a_{2}\right)^{2} \\
& =\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)-\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)^{2}
\end{aligned}
$$

Hence

$$
\|\mathbf{a} \times \mathbf{b}\|^{2}=\|\mathbf{a}\|^{2}\|\mathbf{b}\|^{2}-(\mathbf{a} \cdot \mathbf{b})^{2}=\|\mathbf{a}\|^{2}\|\mathbf{b}\|^{2}\left(1-\cos ^{2} \theta\right)=\|\mathbf{a}\|^{2}\|\mathbf{b}\|^{2} \sin ^{2} \theta
$$

So we conclude that $\mathbf{a} \times \mathbf{b}$ is a vector perpendicular to the plane \mathcal{P} spanned by \mathbf{a} and \mathbf{b} with length $\|\mathbf{a}\|\|\mathbf{b}\||\sin \theta|$.
(3) Finally, the right handed rule can be checked with $\mathbf{i} \times \mathbf{j}=\mathbf{k}$.

Hence this alternative definition is the same as the geometric definition of the cross product given earlier.

Theorem 12.4.6 (Alternative cross Product). For a, b, c, it holds that
(1) $\|\mathbf{a} \times \mathbf{b}\|=\|\mathbf{a}\|\|\mathbf{b}\| \sin \theta$, the area of the parallelogram spanned by \mathbf{a} and b.
(2) $\mathbf{a} \times \mathbf{b}$ is perpendicular to \mathbf{a} and \mathbf{b}, and the triple $(\mathbf{a}, \mathbf{b}, \mathbf{a} \times \mathbf{b})$ form a right-handed rule.

Component formula using determinant

$$
\begin{aligned}
& \left(a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}\right) \times\left(b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}\right)=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| \\
& =\left(a_{2} b_{3}-a_{3} b_{2}\right) \mathbf{i}-\left(a_{1} b_{3}-a_{3} b_{1}\right) \mathbf{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \mathbf{k} .
\end{aligned}
$$

Example 12.4.7. Find $(\mathbf{i}+\mathbf{j}) \times(\mathbf{j}-2 \mathbf{k})$.
sol. $(\mathbf{i}+\mathbf{j}) \times(\mathbf{j}-2 \mathbf{k})=\mathbf{i} \times j-2 \mathbf{i} \times k+\mathbf{j} \times j-2 \mathbf{j} \times k=-2 \mathbf{i}+2 \mathbf{j}+\mathbf{k}$.

Theorem 12.4.8 (Cross product II).
(1) $\|\mathbf{u} \times \mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}-(\mathbf{u} \cdot \mathbf{v})^{2}$. In particular, $\mathbf{u} \times \mathbf{u}=\mathbf{0}$.
(2) If is θ the angle between \mathbf{u} and $\mathbf{v},\|\mathbf{u} \times \mathbf{v}\|=\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta$. Hence nec. and suff. condition for \mathbf{u} and \mathbf{v} are parallel is $\mathbf{u} \times \mathbf{v}=\mathbf{0}$.
(3) $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})$.
(4) $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u}=(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{v}=0$, i.e, $\mathbf{u} \times \mathbf{v}$ is orthogonal to \mathbf{u} and \mathbf{v}.
(5) $|(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}|$ is the volume of parallelepiped formed by three vectors \mathbf{a}, \mathbf{b} and \mathbf{c}.(See below)

Proof. Let $\mathbf{u}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}, \mathbf{v}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}, \mathbf{w}=c_{1} \mathbf{i}+c_{2} \mathbf{j}+c_{3} \mathbf{k}$.
(1) $\|\mathbf{u} \times \mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}-(\mathbf{u} \cdot \mathbf{v})^{2}$ as shown before.

So $\mathbf{u} \times \mathbf{u}=\mathbf{0}$.
(2) Since $\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta$, we have by (1)

$$
\begin{aligned}
\|\mathbf{u} \times \mathbf{v}\| & =\sqrt{\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}-(\mathbf{u} \cdot \mathbf{v})^{2}} \\
& =\|\mathbf{u}\|\|\mathbf{v}\| \sqrt{1-\cos ^{2} \theta} \\
& =\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta .
\end{aligned}
$$

Figure 12.14: right handed rule
(3)

$$
\begin{aligned}
(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w} & =\left(\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \mathbf{k}\right) \cdot\left(c_{1} \mathbf{i}+c_{2} \mathbf{j}+c_{3} \mathbf{k}\right) \\
& =\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| c_{1}-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| c_{2}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| c_{3} \\
& =\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
\end{aligned}
$$

exapnding w.r.t first row, this is

$$
\begin{aligned}
& =a_{1}\left|\begin{array}{ll}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{ll}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{ll}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right| \\
& =\left(a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}\right) \cdot\left(\left|\begin{array}{ll}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right| \mathbf{k}\right) \\
& =\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w}) .
\end{aligned}
$$

Geometry of Determinant

2×2 matrix: If $\mathbf{a}=\left(a_{1}, a_{2}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}\right)$ then we can view them as vectors in \mathbb{R}^{3} and define

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & 0 \\
b_{1} & b_{2} & 0
\end{array}\right|=\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \mathbf{k}=\left(a_{1} b_{2}-a_{2} b_{1}\right) \mathbf{k} .
$$

Figure 12.15: Meaning of triple product: $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$

Hence $\|\mathbf{a} \times \mathbf{b}\|$ is the area of the parallelogram formed by the two vectors.

Example 12.4.9. Find the area of triangle with vertices at $(1,1),(0,2)$ and $(3,2)$.
sol. Two sides are $(0,2)-(1,1)=(-1,1)$ and $(3,2)-(1,1)=(2,1)$. Thus the area is the absolute value of $\frac{1}{2}\left|\begin{array}{cc}-1 & 1 \\ 2 & 1\end{array}\right|=-\frac{3}{2}$.

Proposition 12.4.10. The volume of parallelepiped with sides $\mathbf{a}, \mathbf{b}, \mathbf{c}$ is give by the absolute value of triple product $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$ which is the determinant

$$
|(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}|=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right| .
$$

Proof. Consider a parallelogram with two sides a, b as bottom of the parallelepiped. Then the height is length of the orthogonal projection of \mathbf{c} onto $\mathbf{a} \times \mathbf{b}$ which is $\left\|\frac{(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}}{\|\mathbf{a} \times \mathbf{b}\|^{2}} \mathbf{a} \times \mathbf{b}\right\|$. Hence the volume is

$$
\text { Area }(\text { bottom }) \times \text { height }=\|\mathbf{a} \times \mathbf{b}\|\left\|\frac{(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}}{\|\mathbf{a} \times \mathbf{b}\|^{2}} \mathbf{a} \times \mathbf{b}\right\|=|(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}| .
$$

Example 12.4.11. Three points $A(1,2,3), B(0,1,2), C(0,3,2)$ are given. Find the volume of hexahedron having three vectors $O A, O B, O C$ as sides.
sol. By proposition 12.4.10, we have

$$
\left|\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 3 & 2
\end{array}\right|=1\left|\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right|-0\left|\begin{array}{ll}
2 & 3 \\
3 & 2
\end{array}\right|+0\left|\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right|=-4
$$

Torque

Imagine we are trying to fasten a bolt with a wrench. If one apply the force \mathbf{F} as the figure, we see the amount force acting to the action of bolt is $\|\mathbf{r}\|\|\mathbf{F}\| \sin \theta$.

Figure 12.16: Turning a hexagonal bolt with a wrench with force \mathbf{F}. Torque vector is $\mathbf{r} \times \mathbf{F}$.

Then

$$
\begin{aligned}
\text { Amount of Torque } & =(\text { length of wrench }) \cdot(\text { component of } \mathbf{F} \perp \text { wrench }) \\
& =\|\mathbf{r}\|\|\mathbf{F}\| \sin \theta=\|\mathbf{r} \times \mathbf{F}\| .
\end{aligned}
$$

Also, the direction of the vector $\mathbf{r} \times \mathbf{F}$ is the same direction as the bolt moves. Hence it is natural to define $\mathbf{r} \times \mathbf{F}$ to be the torque vector.

12.5 Lines and planes

Parametric equation of lines(Point-direction form)

The equation of the line ℓ through the point P_{0} and pointing in the direction of $\overrightarrow{P_{0} P}=\mathbf{v}$ is given by

Figure 12.17: A line is determined by a point and a vector

$$
\mathbf{r}(t)=\overrightarrow{O P_{0}}+t \overrightarrow{P_{0} P}=\mathbf{r}_{0}+t \mathbf{v}, t \in \mathbb{R}
$$

where $\mathbf{r}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ and $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right)$. In coordinate form, we have

$$
\begin{aligned}
x & =x_{0}+v_{1} t, \\
y & =y_{0}+v_{2} t, \\
z & =z_{0}+v_{3} t,
\end{aligned}
$$

Example 12.5.1. (1) Find equation of line through $(2,1,5)$ in the direction of $4 \mathbf{i}-2 \mathbf{j}+5 \mathbf{k}$.
(2) In what direction, the the line $x=3 t-2, y=t-1, z=7 t+4$ points ?
sol. (1) $\mathbf{v}=(2,1,5)+t(4,-2,5)$
(2) $(3,1,7)=3 \mathbf{i}+\mathbf{j}+7 \mathbf{k}$.

Two point form

We describe the equation of line through two points $P=\left(x_{1}, y_{1}, z_{1}\right), Q=$ $\left(x_{2}, y_{2}, z_{2}\right)$. If we let $\mathbf{a}=\left(x_{1}, y_{1}, z_{1}\right), \mathbf{b}=\left(x_{2}, y_{2}, z_{2}\right)$.

The direction is given by $\mathbf{v}=\mathbf{b}-\mathbf{a}=\left(x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right)$. So by the point-direction form we see the equation is

$$
\mathbf{r}(t)=\mathbf{a}+t(\mathbf{b}-\mathbf{a})
$$

In components, we see

$$
\begin{aligned}
x & =x_{1}+\left(x_{2}-x_{1}\right) t \\
y & =y_{1}+\left(y_{2}-y_{1}\right) t \\
z & =z_{1}+\left(z_{2}-z_{1}\right) t
\end{aligned}
$$

Solving these for t and equating, we see

$$
\begin{equation*}
\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}} \tag{12.3}
\end{equation*}
$$

This is another equation of the line (called a symmetric form).
Example 12.5.2. Find the equation of a line through $(2,1,-3)$ and $(6,-1,-5)$.
Example 12.5.3. Find the equation of the line segment between $(1,1,-3)$ and $(2,-1,0)$
sol. $0 \leq t \leq 1$

Example 12.5.4. Find where the the line given by the equations

$$
\begin{cases}x & =t+5 \\ y & =-2 t-4 \\ z & =3 t+7\end{cases}
$$

intersect the plane $3 x+2 y-7 z=2$.
sol. We must find the value of t which gives the intersection point. Substituting the expression x, y, z into the equation of the plane, we see

$$
3(t+5)+2(-2 t-4)-7(3 t+7)=2
$$

Solving we get $t=-2$.

Example 12.5.5. Does the two lines $(x, y, z)=(t,-6 t+1,2 t-8)$ and $(3 t+$ $1,2 t, 0)$ intersect ?
sol. If two line intersect, we must have

$$
\left(t_{1},-6 t_{1}, 2 t_{1}-8\right)=\left(3 t_{2}+1,2 t_{2}, 0\right)
$$

for some numbers t_{1}, t_{2}. (Note: we have used two different parameters t_{1} and t_{2}). But since the system of equation

$$
\begin{aligned}
t_{1} & =3 t_{2}+1 \\
-6 t_{1} & =2 t_{2} \\
2 t_{1}-8 & =0
\end{aligned}
$$

has no solution, the lines do not meet.

Distance between a point and a line

Example 12.5.6. Find the distance from the point $P_{0}(2,1,3)$ to the line $\ell(t)=t(-1,1,-2)+(2,3,-2)$.

Figure 12.18: Distance from a point to a line
sol. Choose any point B on the line and find an orthogonal decomposition of $\overrightarrow{B P}_{0}$ onto the direction vector $\mathbf{a}=(-1,1,-2)$ of the line. Then the length of the orthogonal complement is the distance. Choose $B=(2,3,-2)$. Then

$$
\begin{aligned}
\overrightarrow{B P}_{0}:=\mathbf{b} & =(2,1,3)-(2,3,-2) \\
& =(0,-2,5)
\end{aligned}
$$

Hence the orthogonal projection onto \mathbf{a} is

$$
\begin{aligned}
\mathbf{p}_{\mathbf{a}} \mathbf{b} & =\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|^{2}} \mathbf{a} \\
& =(2,-2,4)
\end{aligned}
$$

Thus the distance is

$$
\left\|\mathbf{b}-\mathbf{p}_{\mathbf{a}} \mathbf{b}\right\|=\|(0,-2,5)-(2,-2,4)\|=\sqrt{5}
$$

Method 2: it is nothing but(by definition of cross product)

$$
\|\mathbf{b}\| \sin \theta=\frac{\|\mathbf{b} \times \mathbf{a}\|}{\|\mathbf{a}\|}
$$

12.5.1 Equation of a plane in space

Let \mathcal{P} be a plane and $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ a point on that plane, and suppose that $\mathbf{n}=A \mathbf{i}+B \mathbf{j}+C \mathbf{k}$ is a normal vector. Let $P=(x, y, z)$ be any point in \mathbb{R}^{3}. Then P lies in the plane iff the vector $\overrightarrow{P_{0} P}=\left(x-x_{0}, y-y_{0}, z-z_{0}\right)$ is perpendicular to \mathbf{n}, that is, $\overrightarrow{P_{0} P} \cdot \mathbf{n}=0$. In other words,

$$
(A \mathbf{i}+B \mathbf{j}+C \mathbf{k}) \cdot\left[\left(x-x_{0}\right) \mathbf{i}+\left(y-y_{0}\right) \mathbf{j}+\left(z-z_{0}\right) \mathbf{k}\right]=0
$$

Figure 12.19: A plane is det'd by a point and normal vector

Proposition 12.5.7. Equation of plane through $\left(x_{0}, y_{0}, z_{0}\right)$ that has normal
vector \mathbf{n} is given by three forms:

```
        vector eq. \(=\overrightarrow{P_{0} P} \cdot \mathbf{n}=0\)
    component eq. \(=(A \mathbf{i}+B \mathbf{j}+C \mathbf{k}) \cdot\left[\left(x-x_{0}\right) \mathbf{i}+\left(y-y_{0}\right) \mathbf{j}+\left(z-z_{0}\right) \mathbf{k}\right]=0\)
component eq. 2 \(=A x+B y+C z=D\left(=A x_{0}+B y_{0}+C z_{0}\right)\)
```

Example 12.5.8. Find the equation of plane through the points $A(-3,0,-1)$, $B(-2,3,2), C(1,1,3)$.

sol. Draw some graph describing the normal vector.

Find a vector \mathbf{n} orthogonal to plane.

$$
\begin{aligned}
\mathbf{n} & =\overrightarrow{A B} \times \overrightarrow{A C} \\
& =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-2-(-3) & 3-0 & 2-(-1) \\
1-(-3) & 1-0 & 3-(-1)
\end{array}\right| \\
& =\left|\begin{array}{cc}
3 & 3 \\
1 & 4
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
1 & 3 \\
4 & 4
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
1 & 3 \\
4 & 1
\end{array}\right| \mathbf{k} \\
& =9 \mathbf{i}+8 \mathbf{j}-11 \mathbf{k} .
\end{aligned}
$$

By proposition 12.5.7, the equation is

$$
9(x+3)+8(y-0)-11(z+1)=0
$$

or $9 x+8 y-11 z+16=0$.

Lines of intersection

Example 12.5.9. Find a vector parallel to the line of intersection of two planes $2 x-y+z-4=0$ and $3 x-5 y+z-1=0$.
sol. it is determined by two normals to the planes. The normals are $\mathbf{n}_{1}=$ $(2,-1,1)$ and $\mathbf{n}_{2}=(3,-5,1)$. Thus the direction is

$$
\mathbf{n}_{1} \times \mathbf{n}_{2}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & -1 & 1 \\
3 & -5 & 1
\end{array}\right|=4 \mathbf{i}+\mathbf{j}-7 \mathbf{k}
$$

Figure 12.20: intersection of planes

Distance from a point to plane

Figure 12.21: Distance from a point to plane

Proposition 12.5.10. The distance from $P\left(x_{1}, y_{1}, z_{1}\right)$ to the plane $A x+B y+$ $C z+D=0$ is

$$
\frac{\left|A x_{1}+B y_{1}+C z_{1}+D\right|}{\sqrt{A^{2}+B^{2}+C^{2}}}
$$

Proof. Let \mathbf{n} be a normal vector to the plane. If $Q\left(x_{0}, y_{0}, z_{0}\right)$ lies in the plane, the distance from P to the plane is the orthogonal projection of $\overrightarrow{P Q}$ along \mathbf{n}. Note that from $A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0$, we see $\mathbf{n} / / A \mathbf{i}+B \mathbf{j}+C \mathbf{k}$. Hence length of the orthogonal projection of $\overrightarrow{P Q}$ along \mathbf{n} is

$$
\begin{aligned}
\left\|\frac{\mathbf{n} \cdot \overrightarrow{P Q}}{\|\mathbf{n}\|^{2}} \mathbf{n}\right\| & =\frac{|\mathbf{n} \cdot \overrightarrow{P Q}|}{\|\mathbf{n}\|} \\
& =\frac{\left|A\left(x_{0}-x_{1}\right)+B\left(y_{0}-y_{1}\right)+C\left(z_{0}-z_{1}\right)\right|}{\sqrt{A^{2}+B^{2}+C^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\left|A x_{0}+B y_{0}+C z_{0}-A x_{1}-B y_{1}-C z_{1}\right|}{\sqrt{A^{2}+B^{2}+C^{2}}} \\
& =\frac{\left|-D-A x_{1}-B y_{1}-C z_{1}\right|}{\sqrt{A^{2}+B^{2}+C^{2}}}=\frac{\left|A x_{1}+B y_{1}+C z_{1}+D\right|}{\sqrt{A^{2}+B^{2}+C^{2}}}
\end{aligned}
$$

Example 12.5.11. Find the distance from $(3,4,-2)$ to the plane $2 x-y+$ $z-4=0$.
sol. Using above proposition, distance is

$$
\frac{|2 \cdot 3-1 \cdot 4+1 \cdot(-2)-4|}{\sqrt{4+1+1}}=\frac{|-4|}{\sqrt{6}}=\frac{2 \sqrt{6}}{3} .
$$

Example 12.5.12. Find a unit vector perpendicular to the plane $4 x-3 y+$ $z-4=0$ and express it as a cross product of two unit orthogonal vectors lying in the plane.
sol. Let \mathcal{S} be the given plane. By proposition 12.5 .7 we see $4 \mathbf{i}-3 \mathbf{j}+\mathbf{k}$ is orthogonal to \mathcal{S}. Hence a unit normal vector is

$$
\mathbf{n}= \pm \frac{4 \mathbf{i}-3 \mathbf{j}+\mathbf{k}}{\sqrt{4^{2}+(-3)^{2}+1^{2}}}= \pm \frac{1}{\sqrt{26}}(4 \mathbf{i}-3 \mathbf{j}+\mathbf{k})
$$

Now in order to express this as a cross product of two vectors lying in the plane, we choose three arbitrary points in \mathcal{S}. For example, we choose $(1,0,0),(0,0,4),(2,1,-1)$. Then we obtain two vectors

$$
\begin{aligned}
& \mathbf{u}=(1,0,0)-(2,1,-1)=-\mathbf{i}-\mathbf{j}+\mathbf{k} \\
& \mathbf{v}=(0,0,4)-(2,1,-1)=-2 \mathbf{i}-\mathbf{j}+5 \mathbf{k}
\end{aligned}
$$

which lie in the plane \mathcal{S}. Now we orthogonalize them.
Let \mathbf{a} be the orthogonal projection of \mathbf{v} onto \mathbf{u}. Then let $\mathbf{b}=\mathbf{v}-\mathbf{a}$.

$$
\begin{aligned}
\mathbf{a} & =\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|^{2}} \mathbf{u}=\frac{8}{3}(-\mathbf{i}-\mathbf{j}+\mathbf{k}) \\
\mathbf{b} & =\mathbf{v}-\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|^{2}} \mathbf{u}=(-2 \mathbf{i}-\mathbf{j}+5 \mathbf{k})-\frac{8}{3}(-\mathbf{i}-\mathbf{j}+\mathbf{k}) \\
& =\frac{1}{3}(2 \mathbf{i}+5 \mathbf{j}+7 \mathbf{k})
\end{aligned}
$$

Now normalize them.

$$
\mathbf{a}_{1}=\frac{\mathbf{a}}{\|\mathbf{a}\|}=\frac{1}{\sqrt{3}}(-\mathbf{i}-\mathbf{j}+\mathbf{k}), \quad \mathbf{b}_{1}=\frac{\mathbf{b}}{\|\mathbf{b}\|}=\frac{1}{\sqrt{78}}(2 \mathbf{i}+5 \mathbf{j}+7 \mathbf{k})
$$

We can check that

$$
\begin{aligned}
\mathbf{a}_{1} \cdot \mathbf{b}_{1} & =\frac{(-1) \cdot 2+(-1) \cdot 5+1 \cdot 7}{\sqrt{3} \cdot \sqrt{78}}=0(\text { orthogonal }) \\
\mathbf{a}_{1} \times \mathbf{b}_{1} & =\frac{1}{3 \sqrt{26}}\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-1 & -1 & 1 \\
2 & 5 & 7
\end{array}\right| \\
& =\frac{1}{3 \sqrt{26}}\left(\left|\begin{array}{rr}
-1 & 1 \\
5 & 7
\end{array}\right| \mathbf{i}-\left|\begin{array}{rr}
-1 & 1 \\
2 & 7
\end{array}\right| \mathbf{j}+\left|\begin{array}{rr}
-1 & -1 \\
2 & 5
\end{array}\right| \mathbf{k}\right) \\
& =-\frac{1}{\sqrt{26}}(4 \mathbf{i}-3 \mathbf{j}+\mathbf{k}) .
\end{aligned}
$$

Angles between two planes

The angle between two planes whose normal vectors are \mathbf{n}_{1} and \mathbf{n}_{2} (See figure 12.5.1) is given by

$$
\theta=\cos ^{-1}\left(\frac{\mathbf{n}_{1} \cdot \mathbf{n}_{2}}{\left|\mathbf{n}_{1}\right|\left|\mathbf{n}_{2}\right|}\right) .
$$

*Distance between two skewed lines

Two lines are said to be skewed if they are neither intersecting nor parallel. It follows that they must lie in two parallel planes and the distance between the lines is equal to the distance between the planes. Let us describe how to find the distance between them.

Assume we have two parallel planes Π_{1} and Π_{2} (resp.) containing the line ℓ_{1} and ℓ_{2} (resp.). They share a common normal vector \mathbf{n}. Assume \mathbf{a}_{1} and \mathbf{a}_{2} are two direction vectors of each line. Then the normal vector \mathbf{n} is obtained by taking cross product of \mathbf{a}_{1} and \mathbf{a}_{2}. Let $P_{1} \in \ell_{1}, \xrightarrow{P_{2} \in \ell_{2}}$ be any two points on each line. Then we compute the projection of $\overrightarrow{P_{1} P_{2}}$ onto \mathbf{n}. Moving the projection along the line ℓ_{1} so that the head ends at P_{2}, we see its length is the desired distance.

Figure 12.22: Distance between two lines is the length of $\operatorname{proj}_{\mathbf{n}} \mathbf{b}$

Example 12.5.13. Find the distance between the two lines

$$
\ell_{1}(t)=(0,5,-1)+t(2,1,3), \text { and } \ell_{2}(t)=(-1,2,0)+t(1,-1,0)
$$

sol. We have $\mathbf{a}_{1}=(2,1,3)$ and $\mathbf{a}_{2}=(1,-1,0)$. Choose $P_{1}=(2,6,2)$ and $P_{2}=(0,1,0)$. Then $\mathbf{b}=(2,6,2)-(0,1,0)=(2,5,2)$. While

$$
\mathbf{n}=\mathbf{a}_{1} \times \mathbf{a}_{2}=(2,1,3) \times(1,-1,0)=(3,3,-3)
$$

Normalizing, we let $\mathbf{n}=(1,1,-1) / \sqrt{3}$. Now the projection of \mathbf{b} onto \mathbf{n} is

$$
\operatorname{proj}_{\mathbf{n}} \mathbf{b}=(\mathbf{b} \cdot \mathbf{n}) \mathbf{n}=\frac{(2+5-2)}{\sqrt{3}} \frac{(1,1,-1)}{\sqrt{3}}=\frac{5}{3}(1,1,-1)
$$

Hence the distance is

$$
\left\|\frac{5}{3}(1,1,-1)\right\|=\frac{5}{\sqrt{3}}
$$

12.6 Quadric Surfaces

Visualizing functions

Definition 12.6.1. The graph of a functions of several variables $f: A \subset$ $\mathbb{R}^{n} \rightarrow \mathbb{R}$ is (graph) the following set

$$
\operatorname{graph}(f)=\left\{(\mathbf{x}, f(\mathbf{x})) \in \mathbb{R}^{n+1} \mid \mathbf{x} \in A \subset \mathbb{R}^{n}\right\}
$$

Componentwise,

$$
\operatorname{graph}(f)=\left\{\left(x_{1}, \cdots, x_{n}, f\left(x_{1}, \cdots, x_{n}\right)\right) \in \mathbb{R}^{n+1} \mid \mathbf{x} \in A \subset \mathbb{R}^{n}\right\}
$$

Figure 12.23: Graph of two variable function

Level sets, curves, surfaces

Definition 12.6.2. The level set of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the set of all \mathbf{x} where the function f has constant value:

$$
S_{c}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid f(\mathbf{x})=c, c \in \mathbb{R}\right\} .
$$

If $n=2$, it is level curve and if $n=3$, level surface.
Definition 12.6.3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. The section of the graph of f by the plane $x=c$ is the set of all points (x, y, z) where $z=f(c, y)$. In symbol(notation),

$$
\text { section by } x=c \text { is }\left\{(x, y, x) \in \mathbb{R}^{3} \mid z=f(c, y)\right\} .
$$

Similarly, y-section of the graph of f is the set

$$
\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=f(x, c), y=c\right\} .
$$

Example 12.6.4. The graph of $f(x, y)=x^{2}+y^{2}$ is called paraboloid or paraboloid of revolution. See figure 12.5 for the graph. Study the level sets.

Figure 12.24: Contour curves and Level curves(set)

Figure 12.25: hyperbolic paraboloid $z=x^{2}-y^{2}$
sol. The level set of $x^{2}+y^{2}=c$ is 0 if $c=0$. For $c>0$ it is a circle of radius \sqrt{c}. If $c<0$, the level set is empty.

Example 12.6.5. Draw level sets of $f(x, y)=x^{2}-y^{2}$. The graph is called hyperbolic paraboloid or saddle.
sol. Detail view of the level set. Consider the set $\left\{(x, y) \mid x^{2}-y^{2}=c\right\}$. If $c=0$, then it is $y= \pm x$, two lines through origin. If $c>0$, the level set is a hyperbola meeting with x-axis, and if $c<0$ level set is a hyperbola meeting with y-axis. The intersection with $x z$-plane is the parabola $z=x^{2}$, and the intersection with $y z$-plane is the parabola $z=-y^{2}$. The graph of f is given in Figure 12.25.

Level surface of function of three variables

Example 12.6.6. Study the level surface of $f(x, y, z)=x^{2}+y^{2}+z^{2}$.
sol. The set $x^{2}+y^{2}+z^{2}=c$ becomes

$$
\begin{cases}\text { origin } & \text { if } c=0 \\ \text { circle of radius } \sqrt{c} & \text { if } c>0 \\ \text { empty if } & \text { if } c<0\end{cases}
$$

To imagine the graph in \mathbb{R}^{4}, consider intersection with $\mathbb{R}_{z=0}^{3}=\{(x, y, z, w) \mid$ $z=0\}$. It is

$$
\left\{(x, y, z, w) \mid w=x^{2}+y^{2}, z=0\right\}
$$

Example 12.6.7. Describe the graph of $f(x, y, z)=x^{2}+y^{2}-z^{2}$.
sol. The graph of $f=x^{2}+y^{2}-z^{2}$ is a subset of 4 -dimensional space. If we denote the points in this space by (x, y, z, w), then the graph is given by

$$
\left\{(x, y, z, w) \mid w=x^{2}+y^{2}-z^{2}\right\} .
$$

The level surface is

$$
L_{c}=\left\{(x, y, z) \mid x^{2}+y^{2}-z^{2}=c\right\} .
$$

We have three cases:
(1) For $c=0$, we have $z= \pm \sqrt{x^{2}+y^{2}}$. This is a cone.
(2) If $c=-a^{2}$, we obtain $z= \pm \sqrt{x^{2}+y^{2}+a^{2}}$. This is a hyperboloid of two sheets.
(3) If $c=a^{2}>0$, we obtain $z= \pm \sqrt{x^{2}+y^{2}-a^{2}}$. This is hyperboloid of single sheet.

On the other hand, if we consider intersection with $y=0 ; S_{y=0}=\{(x, y, z, w) \mid$ $y=0\}$, the intersection with the graph of f is

$$
S_{y=0} \cap \text { graph of } f=\left\{(x, y, z, w) \mid y=0, w=x^{2}-z^{2}\right\} .
$$

By changing the role of y and z we have

$$
\left\{(x, y, z, w) \mid w=x^{2}-y^{2}, z=0\right\} .
$$

This set is considered to belong to (x, y, w)-space and is a hyperbolic paraboloid(saddle).

Example 12.6.8 (Hypersurface). In general the graph of $w=F(x, y, z)$ is the set

$$
\{(x, y, z, w)\}
$$

which is a subset of \mathbb{R}^{3} (called hypersurface) which one cannot draw. But we guess the shape by looking at the level surfaces of F.

In \mathbb{R}^{3} the analog of conic section is the surfaces defined by

$$
A x^{2}+B y^{2}+C z^{2}+D x y+E y z+F x z+\text { linear terms }=0
$$

These are classified into the following typical surfaces.

Ellipsoid

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \tag{12.4}
\end{equation*}
$$

Elliptic paraboloid

$$
\begin{equation*}
z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \tag{12.5}
\end{equation*}
$$

Figure 12.26: Saddle $z=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+k$

Hyperbolic paraboloid

$$
z=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}
$$

The intersection with the plane $z=c$ is hyperbola except when $c=0$, in which case the intersection is the two lines $y= \pm(b / a) x$. See figure 12.26.

Hyperboloid

Consider the surface hyperboloid:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=k
$$

If $k>0$, the intersection with $z=z_{0}$ is always an ellipse. This is called a hyperboloid of one sheet. Figure 12.28. On the other hand, The intersection of the set given by

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=-k(k>0)
$$

with $z=z_{0}$ is nonempty only when $\left|z_{0}\right| \geq 1$. For this reason it is called hyperboloid of two sheets.

Figure 12.27: hyperboloid

Figure 12.28: hyperboloid of one (two) sheet

Figure 12.29: Elliptic cone

Elliptic cone

As a special case when $k=0$ we obtain

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{z^{2}}{c^{2}}
$$

called a cone
Example 12.6.9. Express the common part

$$
\left\{\begin{array}{l}
\sqrt{x^{2}+y^{2}} \leq z \leq \sqrt{1-x^{2}-y^{2}} \\
x \geq 0 \\
y \geq 0
\end{array}\right.
$$

using spherical coordinate.
sol. Inside of $x^{2}+y^{2}=z^{2}$ and $x^{2}+y^{2}+z^{2}=1$.

$$
\left\{(\rho, \theta, \phi) \mid 0 \leq \rho \leq 1,0 \leq \theta \leq \frac{\pi}{2}, 0 \leq \phi \leq \frac{\pi}{4}\right\}
$$

