
Chapter 2

Differentiation

2.1 Functions of several variables

Definitions, Notations

A function has three important components.

(1) a domain X

(2) a codomain Y and

(3) a rule of assignment that associates to each element x in the domain

X a unique element denoted by f(x) in the domain Y .

Usually we use the notation f : X → Y .

Definition 2.1.1. The range of a function f : X → Y is the set of all elements

of Y that are actual values of f , i.e,

range of f = {y ∈ Y |y = f(x) for some x ∈ X}.

Definition 2.1.2. f is called onto (surjective) if for every y ∈ Y , there

is an element x ∈ X such that f(x) = y. It is one-to-one(injective) if

f(x1) = f(x2) implies x1 = x2.

In this section, we study functions whose domain is Rn or its subset with

values in Rm.

Definition 2.1.3. If the domain of f is Rn or its subset and the range is R or

its subset, then f is called n-variable scalar-valued function. In particular,
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64 CHAPTER 2. DIFFERENTIATION

if n ≥ 2, it is called functions of several variables. If the domain is A ⊂ Rn

then we write f : A ⊂ Rn → R. Sometimes x 7→ f(x) is used. If the range is

Rm, m ≥ 2 it is called vector-valued function. Use f : Rn → Rm, x ∈ Rn.

We denote f(x) = (f1, . . . , fm) ∈ Rm, where fi : R
n → R functions of n

variables. In other words, f(x) = (f1(x), . . . , fn(x)) each fi is called i-th

component (i-th component function) of f .

Example 2.1.4. (1) Let L(x) = ‖x‖. This is the “length”function defined

on Rn

(2) Consider N(x) = x
‖x‖ for x ∈ R3 − {0}.

Visualizing functions

Definition 2.1.5. The graph of a functions of several variables f : A ⊂ Rn →
R is (graph) the following set

graph(f) = {(x, f(x)) ∈ Rn+1 | x ∈ A ⊂ Rn}.

Componentwise,

graph(f) = {(x1, · · · , xn, f(x1, · · · , xn)) ∈ Rn+1 | x ∈ A ⊂ Rn}.

x

y

z

A

G(f)

Figure 2.1: Graph of two variable function
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Figure 2.2: Level set

Level sets, curves, surfaces

Definition 2.1.6. The level set of f : Rn → R is the set of all x where the

function f has constant value:

Sc = {x ∈ Rn | f(x) = c, c ∈ R}.

If n = 2, it is level curve and if n = 3, level surface. x-section of the

graph of f is the set

{(x, y, z) ∈ R3|z = f(x, y), x = c}.

Similarly, y-section can be defined.

Example 2.1.7. The graph of f(x, y) = x2 + y2 is called paraboloid or

paraboloid of revolution. Draw the level sets.

sol. The level set of x2 + y2 = c is 0 if c = 0. For c > 0 it is a circle of

radius
√
c. If c < 0, the level set is empty.

Example 2.1.8. Draw level sets of f(x, y) = x2 − y2. The graph is called

hyperbolic paraboloid or saddle.

sol. The level sets of f(x, y) = x2 − y2 = c.

Detail view of the level set. If c = 0, then it is y = ±x, two lines

through origin. If c > 0, the level set is a hyperbola meeting with x-axis, and

if c < 0 level set is a hyperbola meeting with y-axis. The intersection with

xz-plane is the parabola z = x2, and the intersection with yz-plane is the

parabola z = −y2. Hence the graph of f is as in Figure 2.3.
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x

y

z

Figure 2.3: The graph of f(x, y) = x2 − y2 and its level curve

The graph of this function f(x, y) = x2 − y2 from the homepage of Marsden’s

Level surface of function of three variables

Example 2.1.9. Study the level surface of f(x, y, z) = x2 + y2 + z2.
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sol. The set x2 + y2 + z2 = c becomes



















origin if c = 0

circle of radius
√
c if c > 0

empty if if c < 0

To imagine the graph in R4, consider intersection with R3
z=0 = {(x, y, z, w) |

z = 0}. It is
{(x, y, z, w) | w = x2 + y2, z = 0}

Example 2.1.10. Describe the graph of f(x, y, z) = x2 + y2 − z2.

sol. The graph of f = x2 + y2 − z2 is a subset of 4-dimensional space. If

we denote the points in this space by (x, y, z, t), then the graph is given by

{(x, y, z, t)|t = x2 + y2 − z2}.

The level surface is

Lc = {(x, y, z)|x2 + y2 − z2 = c}.

We have three cases:

(1) For c = 0, we have z = ±
√

x2 + y2. This is a cone.

(2) If c = −a2, we obtain z = ±
√

x2 + y2 + a2. This is a hyperboloid of

two sheets.

(3) If c = a2 > 0, we obtain z = ±
√

x2 + y2 − a2. This is hyperboloid of

single sheet.
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On the other hand, if we consider intersection with y = 0; Sy=0 = {(x, y, z, t) |
y = 0}, the intersection with the graph of f is

Sy=0 ∩ graph of f = {(x, y, z, t) | y = 0, t = x2 − z2}.

By changing the role of y and z we have

{(x, y, z, t) | t = x2 − y2, z = 0}.

This set is considered to belong to (x, y, t)-space and is a hyperbolic paraboloid(saddle).

2.2 Limits and Continuity

Limit using ε-δ

Definition 2.2.1 (Limit suing ε-δ ). Let f : A ⊂ Rn → Rm. We say the limit

of f at x0 ∈ Rn is b, if for any ε > 0 there exists some positive δ such that for

all x ∈ A satisfying 0 < ‖x− x0‖ < δ, the inequality ‖f(x) − b‖ < ε holds.
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Example 2.2.2. The following function is defined at all points except (0, 0).

f =
sin(x2 + y2)

x2 + y2
.

Find the limit as x → (0, 0).

sol. We know in one variable calculus that

lim
x→0

sinx

x
= 1.

So we can guess

lim
(x,y)→(0,0)

sin(x2 + y2)

x2 + y2
= lim

(x,y)→(0,0)

sin ‖(x, y)‖2
‖(x, y)‖2 = 1.

For any ε > 0, there exists δ > 0 such that |x| < δ =⇒ |(sin x)/x − 1| < ε.

Here we can assume 0 < δ < 1. Write v = (x, y). If ‖v‖ < δ holds, then

|f(x, y)− 1| =
∣

∣

∣

sin(‖v‖2)
‖v‖2 − 1

∣

∣

∣
< ε.

Hence lim(x,y)→(0,0) f(x, y) = 1.

Example 2.2.3. Show

lim
(x,y)→(0,0)

xy
√

x2 + y2
= 0.

sol. Observe

0 ≤ xy
√

x2 + y2
≤ x2 + y2

√

x2 + y2
=

√

x2 + y2.

For any ε, choose δ = ε. Then for ‖(x, y)− (0, 0)‖ < δ, we have

∣

∣

∣

xy
√

x2 + y2
− 0

∣

∣

∣
=

xy
√

x2 + y2
≤

√

x2 + y2 = ‖(x, y) − (0, 0)‖ < δ = ε.

Thus the limit is 0.
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Example 2.2.4. How about the following limits ?

lim
(x,y)→(0,0)

x2

x2 + y2

and

lim
(x,y)→(0,0)

2x2y

x2 + y2
.

sol. (a) Set y = 0 and let x → 0. Next set x = 0 let y → 0. The limit is

different! Hence the limit does not exist.

(b) Note that

0 ≤ 2x2y

x2 + y2
≤ 2x2y

x2
= 2|y|.

For any ε, choose δ = ε/2. Then for ‖(x, y)‖ < δ, we have

∣

∣

∣

2x2y

x2 + y2
− 0

∣

∣

∣
< 2δ = ε.

Thus the limit is 0.

Definition 2.2.5 (Open sets). Let x0 ∈ Rn. The open ball (or disk) of radius

r with center x0 is the set of all points x such that ‖x − x0‖ < r. This is

denoted by Br(x0) or B(x0; r). A closed ball is a set of the form ‖x−x0‖ ≤ r.

A set U ⊂ Rn is said to be open if for every point x0 ∈ U , there exists

some r > 0 such that Br(x0) is contained in U(in symbol, Br(x0) ⊂ U).

Theorem 2.2.6. Br(x0) itself is open.

Example 2.2.7. Half plane is open.

Definition 2.2.8 (Boundary). Let X ⊂ Rn. A point x ∈ Rn is called a

boundary point of X if every neighborhood of x contains at least a point

in X and at least a point not in X. A set X ⊂ Rn is said to be closed if

it contains all of its boundary points. Finally, a neighborhood of a point

x ∈ X is an open set containing x and contained in X.

Let us define the concept of a limit using open sets.

Definition 2.2.9 (Limit). Suppose f : X ⊂ Rn → Rm, where X ⊂ Rn and

let a ∈ X or boundary of X. Then the meaning of
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lim
x→a

f(x) = L

is as follows: Given any ǫ > 0, we can find a δ > 0 such that if points x ∈ X

are in the open ball of radius δ centered at a, then the point f(x) remain

inside of an open ball of radius ǫ centered at L.

x0

δ

Dδ(x0)
ε

Dε(L)

image of
Dδ(x0)

f

Figure 2.4: Limit using neighborhood

Example 2.2.10. Let f : R2 − 0 be defined by

f(x, y) =
x2 − y2

x2 + y2
. or (

x2 − y4

x2 + y4
)

Study the behavior near the origin.

sol. This function is undefined at 0 = (0, 0). First observe

f(x, 0) =
x2

x2
= 1.

But

f(0, y) =
−y2

y2
= −1.

Hence limit cannot exists. In general, we can check along the line y = mx

f(x, y) =
x2 −m2x2

x2 +m2x2
=

1−m2

1 +m2
.

Thus the limit does not exist.
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This example might lead the student to believe the limit exists if the limit

along straight lines exists and equal. But this is not true. See the following

example (Exer 23)

f(x, y) =
x4y4

(x2 + y4)3
.

Along any line y = ax the limit is zero. While along y = a
√
x, we see the limit

is a4

(1+a4)3
.

Properties of Limits

Theorem 2.2.11. Let F,G : X ⊂ Rn → Rm be vector valued functions

and f, g : X ⊂ Rn → R be scalar-valued functions and let a be a point of

X or boundary and k a scalar. Assume lim
x→a

F(x) = L, lim
x→a

G(x) = M and

lim
x→a

f(x) = L, lim
x→a

g(x) = M . Then the following hold:

(1) lim
x→a

(F(x) +G(x)) = L+M.

(2) lim
x→a

kF(x) = kL

(3) lim
x→a

(f(x)g(x)) = LM .

(4) lim
x→a

f(x)

g(x)
=

L

M
, (M 6= 0).

Using this theorem, we can find limits of polynomials or rational functions.

Example 2.2.12. Find the limit of the following functions.

(1) lim
(x,y)→(0,0)

x2 + xy3 − x2y + 2

(2) lim
(x,y)→(0,0)

x2 + xy3 − x2y + 2

xy + 3

sol. By above theorem,

lim
(x,y)→(0,0)

x2 + xy3 − x2y + 2 = 0 + 0 + 0 + 2 = 2,

lim
(x,y)→(0,0)

x2 + xy3 − x2y + 2

xy + 3
=

2

3
.

Theorem 2.2.13. Let f = (f1, · · · , fm) : X ⊂ Rn → Rm be a vector val-

ued function. Then limx→a f(x) = L if and only if lim
x→a

fi(x) = Li, for

i = 1, · · · ,m.
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Continuity

Definition 2.2.14. f : X ⊂ Rn → Rm continuous at a ∈ X if

lim
x→a

f(x) = f(a).

We say f is continuous on X if it is so at all points of X.

y

x

z

y

x

z

discontinuous

Graph of discontinuous function continuous

Figure 2.5: continuous, discontinuous function

Example 2.2.15. Show that the following function is continuous at (0, 0).

f(x, y) =











xy
√

x2 + y2
(x, y) 6= (0, 0) ,

0 (x, y) = (0, 0).

sol. We have seen in example 2.2.3 that the limit of this function at the

origin is 0, and it equals the functon value f(0, 0). Hence f is continuous

there.

Theorem 2.2.16 (Composite function). Suppose g : A ⊂ Rn → Rm and

f : B ⊂ Rm → Rp are given Suppose g(A) ⊂ B so that f ◦ g is defined. If g is

continuous at x0 ∈ A and f(x0) ∈ B, and f is continuous at y0 = g(x0), then

f ◦ g is continuous at x0.

Example 2.2.17. Show f(x, y) = cos2((y + x3)/(1 + x2)) is continuous.
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2.3 The Derivative

Partial derivatives

Recall 1-dim. case ‘Differentiable’ means ‘smooth’ in some sense: At least

tangent line must be defined. Also the composite of differentiable functions is

differentiable.

Definition 2.3.1. Let f : U ⊂ Rn → R be a real valued function. Then the

partial derivative with respect to i-th variable xi is:

lim
h→0

f(x1, . . . , xi + h, . . . , xn)− f(x1, . . . , xn)

h
= lim

h→0

f(x+ hei)− f(x)

h

whenever the limit exists. The partial derivative of f with respect to xi at

x0 ∈ Rn is denoted by
∂f

∂xi
(x0), or

∂f

∂xi

∣

∣

∣

x0

.

For vector valued function f : U ⊂ Rn → Rm, the partial derivative is the

partial derivative of each component function fj, where f = (f1, . . . , fm).

Example 2.3.2. Find partial derivatives of f(x, y) = x2y + cos(x+ y).

sol.
∂f
∂x = 2xy − sin(x+ y), ∂f

∂y = x2 − sin(x+ y).

Example 2.3.3. Find partial derivatives of g(x, y) = xy/
√

x2 + y2 at (1, 1).

sol. First we compute ∂g
∂x(1, 1):

∂g

∂x
(1, 1) =

y
√

x2 + y2 − xy(x/
√

x2 + y2)

x2 + y2

=
y(x2 + y2)− x2y

(x2 + y2)3/2

= 23/2.

Example 2.3.4. Find partial derivatives at (0, 0) of the function defined by

f(x, y) =







3x2y−y2

x2+y2
, if (x, y) 6= (0, 0)

0, if (x, y) = (0, 0).
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sol. Use definition:

∂f

∂x
(0, 0) = lim

x→0

f(h, 0)− f(0, 0)

h
= 0

∂f

∂y
(0, 0) = lim

y→0

f(0, h) − f(0, 0)

h
= −1.

Linear approximation

Suppose f is a scalar valued function of two variables. We want to find the

equation of tangent plane to the graph of z = f(x, y) at (a, b). Let us fix y = b

and consider the y-section:

z = f(x, b).

The direction vector of the tangent line to this curve is (1, 0, fx(a, b)). To

compute the parametric equation of the tangent line to this curve in point-

direction form, we choose the point (a, b, f(a, b)) and the direction vector u :=

(1, 0, fx(a, b)). Thus the equation is

ℓ1(t) = (a, b, f(a, b)) + t(1, 0, fx(a, b)).

Similarly, we consider the x- section z = f(a, y). For this curve we obtain a

direction vector v := (0, 1, fx(a, b)) and

ℓ2(t) = (a, b, f(a, b)) + t(0, 1, fy(a, b)).

Now the plane containing these two tangent lines are determined by the point

(a, b, f(a, b)) and the normal vector N = u× v. By computation, we see

u× v = −fx(a, b)i− fy(a, b)j+ k.

The slope along x-direction is ∂f/∂x(a, b) and the slope along y-direction is

∂f/∂y(a, b). Since the point (a, b, f(a, b)) lies in the plane, we see (x− a, y −
b, z − f(a, b)) ⊥ N. Hence

z = f(a, b) +
∂f

∂x
(a, b)(x − a) +

∂f

∂y
(a, b)(y − b).

This can be interpreted as follows: The equation of the plane can be written



76 CHAPTER 2. DIFFERENTIATION

as z = A(x−a)+B(y− b)+ f(a, b). Here the slope along y-section is A which

must be ∂f
∂x(a, b), while the slope along x-section is ∂f

∂y (a, b) which is B.

x

y

z

(a, b)

slope =
∂f

∂x
(a, b)

z = g(x)

z = f(x, y)

slope =
∂f

∂y
(a, b)

z = h(y)

Figure 2.6: Geometric meaning of partial derivative

Example 2.3.5. Find partial derivative of f(x, y) = x1/3y1/3 by definition,

∂f

∂x
(0, 0) = lim

h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

0− 0

h
= 0.

Similarly (∂f/∂y)(0, 0) = 0. But this is not differentiable, as we shall see later.

x

y
z

Figure 2.7: Graph of f(x, y) = x1/3y1/3
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Existence of partial derivatives is not enough to say a function

has a tangent plane

Example 2.3.6. Let y = x in the above example. Then f(x, x) = x2/3 is

not differentiable at 0 in one variable sense. Hence there is no tangent line at

(0, 0) in one variable sense. Then the tangent plane of course does not exist!

Differentiation of a function of several variable

Review: A one variable differentiable function f(x) can be approximated near

a point a by tangent line at x: f(a) + f ′(a)(x − a). It is the tangent line

approximation or linear approximation of f(x). It satisfies (figure 2.8)

lim
x→a

f(x)− f(a)− f ′(a)(x− a)

x− a
= 0. (2.1)

approximation

f(x) error

y = f(x)

tangent line

a x

Figure 2.8: tangent approximation of a function of one variable

Now consider a two variable function f : R2 → R. Assume fx and fy exist

at (a, b). Then one can consider the following plane:

z = f(a, b) +
∂f

∂x
(a, b)(x − a) +

∂f

∂y
(a, b)(y − b). (2.2)

Ask a question: Is this a tangent plane to the surface z = f(x, y)? The

answer is NOT NECESSARILY! A tangent plane is defined only when the

plane given by (2.2) approximates f(x, y) in a sense similar to (2.1). i.e., we

have the following definition.

Definition 2.3.7. We say f : R2 → R differentiable at (a, b) if ∂f/∂x and



78 CHAPTER 2. DIFFERENTIATION

∂f/∂y exists and for (x, y) → (a, b), the limit

f(x, y)− f(a, b)− ∂f

∂x
(a, b)(x − a)− ∂f

∂y
(a, b)(y − b)

‖(x, y)− (a, b)‖ → 0.

In this case the tangent plane at (a, b) is given by

z = f(a, b) +
∂f

∂x
(a, b)(x − a) +

∂f

∂y
(a, b)(y − b).

If a function is differentiable at all points of its domain, we say it is differen-

tiable.

Definition 2.3.8. In general, Suppose f : Rn → R. Then we say f differen-

tiable at a if

lim
x→a

f(x)− f(a)−
[

∂f
∂x1

(a), · · · , ∂f
∂xn

(a)
]







x1 − a1

· · ·
xn − an







‖x− a‖ = 0.

In short,

lim
x→a

f(x)− f(a)−Df(a)(x− a)

‖x− a‖ = 0. (2.3)

Here Df(a) = [ ∂f∂x1
(a), · · · , ∂f

∂xn
(a)] is called the derivative of f . Usually the

derivative of a scalar function is written as a row vector(for the convenience

of matrix operations.)

Example 2.3.9. Show f(x, y) = x2 + y2 is differentiable at (0, 0). Find the

tangent plane of f(x, y) = x2 + y2 at (0, 0).

sol. We see (∂f/∂x)(0, 0) = (∂f/∂y)(0, 0) = 0.

lim
(x,y)→(0,0)

f(x, y)− f(0, 0)− ∂f

∂x
(0, 0)(x) − ∂f

∂y
(0, 0)(y)

‖(x, y)− (0, 0)‖

= lim
(x,y)→(0,0)

f(x, y)

‖(x, y)‖ = lim
(x,y)→(0,0)

√

x2 + y2

= 0.

Hence it is differentiable at (0, 0). The tangent plane is z = 0.
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Example 2.3.10. Show the function defined by

f(x, y) =







2x2y2

x2+y2 , if (x, y) 6= (0, 0)

0, if (x, y) = (0, 0).

is differentiable at (0, 0).

sol. It is easy to see that fx(0, 0) = fy(0, 0) = 0 by definition. Now

lim
(x,y)→(0,0)

f(x, y)− f(0, 0)− 0− 0

‖(x, y) − (0, 0)‖ = lim
(x,y)→(0,0)

f(x, y)

‖(x, y)‖

= lim
(x,y)→(0,0)

2x2y2

(x2 + y2)3/2
≤ lim

(x,y)→(0,0)

xy(x2 + y2)

(x2 + y2)3/2

= lim
(x,y)→(0,0)

xy

(x2 + y2)1/2

≤ lim
(x,y)→(0,0)

x2 + y2

2(x2 + y2)1/2
= 0.

Example 2.3.11. Find a tangent plane to z1 = x2−xy+ y2 which is parallel

to any of tangent plane to the surface z2 = x2 + y.

sol. The normal vector to the surface z1 = x2 − xy + y2 is (2x − y,−x +

2y,−1), while the normal vector to z2 = x2 + y is (2x, 1,−1). Assume they

are parallel. Then

(2x− y,−x+ 2y,−1) = k(2x, 1,−1)

From this we obtain k = 1, x = −1, y = 0, z1 = 1, z2 = 1. Thus the equation

of tangent plane to the first surface is z − 1 = −2(x+ 1)− y.

Differentiability of vector valued function

Let f : Rn → Rm be a vector valued function with several variables. If every

component of f is differentiable, we say f is differentiable. We can express the

concept of differentiability of a vector function in vector notation as follows:
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Definition 2.3.12. A function f = (f1, . . . , fm) : Rn → Rm is said to be

differentiable at a point a if all the partial derivatives of f exists at a and

lim
x→a

‖f(x) − f(a)−Df(a)(x− a)‖
‖x− a‖ = 0

holds. Here

Df(a) =









Df1
...

Dfm









=













∂f1
∂x1

· · · ∂f1
∂xn

...
...

∂fm
∂x1

· · · ∂fm
∂xn













is a m×n matrix and Df(a)(x−a) is the product of m×n matrix Df(a) and

the n× 1 vector x− a. Df(a) is called the derivative of f at a. Sometimes

it is called the Jacobian matrix. Also, note that this is a vector version of

(2.3).

If m = 1, then

Df =

[

∂f

∂x1
· · · ∂f

∂xn

]

.

It is also called the gradient of f and denoted by ∇f . If we let h = x − a,

then real valued function f is differentiable at a point a if

lim
x→a

1

‖h‖

∣

∣

∣

∣

∣

∣

f(a+ h)− f(a)−
n
∑

j=1

∂f

∂xj
(a)hj

∣

∣

∣

∣

∣

∣

= 0.

Example 2.3.13. Find the derivative of Df(x, y).

(1) f(x, y) = (xy, x+ y)

(2) f(x, y) = (ex+y, x2 + y2, xey)

sol. (1) f1 = xy, f2 = x+ y. Hence

Df(x) =

[

y x

1 1

]

.

(2) f1 = ex+y, f2 = x2 + y2, f3 = xey. Hence

Df(x) =







ex+y ex+y

2x 2y

ey xey






.
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Example 2.3.14. Show f(x, y) = (xy, x+ y) is differentiable at (0, 0).

sol. From example 2.3.13,

Df(0, 0) =

[

0 0

1 1

]

lim
(x,y)→(0,0)

∥

∥

∥

∥

∥

f(x, y)− f(0, 0) −Df(0, 0)

[

x

y

]∥

∥

∥

∥

∥

‖(x, y)− (0, 0)‖

= lim
(x,y)→(0,0)

‖(xy, x + y)− (0, x+ y)‖
‖(x, y)‖

= lim
(x,y)→(0,0)

|xy|
√

x2 + y2
= 0.

Relation with continuity

Theorem 2.3.15. If f = (f1, . . . , fn) : R
n → Rm has all partial derivatives

∂fi/∂xj exist and continuous in a neighborhood of x, then f is differentiable

at x.

Example 2.3.16. f(x, y) = (exy, x2 + y2, xey) is differentiable at all points of

R2.

sol. Since all the partial derivatives are continuous on R2, f is differentiable

by Theorem 2.3.15.

Example 2.3.17. Given

f(x, y) =











xy
√

x2 + y2
(x, y) 6= (0, 0)

0 (x, y) = (0, 0)

.

Show that

(1) The partial derivatives at (0, 0) exist.
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(2) f is not differentiable at (0, 0).

sol. (1) From definition, we have

∂f

∂x
(0, 0) = lim

(x,y)→(0,0)

f(x, 0) − f(0, 0)

x
= 0

and
∂f

∂y
(0, 0) = lim

(x,y)→(0,0)

f(0, y)− f(0, 0)

y
= 0.

(2) We have

Df =

[

∂f

∂x

∂f

∂y

]

∣

∣

∣

(0,0)
=

[

0 0
]

.

Hence we consider the following limit:

lim
(x,y)→(0,0)

f(x, y)− f(0, 0)− 0 · (x, y)T
‖(x, y)‖ = lim

(x,y)→(0,0)

xy

x2 + y2
.

Since lim(x,y)→(0,0) xy/(x
2+y2) does not exists, f is not differentiable at (0, 0).

But if we change the f to
x2y

√

x2 + y2
in the above example, then we can show

it is differentiable at (0, 0).

x

y

z

Figure 2.9: Graph of example 2.3.17

Theorem 2.3.18. If f = (f1, . . . , fn) : R
n → Rm is differentiable at x0, then

f is continuous at x0.

The converse is not true.
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Example 2.3.19. Suppose f : R2 → R is given as follows.

f(x, y) =







1 x = 0 or y = 0

0 otherwise

partial deriv. exist

�

��

em

SSSSSSSSSSSSSS

SSSSSSSSSSSSSS

differentiable ks continuous partial derivative

continuous

�

KS

qy

kkkkkkkkkkkkkkk

kkkkkkkkkkkkkkk

2.4 Higher order derivatives; Newton’s Method

Properties of derivatives

Proposition 2.4.1 (Rules). Suppose f : Rn → Rm and g : Rn → Rm is dif-

ferentiable at x0. Then we have

(1) [constant multiple rule] For all constant c, cf is differentiable at x0.

D(cf)(x0) = cDf(x0)

(2) [sum rule] Sum f + g differentiable at x0

D(f + g)(x0) = Df(x0) +Dg(x0)

(3) [product rule] (When m = 1) Product fg differentiable at x0.

D(fg)(x0) = g(x0)Df(x0) + f(x0)Dg(x0)

(4) [quotient rule] (When m = 1) If g(x0) 6= 0, then f/g differentiable at

x0.

D

(

f

g

)

(x0) =
g(x0)Df(x0)− f(x0)Dg(x0)

(g(x0))2

Rule (1) and (2) together is called the ”linearity”.
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Proof. (3) Suppose x → x0. We need to show that

g(x)f(x) − g(x0)f(x0)− [g(x)Df(x0) + f(x)Dg(x0)](x − x0)

‖x− x0‖
→ 0.

First we see the numerator:

g(x)f(x) − g(x)f(x0) + g(x)f(x0)− g(x0)f(x0)

− [g(x0)Df(x0) + f(x0)Dg(x0)](x− x0)

= [g(x)f(x) − g(x)f(x0)− g(x0)Df(x0)(x− x0)]

+ [g(x)f(x0)− g(x0)f(x0)− f(x0)Dg(x0)(x− x0)].

Let A be the terms in the first bracket and B be the terms in the second

bracket. Then

A = g(x)f(x) − g(x)f(x0)− g(x0)Df(x0)(x− x0)

= g(x)f(x) − g(x)f(x0)− g(x)Df(x0)(x− x0)

+ g(x)Df(x0)(x− x0)− g(x0)Df(x0)(x− x0)

= g(x)[f(x) − f(x0)−Df(x0)(x− x0)] + [g(x)− g(x0)]Df(x0)(x− x0).

Similar expression for B. Now using the definition of derivative and continuity

we see

lim
x→x0

A

‖x− x0‖
= 0, lim

x→x0

B

‖x− x0‖
= 0.

Example 2.4.2. n = 2, m = 3. Let f = (xey, x sin xy, ex+y) and g = (x +

y, x2 + ey, x2 − y). Then

Df =







ey xey

sinxy + xy cos xy x2 cos xy

ex+y ex+y






, Dg =







1 1

2x ey

2x −1






.

Example 2.4.3 (Product rule). Let f = exy and g = x + y2. Then fg =

exy(x+ y2) and

D(fg) =
[

y(x+ y2)exy + exy, x(x+ y2)exy + 2yexy
]
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while

gDf + fDg = (x+ y2)[yexy, xexy] + exy[1, 2y].

Higher order partial derivatives

Suppose f has ∂f/∂x, ∂f/∂y and each of these partials again has partial

derivatives. Then we write

∂

∂x

(∂f

∂x

)

=
∂2f

∂x2
∂

∂y

(∂f

∂x

)

=
∂2f

∂y∂x

∂

∂x

(∂f

∂y

)

=
∂2f

∂x∂y

∂

∂y

(∂f

∂y

)

=
∂2f

∂y2
.

These are the second partial derivatives of f . We also use simplified ex-

pressions such as ∂f/∂x = fx, ∂f/∂y = fy, and

∂2f

∂x2
= fxx,

∂2f

∂y∂x
= fxy,

∂2f

∂x∂y
= fyx,

∂2f

∂y2
= fyy.

Example 2.4.4. Compute higher order partial derivatives.

(1) f(x, y) = exy + x2y

(2) f(x, y, z) = x2y + y2z + z3x.

sol. (1) For f(x, y) = exy + x2y,

fx = yexy + 2xy, fy = xexy + x2

fxx = y2exy + 2y, fyy = x2exy

fxy = fyx = exy + xyexy + 2x.

(2) For f(x, y, z) = x2y + y2z + z3x,

fx = 2xy + z3, fy = x2 + 2yz, fz = y2 + 3z2x

fxx = 2y, fyy = 2z, fzz = 6xz

fxy = fyx = 2x

fxz = fzx = 3z2

fyz = fzy = 2y.



86 CHAPTER 2. DIFFERENTIATION

x0 x0 +∆x

y0

y0 +∆y

∆f
∆x

∆f
∆x

∆f
∆y

∆f
∆y

Figure 2.10: Two paths of difference quotient

Mixed partial derivatives

Definition 2.4.5. Assume U ⊂ Rn is open. A scalar valued function f : U →
R is said to be class Ck if all partial derivatives up to order k exist and are

continuous.

Derivatives such as fxy, fyx, fxz, fzx, fyz, fzy are called mixed partial

derivatives.

Theorem 2.4.6. If f(x, y) is class C2, then

∂2f

∂x∂y
=

∂2f

∂y∂x
.

This theorem holds for functions with several variables, i.e., if f : X ⊂ Rn → R

is class C2, then

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
for i, j = 1, · · · , n.

Proof. A motivation. Recall for fixed y, ∂f
∂x(x, y) is the limit of

∆xf

∆x
=

f(x+∆x, y)− f(x, y)

∆x
. (2.4)

Then the mixed derivative ∂2f
∂y∂x must be the limit of

∆y(
∂f
∂x

)

∆y . Hence let us
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compute the increment along y in (2.4) and take the limit

∆y(
∆xf
∆x )

∆y
=

f(x+∆x, y +∆y)− f(x, y +∆y)− [f(x+∆x, y)− f(x, y)]

∆y∆x
(2.5)

as ∆x,∆y → 0(in some sense). Here ∆x is the increment of f along x defined

by

∆xf(x, y) = f(x+∆x, y)− f(x, y).

and ∆y is the increment of f along y defined by

∆yf(x, y) = f(x, y +∆y)− f(x, y).

Now we show that indeed the limit of (2.5) (∆x,∆y) → 0 is ∂2f
∂y∂x .

∆y[∆xf(x, y)] = ∆y[f(x+∆x, y)− f(x, y)]

= ∆yf(x+∆x, y)−∆yf(x, y)

= f(x+∆x, y +∆y)− f(x+∆x, y)− [f(x, y +∆y)− f(x, y)].

Note this difference is taken along the blue line first, then along red line in the

figure. By changing the order, we see

∆x[∆yf(x, y)] = ∆x[f(x, y +∆y)− f(x, y)]

= ∆xf(x, y +∆y)−∆xf(x, y)

= f(x+∆x, y +∆y)− f(x, y +∆y)− [f(x+∆x, y +∆y)− f(x, y)]

= ∆y[∆xf(x, y)].

Let’s define the increment of f(correspond. to second derivative) by

S(∆x,∆y) = f(x+∆x, y +∆y)− f(x+∆x, y)

− f(x, y +∆y) + f(x, y).

Fix y and ∆y and define

g(x) = f(x, y +∆y)− f(x, y).

Then S(∆x,∆y) = g(x + ∆x) − g(x). Use MVT. There is x ≤ x̃ ≤ x + ∆x
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such that S(∆x,∆y) = g′(x̃)∆x. So

S(∆x,∆y) = g′(x̃)∆x

=
(∂f

∂x
(x̃, y +∆y)− ∂f

∂x
(x̃, y)

)

∆x.

Apply MVT for y again there is y ≤ ỹ ≤ y +∆y such that

S(∆x,∆y) =
∂2f

∂y∂x
(x̃, ỹ)∆x∆y.

Since ∂2f/∂x∂y is continuous, we have

∂2f

∂y∂x
(x, y) = lim

(∆x,∆y)→(0,0)

S(∆x,∆y)

∆x∆y
.

Here the l.h.s. depends on the order of x, y but r.h.s. is independent of x and

y. Now exchanging the role of x and y we see

∂2f

∂x∂y
(x, y) = lim

(∆x,∆y)→(0,0)

S(∆y,∆x)

∆y∆x
= lim

(∆x,∆y)→(0,0)

S(∆x,∆y)

∆x∆y
=

∂2f

∂y∂x
(x, y).

Example 2.4.7. Find mixed partial ∂2f/∂y∂x of

f(x, y) = xy2 − ex
2−x/(x2 + 1).

sol. By Thm 2.4.6, fyx may be computed instead of fxy.

fyx = (2xy)x = 2y.

Note that for this particular example, computing fyx is simpler than fxy .

Example 2.4.8. Show the following when f belongs to C3.

∂3f

∂x∂y∂z
=

∂3f

∂z∂x∂y
.
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sol. We can change order of differentiation

∂3f

∂x∂y∂z
=

∂

∂x

( ∂2f

∂y∂z

)

=
∂

∂x

( ∂2f

∂z∂y

)

=
∂2

∂x∂z

(∂f

∂y

)

=
∂2

∂z∂x

(∂f

∂y

)

=
∂3f

∂z∂x∂y
.

2.5 Chain rule

Chain rule in several variables

Theorem 2.5.1 (Chain rule-simple). Suppose x(t) = (x(t), y(t)) : R → R2

differentiable at t0 and f : X ⊂ R2 → R differentiable at x0 = x(t0) then the

composite h = f ◦ x : R → R ( h(t) = f(x(t), y(t))) is differentiable at t0 and

its derivative dh/dt(t0) is

dh

dt
(t0) =

∂f

∂x
(x0)

dx

dt
(t0) +

∂f

∂y
(x0)

dy

dt
(t0).

Proof. From
dh

dt
(t0) = lim

t→t0

h(t)− h(t0)

t− t0
,

we have

h(t)− h(t0)

t− t0
=

f(x(t), y(t)) − f(x(t0), y(t0))

t− t0

=
f(x(t), y(t)) − f(x(t0), y(t)) + f(x(t0), y(t)) − f(x(t0), y(t0))

t− t0
.

Since f differentiable in each variable, we see by mean value theorem that

there exists a point c between x(t) and x(t0) such that

f(x(t), y(t)) − f(x(t0), y(t)) =
(∂f

∂x
(c, y(t))

)

(x(t)− x(t0))

holds. Similarly,

h(t) − h(t0)

t− t0
=

(∂f

∂x
(c, y(t))

)x(t)− x(t0)

t− t0
+
(∂f

∂y
(x(t0), d)

)y(t)− y(t0)

t− t0
.
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h = f ◦ x

∂f

∂x

∂f

∂y

x(t)

y(t)

dx
dt

dy

dt

t

Figure 2.11: Chain rule-simple case

Let t approach t0. Then we obtain the result.

This theorem can be generalized to the case when f has several variables.

Suppose f : X ⊂ Rn → R differentiable and x(t) = (x1(t), · · · , xn(t)) : R →
Rn, then the composite function h(t) = f ◦ x : R → R has derivative

dh

dt
(t0) =

∂f

∂x1
(x0)

dx1
dt

(t0) + · · · + ∂f

∂xn
(x0)

dxn
dt

(t0) = Df(x0) · x′(t0).

Example 2.5.2. Show Chain rule holds for f(x, y) = exy and x(t) = (t2, 2t).

sol. Since h(t) = f ◦ x(t) = f(x(t), y(t)) = e2t
3

, we have dh/dt = 6t2e2t
3

.

On the other hand, by chain rule, we have

dh

dt
= yexy · 2t+ xexy · 2 = 6t2e2t

3

.

Theorem 2.5.3. Suppose x : X ⊂ R2 → R3 is given by x(t1, t2) = (x(t1, t2), y(t1, t2), z(t1, t2))

and f : R3 → R are differentiable mappings such that the range of x is con-

tained in the domain of f . Then the composite function h = f ◦ x is differen-

tiable. For example, the derivative at t0 = (t01, t
0
2) is Dh(t0) =

[

∂h/∂t1(t0), ∂h/∂t2(t0)
]

where

∂h

∂t1
(t0) =

∂f

∂x
(x0)

∂x

∂t1
(t0) +

∂f

∂y
(x0)

∂y

∂t1
(t0) +

∂f

∂z
(x0)

∂z

∂t1
(t0)

∂h

∂t2
(t0) =

∂f

∂x
(x0)

∂x

∂t2
(t0) +

∂f

∂y
(x0)

∂y

∂t2
(t0) +

∂f

∂z
(x0)

∂z

∂t2
(t0).
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h = f ◦ x

∂f

∂x

∂f

∂y

∂f

∂z

x(u, v)

y(u, v)

z(u, v)

u

v

Figure 2.12: Chain rule- in Theorem 2.5.3

In matrix form, we have Dh = Df ◦Dx, where

Df = [
∂f

∂x
,
∂f

∂y
,
∂f

∂z
], and Dx =







∂x
∂t1

, ∂x
∂t2

∂y
∂t1

, ∂y
∂t2

∂z
∂t1

, ∂z
∂t2






.

Proof. Fix t2 as a constant and compute ∂h/∂t1 using one variable chain rule:

∂h

∂t1
(t0) =

∂f

∂x
(x0)

∂x

∂t1
(t0) +

∂f

∂y
(x0)

∂y

∂t1
(t0) +

∂f

∂z
(x0)

∂z

∂t1
(t0).

Similarly,

∂h

∂t2
(t0) =

∂f

∂x
(x0)

∂x

∂t2
(t0) +

∂f

∂y
(x0)

∂y

∂t2
(t0) +

∂f

∂z
(x0)

∂z

∂t2
(t0).

More Generally we have: Suppose x : Rn → Rm differentiable at t0 and

f : Rm → R differentiable at x0 = x(t0). Then the composite function h = f◦x
differentiable at t0 and

Dh(t0) = Df(x0)Dx(t0).

Or

∂h

∂tj
=

∂f

∂x1

∂x1
∂tj

+
∂f

∂x2

∂x2
∂tj

+ · · · + ∂f

∂xm

∂xm
∂tj

=

m
∑

k=1

∂f

∂xk

∂xk
∂tj

, j = 1, · · · n.
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Example 2.5.4. Verify the chain rule for f(u, v, w) = u2 + v2 − w, where

u(x, y, z) = x2y, v = y2, z = e−xz.

sol. Let

h(x, y, z) = f(u(x, y, z), v(x, y, z), w(x, y, z)).

Then by chain rule

∂h

∂x
=

∂f

∂u

∂u

∂x
+

∂f

∂v

∂v

∂x
+

∂f

∂w

∂w

∂x
= 2u(2xy) + 2v · 0 + (−1)(−ze−xz).

Other terms such as ∂h
∂y ,

∂h
∂z can be computed similarly.

Theorem 2.5.5 (Chain rule-General case). Suppose x : Rn → Rm differen-

tiable at t0 and f : Rm → Rp differentiable at x0 = x(t0). Then h = f ◦ x

differentiable at t0 and

Dh(t0) = Df(x0)Dx(t0).

Proof. Suppose x : Rn → Rm and f : Rm → Rp are given. Then

x(t1, · · · , tn) = (x1(t1, · · · , tn), x2(t1, · · · , tn), · · · , xm(t1, · · · , tn))
f(x1, · · · , xm) = (f1(x1, · · · , xm), · · · , fp(x1, · · · , xm)).

Let the composite function be

h(t1, · · · , tn) = (f ◦ x)(t1, · · · , tn).

Apply the simple case to each component of h = [f1 ◦ x, · · · , fp ◦ x]T (Column

vector) so that hi = fi ◦ x and

Dh1 = Df1 ◦Dx

Dh2 = Df2 ◦Dx

= · · ·
Dhp = Dfp ◦Dx.
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depen. var

f1

f2

...

fm

∂f

∂x1

∂f

∂x2

∂f

∂xm

Intermed. var

x1

x2

...

xm

∂x1

∂t1

∂x2

∂t1

∂xm

∂t1

Final var

t1

t2

...

tn

Figure 2.13: Chain rule- General Case

Now just write it in a matrix form to see Dh(t0) = Df(x0)Dx(t0).

Example 2.5.6. Given the vector functions f , g below, consider the composite

function h = (k, l) = f ◦ g. Find the partials ∂k/∂x and ∂l/∂y.

g(x, y, z) = (xyz, x2 + y2 + z2, exyz), f(u, v, w) = (u2 − uv, u+ v + w).

sol. Use chain rule

∂k

∂x
=

∂k

∂u

∂u

∂x
+

∂k

∂v

∂v

∂x
+

∂k

∂w

∂w

∂x

= (2u− v)(yz) + (−u)(2x) + 0

= (2xyz − x2 − y2 − z2)(yz)− (xyz)(2x)

= 2xyz − 3x2yz − y3 − yz2,

∂l

∂y
=

∂l

∂u

∂u

∂y
+

∂l

∂v

∂v

∂y
+

∂l

∂w

∂w

∂y

= 1 · ∂u
∂y

+ 1 · ∂u
∂y

+ 1 · ∂w
∂y

= xz + 2y + xzexyz.

Check it using matrix product.

Example 2.5.7. Use Chain rule to find the derivative of composite function

h(t) = (h1(t), h2(t), h2(t)) = f ◦ g(t),
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where g(t) = (x(t), y(t), z(t)) and f : = (f1(x, y, z), f2(x, y, z), f3(x, y, z)).

Note that hi(t) = fi(g(t)). Use Chain rule for special case(to each compo-

nent)
dhi
dt

=
∂fi
∂x

dx

dt
+

∂fi
∂y

dy

dt
+

∂fi
∂z

dz

dt
.

Use Chain rule as a whole

Df =







∂f1
∂x ,

∂f1
∂y ,

∂f1
∂z

∂f2
∂x ,

∂f2
∂y ,

∂f2
∂z

∂f3
∂x ,

∂f3
∂y ,

∂f3
∂z






while Dg =







x′(t)

y′(t)

z′(t)






.

Hence Df ◦Dg =







∂f1
∂x x

′(t) + ∂f1
∂y y

′(t) + ∂f1
∂z z

′(t)
∂f2
∂x x

′(t) + ∂f2
∂y y

′(t) + ∂f2
∂z z

′(t)
∂f3
∂x x

′(t) + ∂f3
∂y y

′(t) + ∂f3
∂z z

′(t)






.

Example 2.5.8. Let f : U ⊂ Rn → Rm be given by f = (f1, · · · , fm) and

g(x) = sin[f(x) · f(x)]. Compute Dg(x).

sol.

Dg(x) = cos[f(x) · f(x)]D[f(x) · f(x)].

We compute D[f(x) · f(x)] which is

Dh =
[

2f1
∂f1
∂x1

+ · · · + 2fm
∂fm
∂x1

, · · · , 2f1 ∂f1
∂xn

+ · · ·+ 2fm
∂fm
∂xn

]

= 2f(x)Df(x),

where Df(x) is the derivative of f , Finally, we see Dg(x) = 2 cos[f(x) ·
f(x)]f(x)Df(x).

Example 2.5.9 (Polar/Rectangular coordinates conversions). Recall







x = r cos θ

y = r sin θ.

Suppose w = f(x, y) is given. We would like view it as a function of (r, θ), i.e,

w = g(r, θ) := f(x(r, θ), y(r, θ))
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and compute ∂g
∂r ,

∂g
∂θ . By the chain rule,

Dg(r, θ) = Df(x, y)Dx(r, θ).

Hence

[

∂g
∂r

∂g
∂θ

]

=
[

∂f
∂x

∂f
∂y

]

[

∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

]

=
[

∂f
∂x

∂f
∂y

]

[

cos θ −r sin θ

sin θ r cos θ

]

.

Entry wise, we see







∂w
∂r = cos θ ∂w

∂x + sin θ ∂w
∂y

∂w
∂θ = −r sin θ ∂w

∂x + r cos θ ∂w
∂y .

(2.6)

If we extract the derivative symbol only, we get a differential operator:







∂
∂r = cos θ ∂

∂x + sin θ ∂
∂y

∂
∂θ = −r sin θ ∂

∂x + r cos θ ∂
∂y .

(2.7)

Similarly, we can show







∂
∂x = cos θ ∂

∂r − sin θ
r

∂
∂θ

∂
∂y = sin θ ∂

∂r +
cos θ
r

∂
∂θ .

(2.8)

2.6 Gradient and the directional derivatives

Gradient

Definition 2.6.1. Let f : U ⊂ Rn → R be differentiable. The gradient of at

x0 is

∇f =

(

∂f

∂x1
,
∂f

∂x2
, · · · , ∂f

∂xn

)

.

The directional derivative

Definition 2.6.2. Let v ∈ Rn be a unit vector and a ∈ X ⊂ Rn, the

directional derivative of f : X → R at a along v is Dvf(a) defined by



96 CHAPTER 2. DIFFERENTIATION

(Fig 2.14)
d

dt
f(a+ tv)

∣

∣

∣

t=0
.

x

y

z

v
a

slope of this tangent line
is directional derivative

f(a + tv)

Figure 2.14: Directional Derivative

Theorem 2.6.3. If f(x) : X ⊂ R3 → R is differentiable and a ∈ X, then the

directional derivative of f at a along v exists and is given by

Dvf(a) = grad f(a) · v = ∇f(a) · v.

Proof. Let c(t) = a+ tv so that f(a+ tv) = f(c(t)). Then by the chain rule
d
dtf(c(t)) = ∇f(c(t)) · c′(t). Hence

d

dt
f(a+ tv)

∣

∣

∣

∣

0

= ∇f(a) · v = Df · c′(t). (2.9)

Example 2.6.4. The converse of above theorem does not hold. The existence

of directional derivatives does not guarantee differentiability.

Consider

f(x, y) =







xy2

x2+y4
, if (x, y) 6= 0

0, if (x, y) = 0.

This function is not continuous at the origin, but has directional derivatives

along any direction.(Fill out detail)

The directional derivative is the rate of change of f along v. The rate of
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change of f along a curve is given as

d

dt
f(c(t))

∣

∣

∣

∣

0

= ∇f · c′(t)
∣

∣

0
= ∇f(a) · v. (2.10)

Example 2.6.5. Compute the rate of change of f(x, y, z) = xy−z2 at (1, 0, 1)

along (1, 1, 1).

sol. The unit vector to (1, 1, 1) is v = (1/
√
3)(1, 1, 1). The gradient of f at

(1, 0, 1) is

∇f(1, 0, 1) = (fz, fy, fz)|(1,0,1) = (y, x, 2z)|(1,0,1)

= (0, 1,−2) ·
( 1√

3
,
1√
3
,
1√
3

)

= − 1√
3
.

Direction of steepest ascent

We have just seen ∇f(a) ·v is the rate of change of f at a along the direction

v. We see

Dvf(a) = Df(a) · v = ‖v‖‖∇f(a)‖ cos θ.

Here θ is the angle between v and ∇f(a). Hence if θ = 0, the directional

derivative has maximum value ‖∇f(a)‖, and if θ = π it has minimum value

−‖∇f(a)‖. Also, if θ = π/2 then the directional derivative is 0. Hence we

have

Theorem 2.6.6. Suppose f : Rn → R is differentiable at a. Then f increases

fastest at a along ∇f(a). Also, f does not change along the perpendicular

direction to ∇f(a).

Similarly, f decreases fastest in the direction of −∇f(a).

Example 2.6.7. In what direction from (0, 1) does f(x, y) = x2−y2 increases

fastest?

Gradient is normal to the level set

We refer to the figure 2.15 or 2.16. Consider the level set(surface) of f(x, y, z):

S = {(x, y, z) ∈ R3 | f(x, y, z) = k}.
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x0

c(t)

S

c
′(t)

∇f(x0)

Level surface
f(x, y, z) = c

Figure 2.15: gradient at x0 is perpendicular to tangent plane through x0

(x3, y3)

f(x, y) = c3

(x2, y2)

f(x, y) = c2

(x1, y1)

f(x, y) = c1

∇f(x2, y2)

∇f(x3, y3)
∇f(x1, y1)

Figure 2.16: 2D case; gradient is perpendicular to level curve.

Suppose a curve c passes the point x0 = (x0, y0, z0) lies on the surface S. Then

f(c(t)) = k holds. Then we have by chain rule

0 =
d

dt
f(c(t)) = ∇f(c(t)) · c′(t).

Hence the tangent vector c′(t0) at x0 is normal to the gradient ∇f(x0).

Theorem 2.6.8. Suppose f(x, y, z) is differentiable and ∇f(x0) 6= 0. Then

∇f(x0) is normal to the level surface S = {(x, y, z) ∈ R3 | f(x, y, z) = k}.

Definition 2.6.9. The tangent plane plane to the surface S in Theorem 2.6.8

at x0 = (x0, y0, z0) is given by

∇f(x0) · (x− x0) = 0, or

∂f

∂x
(x0)(x− x0) +

∂f

∂y
(x0)(y − y0) +

∂f

∂z
(x0)(z − z0) = 0.
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Compare this with the definition earlier for the graph of z = f(x, y):

z − z0 = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).

Example 2.6.10. Find the equation of the tangent plane to 3xy + z2 = 4 at

(1, 1, 1).

sol. The gradient −∇f = (3y, 3x, 2z) at (1, 1, 1) is (3, 3, 2). Thus the

tangent plane is

(3, 3, 2) · (x− 1, y − 1, z − 1) = 0.

Example 2.6.11. Find the equation of the tangent hyper-plane to the hy-

persurface x2 + y2 + z2 − w2 = 1 at (1, 1,−1,
√
2).

sol. The gradient (2x, 2y, 2z,−2w) at (1, 1,−1,
√
2) it is (2, 2,−2, 2

√
2).

Thus the tangent plane is

2(x− 1) + 2(y − 1)− 2(z + 1)− 2
√
2(w −

√
2) = 0.

Example 2.6.12. Consider a tangent plane to the surface

xyz2 + ey
2z − sin(x+ z)− 3 = 0.

This surface cannot be described as the graph of a function. However,

given any particular point, we may locally solve for z in terms of x, y. Thus

this relation defines a function implicitly at least near such point. The question

is when?

As we shall see, it is possible when ∂F
∂z 6= 0 at some point.

Theorem 2.6.13 (Implicit function theorem). Let F : X ⊂ Rn → R be

class C1 and let a be a point of the level set S = {x ∈ Rn|F (x) = c}. If

Fxn(a) 6= 0, then there is a neighborhood U of (a1, a2, · · · , an−1) in Rn−1 and

a neighborhood V of an in R, and a function f : U ⊂ Rn−1 → V of class C1

such that xn = f(x1, x2, · · · , xn−1).

Example 2.6.14. Consider ellipsoid x2/4 + y2/36 + z2/9 = 1. It is the level

set of the function

F (x, y, z) =
x2

4
+

y2

36
+

z2

9
.



100 CHAPTER 2. DIFFERENTIATION

At (
√
2,
√
6,
√
3), we can check ∂F

∂z 6= 0. Hence z can be solved as function of

x and y.

Example 2.6.15. Let F (x, y, z) = x2z2 − y and S be the level set of height

0. For points where Fx = 2z2 6= 0 one can solve for other variables.

Implicit function theorem-one variable

Theorem 2.6.16. Let y = f(x) and f ′(x0) 6= 0. Then the inverse function

x = f−1(y) exists near y0 = f(x0).

We generalize this to higher dimensions. A special case first.

Theorem 2.6.17. Suppose F : Rn+1 → R has all continuous partials. Denote

any point in Rn+1 by (x, z). Assume F (x, z) satisfies

F (x0, z0) = 0 and
∂F

∂z
(x0, z) 6= 0.

Then there is a ball U containing x0 such that z = g(x) for x ∈ U and satisfies

F (x, g(x)) = 0. (2.11)

Moreover,

Dg(x) = − 1
∂F
∂z |(x,g(x))

DxF (x, z)|(x,g(x)).

Proof. Sketch only. Assume z is a function of x near x0.(i.e., assume there

exists a function z = g(x) satisfying (2.11). This is a big step!). Differentiating

F (x, z) = 0 with resp. to xi, we obtain

∂F

∂xi
+

∂F

∂z

∂z

∂xi
= 0.

Since Fz 6= 0, we have for i = 1, · · · , n

∂z

∂xi
= −

∂F
∂xi

∂F
∂z

.

Hence Dg is well -defined.

Example 2.6.18. Show that near (x, y, u, v) = (1, 1, 1, 1) we can solve the
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following system for (u, v).

xu+ yvu2 = 2

xu3 + y2v4 = 2.

sol. Let

F1 = xu+ yvu2 − 2

F2 = xu3 + y2v4 − 2

and check that

∆ =

∣

∣

∣

∣

∣

∂F1

∂u
∂F1

∂v
∂F2

∂u
∂F2

∂v

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

x+ 2yuv yu2

3u2 4y2v3

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

3 1

3 4

∣

∣

∣

∣

∣

= 9.

Hence by the implicit function theorem, we can solve it.

We introduce a convention: for a generic point in z ∈ Rn+m, we write

z = (x,y), where x ∈ Rn and y ∈ Rm.

Theorem 2.6.19 (Implicit function theorem, General Case). Let F : A ⊂
Rn+m → Rm be class C1 where A is an open set in Rn+m. Let (a,b) =

(a1, · · · , an, b1, · · · , bm) ∈ A satisfy F(a,b) = c. If

detDyF =
∂(f1, · · · , fm)

∂(y1, · · · , ym)

∣

∣

∣

∣

(a,b)

6= 0,

then there is a neighborhood U of a in Rn and a function f : U → Rm of class

C1 such that F(x, f(x)) = c and the derivative of f is given by

Dxf = −DyF
−1DxF.

In other words, b can be solved as a differentiable function of a in a neighbor-

hood of a.
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