Chapter 7

Integrals and transcendental function

In chapter 2 we introduced natural logarithmic function as the inverse of the exponential function e^{x}, where the number e was chosen to satisfy certain slope condition. In this chapter, we introduce an alternative theory for exponential and log. function.

7.1 Logarithm defined as integral

Definition 7.1.1.

$$
\ln x=\int_{1}^{x} \frac{1}{t} d t,(x>0)
$$

Definition 7.1.2. For $x>0$, the (natural) logarithmic function is defined by

$$
\ln x=\int_{1}^{x} \frac{1}{t} d t
$$

Thus by fundamental theorem,

$$
\begin{equation*}
\frac{d}{d x} \ln x=\frac{1}{x} . \tag{7.1}
\end{equation*}
$$

If $u(x)$ is any positive differentiable function,

$$
\begin{equation*}
\frac{d}{d x} \ln u(x)=\frac{1}{u} \frac{d u}{d x} . \tag{7.2}
\end{equation*}
$$

Properties:

Figure 7.1: Graph of $\ln x$ and e^{x}
(1) $\ln b x=\ln b+\ln x$
(2) $\ln \frac{b}{x}=\ln b-\ln x$
(3) $\ln \frac{1}{x}=-\ln x$
(4) $\ln x^{r}=r \ln x$ (For rational number r).

Exponential function

Definition 7.1.3. Define the (natural) exponential function $\exp (x):=\ln ^{-1} x$ as the inverse function of $\ln x$. Thus

$$
y=\exp (x) \Leftrightarrow x=\ln y
$$

Thus

$$
\begin{align*}
\exp (\ln x) & =x,(x>0) \tag{7.3}\\
\ln (\exp (x)) & =x \tag{7.4}
\end{align*}
$$

The number e is defined as

$$
\begin{equation*}
e=\exp (1)=\ln ^{-1}(1)=2.718281828 \cdots \tag{7.5}
\end{equation*}
$$

The function e^{x}

We can raise the number e to a rational power such as:

$$
e^{2}=e \cdot e, e^{1 / 2}=\sqrt{e}, \ldots
$$

For rational number x, the value e^{x} is well defined. We see

$$
\begin{equation*}
\ln e^{x}=x \ln e=x \tag{7.6}
\end{equation*}
$$

The rational power e^{x} is the same as the $\exp (x)$. Thus it is natural to define

Definition 7.1.4. For all real number x, we let

$$
\begin{equation*}
e^{x}=\exp (x) \text {. } \tag{7.7}
\end{equation*}
$$

The exponential function $\exp (x)$ satisfies the usual rule for exponentiation such as $e^{a+b}=e^{a} e^{b}$.

Exponential function a^{x}

Since $a=e^{\ln a}$ for any positive number a, we can define a^{x} by

$$
\begin{aligned}
a^{x} & =e^{\ln a^{x}} \\
& =e^{x \ln a} \\
& =e^{(\ln a) x}
\end{aligned}
$$

Definition 7.1.5. If a is a positive number and x is any number, we define

$$
\begin{equation*}
a^{x}=e^{x \ln a} \tag{7.8}
\end{equation*}
$$

Since $\ln e^{x}=x$ for all real x, we have

$$
\ln x^{n}=\ln \left(e^{n \ln x}\right)=n \ln x, x>0
$$

One can also use the definition of $\ln x=\int_{1}^{x} d t$ to prove it.

Example 7.1.6. [Power rule] The derivative of x^{n} for any number n :

$$
\begin{aligned}
\frac{d}{d x} x^{n} & =\frac{d}{d x} e^{n \ln x}(x>0) \\
& =e^{n \ln x} \cdot \frac{d}{d x}(n \ln x) \\
& =x^{n} \cdot \frac{n}{x} \\
& =n x^{n-1}
\end{aligned}
$$

Derivative of a^{x}

By definition, $a^{x}=e^{x \ln a}$. Thus

$$
\begin{aligned}
\frac{d}{d x} a^{x}=\frac{d}{d x} e^{x \ln a} & =\ln a e^{x \ln a}=a^{x} \ln a . \\
\frac{d}{d x} a^{u} & =a^{u} \ln a \frac{d u}{d x}
\end{aligned}
$$

General logarithmic function $\log _{a} x$

$y=\log _{a} x$ is defined as the inverse function of $y=a^{x}(a>0, a \neq 1)$. Thus

$$
\begin{gathered}
\log _{a} x=y \Leftrightarrow a^{y}=x \\
\log _{a}\left(a^{x}\right)=x, \text { for all } x, \text { and } a^{\left(\log _{a} x\right)}=x,(x>0)
\end{gathered}
$$

$\log _{10} x$ is written as $\log x$ and called common logarithmic function

Properties
(1) Product rule: $\log _{a} x y=\log _{a} x+\log _{a} y$.
(2) Quotient rule: $\log _{a} \frac{x}{y}=\log _{a} x-\log _{a} y$.
(3) Product rule: $\log _{a} \frac{1}{y}=-\log _{a} y$.
(4) Power rule: $\log _{a} x^{y}=y \log _{a} x$.

Inverse properties
(1) Base $a: a^{\log _{a} x}=x, \log _{a}\left(a^{x}\right)=x(a>0, a \neq 1, x>0)$.
(2) Base $e: e^{\ln x}=x, \ln \left(e^{x}\right)=x(x>0)$.

Derivative of $\log _{a} x$

We have

$$
\begin{equation*}
\log _{a} x=\frac{\ln x}{\ln a} \tag{7.9}
\end{equation*}
$$

So

$$
\frac{d}{d x} \log _{a} x=\frac{1}{x \ln a}
$$

and

$$
\frac{d}{d x} \log _{a} u=\frac{1}{u \ln a} \frac{d u}{d x}
$$

7.2. EXPONENTIAL CHANGE AND SEPARABLE DIFFERENTIABLE EQUATIONS5

Logarithmic Differentiation

Find $d y / d x$ if $y=\frac{\left(x^{2}+1\right)^{1 / 3}(x-3)^{1 / 2}}{x+5}$.
Example 7.1.7. (1) $\int_{0}^{2} \frac{2 x}{x^{2}-5} d x=\ln |u|_{-5}^{-1}$.
(2) $\int_{-\pi / 2}^{\pi / 2} \frac{4 \cos \theta}{3+2 \sin \theta} d \theta=\int_{1}^{5} \frac{2}{u} d u$.

7.2 Exponential change and separable differentiable equations

The decay of radioactive material or money earning interests in bank account, temperature between a cup of hot water and room air it sits, etc follows the law of exponential change Suppose $y(t)$ denotes some quantity which changes according to the exponential law: The rate of change of y is proportional to y.

$$
\frac{d y}{d t}=k y
$$

with I.C. Then $y=A e^{k t}$.
Example 7.2.1. Assume a disease is spreading "Entero virus", "A.I" Let y be the number of people infected by disease. Assume we cure people as much as possible. Then $d y / d t$ is proportional to y.(The more people, the more infected, the more cured) Suppose for each year the number is reduced by 20% and 10,000 people infected today, how many years will it take to reduce to 1,000 ?
sol. $y=A e^{k t}, A=10,000$ Since it is reduced by 0.2 each year, we see

$$
0.8=e^{k \cdot 1} \rightarrow k=\ln 0.8<0
$$

So we have $y=10,000 e^{(\ln 0.8) t}$ we want $10,000 e^{(\ln 0.8) t}=1,000$. So $e^{(\ln 0.8) t}=$ $\frac{1}{10} \cdot \ln (0.8) t=\ln (0.1) . t=\frac{\ln (0.1)}{\ln (0.8)} \approx 10.32 \mathrm{yrs}$.

Example 7.2.2 (Half life of a radioactive material). $y_{0} e^{-k t}=\frac{1}{2} y_{0}$. so $t=$ $\ln 2 / k$.

Example 7.2.3 (Carbon 14). It is estimated the half life of Carbon 14 is 5700 yrs. AS wooden artifact was found from an ancient site. This contains carbon 14 about 10% less than the living tree. How old is the site? $k=\ln 2$ Half life is $\ln 2 / 5700 . y=y_{0} e^{-k t}=0.9 y_{0}$ So $e^{-k t}=0.9$ or $t=-5700 \frac{\ln 0.9}{\ln 2}=866 \mathrm{yrs}$.

Example 7.2.4 (Law of Cooling). If H is the temperature of an object and H_{s} the surrounding temperature. Then the rate of change(cooling) is proportional to the temperature difference. Thus

$$
\frac{d H}{d t}=-k\left(H-H_{s}\right) .
$$

Solving

$$
H-H_{s}=\left(H_{0}-H_{s}\right) e^{-k t}
$$

A boiled egg at 98° is put in the sink of 18° to cool down. In 5 min , the egg was 38°. how much longer will it take to reach 20° ?
sol.

$$
H-18=(98-18) e^{-k t}, \quad H=18+80 e^{-k t}
$$

Set $H=38, t=5$. Then $e^{-5 k}=1 / 4$ and

$$
\begin{gathered}
k=-\frac{\ln 1 / 4}{5}=0.2 \ln 4 \approx 0.28 \\
H=18+80 e^{-(0.2 \ln 4) t}
\end{gathered}
$$

Solving $t \approx 13 \mathrm{~min}$.

Separable Differential Equations

A general differential equation is given in the form

$$
\begin{equation*}
\frac{d y}{d x}=f(x, y) \tag{7.10}
\end{equation*}
$$

with certain initial condition such as $y\left(x_{0}\right)=y_{0}$. Such equation is called separable if f is expressed as a product of a function of x and a function of y, i.e,

$$
\frac{d y}{d x}=g(x) H(y)
$$

We rewrite it in the form

$$
\frac{d y}{d x}=\frac{g(x)}{h(y)}
$$

and obtain

$$
\begin{equation*}
\int h(y) d y=\int g(x) d x \tag{7.11}
\end{equation*}
$$

Example 7.2.5. Solve

$$
\begin{equation*}
\frac{d y}{d x}=(1+y) e^{x}, y>-1 \tag{7.12}
\end{equation*}
$$

Separate variables,

$$
\begin{aligned}
\frac{d y}{1+y} & =e^{x} d x \\
\int \frac{d y}{1+y} & =\int e^{x} d x \\
\ln (1+y) & =e^{x}+C
\end{aligned}
$$

7.3 Hyperbolic function

hyperbolic function

Any $f(x)$ can be written as even part and odd part

$$
f(x)=\underbrace{\frac{f(x)+f(-x)}{2}}_{\text {even part }}+\underbrace{\frac{f(x)-f(-x)}{2}}_{\text {odd part }}
$$

Hence e^{x} can be written as

$$
\begin{equation*}
e^{x}=\frac{e^{x}+e^{-x}}{2}+\frac{e^{x}-e^{-x}}{2} \tag{7.13}
\end{equation*}
$$

Definition 7.3.1 (hyperbolic function). ${ }^{1}$
hyperbolic cosine $\cosh x=\frac{e^{x}+e^{-x}}{2}$,
hyperbolic sine $\sinh x=\frac{e^{x}-e^{-x}}{2}$,
hyperbolic tangent $\tanh x=\frac{\sinh x}{\cosh x}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$,
hyperbolic cotangent $\operatorname{coth} x=\frac{1}{\tanh x}=\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}$,
hyperbolic secant $\operatorname{sech} x=\frac{1}{\cosh x}=\frac{2}{e^{x}+e^{-x}}$,
hyperbolic cosecant $\operatorname{csch} x=\frac{1}{\sinh x}=\frac{2}{e^{x}-e^{-x}}$.
Some identities of hyperbolic functions:

Proposition 7.3.2.

(1) $\sinh 2 x=2 \sinh x \cosh x$
(2) $\cosh 2 x=\cosh ^{2} x+\sinh ^{2} x$
(3) $\sinh ^{2} x=\frac{\cosh 2 x-1}{2}$
(4) $\cosh ^{2} x=\frac{\cosh 2 x+1}{2}$
(5) $\cosh ^{2} x-\sinh ^{2} x=1$
(6) $\tanh ^{2} x=1-\operatorname{sech}^{2} x$
(7) $\operatorname{coth}^{2} x=1+\operatorname{csch}^{2} x$

Proposition 7.3.3.

(1) $\frac{d}{d x}(\sinh u)=\cosh u \frac{d u}{d x}$
(2) $\frac{d}{d x}(\cosh u)=\sinh u \frac{d u}{d x}$

[^0]

Figure 7.2: hyperbolic functions
(3) $\frac{d}{d x}(\tanh u)=\operatorname{sech}^{2} u \frac{d u}{d x}$
(4) $\frac{d}{d x}(\operatorname{coth} u)=-\operatorname{csch}^{2} u \frac{d u}{d x}$
(5) $\frac{d}{d x}(\operatorname{sech} u)=-\operatorname{sech} u \tanh u \frac{d u}{d x}$
(6) $\frac{d}{d x}(\operatorname{csch} u)=-\operatorname{csch} u \operatorname{coth} u \frac{d u}{d x}$

Proposition 7.3.4.

(1) $\int \sinh u d u=\cosh u+C$
(2) $\int \cosh u d u=\sinh u+C$
(3) $\int \operatorname{sech}^{2} u d u=\tanh u+C$
(4) $\int \operatorname{csch}^{2} u d u=-\operatorname{coth} u+C$
(5) $\int \operatorname{sech} u \tanh u d u=-\operatorname{sech} u+C$
(6) $\int \operatorname{csch} u \operatorname{coth} u d u=-\operatorname{csch} u+C$

Example 7.3.5. (1) The indefinite integral of $\sinh ^{2} x$ can be computed just as that of $\sin ^{2} x$.

$$
\begin{aligned}
\int_{0}^{1} \sinh ^{2} x d x & =\int_{0}^{1} \frac{\cosh 2 x-1}{2} d x \\
& =\frac{1}{2}\left[\frac{\sinh 2 x}{2}-x\right]_{0}^{1} \\
& =\frac{\sinh 2}{4}-\frac{1}{2}
\end{aligned}
$$

(2) Using the definition of $\sinh x$

$$
\begin{aligned}
\int_{0}^{\ln 2} 4 e^{x} \sinh x d x & =\int_{0}^{\ln 2} 4 e^{x} \frac{e^{x}-e^{-x}}{2} d x=\int_{0}^{\ln 2}\left(2 e^{2 x}-2\right) d x \\
& =\left[e^{2 x}-2 x\right]_{0}^{\ln 2} \\
& =3-2 \ln 2
\end{aligned}
$$

Inverse hyperbolic function

The function $y=\sinh x$ is defined on $(-\infty, \infty)$ having values in $(-\infty, \infty)$. So (inverse hyperbolic sine) $y=\sinh ^{-1} x$ is defined on $(-\infty, \infty)$.

The function $y=\cosh x$ restricted to $x \geq 0$ is $1-1$ to $[1, \infty)$. So inverse $y=\cosh ^{-1}$ inverse hyperbolic cosine is defined on $[1, \infty)$.
$y=\operatorname{sech} x$ restricted to $x \geq 0$ is one-to-one. Hence its inverse $y=\operatorname{sech}^{-1} x$ is defined on $(0,1]$. Meanwhile $y=\tanh x, y=\operatorname{coth} x, y=\operatorname{csch} x$ are one-to-one on $(-\infty, \infty)$. Hence their inverses $y=\tanh ^{-1} x, y=\operatorname{coth}^{-1} x, y=$ $\operatorname{csch}^{-1} x$ are defined accordingly. The graphs are as in figure 7.3

Proposition 7.3.6. Inverse hyperbolic functions can be represented by log functions.
(1) $\sinh ^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right), \quad-\infty<x<\infty$
(2) $\cosh ^{-1} x=\ln \left(x+\sqrt{x^{2}-1}\right), \quad x \geq 1$ (formula at p. 442 of the book is wrong)

Figure 7.3: Inverse hyperbolic functions
(3) $\tanh ^{-1} x=\frac{1}{2} \ln \frac{1+x}{1-x}, \quad|x|<1$
(4) $\operatorname{sech}^{-1} x=\ln \left(\frac{1+\sqrt{1-x^{2}}}{x}\right), \quad 0<x \leq 1$
(5) $\operatorname{csch}^{-1} x=\ln \left(\frac{1}{x}+\frac{\sqrt{1+x^{2}}}{|x|}\right), \quad x \neq 0$
(6) $\operatorname{coth}^{-1} x=\frac{1}{2} \ln \frac{x+1}{x-1}, \quad|x|>1$.

Proof. (1) We prove the formula for $\sinh ^{-1} x$.

$$
\begin{gathered}
y=\sinh x=\frac{e^{x}-e^{-x}}{2}, \\
e^{x}-e^{-x}=2 y \\
e^{2 x}-2 y e^{x}-1=0, \\
e^{x}=y+\sqrt{y^{2}+1} . \quad \text { (Since } y-\sqrt{y^{2}+1} \text { is negative, we drop it.) }
\end{gathered}
$$

Hence $x=\ln \left(y+\sqrt{y^{2}+1}\right)$, changing variable, we have $y=\ln \left(x+\sqrt{x^{2}+1}\right)$.
(4) The formula for $\operatorname{sech}^{-1} x$.

$$
\begin{gathered}
y=\operatorname{sech}^{-1} x \Rightarrow \operatorname{sech} y=x \Rightarrow x=\frac{2}{e^{y}+e^{-y}}, \\
e^{y}+e^{-y}=\frac{2}{x} \\
e^{2 y}-\frac{2}{x} e^{y}+1=0, \\
e^{y}=\frac{1}{x} \pm \sqrt{\frac{1}{x^{2}}-1}=\frac{1 \pm \sqrt{1-x^{2}}}{x} .
\end{gathered}
$$

Hence $y=\ln \left(\frac{1+\sqrt{1-x^{2}}}{x}\right), \quad 0<x \leq 1$.

Proposition 7.3.7.

(1) $\operatorname{sech}^{-1} x=\cosh ^{-1} \frac{1}{x}$
(2) $\operatorname{csch}^{-1} x=\sinh ^{-1} \frac{1}{x}$
(3) $\operatorname{coth}^{-1} x=\tanh ^{-1} \frac{1}{x}$

Derivatives of inverse hyperbolic functions

Proposition 7.3.8.

(1) $\frac{d\left(\sinh ^{-1} u\right)}{d x}=\frac{1}{\sqrt{1+u^{2}}} \frac{d u}{d x}$
(2) $\frac{d\left(\cosh ^{-1} u\right)}{d x}=\frac{1}{\sqrt{u^{2}-1}} \frac{d u}{d x}, \quad u>1$
(3) $\frac{d\left(\tanh ^{-1} u\right)}{d x}=\frac{1}{1-u^{2}} \frac{d u}{d x}, \quad|u|<1$
(4) $\frac{d\left(\operatorname{coth}^{-1} u\right)}{d x}=\frac{1}{1-u^{2}} \frac{d u}{d x}, \quad|u|>1$
(5) $\frac{d\left(\operatorname{sech}^{-1} u\right)}{d x}=\frac{-d u / d x}{u \sqrt{1-u^{2}}}, \quad 0<u<1$
(6) $\frac{d\left(\operatorname{csch}^{-1} u\right)}{d x}=\frac{-d u / d x}{|u| \sqrt{1+u^{2}}}, \quad u \neq 0$

Proof. (5) The formula for $\operatorname{sech}^{-1} x$.

$$
\begin{gathered}
y=\operatorname{sech}^{-1} x \Rightarrow \operatorname{sech} y=x \\
-\operatorname{sech} y \tanh y \frac{d y}{d x}=1 \\
\frac{d y}{d x}=-\frac{1}{\operatorname{sech} y \tanh y} \\
=-\frac{1}{x \sqrt{1-x^{2}}}, \quad 0<x \leq 1
\end{gathered}
$$

Proposition 7.3.9.

(1) $\int \frac{d u}{\sqrt{1+u^{2}}}=\sinh ^{-1} u+C$
(2) $\int \frac{d u}{\sqrt{u^{2}-1}}=\cosh ^{-1} u+C, \quad u>1$
(3) $\int \frac{d u}{1-u^{2}}= \begin{cases}\tanh ^{-1} u+C, & \text { if }|u|<1, \\ \operatorname{coth}^{-1} u+C, & \text { if }|u|>1\end{cases}$
(4) $\int \frac{d u}{u \sqrt{1-u^{2}}}=-\operatorname{sech}^{-1}|u|+C=-\cosh ^{-1}\left(\frac{1}{|u|}\right)+C$
(5) $\int \frac{d u}{u \sqrt{1+u^{2}}}=-\operatorname{csch}^{-1}|u|+C=-\sinh ^{-1}\left(\frac{1}{|u|}\right)+C$

Example 7.3.10.

$$
\begin{aligned}
\int \frac{2 d x}{\sqrt{3+4 x^{2}}} & =\int \frac{d u}{\sqrt{a^{2}+u^{2}}}, \quad(u=2 x, a=\sqrt{3}) \\
& =\sinh ^{-1}\left(\frac{u}{a}\right)+C=\sinh ^{-1}\left(\frac{2 x}{\sqrt{3}}\right)+C
\end{aligned}
$$

7.4 Relative Rate of Growth

Definition 7.4.1. Suppose $f(x), g(x)$ are positive for sufficiently large x.
(1) f grows faster than g as $x \rightarrow \infty$ if

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\infty
$$

(2) $f(x)$ grows at a smaller order than $g(x)$ as $x \rightarrow \infty$ if

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=0
$$

In this case we write $f=o(g)$.
(3) f grows at the same rate as g as $x \rightarrow \infty$ if

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=L, \text { for some postive finite number } L .
$$

In this case we write $f=O(g)$.
Example 7.4.2. (1) e^{x} grows faster than x^{3} as $x \rightarrow \infty$
(2) 3^{x} grows faster than 2^{x} as $x \rightarrow \infty$
(3) x grows faster than $\ln x$ as $x \rightarrow \infty$

Example 7.4.3. (1) $\ln x=o(x)$ as $x \rightarrow \infty$
(2) $x^{2}=o\left(x^{3}\right)$ as $x \rightarrow \infty$
(3) $x+\sin x=O(x)$

[^0]: ${ }^{1}$ hyperbolic functions have many things in common with trig. functions. We can define trig. functions $\sin x$ and $\cos x$ using complex numbers. We define $e^{i \theta}=\cos \theta+i \sin \theta$. Then $e^{-i \theta}=\cos \theta-i \sin \theta$ and hence

 $$
 \cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}, \quad \sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}
 $$

