Contents

1 The geometry of Euclidean Space 1
1.1 Vectors in 2, 3 dim space 1
1.1.1 Lines, Planes and the Space 4
1.2 More about vectors 9
1.3 Inner product, length, distance 13
1.4 Matrices and Cross product 22
1.5 Equations of Planes 35
$1.6 \quad n$-dim Euclidean space 42
1.7 Cylindrical and spherical coordinate 54

Chapter 1

The geometry of Euclidean Space

We consider the basic operations of vectors in 3 and 3 dim. space: vector addition, scalar multiplication, dot product and cross product. In section 1.6 we generalize these notions to n dim'l space.

1.1 Vectors in 2, 3 dim space

Definition 1.1.1. A vector in $\mathbb{R}^{n}, n=2,3$ is an ordered pair(triple) of real numbers, such as

$$
\left(a_{1}, a_{2}\right), \text { or }\left(a_{1}, a_{2}, a_{3}\right) .
$$

Here a_{1}, a_{2} are called x-coordinate, y-coordinate or x-component, y component of $\left(a_{1}, a_{2}\right)$. The point $(0,0)$ is called the origin and denoted by O.

We use the boldface to denote vectors, e.g, $\mathbf{a}=\left(a_{1}, a_{2}\right)$ or $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ are standard notations for vectors. The notation \vec{a} is also used. A point P in \mathbb{R}^{n} can be represented by an ordered pair of real numbers $\left(a_{1}, a_{2}\right)$ or $\left(a_{1}, a_{2}, a_{3}\right)$ called Cartesian coordinate) of P. Thus, vectors are identified with points in the plane or space.

$$
\mathbb{R}^{2}=\left\{\left(a_{1}, a_{2}\right) \mid a_{1} \in \mathbb{R}, a_{2} \in \mathbb{R}\right\}
$$

Figure 1.1: Coordinate plane

Vector addition and scalar multiplication-algebraic view

The operation of addition can be extended to \mathbb{R}^{3}. Given two triples, $\mathbf{a}=$ $\left(a_{1}, a_{2}, a_{3}\right), \mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$, we define

$$
\mathbf{a}+\mathbf{b}=\left(a_{1}, a_{2}, a_{3}\right)+\left(b_{1}, b_{2}, b_{3}\right)=\left(a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right)
$$

to be the sum of $\left(a_{1}, a_{2}, a_{3}\right)$ and $\left(b_{1}, b_{2}, b_{3}\right)$. Thus we see that

$$
\mathbf{a}+\mathbf{b}=\mathbf{b}+\mathbf{a} .
$$

Two vectors $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$ are equal if $a_{1}=b_{1}, a_{2}=b_{2}$ and $a_{3}=b_{3}$. The vector $\mathbf{0}=(0,0,0)$ is the zero element. The vector $-\left(a_{1}, a_{2}, a_{3}\right)=\left(-a_{1},-a_{2},-a_{3}\right)$ is called the additive inverse or negative of $\left(a_{1}, a_{2}, a_{3}\right)$.

Commutative law and associate law for additions:
(i) $(x, y, z)+(u, v, w)=(u, v, w)+(x, y, z) \quad$ (commutative law)
(ii) $((x, y, z)+(u, v, w))+(l, m, n)$

$$
=(x, y, z)+((u, v, w)+(l, m, n)) \quad \text { (associate law) }
$$

The difference is defined as

$$
\left(a_{1}, a_{2}, a_{3}\right)-\left(b_{1}, b_{2}, b_{3}\right)=\left(a_{1}-b_{1}, a_{2}-b_{2}, a_{3}-b_{3}\right) .
$$

Example 1.1.2.

$$
\begin{aligned}
(6,0,2)+(-10,3,2) & =(-4,3,4) \\
(3,0,3)-(5,0,-2) & =(-2,0,5) \\
(0,0,0)+(1,3,2) & =(1,3,2)
\end{aligned}
$$

For any real α, and $\left(a_{1}, a_{2}, a_{3}\right)$ in \mathbb{R}^{3}, the scalar multiple $\alpha\left(a_{1}, a_{2}, a_{3}\right)$ is defined as

$$
\alpha\left(a_{1}, a_{2}, a_{3}\right)=\left(\alpha a_{1}, \alpha a_{2}, \alpha a_{3}\right)
$$

Additions and scalar multiplication has the following properties:
(i) $(\alpha \beta)(x, y, z)=\alpha(\beta(x, y, z))$
(ii) $(\alpha+\beta)(x, y, z)=\alpha(x, y, z)+\beta(x, y, z) \quad$ (distributive law)
(iii) $\alpha((x, y, z)+(u, v, w))=\alpha(x, y, z)+\alpha(u, v, w)$
(iv) $\alpha(0,0,0)=(0,0,0)$
$(\mathrm{v}) 0(x, y, z)=(0,0,0)$
$(\mathbf{v i}) 1(x, y, z)=(x, y, z)$
(associate law)
(distributive law)
(property of 0)
(property of 0)
(property of 1)

Example 1.1.3.

$$
\begin{aligned}
3(6,-3,2) & =(18,-9,6) \\
1(3,5,-2) & =(3,5,-2) \\
0(1,3,2) & =(0,0,0) \\
(-2)(-2,1,3) & =(4,-2,-6)
\end{aligned}
$$

Example 1.1.4. Show

(1) $(\alpha+\beta)(x, y)=\alpha(x, y)+\beta(x, y)$
(2) $\alpha((x, y)+(u, v))=\alpha(x, y)+\alpha(u, v)$
sol. (1) LHS is

$$
\begin{aligned}
(\alpha+\beta)(x, y) & =((\alpha+\beta) x,(\alpha+\beta) y) \\
& =(\alpha x+\beta x, \alpha y+\beta y) \\
& =(\alpha x, \alpha y)+(\beta x, \beta y) \\
& =\alpha(x, y)+\beta(x, y)
\end{aligned}
$$

(2) LHS is

$$
\begin{aligned}
\alpha((x, y)+(u, v)) & =\alpha(x+u, y+v) \\
& =(\alpha(x+u), \alpha(y+v)) \\
& =(\alpha x+\alpha u, \alpha y+\alpha v) \\
& =(\alpha x, \alpha y)+(\alpha u, \alpha v) \\
& =\alpha(x, y)+\alpha(u, v)
\end{aligned}
$$

1.1.1 Lines, Planes and the Space

(1) The set of all real numbers is denoted by \mathbb{R}.
(2) The set of all ordered pairs of real numbers (x, y) is denoted by \mathbb{R}^{2}.
(3) The set of all ordered triples of real numbers (x, y, z) is denoted by \mathbb{R}^{3}.

Figure 1.2: quadrant

The planes in \mathbb{R}^{3} determined by $z=0$.(resp. $\quad x=0$ and $y=0$) are called $x y$-plane, (resp. $y z$-plane, $z x$-plane) These planes divides the space into

Figure 1.3: A point $P\left(a_{1}, a_{2}, a_{3}\right)$ as a vector
eight parts: Each of them is called octant. If every component is positive, it is called the first octant.

Example 1.1.5. (1) The $x z$-plane is the set of all points with $y=0$:

$$
\{(x, y) \mid y=0\} .
$$

(2) Similarly, the $x y$-plane is determined by $z=0$:

$$
\{(x, y, z) \mid z=0\} .
$$

(3) x-axis is determined by

$$
\left\{\begin{array}{l}
y=0 \\
z=0
\end{array}\right.
$$

or

$$
\{(x, y, z) \mid y=0, z=0\} .
$$

Vectors-Geometric view

We can associate a vector a with a point $\left(a_{1}, a_{2}, a_{3}\right)$ in the space. For example, we can visualize it with an arrow starting at the origin and ending at the point $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$. One can also interpret a vector as a directed line segment i.e, a line segment with specified magnitude and direction.

Referring to the Figure 1.4, we denote the directed line segment $P Q$ from P to Q by $\overrightarrow{P Q} . P$ and Q are called tail and head respectively. A vector with tail at the origin is called a position vector. If two vectors have the same magnitude direction, we regard it as the same vector. In this case two vector

Figure 1.4: vectors

Figure 1.5: sum and difference of two vectors
can overlap exactly when moved in parallel. Given two points $P_{1}\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}, z_{2}\right)$, the displacement vector from P_{1} to P_{2} is

$$
{\overrightarrow{P_{1} P_{2}}}_{2}=\left(x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right) .
$$

Referring to the parallelogram $A B D C$ in Figure 1.4, we see $\overrightarrow{A B}=\overrightarrow{C D}$ and $\overrightarrow{A C}=\overrightarrow{B D}$.

See figure 1.5 (1). If two vectors \mathbf{u}, \mathbf{v} have the same tail P, the $\operatorname{sum} \mathbf{u}+\mathbf{v}$ is the vector ending at the opposite vertex of the parallelogram formed by \mathbf{u} and \mathbf{v}.

Figure 1.6: scalar multiples of \mathbf{v}
(i) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$ (commutative law)
(ii) $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$ (associate law)

Scalar multiple of a vector

For a real number(scalar) s and a vector \mathbf{v}, the scalar multiple $s \mathbf{v}$ (see Fig 1.11) is the vector having magnitude $|s|$ times that of \mathbf{v}, having the same direction as \mathbf{v} when $s>0$, opposite direction when $s<0$.

The followings hold:
(iii) $(s t) \mathbf{u}=s(t \mathbf{u})$
(associative law)
(iv) $(s+t) \mathbf{u}=s \mathbf{u}+t \mathbf{u}$
(distributive law)
$(\mathbf{v}) s(\mathbf{u}+\mathbf{v})=s \mathbf{u}+s \mathbf{v}$
(distributive law)
(vi) $s \mathbf{0}=\mathbf{0}$
(0-vector)
(vii) $0 \mathbf{u}=\mathbf{0}$
(viii) $1 \mathbf{u}=\mathbf{u}$

Example 1.1.6 (3D vectors). A 3D vector is denoted by, say

$$
\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right) .
$$

Here a_{1}, a_{2}, a_{3} are called x-component, y-component, z-component of a. Let $A=\left(a_{1}, a_{2}, a_{3}\right)$. Shift the line segment $O A$ by b_{1} along x-axis, by b_{2} along y-axis, b_{3} along z-axis respectively. We obtain a vector denoted by $B P$. (See figure 1.7) Then the coordinate of B and P are $\left(b_{1}, b_{2}, b_{3}\right)$ and $\left(a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right)$, and $O B P A$ form a parallelogram. Hence

$$
\overrightarrow{O A}+\overrightarrow{O B}=\overrightarrow{O P}
$$

Standard basis vectors

Definition 1.1.7. The following vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are called (standard basis vector) of \mathbb{R}^{3} (Figure 1.13).

$$
\mathbf{i}=(1,0,0), \mathbf{j}=(0,1,0), \mathbf{k}=(0,0,1)
$$

Figure 1.7: Vectors in 3D
Remark 1.1.8. (1) For a given $\mathbf{v}=\left(a_{1}, a_{2}, a_{3}\right)$

$$
\left(a_{1}, a_{2}, a_{3}\right)=a_{1}(1,0,0)+a_{2}(0,1,0)+a_{3}(0,0,1)=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}
$$

Example 1.1.9. Write the following using standard basis vectors.
(1) $\mathbf{v}=(-1 / 2,3,5)$.
(2) Express $3 \mathbf{a}-2 \mathbf{b}$ when $\mathbf{a}=(3,5,0), \mathbf{b}=(-4,1,1)$.
(3) Given two points $P(1,4,3)$ and $Q(4,1,2)$, express $\overrightarrow{P Q}$.
(4) Given three points $A(0,-1,4), B(2,4,1)$ and $C(3,0,2)$, express

$$
\frac{1}{2} \overrightarrow{O A}+\frac{1}{3} \overrightarrow{O B}+\frac{1}{6} \overrightarrow{O C}
$$

sol.

(1) $\mathbf{v}=(-1 / 2) \mathbf{i}+3 \mathbf{j}+5 \mathbf{k}$
(2) $3 \mathbf{a}-2 \mathbf{b}=3(3 \mathbf{i}+5 \mathbf{j})-2(-4 \mathbf{i}+\mathbf{j}+\mathbf{k})$

$$
=(9+8) \mathbf{i}+(15-2) \mathbf{j}+(-2) \mathbf{k}=17 \mathbf{i}+13 \mathbf{j}-2 \mathbf{k}
$$

(3) $\overrightarrow{P Q}=(4-1) \mathbf{i}+(1-4) \mathbf{j}+(2-3) \mathbf{k}=3 \mathbf{i}-3 \mathbf{j}-\mathbf{k}$
(4) $(1 / 2) \overrightarrow{O A}+(1 / 3) \overrightarrow{O B}+(1 / 6) \overrightarrow{O C}$
$=(1 / 2)(-\mathbf{j}+4 \mathbf{k})+(1 / 3)(2 \mathbf{i}+4 \mathbf{j}+\mathbf{k})+(1 / 6)(3 \mathbf{i}+2 \mathbf{k})$
$=(7 / 6) \mathbf{i}+(5 / 6) \mathbf{j}+(8 / 3) \mathbf{k}$

1.2 More about vectors

Parametric equation of lines(Point-direction form)

Figure 1.8: A line is determined by a point and a vector
The equation of the line ℓ through the point $P_{0}=\mathbf{b}$ and pointing in the direction of $\overrightarrow{P_{0} P}=\mathbf{a}$ is given by

$$
\ell(t)=\overrightarrow{O P}_{0}+t \overrightarrow{P_{0} P}=\mathbf{b}+t \mathbf{a}, t \in \mathbb{R}
$$

where $\mathbf{b}=\left(x_{1}, y_{1}, z_{1}\right)$ and $\mathbf{a}=(a, b, c)$. In coordinate form, we have

$$
\begin{aligned}
& x=x_{1}+a t \\
& y=y_{1}+b t \\
& z=z_{1}+c t
\end{aligned}
$$

Example 1.2.1. (1) Find equation of line through $(2,1,5)$ in the direction of $4 \mathbf{i}-2 \mathbf{j}+5 \mathbf{k}$.
(2) To what direction, does the line $x=3 t-2, y=t-1, z=7 t+4$ points?
sol. (1) $\mathbf{v}=(2,1,5)+t(4,-2,5)$
(2) $(3,1,7)=3 \mathbf{i}+\mathbf{j}+7 \mathbf{k}$.

Two point form

We describe the equation of line through two points $P=\left(x_{1}, y_{1}, z_{1}\right), Q=$ $\left(x_{2}, y_{2}, z_{2}\right)$. If we let $\mathbf{a}=\left(x_{1}, y_{1}, z_{1}\right), \mathbf{b}=\left(x_{2}, y_{2}, z_{2}\right)$.

The direction is given by $\mathbf{v}=\mathbf{b}-\mathbf{a}=\left(x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right)$. So by the point-direction form we see the equation is

$$
\ell(t)=\mathbf{a}+t(\mathbf{b}-\mathbf{a})
$$

In components, we see

$$
\begin{aligned}
x & =x_{1}+\left(x_{2}-x_{1}\right) t \\
y & =y_{1}+\left(y_{2}-y_{1}\right) t \\
z & =z_{1}+\left(z_{2}-z_{1}\right) t
\end{aligned}
$$

Solving these for t and equating, we see

$$
\begin{equation*}
\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}} \tag{1.1}
\end{equation*}
$$

This is another equation of the line (symmetric form).
Example 1.2.2. Find the equation of a line through $(2,1,-3)$ and $(6,-1,-5)$.
A direction vector is $(4,-2,2)$. So

$$
\ell(t)=(2,1,-3)+t(4,-2,2)
$$

Example 1.2.3. Find the equation of the line segment between $(1,1,-3)$ and (2, -1, 0)
sol. We get $\ell(t)=(1,1,-3)+t(1,-2,3)$ but note the domain $0 \leq t \leq 1$.

Example 1.2.4. Find the point where the the line given by the equations

$$
\begin{cases}x & =t+5 \\ y & =-2 t-4 \\ z & =3 t+7\end{cases}
$$

intersect the plane $3 x+2 y-7 z=2$.
sol. We must find the value of t which gives the intersection point. Substituting the expression x, y, z into the equation of the plane, we see

$$
3(t+5)+2(-2 t-4)-7(3 t+7)=2
$$

Solving we get $t=-2$. Hence the point is $(3,0,1)$.

Example 1.2.5. Does the two lines $(x, y, z)=(t,-6 t+1,2 t-8)$ and $(3 t+$ $1,2 t, 0)$ intersect ?
sol. If two line intersect, we must have

$$
\left(t_{1},-6 t_{1}, 2 t_{1}-8\right)=\left(3 t_{2}+1,2 t_{2}, 0\right)
$$

for some numbers t_{1}, t_{2}. (Note: we have used two different parameters t_{1} and t_{2}). Since the system of equation

$$
\begin{aligned}
t_{1} & =3 t_{2}+1 \\
-6 t_{1} & =2 t_{2} \\
2 t_{1}-8 & =0
\end{aligned}
$$

has no solution, the lines do not meet.

Cycloid

Assume a circle of radius a is rolling on the x-axis. Let P be a point on the circle located at the origin in the beginning. As the circle rolls, P starts to move from the origin. (Fig 1.9) The trajectory of P is called a cycloid. If circle rotates by t radian, then $P=(x, y)$ is given by

$$
\begin{equation*}
x=a t+a \cos \theta, \quad y=a+a \sin \theta \tag{1.2}
\end{equation*}
$$

Since $\theta=\frac{3 \pi}{2}-t, \cos \theta=-\sin t, \sin \theta=-\cos t$, we have

$$
x=a(t-\sin t), \quad y=a(1-\cos t)
$$

Figure 1.9: Cycloid

Involute

Imagine you unwind adhesive tape from a fixed circular tape dispenser(or a roll or wire). Assume the unwound tape is taut and tangent to the dispenser roll. The vector representing tip of the tape from the dispenser roll is

Figure 1.10: involute

$$
\overrightarrow{B P}=a \theta \cos \left(\theta-\frac{\pi}{2}\right) \mathbf{i}+a \theta \sin \left(\theta-\frac{\pi}{2}\right) \mathbf{j} .
$$

Hence

$$
\overrightarrow{O P}=\overrightarrow{O B}+\overrightarrow{B P}=a(\cos \theta+\theta \sin \theta) \mathbf{i}+a(\sin \theta-\theta \cos \theta) \mathbf{j}
$$

So the coordinate of P is

$$
\left\{\begin{array}{l}
x=a(\cos \theta+\theta \sin \theta) \\
y=a(\sin \theta-\theta \cos \theta) .
\end{array}\right.
$$

1.3 Inner product, length, distance

Dot product-Inner product

Definition 1.3.1. Given two vectors $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$ and $\mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}$ we define

$$
a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

to be the dot product or (inner product) of \mathbf{a} and \mathbf{b} and write $\mathbf{a} \cdot \mathbf{b}$.
Example 1.3.2. Let $\mathbf{a}=2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}, \mathbf{b}=\mathbf{i}+2 \mathbf{j}-\mathbf{k}$. Find
(1) $\mathbf{a} \cdot \mathbf{a}$
(2) $\mathbf{a} \cdot \mathbf{b}$
(3) $\mathbf{a} \cdot(\mathbf{a}-3 \mathbf{b})$
(4) $(3 \mathbf{a}+2 \mathbf{b}) \cdot(\mathbf{a}-\mathbf{b})$
sol. (1) $\mathbf{a} \cdot \mathbf{a}=4+9+1=14$
(2) $\mathbf{a} \cdot \mathbf{b}=2-6-1=-5$
(3) $\mathbf{a} \cdot(\mathbf{a}-3 \mathbf{b})=(2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}) \cdot(-\mathbf{i}-9 \mathbf{j}+4 \mathbf{k})$ $=-2+27+4=29$
(4) $(3 \mathbf{a}+2 \mathbf{b}) \cdot(\mathbf{a}-\mathbf{b})=(8 \mathbf{i}-5 \mathbf{j}+\mathbf{k}) \cdot(\mathbf{i}-5 \mathbf{j}+2 \mathbf{k})$

$$
=8+25+2=35
$$

Proposition 1.3.3 (Properties of Inner Product). For vectors a, b, c and scalar α, the following hold:
(1) $\mathbf{a} \cdot \mathbf{a} \geq 0$ (equality holds only when $\mathbf{a}=\mathbf{0}$)
(2) $\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a}$
(3) $(\mathbf{a}+\mathbf{b}) \cdot \mathbf{c}=\mathbf{a} \cdot \mathbf{c}+\mathbf{b} \cdot \mathbf{c}$
(4) $(\alpha \mathbf{a}) \cdot \mathbf{b}=\alpha(\mathbf{a} \cdot \mathbf{b})$
(5) $\|\mathbf{a}\|=\sqrt{\mathbf{a} \cdot \mathbf{a}}$

Figure 1.11: Angle between two vectors

Proof. These can be proved easily.
Example 1.3.4. For a, b, c Show the following.
(1) $(\mathbf{a}-\mathbf{b}) \cdot \mathbf{c}=\mathbf{a} \cdot \mathbf{c}-\mathbf{b} \cdot \mathbf{c}$
(2) $\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c}$
(3) $\mathbf{a} \cdot(\mathbf{b}-\mathbf{c})=\mathbf{a} \cdot \mathbf{b}-\mathbf{a} \cdot \mathbf{c}$
(4) $\mathbf{a} \cdot \mathbf{b}=\frac{1}{2}\left(\|\mathbf{a}\|^{2}+\|\mathbf{b}\|^{2}-\|\mathbf{a}-\mathbf{b}\|^{2}\right)$
sol. We see
(1) $(\mathbf{a}-\mathbf{b}) \cdot \mathbf{c}=(\mathbf{a}+(-1) \mathbf{b})) \cdot \mathbf{c}=\mathbf{a} \cdot \mathbf{c}+((-1) \mathbf{b}) \cdot \mathbf{w}$

$$
=\mathbf{a} \cdot \mathbf{c}+(-1) \mathbf{b} \cdot \mathbf{c}=\mathbf{a} \cdot \mathbf{c}-\mathbf{b} \cdot \mathbf{c}
$$

(2) $\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=(\mathbf{b}+\mathbf{c}) \cdot \mathbf{a}=\mathbf{b} \cdot \mathbf{a}+\mathbf{c} \cdot \mathbf{a}=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c}$
(3) $\mathbf{a} \cdot(\mathbf{b}-\mathbf{c})=(\mathbf{b}-\mathbf{c}) \cdot \mathbf{a}=\mathbf{b} \cdot \mathbf{a}-\mathbf{c} \cdot \mathbf{a}=\mathbf{a} \cdot \mathbf{b}-\mathbf{a} \cdot \mathbf{c}$
(4) $\|\mathbf{a}-\mathbf{b}\|^{2}=(\mathbf{a}-\mathbf{b}) \cdot(\mathbf{a}-\mathbf{b})=\mathbf{a} \cdot(\mathbf{a}-\mathbf{b})-\mathbf{b} \cdot(\mathbf{a}-\mathbf{b})$ $=\mathbf{a} \cdot \mathbf{a}-\mathbf{a} \cdot \mathbf{b}-\mathbf{b} \cdot \mathbf{a}+\mathbf{b} \cdot \mathbf{b}=\|\mathbf{a}\|^{2}-2 \mathbf{a} \cdot \mathbf{b}+\|\mathbf{b}\|^{2}$

Length of vectors

The length, norm of a vector $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ is

$$
\sqrt{\left(a_{1}-0\right)^{2}+\left(a_{2}-0\right)^{2}+\left(a_{3}-0\right)^{2}}=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}
$$

denoted by $\|\mathbf{a}\|$. Also we note that

$$
\|\mathbf{a}\|=(\mathbf{a} \cdot \mathbf{a})^{1 / 2}
$$

Example 1.3.5. Find the lengths of the following vectors.
(1) $\mathbf{a}=(3,2,1)$
(2) $3 \mathbf{i}-4 \mathbf{j}+\mathbf{k}$
(3) $\overrightarrow{A B}$ when $A(2,-1 / 3,-1), B(8 / 3,0,1)$.
sol. (1) $\|\mathbf{a}\|=\sqrt{9+4+1}=\sqrt{14}$
(2) $\|3 \mathbf{i}-4 \mathbf{j}+\mathbf{k}\|=\sqrt{9+16+1}=\sqrt{26}$
(3) $\|\overrightarrow{A B}\|=\sqrt{(8 / 3-2)^{2}+(0-(-1 / 3))^{2}+(1-(-1))^{2}}$

$$
=\sqrt{4 / 9+1 / 9+4}=\sqrt{41} / 3
$$

Definition 1.3.6. A vector with norm 1 is called a unit vector. Any nonzero vector a can be made into a unit vector by setting $\mathbf{a} /\|\mathbf{a}\|$. This process is called a normalization.

Example 1.3.7. Normalize the followings.
(1) $\mathbf{i}+\mathbf{j}+\mathbf{k}$
(2) $3 \mathbf{i}+4 \mathbf{k}$
(3) $a \mathbf{i}-\mathbf{j}+c \mathbf{k}$
sol. (1) $(1 / \sqrt{3}) \mathbf{i}+(1 / \sqrt{3}) \mathbf{j}+(1 / \sqrt{3}) \mathbf{k}$
(2) $(3 / 5) \mathbf{i}+(4 / 5) \mathbf{k}$
(3) $\left(a / \sqrt{1+a^{2}+c^{2}}\right) \mathbf{i}-\left(1 / \sqrt{1+a^{2}+c^{2}}\right) \mathbf{j}+\left(c / \sqrt{1+a^{2}+c^{2}}\right) \mathbf{k}$

Angle between two vectors

Proposition 1.3.8. Let \mathbf{a}, \mathbf{b} be two nonzero vectors in \mathbb{R}^{2} or \mathbb{R}^{3} and let θ be the angle between them. Then

$$
\mathbf{a} \cdot \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta
$$

and hence

$$
\theta=\cos ^{-1}\left(\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|\|\mathbf{b}\|}\right)
$$

Figure 1.12: law of cosine

Proof. Let $\mathbf{a}=\overrightarrow{A B}, \mathbf{b}=\overrightarrow{A C}$. Then $\mathbf{a}-\mathbf{b}=\overrightarrow{C B}$.
Let $\angle C A B=\theta$. Then by the law of cosine (figure 1.12) we have

$$
\|\mathbf{b}-\mathbf{a}\|^{2}=\|\mathbf{a}\|^{2}+\|\mathbf{b}\|^{2}-2\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta
$$

The left hand side is

$$
\begin{aligned}
\|\mathbf{a}-\mathbf{b}\|^{2} & =(\mathbf{a}-\mathbf{b}) \cdot(\mathbf{a}-\mathbf{b}) \\
& =\mathbf{a} \cdot \mathbf{a}-\mathbf{a} \cdot \mathbf{b}-\mathbf{b} \cdot \mathbf{a}+\mathbf{b} \cdot \mathbf{b} \\
& =\|\mathbf{a}\|^{2}-2 \mathbf{a} \cdot \mathbf{b}+\|\mathbf{b}\|^{2} .
\end{aligned}
$$

Hence we obtain

$$
\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta=\mathbf{a} \cdot \mathbf{b}
$$

Corollary 1.3.9. Two nonzero vector \mathbf{a} and \mathbf{b} are perpendicular, orthogonal if and only if $\mathbf{a} \cdot \mathbf{b}=0$.

Example 1.3.10. Find the angle between $\mathbf{i}+\mathbf{j}+2 \mathbf{k}$ and $-\mathbf{i}+2 \mathbf{j}+\mathbf{k}$.
sol. By proposition 1.2.10,

$$
\frac{(\mathbf{i}+\mathbf{j}+2 \mathbf{k}) \cdot(-\mathbf{i}+2 \mathbf{j}+\mathbf{k})}{\|\mathbf{i}+\mathbf{j}+2 \mathbf{k}\|\|-\mathbf{i}+2 \mathbf{j}+\mathbf{k}\|}=\frac{-1+2+2}{\sqrt{1+1+4} \sqrt{1+4+1}}=\frac{3}{6}=\frac{1}{2} .
$$

Hence the angle is $\cos ^{-1}(1 / 2)=\pi / 3$.

Corollary 1.3.11. Given two points $A\left(a_{1}, a_{2}, a_{3}\right), B\left(b_{1}, b_{2}, b_{3}\right)$, the area of
the triangle $O A B$ is

$$
\frac{1}{2} \sqrt{\left(a_{2} b_{3}-a_{3} b_{2}\right)^{2}+\left(a_{3} b_{1}-a_{1} b_{3}\right)^{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}}
$$

Proof. Let $\overrightarrow{O A}=\mathbf{a}, \overrightarrow{O B}=\mathbf{b}, \angle B O A=\theta$. Then the area of $\triangle O A B$ is

$$
\begin{aligned}
& \frac{1}{2}|O A||O B| \sin \theta \\
= & \frac{1}{2}\|\mathbf{a}\|\|\mathbf{b}\| \sqrt{1-\cos ^{2} \theta} \\
= & \frac{1}{2} \sqrt{\|\mathbf{a}\|^{2}\|\mathbf{b}\|^{2}-(\mathbf{a} \cdot \mathbf{b})^{2}} \\
= & \frac{1}{2} \sqrt{\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)-\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)^{2}} \\
= & \frac{1}{2} \sqrt{\left(a_{2} b_{3}-a_{3} b_{2}\right)^{2}+\left(a_{3} b_{1}-a_{1} b_{3}\right)^{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}} .
\end{aligned}
$$

Example 1.3.12. Find the area of the triangle with vertices $A(a, 0,0), B(0, b, 0), C(0,0, c)$.
sol. Shift(translate) A to the origin, then the points B, C are moved to the points $(-a, b, 0)$ and $(-a, 0, c)$. Hence

$$
\frac{1}{2} \sqrt{(b c-0)^{2}+(0+a c)^{2}+(0+a b)^{2}}=\frac{1}{2} \sqrt{b^{2} c^{2}+c^{2} a^{2}+a^{2} b^{2}}
$$

Theorem 1.3.13 (Cauchy-Schwarz inequality). For any two vectors a, b

$$
|\mathbf{a} \cdot \mathbf{b}| \leq\|\mathbf{a}\|\|\mathbf{b}\|
$$

holds, and the equality holds iff \mathbf{a} and \mathbf{b} are parallel.

Proof. We may assume \mathbf{a}, \mathbf{b} are nonzero. Let θ be the angle between \mathbf{a} and b. Then by prop 1.3.8

$$
|\mathbf{a} \cdot \mathbf{b}|=\|\mathbf{a}\|\|\mathbf{b}\||\cos \theta| \leq\|\mathbf{a}\|\|\mathbf{b}\|
$$

holds. Since $\|\mathbf{a}\|\|\mathbf{b}\| \neq 0$, if equality holds $|\cos \theta|=1$ i.e, $\theta=0$ or π. Hence \mathbf{a} and \mathbf{b} are parallel.

Remark 1.3.14. The Cauchy-Schwarz inequality reads, componentwise, as

$$
(a x+b y+c z)^{2} \leq\left(a^{2}+b^{2}+c^{2}\right)\left(x^{2}+y^{2}+z^{2}\right)
$$

Example 1.3.15. Show Cauchy-Schwarz inequality for $\mathbf{i}+3 \mathbf{j}+2 \mathbf{k},-\mathbf{i}+\mathbf{j}$.
sol. Since the inner product and lengths are

$$
\begin{aligned}
& (\mathbf{i}+3 \mathbf{j}+2 \mathbf{k}) \cdot(-\mathbf{i}+\mathbf{j})=-1+3=2 \\
& \|\mathbf{i}+3 \mathbf{j}+2 \mathbf{k}\|\|-\mathbf{i}+\mathbf{j}\|=\sqrt{1+9+4} \sqrt{1+1}=\sqrt{28}=2 \sqrt{7}
\end{aligned}
$$

we have

$$
|(\mathbf{i}+3 \mathbf{j}+2 \mathbf{k}) \cdot(-\mathbf{i}+\mathbf{j})| \leq\|\mathbf{i}+3 \mathbf{j}+2 \mathbf{k}\|\|-\mathbf{i}+\mathbf{j}\| .
$$

Theorem 1.3.16 (Triangle inequality). For any two vector a, b it holds that

$$
\|\mathbf{a}+\mathbf{b}\| \leq\|\mathbf{a}\|+\|\mathbf{b}\|
$$

and equality holds when \mathbf{a}, \mathbf{b} are parallel and having same direction.
Proof. We have

$$
\|\mathbf{a}+\mathbf{b}\|^{2}=(\mathbf{a}+\mathbf{b}) \cdot(\mathbf{a}+\mathbf{b})=\|\mathbf{a}\|^{2}+2 \mathbf{a} \cdot \mathbf{b}+\|\mathbf{b}\|^{2}
$$

By C-S

$$
\|\mathbf{a}+\mathbf{b}\|^{2} \leq\|\mathbf{a}\|^{2}+2\|\mathbf{a}\|\|\mathbf{b}\|+\|\mathbf{b}\|^{2}=(\|\mathbf{a}\|+\|\mathbf{b}\|)^{2} .
$$

Equality holds iff

$$
\mathbf{a} \cdot \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\|
$$

i.e, the angle is 0 .

Example 1.3.17. Show triangle inequality for $-\mathbf{i}+\mathbf{j}$ and $\mathbf{i}+3 \mathbf{j}+2 \mathbf{k}$.
sol. Sum and difference is

$$
\begin{aligned}
\|(\mathbf{i}+3 \mathbf{j}+2 \mathbf{k})+(-\mathbf{i}+\mathbf{j})\| & =\|4 \mathbf{j}+2 \mathbf{k}\|=\sqrt{16+4} \\
& =2 \sqrt{5}=4.4721 \ldots \\
\|\mathbf{i}+3 \mathbf{j}+2 \mathbf{k}\|+\|-\mathbf{i}+\mathbf{j}\| & =\sqrt{1+9+4}+\sqrt{1+1} \\
& =\sqrt{14}+\sqrt{2}=5.1558 \ldots
\end{aligned}
$$

Figure 1.13: \mathbf{i}_{θ} and \mathbf{j}_{θ}

Hence

$$
\|(\mathbf{i}+3 \mathbf{j}+2 \mathbf{k})+(-\mathbf{i}+\mathbf{j})\| \leq\|\mathbf{i}+3 \mathbf{j}+2 \mathbf{k}\|+\|-\mathbf{i}+\mathbf{j}\| .
$$

Definition 1.3.18. If two vectors \mathbf{a}, \mathbf{b} satisfy $\mathbf{a} \cdot \mathbf{b}=0$ then we say they are orthogonal(perpendicular).

Example 1.3.19. For any real θ, the two vectors $\mathbf{i}_{\theta}=(\cos \theta) \mathbf{i}+(\sin \theta) \mathbf{j}$, $\mathbf{j}_{\theta}=-(\sin \theta) \mathbf{i}+(\cos \theta) \mathbf{j}$ are orthogonal.

Example 1.3.20. Find a unit vector orthogonal to $2 \mathbf{i}-\mathbf{j}+3 \mathbf{k}$ and $\mathbf{i}+2 \mathbf{j}+9 \mathbf{k}$.
sol. Let $a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ be the desired vector. Then a, b, c are determined by

$$
\begin{aligned}
2 a-b+3 c & =0 \text { (orthogonality) } \\
a+2 b+9 c & =0 \text { (orthogonality) } \\
a^{2}+b^{2}+c^{2} & =1 \text { (unicity). }
\end{aligned}
$$

Hence the desired vector is

$$
\pm \frac{1}{\sqrt{19}}(3 \mathbf{i}+3 \mathbf{j}-\mathbf{k}) .
$$

Orthogonal projection

Given two nonzero vectors a and \mathbf{b}, we may define the orthogonal projection of \mathbf{b} onto \mathbf{a} to be the vector \mathbf{p} given in the figure 1.14. Since \mathbf{p} is a scalar multiple of \mathbf{a}, there is a constant c such that $\mathbf{p}=c \mathbf{a}$. We let

$$
\mathbf{b}=c \mathbf{a}+\mathbf{q}
$$

where \mathbf{q} is a vector orthogonal to \mathbf{a}. Taking inner product with \mathbf{a}, we have

$$
\mathbf{a} \cdot \mathbf{b}=c \mathbf{a} \cdot \mathbf{a}
$$

Hence we obtain $c=(\mathbf{a} \cdot \mathbf{b}) /(\mathbf{a} \cdot \mathbf{a})$. Thus the orthogonal projection is

$$
\mathbf{p}=\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|^{2}} \mathbf{a}
$$

Figure 1.14: Projection of \mathbf{b} onto \mathbf{a}

The length of \mathbf{p} is

$$
\|\mathbf{p}\|=\frac{|\mathbf{a} \cdot \mathbf{b}|}{\|\mathbf{a}\|^{2}}\|\mathbf{a}\|=\frac{|\mathbf{a} \cdot \mathbf{b}|}{\|\mathbf{a}\|}=\|\mathbf{b}\| \cos \theta
$$

This agrees with the geometric interpretation.
Definition 1.3.21. For nonzero vector \mathbf{b} and any vector \mathbf{a}, we define

$$
\operatorname{proj}_{\mathbf{a}} \mathbf{b}=\mathbf{p}=\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|^{2}} \mathbf{a}
$$

We call it orthogonal projection of \mathbf{b} onto \mathbf{a}.
Example 1.3.22. $\mathbf{a}=3 \mathbf{i}+2 \mathbf{j}-\mathbf{k}, \mathbf{b}=\mathbf{i}+\mathbf{j}+2 \mathbf{k}$. Find orthogonal projection of \mathbf{b} onto \mathbf{a}.
sol. The orthogonal projection is

$$
\begin{aligned}
\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|^{2}} \mathbf{a} & =\frac{3 \cdot 1+2 \cdot 1+(-1) \cdot 2}{9+4+1}(3 \mathbf{i}+2 \mathbf{j}-\mathbf{k}) \\
& =\frac{9}{14} \mathbf{i}+\frac{6}{14} \mathbf{j}-\frac{3}{14} \mathbf{k}
\end{aligned}
$$

Theorem 1.3.23. For any two nonzero \mathbf{u} and \mathbf{v}, we can write \mathbf{v} as the sum of two orthogonal vectors $\mathbf{a}+\mathbf{b}$, where \mathbf{a} is the projection of \mathbf{v} onto \mathbf{u} and \mathbf{b} is orthogonal to \mathbf{u}. This decomposition is unique.

Proof. Denote by \mathbf{a} the projection of \mathbf{v} onto \mathbf{u} and let $\mathbf{b}=\mathbf{v}-\mathbf{a}$. Then

$$
\mathbf{v}=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|^{2}} \mathbf{u}+\mathbf{v}-\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|^{2}} \mathbf{u} \equiv \mathbf{a}+\mathbf{b}
$$

We can check \mathbf{b} is orthogonal to \mathbf{u} :

$$
\begin{aligned}
\mathbf{u} \cdot \mathbf{b} & =\mathbf{u} \cdot\left(\mathbf{v}-\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|^{2}} \mathbf{u}\right) \\
& =\mathbf{u} \cdot \mathbf{v}-\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|^{2}} \mathbf{u} \cdot \mathbf{u} \\
& =\mathbf{u} \cdot \mathbf{v}-\mathbf{u} \cdot \mathbf{v}=0
\end{aligned}
$$

This is an orthogonal decomposition. To see the uniqueness, assume there is real number α s.t. $\mathbf{v}=\alpha \mathbf{u}+\mathbf{c}$, with $\mathbf{u} \cdot \mathbf{c}=0$. Then

$$
\mathbf{u} \cdot \mathbf{v}=\mathbf{u} \cdot(\alpha \mathbf{u}+\mathbf{c})=\alpha \mathbf{u} \cdot \mathbf{u}+\mathbf{u} \cdot \mathbf{c}=\alpha\|\mathbf{u}\|^{2}
$$

Hence we see

$$
\begin{aligned}
& \alpha \mathbf{u}=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|^{2}} \mathbf{u}=\mathbf{a} \\
& \mathbf{c}=\mathbf{v}-\alpha \mathbf{u}=\mathbf{v}-\mathbf{a}=\mathbf{b} .
\end{aligned}
$$

Thus the decomposition of \mathbf{v} along \mathbf{u} and its orthogonal component is unique.

Definition 1.3.24. The vector \mathbf{a} is called the component parallel to \mathbf{u} and \mathbf{b} is the component orthogonal to \mathbf{u}.(orthogonal complement).

Example 1.3.25. Find the orthogonal decomposition of $\mathbf{v}=3 \mathbf{i}+5 \mathbf{j}+\mathbf{k}$ w.r.t. $\mathbf{u}=\mathbf{i}+2 \mathbf{j}-\mathbf{k}$.
sol. Let \mathbf{a} be the projection of \mathbf{v} onto \mathbf{u} and $\mathbf{b}=\mathbf{v}-\mathbf{a}$. Then

$$
\begin{aligned}
\mathbf{a} & =\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|^{2}} \mathbf{u} \\
& =\frac{1 \cdot 3+2 \cdot 5+(-1) \cdot 1}{1+4+1}(\mathbf{i}+2 \mathbf{j}-\mathbf{k}) \\
& =2 \mathbf{i}+4 \mathbf{j}-2 \mathbf{k} \\
\mathbf{b} & =(3 \mathbf{i}+5 \mathbf{j}+\mathbf{k})-(2 \mathbf{i}+4 \mathbf{j}-2 \mathbf{k}) \\
& =\mathbf{i}+\mathbf{j}+3 \mathbf{k}
\end{aligned}
$$

Here \mathbf{a} is parallel to \mathbf{u}, \mathbf{b} is orthogonal to \mathbf{u} and $\mathbf{v}=\mathbf{a}+\mathbf{b}$.

Do examples 4,5 in p.22, 23.

Triangle inequality

Theorem 1.3.26. For any vectors \mathbf{a}, \mathbf{b}, we have

$$
\|\mathbf{a}+\mathbf{b}\| \leq\|\mathbf{a}\|+\|\mathbf{b}\|
$$

Use C-S.

Physical applications

Displacement : If an object has moved from P to Q, then $\overrightarrow{P Q}$ is the displacement.

Example 1.3.27. A ship is running on the sea at the speed of 20 km to north. but the current is flowing at the speed of 20 km to the east, then in one hr , the displacement of the ship is $(20 \sqrt{2}, 20 \sqrt{2})$.

1.4 Matrices and Cross product

Cross product

Definition 1.4.1. Let \mathbf{a}, \mathbf{b} be two vectors in $\mathbb{R}^{3}\left(\right.$ not $\left.\mathbb{R}^{2}\right)$. The cross product of \mathbf{a}, \mathbf{b}, denoted by $\mathbf{a} \times \mathbf{b}$ is the vector whose length and direction are given as follows:
(1) The length is the area of the parallelogram spanned by \mathbf{a} and \mathbf{b}.(zero if \mathbf{a}, \mathbf{b} are parallel). Alternatively,

$$
\|\mathbf{a} \times \mathbf{b}\|=\|\mathbf{a}\|\|\mathbf{b}\| \sin \theta
$$

where θ is the angle between \mathbf{a} and \mathbf{b}.
(2) The direction of $\mathbf{a} \times \mathbf{b}$ is perpendicular to \mathbf{a} and \mathbf{b}, and the triple ($\mathbf{a}, \mathbf{b}, \mathbf{a} \times$ b) form a right-handed set of vectors.

Algebraic rules:
(1) $\mathbf{a} \times \mathbf{b}=0$, if \mathbf{a}, \mathbf{b} are parallel or one of them is zero.
(2) $\mathbf{a} \times \mathbf{b}=-(\mathbf{b} \times \mathbf{a})$
(3) $\mathbf{a} \times(\mathbf{b}+\mathbf{c})=\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c}$
(4) $(\mathbf{a}+\mathbf{b}) \times \mathbf{c}=\mathbf{a} \times \mathbf{c}+\mathbf{b} \times \mathbf{c}$
(5) $(\alpha \mathbf{a}) \times \mathbf{b}=\alpha(\mathbf{a} \times \mathbf{b})$ for scalar α.

Multiplication rules:
(1) $\mathbf{i} \times \mathbf{j}=\mathbf{k}, \quad \mathbf{j} \times \mathbf{k}=\mathbf{i}, \quad \mathbf{k} \times \mathbf{i}=\mathbf{j}$.
(2) $\mathbf{a} \times \mathbf{b}=-(\mathbf{b} \times \mathbf{a})$
(3) $\mathbf{i} \times \mathbf{i}=\mathbf{j} \times \mathbf{j}=\mathbf{k} \times \mathbf{k}=0$

Note that

$$
\mathbf{a} \times(\mathbf{b} \times \mathbf{c}) \neq(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}
$$

For example

$$
\mathbf{i} \times(\mathbf{i} \times \mathbf{j})=\mathbf{i} \times \mathbf{k}=-\mathbf{j} \neq(\mathbf{i} \times \mathbf{i}) \times \mathbf{j}=0
$$

2×2 matrix

The array of numbers $a_{11}, a_{12}, a_{21}, a_{22}$ in the form

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

is called 2×2 matrix and

$$
\left[\begin{array}{ll}
a_{11} & a_{12}
\end{array}\right], \quad\left[\begin{array}{l}
a_{12} \\
a_{22}
\end{array}\right]
$$

are the first row and second column. The real number $a_{11} a_{22}-a_{12} a_{21}$ is determinant and denoted by

$$
\operatorname{det}(A)=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|
$$

Example 1.4.2. Find determinant of 2×2 matrices.

$$
\left|\begin{array}{ll}
3 & 4 \\
2 & 1
\end{array}\right|=3-8=-5, \quad\left|\begin{array}{cc}
0 & 3 \\
-1 & 1
\end{array}\right|=0-(-3)=3, \quad\left|\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right|=1-(-4)=5
$$

Proposition 1.4.3. The area of parallelogram determined by the two vectors $a \mathbf{i}+b \mathbf{j}$ and $c \mathbf{i}+d \mathbf{j}$ is $|a d-b c|$. This is the absolute value of the determinant of the matrix determined by two two vectors:

$$
\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Proof. Let $\mathbf{u}=a \mathbf{i}+b \mathbf{j}, \mathbf{v}=c \mathbf{i}+d \mathbf{j}$ and θ be the angle between them. Then the area of the parallelogram is

$$
\begin{aligned}
\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta & =\|\mathbf{u}\|\|\mathbf{v}\| \sqrt{1-\cos ^{2} \theta} \\
& =\sqrt{\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}-(\mathbf{u} \cdot \mathbf{v})^{2}} \\
& =\sqrt{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)-(a c+b d)^{2}} \\
& =\sqrt{a^{2} d^{2}+b^{2} c^{2}-2 a b c d} \\
& =|a d-b c|
\end{aligned}
$$

3×3 matrix
A typical 3×3 matrix is given by

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

Here

$$
\left[\begin{array}{lll}
a_{31} & a_{32} & a_{33}
\end{array}\right], \quad\left[\begin{array}{l}
a_{12} \\
a_{22} \\
a_{32}
\end{array}\right]
$$

are third row and second column. The determinant is defined as

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \tag{1.3}\\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
$$

Example 1.4.4.

$$
\begin{aligned}
& \left|\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right|=1\left|\begin{array}{cc}
5 & 6 \\
8 & 9
\end{array}\right|-2\left|\begin{array}{cc}
4 & 6 \\
7 & 9
\end{array}\right|+3\left|\begin{array}{ll}
4 & 5 \\
7 & 8
\end{array}\right|=-3+12-9=0 \\
& \left|\begin{array}{ccc}
1 & 1 & 1 \\
2 & 4 & 8 \\
3 & 9 & 27
\end{array}\right|=1\left|\begin{array}{cc}
4 & 8 \\
9 & 27
\end{array}\right|-1\left|\begin{array}{cc}
2 & 8 \\
3 & 27
\end{array}\right|+1\left|\begin{array}{ll}
2 & 4 \\
3 & 9
\end{array}\right|=36-30+6=12
\end{aligned}
$$

Definition 1.4.5. If we exchange rows and columns of the following matrices

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right], \quad\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

to get

$$
\left[\begin{array}{ll}
a_{11} & a_{21} \\
a_{12} & a_{22}
\end{array}\right], \quad\left[\begin{array}{lll}
a_{11} & a_{21} & a_{31} \\
a_{12} & a_{22} & a_{32} \\
a_{13} & a_{23} & a_{33}
\end{array}\right]
$$

then resulting matrices are called the transpose.

Properties of determinant-skip for the time being

Theorem 1.4.6. (1) Determinant of transposed matrix is the same the Determinant of original matrix.
(2) If we exchange any two rows(columns), then determinant changes signs.
(3) $|\operatorname{det}(\alpha A)|=\alpha^{n}|\operatorname{det}(A)|$
(4) Adding a scalar multiple of row (column) to another row (column) does not change determinant.

Proof. (1) For 2×2

$$
\left|\begin{array}{ll}
a_{11} & a_{21} \\
a_{12} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{21} a_{12}=a_{11} a_{22}-a_{12} a_{21}=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|
$$

For 3×3

$$
\begin{aligned}
& \left|\begin{array}{lll}
a_{11} & a_{21} & a_{31} \\
a_{12} & a_{22} & a_{32} \\
a_{13} & a_{23} & a_{33}
\end{array}\right|=a_{11}\left|\begin{array}{ll}
a_{22} & a_{32} \\
a_{23} & a_{33}
\end{array}\right|-a_{21}\left|\begin{array}{ll}
a_{12} & a_{32} \\
a_{13} & a_{33}
\end{array}\right|+a_{31}\left|\begin{array}{ll}
a_{12} & a_{22} \\
a_{13} & a_{23}
\end{array}\right| \\
& =a_{11}\left(a_{22} a_{33}-a_{32} a_{23}\right)-a_{21}\left(a_{12} a_{33}-a_{32} a_{13}\right) \\
& +a_{31}\left(a_{12} a_{23}-a_{22} a_{13}\right) \\
& =a_{11}\left(a_{22} a_{33}-a_{32} a_{23}\right)-a_{21} a_{12} a_{33}+a_{21} a_{32} a_{13} \\
& +a_{31} a_{12} a_{23}-a_{31} a_{22} a_{13} \\
& =a_{11}\left(a_{22} a_{33}-a_{23} a_{32}\right)-a_{12} a_{21} a_{33}+a_{12} a_{23} a_{31} \\
& +a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31} \\
& =a_{11}\left(a_{22} a_{33}-a_{23} a_{32}\right)-a_{12}\left(a_{21} a_{33}-a_{23} a_{31}\right) \\
& +a_{13}\left(a_{21} a_{32}-a_{22} a_{31}\right) \\
& =a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| \\
& =\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| .
\end{aligned}
$$

(4) 2×2 case is easy.

For 3×3, we see by expanding w.r.t. first row

$$
\begin{aligned}
& \left|\begin{array}{ccc}
a_{11}+t a_{21} & a_{12}+t a_{22} & a_{13}+t a_{23} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \\
& =\left(a_{11}+t a_{21}\right)\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-\left(a_{12}+t a_{22}\right)\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right| \\
& +\left(a_{13}+t a_{23}\right)\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| \\
& =a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| \\
& +t\left(\begin{array}{ll}
\left.a_{21}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{22}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{23}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|\right) \\
=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|+t\left|\begin{array}{lll}
a_{21} & a_{22} & a_{23} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| .
\end{array}\right.
\end{aligned}
$$

Exchange second and third rows, do not change the value. By (2) there must be a sign change. Hence it is 0 .

$$
\left|\begin{array}{ccc}
a_{11}+t a_{21} & a_{12}+t a_{22} & a_{13}+t a_{23} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=\left|\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|
$$

Hence (4) holds.

The RHS of 1.3 is expansion w.r.t first row. By theorem 1.4.6, (1), (2), we can expand w.r.t. any row or column, except we multiply $(-1)^{i+j}$. So if we expand w.r.t 2 nd row

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=-a_{21}\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\right|+a_{22}\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{31} & a_{33}
\end{array}\right|-a_{23}\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{31} & a_{32}
\end{array}\right|
$$

If we expand w.r.t 3rd column

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|-a_{23}\left|\begin{array}{cc}
a_{11} & a_{12} \\
a_{31} & a_{32}
\end{array}\right|+a_{33}\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|
$$

Corollary 1.4.7. (1) Determinant of a matrix one of whose row is zero is zero.
(2) If any two rows (columns) are equal, the determinant is zero.

Example 1.4.8. The followings are expanded w.r.t 2 nd , 3rd row.

$$
\begin{aligned}
& \left|\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right|=-2\left|\begin{array}{ll}
4 & 6 \\
7 & 9
\end{array}\right|+5\left|\begin{array}{ll}
1 & 3 \\
7 & 9
\end{array}\right|-8\left|\begin{array}{ll}
1 & 3 \\
4 & 6
\end{array}\right|=12-60+48=0 \\
& \left|\begin{array}{lll}
1 & 2 & 3 \\
4 & 0 & 6 \\
0 & 8 & 0
\end{array}\right|=0\left|\begin{array}{ll}
2 & 3 \\
0 & 6
\end{array}\right|-8\left|\begin{array}{ll}
1 & 3 \\
4 & 6
\end{array}\right|+0\left|\begin{array}{ll}
1 & 2 \\
4 & 0
\end{array}\right|=0+48+0=48
\end{aligned}
$$

Cross product-using determinant

In the previous section, we have defined the cross product using the geometric properties, but did not show how to compute it. Now we can give a formula for the cross product using the determinant:

Definition 1.4.9 (Alternative definition). For $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$ and $\mathbf{b}=$ $b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}$, the cross product $\mathbf{a} \times \mathbf{b}$ is defined by

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ll}
a_{2} & a_{3} \tag{1.4}\\
b_{2} & b_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \mathbf{k} .
$$

Using the definition of determinant (1.3) symbolically, we have

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| .
$$

Example 1.4.10. $\mathbf{i} \times \mathbf{i}=\mathbf{0}, \quad \mathbf{j} \times \mathbf{j}=\mathbf{0}, \quad \mathbf{k} \times \mathbf{k}=\mathbf{0}$.
Example 1.4.11. Compute $(2 \mathbf{i}-\mathbf{j}+3 \mathbf{k}) \times(\mathbf{i}+\mathbf{j}+2 \mathbf{k})$.
sol. By the definition of cross product, we see

$$
(2 \mathbf{i}-\mathbf{j}+3 \mathbf{k}) \times(\mathbf{i}+\mathbf{j}+2 \mathbf{k})=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & -1 & 3 \\
1 & 1 & 2
\end{array}\right|=-5 \mathbf{i}-\mathbf{j}+3 \mathbf{k} .
$$

A geometric meaning of the cross product

To see the relation with the geometric definition of the cross product, we define the triple product of three vectors: Let

$$
\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}, \mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}, \mathbf{c}=c_{1} \mathbf{i}+c_{2} \mathbf{j}+c_{3} \mathbf{k} .
$$

The dot product between $(\mathbf{a} \times \mathbf{b})$ and \mathbf{c} is $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$, called the triple product $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$ of three vectors, \mathbf{a}, \mathbf{b} and \mathbf{c}. We see by definition

$$
\begin{aligned}
(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} & =\left(\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \mathbf{k}\right) \cdot\left(c_{1} \mathbf{i}+c_{2} \mathbf{j}+c_{3} \mathbf{k}\right) \\
& =\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| c_{1}-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| c_{2}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| c_{3} \\
& =\left|\begin{array}{lll}
c_{1} & c_{2} & c_{3} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right| .
\end{aligned}
$$

We observe the following properties of $(\mathbf{a} \times \mathbf{b})$:
(1) If \mathbf{c} is a vector in the plane spanned by \mathbf{a}, \mathbf{b}, then the third row in the determinant is a linear combination of the first and second row, and hence $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}=0$. In other words, the vector $\mathbf{a} \times \mathbf{b}$ is orthogonal to any vector in the plane spanned by \mathbf{a} and \mathbf{b}.
(2) We compute length of $\mathbf{a} \times \mathbf{b}$.

$$
\left.\begin{aligned}
\|\mathbf{a} \times \mathbf{b}\|^{2} & =\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right|^{2}+\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right|^{2}+\left|\begin{array}{ll}
a_{1} & a_{2}
\end{array}\right|^{2} \\
b_{1} & b_{2}
\end{aligned}\right|^{2}\left(a_{2} b_{3}-a_{3} b_{2}\right)^{2}+\left(a_{1} b_{3}-b_{1} a_{3}\right)^{2}+\left(a_{1} b_{2}-b_{1} a_{2}\right)^{2} .
$$

Hence

$$
\|\mathbf{a} \times \mathbf{b}\|^{2}=\|\mathbf{a}\|^{2}\|\mathbf{b}\|^{2}-(\mathbf{a} \cdot \mathbf{b})^{2}=\|\mathbf{a}\|^{2}\|\mathbf{b}\|^{2}\left(1-\cos ^{2} \theta\right)=\|\mathbf{a}\|^{2}\|\mathbf{b}\|^{2} \sin ^{2} \theta .
$$

So we conclude that $\mathbf{a} \times \mathbf{b}$ is a vector perpendicular to the plane \mathcal{P} spanned by \mathbf{a} and \mathbf{b} with length $\|\mathbf{a}\|\|\mathbf{b}\| \| \sin \theta \mid$.
(3) Finally, the right handed rule can be checked with $\mathbf{i} \times \mathbf{j}=\mathbf{k}$.

The properties (2) and (3) can be summarized as follows.
Theorem 1.4.12 (Alternative cross product). For $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{3}$, it holds that
(1) $\|\mathbf{a} \times \mathbf{b}\|=\|\mathbf{a}\|\|\mathbf{b}\| \sin \theta$, the area of the parallelogram spanned by \mathbf{a} and b.
(2) $\mathbf{a} \times \mathbf{b}$ is perpendicular to \mathbf{a} and \mathbf{b}, and the triple $(\mathbf{a}, \mathbf{b}, \mathbf{a} \times \mathbf{b})$ form a right-handed rule.

Hence this alternative definition is the same as the geometric definition of the cross product given earlier.

Component formula using determinant

$$
\begin{aligned}
& \left(a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}\right) \times\left(b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}\right)=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| \\
& =\left(a_{2} b_{3}-a_{3} b_{2}\right) \mathbf{i}-\left(a_{1} b_{3}-a_{3} b_{1}\right) \mathbf{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \mathbf{k} .
\end{aligned}
$$

Example 1.4.13. Find $(\mathbf{i}+\mathbf{j}) \times(\mathbf{j}-2 \mathbf{k})$.
sol. $(\mathbf{i}+\mathbf{j}) \times(\mathbf{j}-2 \mathbf{k})=\mathbf{i} \times j-2 \mathbf{i} \times k+\mathbf{j} \times j-2 \mathbf{j} \times k=-2 \mathbf{i}+2 \mathbf{j}+\mathbf{k}$.

Theorem 1.4.14 (Cross product II).
(1) $\|\mathbf{u} \times \mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}-(\mathbf{u} \cdot \mathbf{v})^{2}$. In particular, $\mathbf{u} \times \mathbf{u}=\mathbf{0}$.
(2) If is θ the angle between \mathbf{u} and $\mathbf{v},\|\mathbf{u} \times \mathbf{v}\|=\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta$. Hence nec. and suff. condition for \mathbf{u} and \mathbf{v} are parallel is $\mathbf{u} \times \mathbf{v}=\mathbf{0}$.
(3) $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}=(\mathbf{v} \times \mathbf{w}) \cdot \mathbf{u}=(\mathbf{w} \times \mathbf{u}) \cdot \mathbf{v}$.
(4) $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u}=(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{v}=0$, i.e, $\mathbf{u} \times \mathbf{v}$ is orthogonal to \mathbf{u} and \mathbf{v}.
(5) $|(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}|$ is the volume of parallelepiped formed by three vectors \mathbf{a}, \mathbf{b} and c. (See below)

Proof. Let $\mathbf{u}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}, \mathbf{v}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}, \mathbf{w}=c_{1} \mathbf{i}+c_{2} \mathbf{j}+c_{3} \mathbf{k}$.
(1) $\|\mathbf{u} \times \mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}-(\mathbf{u} \cdot \mathbf{v})^{2}$ as shown before.

So $\mathbf{u} \times \mathbf{u}=\mathbf{0}$.
(2) Since $\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta$, we have by (1)

$$
\begin{aligned}
\|\mathbf{u} \times \mathbf{v}\| & =\sqrt{\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}-(\mathbf{u} \cdot \mathbf{v})^{2}} \\
& =\|\mathbf{u}\|\|\mathbf{v}\| \sqrt{1-\cos ^{2} \theta} \\
& =\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta
\end{aligned}
$$

(3)

$$
\begin{aligned}
(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w} & =\left(\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \mathbf{k}\right) \cdot\left(c_{1} \mathbf{i}+c_{2} \mathbf{j}+c_{3} \mathbf{k}\right) \\
& =\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| c_{1}-\left|\begin{array}{cc}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| c_{2}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| c_{3} \\
& =\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
\end{aligned}
$$

Expanding w.r.t first row, this is

$$
\left.\left.\begin{array}{l}
=a_{1}\left|\begin{array}{ll}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{ll}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{ll}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right| \\
=\left(a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}\right) \cdot\left(\left|\begin{array}{ll}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right|\right.
\end{array} \right\rvert\, \mathbf{k}\right) .
$$

By the same way this equals with $(\mathbf{w} \times \mathbf{u}) \cdot \mathbf{v}$.

Figure 1.15: right handed rule
(4) Using (3) and corollary 1.4.7, we see

$$
\begin{aligned}
& (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u}=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
a_{1} & a_{2} & a_{3}
\end{array}\right|=0 . \\
& (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{v}=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=0 .
\end{aligned}
$$

Geometric meaning of determinant

2×2 matrix: If $\mathbf{a}=\left(a_{1}, a_{2}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}\right)$ then we can view them as vectors in \mathbb{R}^{3} and define

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & 0 \\
b_{1} & b_{2} & 0
\end{array}\right|=\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \mathbf{k}=\left(a_{1} b_{2}-a_{2} b_{1}\right) \mathbf{k} .
$$

Hence $\|\mathbf{a} \times \mathbf{b}\|$ is the area of the parallelogram formed by the two vectors.

Example 1.4.15. Find the area of triangle with vertices at $(1,1),(0,2)$ and $(3,2)$.

Figure 1.16: Meaning of triple product: $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$
sol. Two sides are $(0,2)-(1,1)=(-1,1)$ and $(3,2)-(1,1)=(2,1)$. Thus the area is the absolute value of $\frac{1}{2}\left|\begin{array}{cc}-1 & 1 \\ 2 & 1\end{array}\right|=-\frac{3}{2}$.

Proposition 1.4.16. The volume of parallelepiped with sides $\mathbf{a}, \mathbf{b}, \mathbf{c}$ is the absolute value of the triple product $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$

$$
|(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}|=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

Proof. Consider the parallelogram with sides \mathbf{a}, \mathbf{b} as the bottom of the parallelepiped. On the other hand, the height of the parallelepiped is the length of the orthogonal projection of \mathbf{c} onto $\mathbf{a} \times \mathbf{b}$ which is $\left\|\frac{(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}}{\|\mathbf{a} \times \mathbf{b}\|^{2}} \mathbf{a} \times \mathbf{b}\right\|$. Hence the volume is

$$
\text { Area }(\text { bottom }) \times \text { height }=\|\mathbf{a} \times \mathbf{b}\|\left\|\frac{(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}}{\|\mathbf{a} \times \mathbf{b}\|^{2}} \mathbf{a} \times \mathbf{b}\right\|=|(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}|
$$

Example 1.4.17. Three points $A(1,2,3), B(0,1,2), C(0,3,2)$ are given. Find the volume of hexahedron having three vectors $O A, O B, O C$ as sides.
sol. By proposition 1.4.16, we have

$$
\left|\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 3 & 2
\end{array}\right|=1\left|\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right|-0\left|\begin{array}{ll}
2 & 3 \\
3 & 2
\end{array}\right|+0\left|\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right|=-4
$$

Torque

Imagine we are trying to fasten a bolt with a wrench. If one apply the force \mathbf{F} at the end of wrench as in figure 1.17, we see the force of turning the bolt is $\|\mathbf{r}\|\|\mathbf{F}\| \sin \theta$.

Figure 1.17: Turning a hexagonal bolt with a wrench with force F. Torque vector is $\mathbf{r} \times \mathbf{F}$.

Then

$$
\begin{aligned}
\text { Size of torque } & =(\text { length of wrench })(\text { component of } \mathbf{F} \perp \text { wrench }) \\
& =\|\mathbf{r}\|\|\mathbf{F}\| \sin \theta=\|\mathbf{r} \times \mathbf{F}\| .
\end{aligned}
$$

Also, note that the direction of $\mathbf{r} \times \mathbf{F}$ is the same as the direction the bolt moves. Hence it is natural to define $\mathbf{r} \times \mathbf{F}$ to be the torque vector.

Rotation of a rigid body

Figure 1.18: velocity \mathbf{v} and angular velocity $\boldsymbol{\omega}$ has relation $\mathbf{v}=\boldsymbol{\omega} \times \mathbf{r}$.

Consider a rigid body B rotating about the axis L. (See fig 1.18) What is the relation between the velocity of a point on the object and the rotational velocity?

First we need to define a vector $\boldsymbol{\omega}$, the angular velocity of the rotation. The rotational motion of B can be described by a vector along axis of rotation $\boldsymbol{\omega}$. The vector points along the axis of rotation with its direction determined by the right handed rule. Its magnitude is the angular speed (measured in radians per unit time) at which the object spins. The vector $\boldsymbol{\omega}$ is called the angular velocity vector and ω is angular speed, $\omega=\|\boldsymbol{\omega}\|$. Next fix a point O (the origin) on the axis of rotation, and let $\mathbf{r}(t)=\overrightarrow{O P}$ be the position vector of the point P. Let $\boldsymbol{\omega}$ the vector along z-axis s.t. $\omega=\|\boldsymbol{\omega}\|$.

Assume L is z-axis and α is distance from P to L. Then $\alpha=\|\mathbf{r}\| \sin \theta(\mathbf{r}$ points to P). Consider the tangent vector \mathbf{v} at P. Since P moves around a circle of radius α perpendicular to $\boldsymbol{\omega}$ (parallel to $x y$-plane, counterclockwise), we see,

$$
\begin{aligned}
\Delta \mathbf{r} & \approx(\text { radius of circle })(\text { angle swept by } Q) \\
& =\|\mathbf{r}\| \sin \theta(\Delta \phi)
\end{aligned}
$$

Thus

$$
\left\|\frac{\Delta \mathbf{r}}{\Delta t}\right\| \approx\|\mathbf{r}\| \sin \theta \frac{\Delta \phi}{\Delta t}
$$

As $\Delta t \rightarrow 0$, we obtain the (line) velocity and angular velocity by

$$
\mathbf{v}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \mathbf{r}}{\Delta t}, \quad \omega=\lim _{\Delta t \rightarrow 0} \frac{\Delta \phi}{\Delta t}
$$

Hence

$$
\begin{equation*}
\|\mathbf{v}\|=\omega \alpha=\omega\|\mathbf{r}\| \sin \theta=\|\boldsymbol{\omega}\|\|\mathbf{r}\| \sin \theta \tag{1.5}
\end{equation*}
$$

Then by definition of cross product,

$$
\begin{equation*}
\mathbf{v}=\boldsymbol{\omega} \times \mathbf{r} \tag{1.6}
\end{equation*}
$$

1.5 Equations of Planes

Let \mathcal{P} be a plane and $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ a point on that plane, and suppose that $\mathbf{n}=A \mathbf{i}+B \mathbf{j}+C \mathbf{k}$ is a normal vector. Let $P=(x, y, z)$ be any point in \mathbb{R}^{3}. Then P lies in the plane iff the vector $\overrightarrow{P_{0} P}=\left(x-x_{0}, y-y_{0}, z-z_{0}\right)$ is
perpendicular to \mathbf{n}, that is, $\overrightarrow{P_{0} P} \cdot \mathbf{n}=0$. In other words,

$$
(A \mathbf{i}+B \mathbf{j}+C \mathbf{k}) \cdot\left[\left(x-x_{0}\right) \mathbf{i}+\left(y-y_{0}\right) \mathbf{j}+\left(z-z_{0}\right) \mathbf{k}\right]=0
$$

Figure 1.19: A plane is det'd by a point and normal vector

Proposition 1.5.1. Equation of plane through $\left(x_{0}, y_{0}, z_{0}\right)$ that has normal vector \mathbf{n} is

$$
A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0
$$

or

$$
A x+B y+C z-D=0
$$

where $D=-\left(A x_{0}+B y_{0}+C z_{0}\right)$.

Example 1.5.2. Find the equation of plane through the points $A(-3,0,-1)$, $B(-2,3,2), C(1,1,3)$.
sol. Draw some graph describing the normal vector.
Find a vector \mathbf{n} orthogonal to plane.

$$
\begin{aligned}
\mathbf{n} & =\overrightarrow{A B} \times \overrightarrow{A C} \\
& =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-2-(-3) & 3-0 & 2-(-1) \\
1-(-3) & 1-0 & 3-(-1)
\end{array}\right| \\
& =\left|\begin{array}{cc}
3 & 3 \\
1 & 4
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
1 & 3 \\
4 & 4
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
1 & 3 \\
4 & 1
\end{array}\right| \mathbf{k} \\
& =9 \mathbf{i}+8 \mathbf{j}-11 \mathbf{k} .
\end{aligned}
$$

By proposition 1.5.1, the equation is

$$
9(x+3)+8(y-0)-11(z+1)=0
$$

or $9 x+8 y-11 z+16=0$.

Distance from a point to plane

Figure 1.20: Distance from a point to plane

Proposition 1.5.3. The distance from $P\left(x_{1}, y_{1}, z_{1}\right)$ to the plane $A x+B y+$ $C z+D=0$ is

$$
\frac{\left|A x_{1}+B y_{1}+C z_{1}+D\right|}{\sqrt{A^{2}+B^{2}+C^{2}}}
$$

Proof. Let \mathbf{n} be a normal vector to the plane. If $Q\left(x_{0}, y_{0}, z_{0}\right)$ lies in the plane, the distance from P to the plane is the orthogonal projection of $\overrightarrow{P Q}$ along \mathbf{n}. Note that from $A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0$, we see $\mathbf{n} / / A \mathbf{i}+B \mathbf{j}+C \mathbf{k}$. Hence length of the orthogonal projection of $\overrightarrow{P Q}$ along \mathbf{n} is

$$
\begin{aligned}
\left\|\frac{\mathbf{n} \cdot \overrightarrow{P Q}}{\|\mathbf{n}\|^{2}} \mathbf{n}\right\| & =\frac{|\mathbf{n} \cdot \overrightarrow{P Q}|}{\|\mathbf{n}\|} \\
& =\frac{\left|A\left(x_{0}-x_{1}\right)+B\left(y_{0}-y_{1}\right)+C\left(z_{0}-z_{1}\right)\right|}{\sqrt{A^{2}+B^{2}+C^{2}}} \\
& =\frac{\left|A x_{0}+B y_{0}+C z_{0}-A x_{1}-B y_{1}-C z_{1}\right|}{\sqrt{A^{2}+B^{2}+C^{2}}} \\
& =\frac{\left|-D-A x_{1}-B y_{1}-C z_{1}\right|}{\sqrt{A^{2}+B^{2}+C^{2}}}=\frac{\left|A x_{1}+B y_{1}+C z_{1}+D\right|}{\sqrt{A^{2}+B^{2}+C^{2}}} .
\end{aligned}
$$

Example 1.5.4. Find the distance from $(3,4,-2)$ to the plane $2 x-y+z-4=$ 0.
sol. Using above proposition, distance is

$$
\frac{|2 \cdot 3-1 \cdot 4+1 \cdot(-2)-4|}{\sqrt{4+1+1}}=\frac{|-4|}{\sqrt{6}}=\frac{2 \sqrt{6}}{3} .
$$

Example 1.5.5. Find a unit vector perpendicular to the plane $4 x-3 y+z-4=$ 0 and express it as a cross product of two unit orthogonal vectors lying in the plane.
sol. Let \mathcal{S} be the given plane. By proposition 1.5 .1 we see $4 \mathbf{i}-3 \mathbf{j}+\mathbf{k}$ is orthogonal to \mathcal{S}. Hence a unit normal vector is

$$
\mathbf{n}= \pm \frac{4 \mathbf{i}-3 \mathbf{j}+\mathbf{k}}{\sqrt{4^{2}+(-3)^{2}+1^{2}}}= \pm \frac{1}{\sqrt{26}}(4 \mathbf{i}-3 \mathbf{j}+\mathbf{k})
$$

Now in order to express this as a cross product of two vectors lying in the plane, we choose three arbitrary points in \mathcal{S}. For example, we choose $(1,0,0),(0,0,4),(2,1,-1)$. Then we obtain two vectors

$$
\begin{aligned}
& \mathbf{u}=(1,0,0)-(2,1,-1)=-\mathbf{i}-\mathbf{j}+\mathbf{k} \\
& \mathbf{v}=(0,0,4)-(2,1,-1)=-2 \mathbf{i}-\mathbf{j}+5 \mathbf{k}
\end{aligned}
$$

which lie in the plane \mathcal{S}. Now we orthogonalize them.
Let \mathbf{a} be the orthogonal projection of \mathbf{v} onto \mathbf{u}. Then let $\mathbf{b}=\mathbf{v}-\mathbf{a}$.

$$
\begin{aligned}
\mathbf{a} & =\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|^{2}} \mathbf{u}=\frac{8}{3}(-\mathbf{i}-\mathbf{j}+\mathbf{k}) \\
\mathbf{b} & =\mathbf{v}-\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|^{2}} \mathbf{u}=(-2 \mathbf{i}-\mathbf{j}+5 \mathbf{k})-\frac{8}{3}(-\mathbf{i}-\mathbf{j}+\mathbf{k}) \\
& =\frac{1}{3}(2 \mathbf{i}+5 \mathbf{j}+7 \mathbf{k})
\end{aligned}
$$

Now normalize them.

$$
\mathbf{a}_{1}=\frac{\mathbf{a}}{\|\mathbf{a}\|}=\frac{1}{\sqrt{3}}(-\mathbf{i}-\mathbf{j}+\mathbf{k}), \quad \mathbf{b}_{1}=\frac{\mathbf{b}}{\|\mathbf{b}\|}=\frac{1}{\sqrt{78}}(2 \mathbf{i}+5 \mathbf{j}+7 \mathbf{k})
$$

We can check that

$$
\begin{aligned}
\mathbf{a}_{1} \cdot \mathbf{b}_{1} & =\frac{(-1) \cdot 2+(-1) \cdot 5+1 \cdot 7}{\sqrt{3} \cdot \sqrt{78}}=0 \text { (orthogonal) } \\
\mathbf{a}_{1} \times \mathbf{b}_{1} & =\frac{1}{3 \sqrt{26}}\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-1 & -1 & 1 \\
2 & 5 & 7
\end{array}\right| \\
& =\frac{1}{3 \sqrt{26}}\left(\left|\begin{array}{rr}
-1 & 1 \\
5 & 7
\end{array}\right| \mathbf{i}-\left|\begin{array}{rr}
-1 & 1 \\
2 & 7
\end{array}\right| \mathbf{j}+\left|\begin{array}{rr}
-1 & -1 \\
2 & 5
\end{array}\right| \mathbf{k}\right) \\
& =-\frac{1}{\sqrt{26}}(4 \mathbf{i}-3 \mathbf{j}+\mathbf{k}) .
\end{aligned}
$$

Parametric equation of a plane

Figure 1.21: A plane is det'd by a point and two vectors

Proposition 1.5.6. A parametric equation for the plane passing the point $P_{0}=\left(c_{1}, c_{2}, c_{3}\right)$ and parallel to two vectors \mathbf{a} and \mathbf{b} is given by

$$
\mathbf{x}(s, t)=s \mathbf{a}+t \mathbf{b}+\mathbf{c} .
$$

Distance between a point and a line

Example 1.5.7. Find the distance from the point $P_{0}(2,1,3)$ to the line $\ell(t)=$ $t(-1,1,-2)+(2,3,-2)$.
sol. Choose any point B on the line and find an orthogonal decomposition of $\overrightarrow{B P}_{0}$ onto the direction vector $\mathbf{a}=(-1,1,-2)$ of the line. Then the length

Figure 1.22: Distance from a point to a line
of the orthogonal complement is the distance. Choose $B=(2,3,-2)$. Then

$$
\begin{aligned}
\overrightarrow{B P}_{0}:=\mathbf{b} & =(2,1,3)-(2,3,-2) \\
& =(0,-2,5) .
\end{aligned}
$$

Hence the orthogonal projection onto \mathbf{a} is

$$
\begin{aligned}
\mathbf{p}_{\mathbf{a}} \mathbf{b} & =\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|^{2}} \mathbf{a} \\
& =(2,-2,4) .
\end{aligned}
$$

Thus the distance is

$$
\left\|\mathbf{b}-\mathbf{p}_{\mathbf{a}} \mathbf{b}\right\|=\|(0,-2,5)-(2,-2,4)\|=\sqrt{5} .
$$

Distance between two parallel planes

To find the distance between two parallel planes, we first compute a normal vector common to both planes. Now choose one point from each plane, say P_{i} from the plane $\Pi_{i}(i=1,2)$. Then find the projection of $\overrightarrow{P_{1} P_{2}}$ onto the common normal vector.

Distance between two skewed lines

Two lines are said to be skewed if they are neither intersecting nor parallel. It follows that they must lie in two parallel planes and the distance between the lines is equal to the distance between the planes. Let us describe how to find the distance between them.

Assume we have two parallel planes Π_{1} and Π_{2} containing each lines. They

Figure 1.23: Distance between two lines is the length of $\operatorname{proj}_{\mathbf{n}} \mathbf{b}$ (blue)
share a common normal vector \mathbf{n}. Assume \mathbf{a}_{1} and \mathbf{a}_{2} are two direction vectors of the planes.(verify) Then the normal vector is obtained by taking cross product of \mathbf{a}_{1} and \mathbf{a}_{2}. Let $P_{1} \in \ell_{1}, \xrightarrow{P_{2}} \in \ell_{2}$ be any two points on each line. Then we compute the projection of $\overrightarrow{P_{1} P_{2}}$ onto \mathbf{n}. Moving the projection along the line ℓ_{1} so that the head ends at P_{2}, we see its length is the desired distance.

Example 1.5.8. Find the distance between the two lines

$$
\ell_{1}(t)=(0,5,-1)+t(2,1,3), \text { and } \ell_{2}(t)=(-1,2,0)+t(1,-1,0) .
$$

sol. We have $\mathbf{a}_{1}=(2,1,3)$ and $\mathbf{a}_{2}=(1,-1,0)$. Choose $P_{1}=(2,6,2)$ and $P_{2}=(0,1,0)$. Then $\mathbf{b}=(2,6,2)-(0,1,0)=(2,5,2)$. While

$$
\mathbf{n}=\mathbf{a}_{1} \times \mathbf{a}_{2}=(2,1,3) \times(1,-1,0)=(3,3,-3) .
$$

Normalizing, we let $\mathbf{n}=(1,1,-1) / \sqrt{3}$. Now the projection of \mathbf{b} onto \mathbf{n} is

$$
\operatorname{proj}_{\mathbf{n}} \mathbf{b}=(\mathbf{b} \cdot \mathbf{n}) \mathbf{n}=\frac{(2+5-2)}{\sqrt{3}} \frac{(1,1,-1)}{\sqrt{3}}=\frac{5}{3}(1,1,-1) .
$$

Hence the distance is

$$
\left\|\frac{5}{3}(1,1,-1)\right\|=\frac{5}{\sqrt{3}} .
$$

$1.6 \quad n$-dim Euclidean space

Vectors in n-dim space

The set of all points with n-coordinates

$$
\mathbb{R}^{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}\right\}
$$

is called n-dimensional Euclidean space. Addition and scalar multiplication can be defined as

$$
\begin{aligned}
\left(a_{1}, a_{2}, \ldots, a_{n}\right)+\left(b_{1}, b_{2}, \ldots, b_{n}\right) & =\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right) \\
s\left(a_{1}, a_{2}, \ldots, a_{n}\right) & =\left(s a_{1}, s a_{2}, \ldots, s a_{n}\right) .
\end{aligned}
$$

The identity $(0,0, \ldots, 0)$ in \mathbb{R}^{n} is the zero element. The inverse of $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is $\left(-a_{1},-a_{2}, \ldots,-a_{n}\right)$, or $-\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. For two points $P\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $Q\left(b_{1}, b_{2}, \ldots, b_{n}\right)$, the set

$$
\overline{P Q}=\left\{(1-t)\left(a_{1}, a_{2}, \ldots, a_{n}\right)+t\left(b_{1}, b_{2}, \ldots, b_{n}\right) \mid 0 \leq t \leq 1\right\}
$$

is called the line segment $P Q$ and

$$
\sqrt{\left(a_{1}-b_{1}\right)^{2}+\left(a_{2}-b_{2}\right)^{2}+\cdots+\left(a_{n}-b_{n}\right)^{2}}
$$

is the length of $P Q$. Also the set

$$
\overleftrightarrow{P Q}=\left\{(1-t)\left(a_{1}, a_{2}, \ldots, a_{n}\right)+t\left(b_{1}, b_{2}, \ldots, b_{n}\right) \mid-\infty<t<\infty\right\}
$$

is the line $P Q$.
If the three points $P\left(a_{1}, \ldots, a_{n}\right), Q\left(b_{1}, \ldots, b_{n}\right), R\left(c_{1}, \ldots, c_{n}\right)$ are not lying in the same line, then the set
$\left\{r\left(a_{1}, \ldots, a_{n}\right)+s\left(b_{1}, \ldots, b_{n}\right)+t\left(c_{1}, \ldots, c_{n}\right) \mid-\infty<r, s, t<\infty, r+s+t=1\right\}$
is called the plane determined by P, Q, R.

Standard basis vector

We let

$$
\begin{aligned}
\mathbf{e}_{1} & =(1,0,0, \ldots, 0) \\
\mathbf{e}_{2} & =(0,1,0, \ldots, 0) \\
\mathbf{e}_{3} & =(0,0,1, \ldots, 0) \\
& \vdots \\
\mathbf{e}_{n} & =(0,0,0, \ldots, 1) .
\end{aligned}
$$

Then any vector in \mathbb{R}^{n} can be written as a scalar combination of $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$:

$$
\left(a_{1}, a_{2}, \ldots, a_{n}\right)=a_{1} \mathbf{e}_{1}+a_{2} \mathbf{e}_{2}+\cdots+a_{n} \mathbf{e}_{n}
$$

The vectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ are the standard basis vectors ${ }^{1}$ of \mathbb{R}^{n}. Clearly, we have

$$
\mathbf{e}_{i} \cdot \mathbf{e}_{j}= \begin{cases}0 & (i \neq j) \\ 1 & (i=j)\end{cases}
$$

Theorem 1.6.1. We have the following:
(i) $(\alpha \mathbf{x}+\beta \mathbf{y}) \cdot \mathbf{z}=\alpha \mathbf{x} \cdot \mathbf{z}+\beta \mathbf{y} \cdot \mathbf{z}$
(associate law)
(ii) $x \cdot y=y \cdot x$
(commutative law)
(iii) $\mathrm{x} \cdot \mathrm{x} \geq 0$
(iv) $\mathrm{x} \cdot \mathrm{x}=0$ iff $\mathrm{x}=0$.

Example 1.6.2. Let $\mathbf{u}=3 \mathbf{e}_{1}-4 \mathbf{e}_{2}+2 \mathbf{e}_{4}, \mathbf{v}=\mathbf{e}_{1}+2 \mathbf{e}_{2}+2 \mathbf{e}_{3}-3 \mathbf{e}_{4}$ be in \mathbb{R}^{4}.
Express $2 \mathbf{u}-7 \mathbf{v}$ using standard basis vector.
sol. Using standard basis vector, $2 \mathbf{u}-7 \mathbf{v}$ is

$$
\begin{aligned}
2 \mathbf{u}-7 \mathbf{v} & =2\left(3 \mathbf{e}_{1}-4 \mathbf{e}_{2}+2 \mathbf{e}_{4}\right)-7\left(\mathbf{e}_{1}+2 \mathbf{e}_{2}+2 \mathbf{e}_{3}-3 \mathbf{e}_{4}\right) \\
& =\left(6 \mathbf{e}_{1}-8 \mathbf{e}_{2}+4 \mathbf{e}_{4}\right)+\left(-7 \mathbf{e}_{1}-14 \mathbf{e}_{2}-14 \mathbf{e}_{3}+21 \mathbf{e}_{4}\right) \\
& =(6-7) \mathbf{e}_{1}+(-8-14) \mathbf{e}_{2}+(0-14) \mathbf{e}_{3}+(4+21) \mathbf{e}_{4} \\
& =-\mathbf{e}_{1}-22 \mathbf{e}_{2}-14 \mathbf{e}_{3}+25 \mathbf{e}_{4}
\end{aligned}
$$

[^0]For two vector $\mathbf{u}=a_{1} \mathbf{e}_{1}+a_{2} \mathbf{e}_{2}+\cdots+a_{n} \mathbf{e}_{n}, \mathbf{v}=b_{1} \mathbf{e}_{1}+b_{2} \mathbf{e}_{2}+\cdots+b_{n} \mathbf{e}_{n}$, their inner product is defined as

$$
\mathbf{u} \cdot \mathbf{v}=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}=\sum_{i=1}^{n} a_{i} b_{i}
$$

This satisfies proposition 1.3.3. The length of a vector \mathbf{u} is defined as

$$
\|\mathbf{u}\|=\left(a_{1}^{2}+\cdots+a_{n}^{2}\right)^{1 / 2}=\sqrt{\mathbf{u} \cdot \mathbf{u}}
$$

and the distance between two vectors \mathbf{u} and \mathbf{v} is defined as $\|\mathbf{u}-\mathbf{v}\|$.
One can even define the angle between \mathbf{u} and \mathbf{v} by

$$
\theta=\cos ^{-1} \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}=\cos ^{-1} \frac{a_{1} b_{1}+\cdots+a_{n} b_{n}}{\left(a_{1}^{2}+\cdots+a_{n}^{2}\right)^{1 / 2}\left(b_{1}^{2}+\cdots+b_{n}^{2}\right)^{1 / 2}}
$$

Example 1.6.3. Find the inner product of $\mathbf{u}=\mathbf{e}_{1}-2 \mathbf{e}_{2}+3 \mathbf{e}_{3}+2 \mathbf{e}_{4}, \mathbf{v}=$ $2 \mathbf{e}_{1}+\mathbf{e}_{2}-3 \mathbf{e}_{3}-\mathbf{e}_{4}$.
sol.

$$
\mathbf{u} \cdot \mathbf{v}=2-2-9-2=-11
$$

Example 1.6.4. Find the angle between $\mathbf{u}=\mathbf{e}_{1}-\mathbf{e}_{2}+\mathbf{e}_{4}, \mathbf{v}=-\mathbf{e}_{2}-\mathbf{e}_{3}+2 \mathbf{e}_{4}$.
sol. The angle between \mathbf{u} and \mathbf{v} is

$$
\cos ^{-1} \frac{0+1+0+2}{\sqrt{(1+1+0+1)(0+1+1+4)}}=\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)=\frac{\pi}{4}
$$

Theorem 1.6.5 (Cauchy-Schwarz inequality). For any two vectors a, b in n-dim space the following holds. Equality holds iff \mathbf{a} and \mathbf{b} are parallel.

$$
|\mathbf{a} \cdot \mathbf{b}| \leq\|\mathbf{a}\|\|\mathbf{b}\| .
$$

Proof. For $n>3$ our early proof is unclear. Thus we prove this again. We may assume none of the vectors are zero. Recall the orthogonal decomposition of \mathbf{b} onto \mathbf{a}, i.e, we write

$$
\mathbf{b}=k \mathbf{a}+\mathbf{c}
$$

where $k \mathbf{a}$ is the projection of \mathbf{b} and $\mathbf{c}=\mathbf{b}-k \mathbf{a}$ is the orthogonal complement. By orthogonality $(\mathbf{a} \cdot \mathbf{c}=0)$,

$$
\|\mathbf{a}\|^{2}\|\mathbf{b}\|^{2}=\|\mathbf{a}\|^{2}\left(k^{2}\|\mathbf{a}\|^{2}+\|\mathbf{c}\|^{2}\right) \geq k^{2}\|\mathbf{a}\|^{2}\|\mathbf{a}\|^{2}
$$

Thus

$$
k^{2}\|\mathbf{a}\|^{2} \leq\|\mathbf{b}\|^{2}
$$

Since $k=\frac{\mathbf{b} \cdot \mathbf{a}}{\|\mathbf{a}\|^{2}}$, we see

$$
\|\mathbf{a} \cdot \mathbf{b}\|^{2} \leq\|\mathbf{a}\|^{2}\|\mathbf{b}\|^{2}
$$

Theorem 1.6.6 (Triangle inequality). For any two vectors \mathbf{u}, \mathbf{v} in n-dim space the following holds. Equality holds iff \mathbf{u} and \mathbf{v} are parallel and same direction.

$$
\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\| .
$$

Proof.

$$
\begin{aligned}
\|\mathbf{u}+\mathbf{v}\|^{2} & =(\mathbf{u}+\mathbf{v}) \cdot(\mathbf{u}+\mathbf{v}) \\
& =\mathbf{u} \cdot \mathbf{u}+2 \mathbf{u} \cdot \mathbf{v}+\mathbf{v} \cdot \mathbf{v} \\
& \leq \mathbf{u} \cdot \mathbf{u}+2\|\mathbf{u}\|\|\mathbf{v}\|+\mathbf{v} \cdot \mathbf{v} \\
& =(\|\mathbf{u}\|+\|\mathbf{v}\|)^{2}
\end{aligned}
$$

General matrix

Let m, n be any natural numbers. The arrays $a_{i j}(1 \leq i \leq m, 1 \leq j \leq n)$

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

is said to be an $m \times n$ matrix and denote by

$$
\left[a_{i j}\right]_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}},\left[a_{i j}\right]_{m \times n} \text { or }\left[a_{i j}\right]
$$

If $m=1$, then $1 \times n$ matrix consists of one row and is called row vector, and if $n=1$ then $m \times 1$ matrix is column vector. If $m=n$, it is called square matrix. $a_{i j}$ is called $i j$-entry. The $1 \times n$ matrix

$$
\left[\begin{array}{llll}
a_{i 1} & a_{i 2} & \cdots & a_{i n}
\end{array}\right]
$$

is i-th row vector, $m \times 1$ matrix

$$
\left[\begin{array}{c}
a_{1 j} \\
a_{2 j} \\
\vdots \\
a_{m j}
\end{array}\right]
$$

is j-th column vector.

Example 1.6.7. What is 4 -th row and second column of the 4×3 matrix?

$$
\left[\begin{array}{ccc}
0 & -2 & 12 \\
3 & 1 & 4 \\
-1 & 0 & 5 \\
1 & -3 & 7
\end{array}\right]
$$

sol. 4-th row and second column is

$$
\left[\begin{array}{lll}
1 & -3 & 7
\end{array}\right],\left[\begin{array}{c}
-2 \\
1 \\
0 \\
-3
\end{array}\right]
$$

Matrix addition, multiplication

Let A and B be two $m \times n$ matrices. Then the matrix sum $A+B$ is the $m \times n$ matrix whose (i, j) entries are the sum of $a_{i, j}$ and $b_{i, j}$. If k is any scalar,
define the scalar multiplication $k A$ by

$$
(k A)_{i j}=k a_{i j}
$$

i.e, each entry is multiplied by k.

Definition 1.6.8 (Matrix multiplication). If $A=\left[a_{i j}\right]$ is $m \times n$ matrix and $B=\left[b_{k l}\right]$ is $n \times p$ matrix, then the $m \times p$ matrix

$$
\left[\sum_{k=1}^{n} a_{i k} b_{k j}\right]_{\substack{1 \leq i \leq m \\ 1 \leq j \leq p}}
$$

is the product of A and B denoted by $A B$. In other words, the product of A and B is $A B$ and its $i j$-component is the inner product of $i-t h$ row of A and $j-t h$ column of B.

Example 1.6.9. Product of 2×3 and 3×4 matrices

$$
\left[\begin{array}{rrr}
2 & 3 & 1 \\
-1 & 1 & 4
\end{array}\right]\left[\begin{array}{rrrr}
0 & 2 & 3 & -2 \\
-2 & 1 & 5 & -3 \\
2 & 0 & -2 & 1
\end{array}\right]=\left[\begin{array}{rrrr}
-4 & 9 & 19 & -12 \\
6 & -1 & -6 & 3
\end{array}\right]
$$

Example 1.6.10. Product of 1×3 and 3×2 matrices

$$
\left[\begin{array}{lll}
2 & 1 & -3
\end{array}\right]\left[\begin{array}{rr}
-3 & 5 \\
1 & -3 \\
0 & -2
\end{array}\right]=\left[\begin{array}{ll}
-5 & 13
\end{array}\right]
$$

Example 1.6.11. Product of 3×4 and 4×1 matrices

$$
\left[\begin{array}{rrrr}
0 & 2 & 3 & 1 \\
-1 & 2 & 0 & -3 \\
2 & 0 & 1 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right]=\left[\begin{array}{c}
2 y+3 z+w \\
-x+2 y-3 w \\
2 x+z+4 w
\end{array}\right]
$$

Definition 1.6.12. The following $n \times n$ matrix is

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right]
$$

$n \times n$ identity matrix and denote it by I_{n}.
Proposition 1.6.13 (Properties of matrix multiplication). Let A, B and C are matrices where the multiplication $A B$ and $B C$ etc, makes sense. Then
(1) $A(B C)=(A B) C$.
(2) $k(A B)=(k A) B=A(k B)$
(3) $A(B+C)=A B+A C$
(4) $(A+B) C=A C+B C$
whenever the multiplication makes sense.
Transpose.

$$
\begin{aligned}
\left(A^{T}\right)^{T} & =A \\
(A B)^{T} & =B^{T} A^{T} \\
\mathbf{a} \cdot \mathbf{b} & =\mathbf{a}^{T} \mathbf{b}
\end{aligned}
$$

Lemma 1.6.14. For nay $m \times n$ matrix A and $n \times p$ matrix B, we have

$$
A I_{n}=A, \quad I_{n} B=B
$$

Also, for any $n \times n$ matrix A, it holds that

$$
A I_{n}=I_{n} A=A
$$

I_{n} is identity element in multiplication.
Example 1.6.15.

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Definition 1.6.16. If for any vector $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$ and scalar $\alpha \in \mathbb{R}$, a function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is defined by
(1) $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$
(2) $T(\alpha \mathbf{u})=\alpha T(\mathbf{u})$
we say T is a linear transformation(mapping, function).

Example 1.6.17. Express a given linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ using the standard basis vector.

Since any vector in \mathbb{R}^{n} can be written as $a_{1} \mathbf{e}_{1}+a_{2} \mathbf{e}_{2}+\cdots+a_{n} \mathbf{e}_{n}$ and T is determined by the values at these vectors.

$$
\begin{aligned}
T\left(a_{1} \mathbf{e}_{1}+a_{2} \mathbf{e}_{2}+\cdots+a_{n} \mathbf{e}_{n}\right) & =T\left(a_{1} \mathbf{e}_{1}\right)+T\left(a_{2} \mathbf{e}_{2}\right)+\cdots+T\left(a_{n} \mathbf{e}_{n}\right) \\
& =a_{1} T\left(\mathbf{e}_{1}\right)+a_{2} T\left(\mathbf{e}_{2}\right)+\cdots+a_{n} T\left(\mathbf{e}_{n}\right)
\end{aligned}
$$

Since $T\left(\mathbf{e}_{1}\right), T\left(\mathbf{e}_{2}\right), \ldots, T\left(\mathbf{e}_{n}\right)$ are in \mathbb{R}^{m}, we can write it as linear combinations of $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{m}$. Hence there exist numbers $t_{i j}(1 \leq i \leq m, 1 \leq j \leq n)$ s.t.

$$
\begin{equation*}
T\left(\mathbf{e}_{j}\right)=\sum_{i=1}^{m} t_{i j} \mathbf{e}_{i} \quad(1 \leq j \leq n) \tag{1.7}
\end{equation*}
$$

Hence

$$
\begin{equation*}
T\left(a_{1} \mathbf{e}_{1}+a_{2} \mathbf{e}_{2}+\cdots+a_{n} \mathbf{e}_{n}\right)=\sum_{j=1}^{n} a_{j} T\left(\mathbf{e}_{j}\right)=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} t_{i j} a_{j}\right) \mathbf{e}_{i} \tag{1.8}
\end{equation*}
$$

This procedure can be written in matrix form Eq. (1.7). The matrix having $t_{i j}$ as $i j$-th component

$$
\operatorname{mat}(T)=\left[\begin{array}{cccc}
t_{11} & t_{12} & \cdots & t_{1 n} \\
t_{21} & t_{22} & \cdots & t_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
t_{m 1} & t_{m 2} & \cdots & t_{m n}
\end{array}\right]
$$

is called matrix of T. Let us multiply the column vector $a_{1} \mathbf{e}_{1}+a_{2} \mathbf{e}_{2}+\cdots+$
$a_{n} \mathbf{e}_{n}$ to the right of this matrix.

$$
\left[\begin{array}{cccc}
t_{11} & t_{12} & \cdots & t_{1 n} \\
t_{21} & t_{22} & \cdots & t_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
t_{m 1} & t_{m 2} & \cdots & t_{m n}
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]=\left[\begin{array}{c}
t_{11} a_{1}+t_{12} a_{2}+\cdots+t_{1 n} a_{n} \\
t_{21} a_{1}+t_{22} a_{2}+\cdots+t_{2 n} a_{n} \\
\vdots \\
t_{m 1} a_{1}+t_{m 2} a_{2}+\cdots+t_{m n} a_{n}
\end{array}\right]
$$

Compare this with equation (1.8). Then rhs vector has $T\left(a_{1} \mathbf{e}_{1}+a_{2} \mathbf{e}_{2}+\cdots+\right.$ $a_{n} \mathbf{e}_{n}$) as its component. Conversely, any $m \times n$ matrix $\left[t_{i j}\right]$ is given, then it determines linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ as in equation (1.8). Hence linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has one-one correspondence with $m \times n$ matrix as follows:

$$
\operatorname{mat}: T \mapsto\left[\mathbf{e}_{i} \cdot T\left(\mathbf{e}_{j}\right)\right]_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}
$$

Proposition 1.6.18. For two linear transformations $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, U: \mathbb{R}^{p} \rightarrow$ \mathbb{R}^{n} it holds that

$$
\operatorname{mat}(T \circ U)=\operatorname{mat}(T) \operatorname{mat}(U)
$$

Example 1.6.19. For the given two linear transformations $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, $U: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ check Proposition 1.6 .18 holds.

$$
\begin{aligned}
T(x, y, z) & =(3 y-z, x+y) \\
U(s, t) & =(2 s-t, s+2 t,-3 s)
\end{aligned}
$$

sol. The matrices for T and U are

$$
\operatorname{mat}(T)=\left[\begin{array}{rrr}
0 & 3 & -1 \\
1 & 1 & 0
\end{array}\right], \quad \operatorname{mat}(U)=\left[\begin{array}{rr}
2 & -1 \\
1 & 2 \\
-3 & 0
\end{array}\right]
$$

Hence

$$
\operatorname{mat}(T) \operatorname{mat}(U)=\left[\begin{array}{rrr}
0 & 3 & -1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{rr}
2 & -1 \\
1 & 2 \\
-3 & 0
\end{array}\right]=\left[\begin{array}{ll}
6 & 6 \\
3 & 1
\end{array}\right]
$$

On the other hand

$$
\begin{aligned}
(T \circ U)(s, t) & =T(2 s-t, s+2 t,-3 s) \\
& =(3(s+2 t)-(-3 s),(2 s-t)+(s+2 t)) \\
& =(6 s+6 t, 3 s+t)
\end{aligned}
$$

So

$$
\operatorname{mat}(T \circ U)=\left[\begin{array}{ll}
6 & 6 \\
3 & 1
\end{array}\right]
$$

Hence the following holds.

$$
\operatorname{mat}(T \circ U)=\operatorname{mat}(T) \operatorname{mat}(U)
$$

Determinant

We have seen $3 \times 32 \times 2$. Using these, we define determinant of $n \times n$ matrix by induction. We expand w.r.t 1st row.

$$
\begin{gathered}
\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\ldots & \cdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right|=a_{11}\left|\begin{array}{cccc}
a_{22} & a_{23} & \cdots & a_{2 n} \\
a_{32} & a_{33} & \cdots & a_{3 n} \\
\cdots & \cdots & \ddots & \vdots \\
a_{n 2} & a_{n 3} & \cdots & a_{n n}
\end{array}\right|-a_{12}\left|\begin{array}{cccc}
a_{21} & a_{23} & \cdots & a_{2 n} \\
a_{31} & a_{33} & \cdots & a_{3 n} \\
\ldots & \cdots & \ddots & \vdots \\
a_{n 1} & a_{n 3} & \cdots & a_{n n}
\end{array}\right| \\
\cdots(-1)^{1+i} a_{1 i}\left|\begin{array}{ccccc}
a_{21} & \cdots & \check{a}_{2, i} & \cdots & a_{2 n} \\
a_{31} & \cdots & \check{a}_{3, i} & \cdots & a_{3 n} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
a_{n 1} & \cdots & \check{a}_{n, i} & \cdots & a_{n n}
\end{array}\right|+\cdots(-1)^{1+n} a_{1 n}\left|\begin{array}{lll}
a_{21} & \cdots & a_{2, n-1} \\
a_{31} & \cdots & a_{3, n-1} \\
\cdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n, n-1}
\end{array}\right|
\end{gathered}
$$

Here $\check{a}_{2, i}$ etc. means skip that entry. The i-th term on the right is $(-1)^{1+i} a_{1 i}$ times the determinant of $(n-1) \times(n-1)$ obtained by deleting first row and i-column.

Theorem 1.4.6 and corollary 1.4.7 hold for any square matrices.

Expansion with respect to any row

Let $A_{i j}$ be the $(n-1) \times(n-1)$ matrix obtained by deleting i-row and j-th column. We can expand the determinant w.r.t i-th row, i.e.,

$$
|A|=\sum_{j=1}^{n}(-1)^{i+j} a_{i j}\left|A_{i j}\right|
$$

If we expand w.r.t j-th column, we see

$$
|A|=\sum_{i=1}^{n}(-1)^{i+j} a_{i j}\left|A_{i j}\right|
$$

Example 1.6.20. Expand w.r.t 2nd row

$$
\begin{aligned}
\left|\begin{array}{rrrr}
2 & -1 & 3 & 0 \\
0 & -1 & 0 & 4 \\
3 & 1 & 0 & 2 \\
2 & 0 & -3 & 0
\end{array}\right|= & -0\left|\begin{array}{rrr}
-1 & 3 & 0 \\
1 & 0 & 2 \\
0 & -3 & 0
\end{array}\right|+(-1)\left|\begin{array}{rrr}
2 & 3 & 0 \\
3 & 0 & 2 \\
2 & -3 & 0
\end{array}\right| \\
& -0\left|\begin{array}{rrr}
2 & -1 & 0 \\
3 & 1 & 2 \\
2 & 0 & 0
\end{array}\right|+4\left|\begin{array}{rrr}
2 & -1 & 3 \\
3 & 1 & 0 \\
2 & 0 & -3
\end{array}\right| \\
= & -2\left|\begin{array}{rr}
0 & 2 \\
-3 & 0
\end{array}\right|+3\left|\begin{array}{ll}
3 & 2 \\
2 & 0
\end{array}\right|+4 \cdot 2\left|\begin{array}{rr}
1 & 0 \\
0 & -3
\end{array}\right| \\
& +4 \cdot 1\left|\begin{array}{rr}
3 & 0 \\
2 & -3
\end{array}\right|+4 \cdot 3\left|\begin{array}{rr}
3 & 1 \\
2 & 0
\end{array}\right| \\
= & -148 .
\end{aligned}
$$

Cramer's rule

The solution to $A \mathbf{x}=\mathbf{b}$ is $\mathbf{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ where

$$
x_{i}=\frac{1}{\operatorname{det}(A)}\left|A_{i}\right|
$$

Here A_{i} is the matrix obtained by replacing i-th column by \mathbf{b}.

Example 1.6.21. Solve

$$
\begin{aligned}
3 x+2 y+z & =1 \\
y+z & =0 \\
x+y & =3
\end{aligned}
$$

sol. Use Cramer's rule. First the determinant is

$$
\left|\begin{array}{lll}
3 & 2 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right|=3\left|\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right|-0\left|\begin{array}{cc}
2 & 1 \\
1 & 0
\end{array}\right|+1\left|\begin{array}{cc}
2 & 1 \\
1 & 1
\end{array}\right|=-2
$$

Then x_{1}, x_{2} and x_{3} are
$x_{1}=\frac{1}{-2}\left|\begin{array}{lll}1 & 2 & 1 \\ 0 & 1 & 1 \\ 3 & 1 & 0\end{array}\right|=-1, x_{2}=\frac{1}{-2}\left|\begin{array}{lll}3 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 3 & 0\end{array}\right|=4, x_{3}=\frac{1}{-2}\left|\begin{array}{lll}3 & 2 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 3\end{array}\right|=-4$.

Example 1.6.22. (1) Show for all vectors that $\|\mathbf{a}-\mathbf{b}\| \leq\|\mathbf{a}-\mathbf{c}\|+\|\mathbf{c}-\mathbf{b}\|$
(2) Find a condition that $\|\mathbf{a}\|^{2}+\|\mathbf{a}\|^{2}=\|\mathbf{a}+\mathbf{b}\|^{2}$
(3) Show the determinant of a triangular matrix is given by

$$
\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & \\
0 & a_{22} & \cdots & \\
\vdots & 0 & a_{i i} & \vdots \\
0 & 0 & \cdots & a_{n n}
\end{array}\right|=a_{11} a_{22} \cdots a_{n n}
$$

Solve

$$
\begin{aligned}
3 x+2 y+z & =1 \\
y+z & =0 \\
x+y & =3
\end{aligned}
$$

1.7 Cylindrical and spherical coordinate

Cylindrical coordinate system

Given a point $P=(x, y, z)$, we can use polar coordinate for (x, y)-plane. Then it holds that

$$
\text { Cylindrical to Cartesain }\left\{\begin{aligned}
x & =r \cos \theta \\
y & =r \sin \theta \\
z & =z
\end{aligned}\right.
$$

We say (r, θ, z) is cylindrical coordinate of P. Conversely, the cylindrical coordinate (r, θ, z) is given by

$$
\text { Cartesain to Cylindrical }\left\{\begin{aligned}
r^{2} & =x^{2}+y^{2} \\
\tan \theta & =\frac{y}{x} \\
z & =z
\end{aligned}\right.
$$

The expression (r, θ, z) is not unique.
Example 1.7.1. The set of all points $r=a$ in cylindrical coordinate is

$$
\left\{(x, y, z) \mid x^{2}+y^{2}=a^{2}\right\}
$$

This is a cylinder (Figure 1.24).
Example 1.7.2. $r=3 \cos \theta$ gives

$$
r^{2}=3 r \cos \theta \Rightarrow x^{2}+y^{2}=3 x
$$

This is again a cylinder.

Example 1.7.3. Change cylindrical coordinate $(6, \pi / 3,4)$ to Cartesian coordinate.
sol.

$$
x=6 \cos (\pi / 3)=3, \quad y=6 \sin (\pi / 3)=3 \sqrt{3}, \quad z=4
$$

So $(x, y, z)=(3,3 \sqrt{3}, 4)$.

Figure 1.24: cylindrical coordinate

$$
\theta= \begin{cases}\tan ^{-1}(y / x) & (x>0, y \geq 0) \\ 2 \pi+\tan ^{-1}(y / x) & (x>0, y<0) \\ \pi+\tan ^{-1}(y / x) & (x<0) \\ \pi / 2 & (x=0, y>0) \\ 3 \pi / 2 & (x=0, y<0)\end{cases}
$$

Example 1.7.4. Identify the surface given by the equation $z=2 r$ in cylindrical coordinate.
sol. $z^{2}=4 r^{2}=4\left(x^{2}+y^{2}\right)$. This is a cone.

Example 1.7.5. Change the equation $x^{2}+y^{2}-z^{2}=1$ to cylindrical coordinate.
sol. $r^{2}-z^{2}=1$.

Spherical coordinate system

We call (ρ, ϕ, θ) the spherical coordinate of P.

$$
\text { Spherical to cylindrical }\left\{\begin{array} { l }
{ r = \rho \operatorname { s i n } \phi } \\
{ \theta = \theta } \\
{ z = \rho \operatorname { c o s } \phi }
\end{array} \left\{\begin{array}{rl}
\rho^{2}=r^{2}+z^{2} \\
\tan \phi & =\frac{r}{z} \\
\theta & =\theta
\end{array}\right.\right.
$$

Figure 1.25: Spherical coordinate

For $P=(x, y, z)$ we have

$$
\text { Spherical to Cartesian }\left\{\begin{array}{l}
x=\rho \sin \phi \cos \theta \\
y=\rho \sin \phi \sin \theta \\
z=\rho \cos \phi
\end{array} \quad\left(\begin{array}{c}
\rho \geq 0 \\
0 \leq \theta<2 \pi \\
0 \leq \phi \leq \pi
\end{array}\right)\right.
$$

Conversely, we can write ρ, ϕ, θ in terms of x, y, z.

$$
\text { Cartesian to spherical }\left\{\begin{aligned}
\rho & =\sqrt{x^{2}+y^{2}+z^{2}} \\
\cos \phi & =\frac{z}{\rho} \\
\tan \theta & =\frac{y}{x}
\end{aligned}\right.
$$

Now the second condition has an alternate expression: We see from the figure

$$
r=\rho \sin \phi, \quad z=\rho \cos \phi
$$

Hence $\cos \phi=\frac{z}{\rho}$ can be replaced by

$$
\tan \phi=\frac{r}{z}
$$

Example 1.7.6. (1) Find the spherical coord. of the point $(x, y, z)=$ $(1,-1,1)$ and plot.
(2) Find the cartesian coord. of $(3, \pi / 6, \pi / 4)$.
(3) Find the spherical coord. of $(2,-3,6)$.
(4) Find the spherical coord. of $(-3,-3, \sqrt{6})$.
sol. (1) $\rho=\sqrt{3}$.

$$
\phi=\cos ^{-1}\left(\frac{z}{\rho}\right)=\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right) \approx 0.955 \approx 54.74^{o} .
$$

Since the point $(1,-1)$ in $x y$-plane lies in the 4 -th quadrant, we see

$$
\theta=\arctan \left(\frac{y}{x}\right)=\frac{7 \pi}{4}
$$

(3) $\rho=\sqrt{2^{2}+(-3)^{2}+6^{2}}=\sqrt{2^{2}+(-3)^{2}+6^{2}}=7$.

$$
\phi=\cos ^{-1}\left(\frac{z}{\rho}\right)=\cos ^{-1} \frac{6}{7}
$$

Also, the point lies in the fourth quadrant, we have

$$
\theta=2 \pi+\tan ^{-1}(-3 / 2) .
$$

(4)

$$
\begin{aligned}
& \rho=\sqrt{9+9+6}=2 \sqrt{6} \\
& \phi=\cos ^{-1} \frac{\sqrt{6}}{2 \sqrt{6}}=\cos ^{-1} \frac{1}{2}=\frac{\pi}{3} \\
& \theta=\pi+\tan ^{-1}\left(\frac{-1}{-1}\right)=\pi+\frac{\pi}{4}=\frac{5 \pi}{4} .
\end{aligned}
$$

Hence spherical coordinate is $(2 \sqrt{6}, \pi / 3,5 \pi / 4)$.

Example 1.7.7. Express the surface (1) $x z=1$ and (2) $x^{2}+y^{2}-z^{2}=1$ in spherical coordinate.
sol. (1) Since $x z=\rho^{2} \sin \phi \cos \theta \cos \phi=1$, we have the equation

$$
\rho^{2} \sin 2 \phi \cos \phi=2 .
$$

Figure 1.26: Standard basis for spherical coordinate
(2) Since $x^{2}+y^{2}-z^{2}=x^{2}+y^{2}+z^{2}-2 z^{2}=\rho^{2}-2(\rho \cos \phi)^{2}=\rho^{2}\left(1-2 \cos ^{2} \phi\right)$, the equation is $\rho^{2}\left(1-2 \cos ^{2} \phi\right)=1$.

Standard basis for cylindrical and spherical coordinates

For cylindrical coordinates, the following sets are standard basis vectors:

$$
\mathbf{e}_{\mathbf{r}}=\frac{x \mathbf{i}+y \mathbf{j}}{\sqrt{x^{2}+y^{2}}}, \quad \mathbf{e}_{\theta}, \quad \mathbf{e}_{z}=\mathbf{k}
$$

These vary depending on the points and are defined so that only the coordinate indicated by the subscript increases. Now \mathbf{e}_{θ} is given by

$$
\mathbf{e}_{\theta}=\mathbf{e}_{\mathbf{z}} \times \mathbf{e}_{\mathbf{r}}=\frac{-y \mathbf{i}+x \mathbf{j}}{\sqrt{x^{2}+y^{2}}}
$$

In this way $\left(\mathbf{e}_{\mathbf{r}}, \mathbf{e}_{\theta}, \mathbf{e}_{z}\right)$ form a right handed coordinate system.
For spherical coordinates the followings are standard basis vectors.

$$
\begin{aligned}
\mathbf{e}_{\rho} & =\frac{x \mathbf{i}+y \mathbf{j}+z \mathbf{j}}{\sqrt{x^{2}+y^{2}+z^{2}}}=\sin \phi \cos \theta \mathbf{i}+\sin \phi \sin \theta \mathbf{j}+\cos \phi \mathbf{k} \\
\mathbf{e}_{\phi} & =\cos \phi \cos \theta \mathbf{i}+\cos \phi \sin \theta \mathbf{j}-\sin \phi \mathbf{k} \\
\mathbf{e}_{\theta} & =\frac{-y \mathbf{i}+x \mathbf{j}}{\sqrt{x^{2}+y^{2}}}=-\sin \theta \mathbf{i}+\cos \theta \mathbf{j}
\end{aligned}
$$

[^0]: ${ }^{1}$ By definition 1.1.7, the vectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ are denoted by $\mathbf{i}, \mathbf{j}, \mathbf{k}$ in \mathbb{R}^{3}

