
Chapter 7

Integrals and transcendental

function

In chapter 2 we introduced natural logarithmic function as the inverse of the

exponential function ex, where the number e was chosen to satisfy certain slope

condition. In this chapter, we introduce an alternative theory for exponential

and log. function.

7.1 Logarithm defined as integral

Definition 7.1.1.

lnx =

∫ x

1

1

t
dt, (x > 0)

Definition 7.1.2. For x > 0, the (natural) logarithmic function is defined by

lnx =

∫ x

1

1

t
dt.

Thus by fundamental theorem,

d

dx
lnx =

1

x
. (7.1)

If u(x) is any positive differentiable function,

d

dx
lnu(x) =

1

u

du

dx
. (7.2)

Properties:

1
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e

ln x =
∫ x

1

1

t
dt

y = ln x

y = 1

x

y = ex

Figure 7.1: Graph of lnx and ex

(1) ln bx = ln b+ lnx

(2) ln b
x = ln b− lnx

(3) ln 1
x = − lnx

(4) lnxr = r lnx (For rational number r).

Exponential function

Definition 7.1.3. Define the (natural) exponential function exp(x) := ln−1 x

as the inverse function of lnx. Thus

y = exp(x) ⇔ x = ln y.

Thus

exp(lnx) = x, (x > 0) (7.3)

ln(exp(x)) = x. (7.4)

The number e is defined as

e = exp(1) = ln−1(1) = 2.718281828 · · · . (7.5)

The function e
x

We can raise the number e to a rational power such as:

e2 = e · e, e1/2 =
√
e, ...
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For rational number x, the value ex is well defined. We see

ln ex = x ln e = x. (7.6)

The rational power ex is the same as the exp(x). Thus it is natural to define

Definition 7.1.4. For all real number x, we let

ex = exp(x) . (7.7)

The exponential function exp(x) satisfies the usual rule for exponentiation

such as ea+b = eaeb.

Exponential function a
x

Since a = eln a for any positive number a, we can define ax by

ax = elnax

= ex ln a

= e(ln a)x.

Definition 7.1.5. If a is a positive number and x is any number, we define

ax = ex ln a. (7.8)

Since ln ex = x for all real x, we have

lnxn = ln(en lnx) = n lnx, x > 0.

One can also use the definition of lnx =
∫ x
1 dt to prove it.

Example 7.1.6. [Power rule] The derivative of xn for any number n:

d

dx
xn =

d

dx
en lnx (x > 0)

= en lnx · d

dx
(n lnx)

= xn · n
x

= nxn−1.
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Derivative of ax

By definition, ax = ex lna. Thus

d

dx
ax =

d

dx
ex lna = ln aex lna = ax ln a.

d

dx
au = au ln a

du

dx

General logarithmic function loga x

y = loga x is defined as the inverse function of y = ax(a > 0, a 6= 1). Thus

loga x = y ⇔ ay = x

loga(a
x) = x, for all x, and a(loga x) = x, (x > 0)

log10 x is written as log x and called common logarithmic function

Properties

(1) Product rule: loga xy = loga x+ loga y.

(2) Quotient rule: loga
x
y = loga x− loga y.

(3) Product rule: loga
1
y = − loga y.

(4) Power rule: loga x
y = y loga x.

Inverse properties

(1) Base a: aloga x = x, loga(a
x) = x(a > 0, a 6= 1, x > 0).

(2) Base e: elnx = x, ln(ex) = x(x > 0).

Derivative of loga x

We have

loga x =
lnx

ln a
. (7.9)

So
d

dx
loga x =

1

x ln a

and
d

dx
loga u =

1

u ln a

du

dx
.
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Logarithmic Differentiation

Find dy/dx if y = (x2+1)1/3(x−3)1/2

x+5 .

Example 7.1.7. (1)

∫ 2

0

2x

x2 − 5
dx = ln |u|−1

−5.

(2)

∫ π/2

−π/2

4 cos θ

3 + 2 sin θ
dθ =

∫ 5

1

2

u
du.

7.2 Exponential change and separable differentiable

equations

The decay of radioactive material or money earning interests in bank account,

temperature between a cup of hot water and room air it sits, etc follows the

law of exponential change Suppose y(t) denotes some quantity which changes

according to the exponential law: The rate of change of y is proportional to

y.
dy

dt
= ky

with I.C. Then y = Aekt.

Example 7.2.1. Assume a disease is spreading ”Entero virus”, ”A.I” Let y

be the number of people infected by disease. Assume we cure people as much

as possible. Then dy/dt is proportional to y.(The more people, the more

infected, the more cured) Suppose for each year the number is reduced by

20% and 10,000 people infected today, how many years will it take to reduce

to 1, 000?

sol. y = Aekt, A = 10, 000 Since it is reduced by 0.2 each year, we see

0.8 = ek·1 → k = ln 0.8 < 0

So we have y = 10, 000e(ln 0.8)t we want 10, 000e(ln 0.8)t = 1, 000. So e(ln 0.8)t =
1
10 . ln(0.8)t = ln(0.1). t = ln(0.1)

ln(0.8) ≈ 10.32 yrs.

Example 7.2.2 (Half life of a radioactive material). y0e
−kt = 1

2y0. so t =

ln 2/k.
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Example 7.2.3 (Carbon 14). It is estimated the half life of Carbon 14 is 5700

yrs. AS wooden artifact was found from an ancient site. This contains carbon

14 about 10% less than the living tree. How old is the site? k = ln 2 Half life

is ln 2/5700. y = y0e
−kt = 0.9y0 So e−kt = 0.9 or t = −5700 ln 0.9

ln 2 = 866 yrs.

Example 7.2.4 (Law of Cooling). IfH is the temperature of an object andHs

the surrounding temperature. Then the rate of change(cooling) is proportional

to the temperature difference. Thus

dH

dt
= −k(H −Hs).

Solving

H −Hs = (H0 −Hs)e
−kt.

A boiled egg at 98o is put in the sink of 18o to cool down. In 5 min, the egg

was 38o. how much longer will it take to reach 20o?

sol.

H − 18 = (98− 18)e−kt, H = 18 + 80e−kt.

Set H = 38, t = 5. Then e−5k = 1/4 and

k = − ln 1/4

5
= 0.2 ln 4 ≈ 0.28.

H = 18 + 80e−(0.2 ln 4)t.

Solving t ≈ 13 min.

Separable Differential Equations

A general differential equation is given in the form

dy

dx
= f(x, y) (7.10)

with certain initial condition such as y(x0) = y0. Such equation is called

separable if f is expressed as a product of a function of x and a function of

y, i.e,
dy

dx
= g(x)H(y).
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We rewrite it in the form

dy

dx
=

g(x)

h(y)

and obtain ∫

h(y) dy =

∫

g(x) dx. (7.11)

Example 7.2.5. Solve

dy

dx
= (1 + y)ex, y > −1. (7.12)

Separate variables,

dy

1 + y
= exdx

∫
dy

1 + y
=

∫

exdx

ln(1 + y) = ex + C.

7.3 Hyperbolic function

hyperbolic function

Any f(x) can be written as even part and odd part

f(x) =
f(x) + f(−x)

2
︸ ︷︷ ︸

even part

+
f(x)− f(−x)

2
︸ ︷︷ ︸

odd part

.

Hence ex can be written as

ex =
ex + e−x

2
+

ex − e−x

2
(7.13)
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Definition 7.3.1 (hyperbolic function). 1

hyperbolic cosine coshx =
ex + e−x

2
,

hyperbolic sine sinhx =
ex − e−x

2
,

hyperbolic tangent tanhx =
sinhx

coshx
=

ex − e−x

ex + e−x
,

hyperbolic cotangent coth x =
1

tanhx
=

ex + e−x

ex − e−x
,

hyperbolic secant sech x =
1

coshx
=

2

ex + e−x
,

hyperbolic cosecant csch x =
1

sinhx
=

2

ex − e−x
.

Some identities of hyperbolic functions:

Proposition 7.3.2.

(1) sinh 2x = 2 sinhx cosh x

(2) cosh 2x = cosh2 x+ sinh2 x

(3) sinh2 x =
cosh 2x− 1

2

(4) cosh2 x =
cosh 2x+ 1

2

(5) cosh2 x− sinh2 x = 1

(6) tanh2 x = 1− sech2 x

(7) coth2 x = 1 + csch2 x

Proposition 7.3.3.

(1)
d

dx
(sinhu) = coshu

du

dx

(2)
d

dx
(cosh u) = sinhu

du

dx
1hyperbolic functions have many things in common with trig. functions. We can define

trig. functions sin x and cos x using complex numbers. We define eiθ = cos θ + i sin θ. Then

e−iθ = cos θ − i sin θ and hence

cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ − e−iθ

2i
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1

−1

1−1

x

y

0

y = cosh x

y = sinhx

y = ex

2
y = e−x

2

y = − e−x

2

x

y

0

y = 1

y = −1

y = coth x

y = coth x

y = tanh x

x

y

0

y = 1

y = coshx

y = sechx
x

y

0

y = csch x

y = sinhx

Figure 7.2: hyperbolic functions

(3)
d

dx
(tanh u) = sech2 u

du

dx

(4)
d

dx
(coth u) = − csch2 u

du

dx

(5)
d

dx
(sech u) = − sech u tanhu

du

dx

(6)
d

dx
(csch u) = − csch u coth u

du

dx

Proposition 7.3.4.

(1)

∫

sinhu du = cosh u+ C

(2)

∫

cosh u du = sinhu+ C

(3)

∫

sech2 u du = tanhu+C

(4)

∫

csch2 u du = − coth u+ C
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(5)

∫

sech u tanhu du = − sech u+ C

(6)

∫

csch u coth udu = − csch u+ C

Example 7.3.5. (1) The indefinite integral of sinh2 x can be computed just

as that of sin2 x.

∫ 1

0
sinh2 x dx =

∫ 1

0

cosh 2x− 1

2
dx

=
1

2

[
sinh 2x

2
− x

]1

0

=
sinh 2

4
− 1

2
.

(2) Using the definition of sinhx

∫ ln 2

0
4ex sinhx dx =

∫ ln 2

0
4ex

ex − e−x

2
dx =

∫ ln 2

0
(2e2x − 2) dx

=
[
e2x − 2x

]ln 2

0

= 3− 2 ln 2.

Inverse hyperbolic function

The function y = sinhx is defined on (−∞,∞) having values in (−∞,∞). So

(inverse hyperbolic sine ) y = sinh−1 x is defined on (−∞, ∞).

The function y = coshx restricted to x ≥ 0 is 1-1 to [1,∞). So inverse

y = cosh−1 inverse hyperbolic cosine is defined on [1,∞).

y = sech x restricted to x ≥ 0 is one-to-one. Hence its inverse y = sech−1 x

is defined on (0, 1]. Meanwhile y = tanhx, y = coth x, y = csch x are one-

to-one on (−∞,∞). Hence their inverses y = tanh−1 x, y = coth−1 x, y =

csch−1 x are defined accordingly. The graphs are as in figure 7.3

Proposition 7.3.6. Inverse hyperbolic functions can be represented by log

functions.

(1) sinh−1 x = ln
(
x+

√

x2 + 1
)
, −∞ < x < ∞

(2) cosh−1 x = ln
(
x +

√

x2 − 1
)
, x ≥ 1 (formula at p. 442 of the book is

wrong)
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x

y y = sinh x

y = sinh−1 x

x

y

y = cosh x

y = cosh−1 x

y = x

x

y

y = sech−1 x

y = sech x, x ≥ 0

y = x

x

y

y = cschx

y = csch−1 x

y = x

x

y
y = tanh−1 x

y = tanhx

y = x

x

y

y = cothx

y = coth−1 x

y = x

Figure 7.3: Inverse hyperbolic functions

(3) tanh−1 x =
1

2
ln

1 + x

1− x
, |x| < 1

(4) sech−1 x = ln

(
1 +

√
1− x2

x

)

, 0 < x ≤ 1

(5) csch−1 x = ln

(
1

x
+

√
1 + x2

|x|

)

, x 6= 0

(6) coth−1 x =
1

2
ln

x+ 1

x− 1
, |x| > 1.

Proof. (1) We prove the formula for sinh−1 x.

y = sinhx =
ex − e−x

2
,

ex − e−x = 2y,

e2x − 2yex − 1 = 0,

ex = y +
√

y2 + 1. (Since y −
√

y2 + 1 is negative, we drop it.)
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Hence x = ln(y +
√

y2 + 1), changing variable, we have y = ln(x+
√
x2 + 1).

(4) The formula for sech−1 x.

y = sech−1 x ⇒ sech y = x ⇒ x =
2

ey + e−y
,

ey + e−y =
2

x
,

e2y − 2

x
ey + 1 = 0,

ey =
1

x
±

√

1

x2
− 1 =

1±
√
1− x2

x
.

Hence y = ln

(

1+
√
1−x2

x

)

, 0 < x ≤ 1.

Proposition 7.3.7.

(1) sech−1 x = cosh−1 1

x

(2) csch−1 x = sinh−1 1

x

(3) coth−1 x = tanh−1 1

x

Derivatives of inverse hyperbolic functions

Proposition 7.3.8.

(1)
d(sinh−1 u)

dx
=

1√
1 + u2

du

dx

(2)
d(cosh−1 u)

dx
=

1√
u2 − 1

du

dx
, u > 1

(3)
d(tanh−1 u)

dx
=

1

1− u2
du

dx
, |u| < 1

(4)
d(coth−1 u)

dx
=

1

1− u2
du

dx
, |u| > 1

(5)
d(sech−1 u)

dx
=

−du/dx

u
√
1− u2

, 0 < u < 1

(6)
d(csch−1 u)

dx
=

−du/dx

|u|
√
1 + u2

, u 6= 0
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Proof. (5) The formula for sech−1 x.

y = sech−1 x ⇒ sech y = x,

− sech y tanh y
dy

dx
= 1,

dy

dx
= − 1

sech y tanh y
,

= − 1

x
√
1− x2

, 0 < x ≤ 1.

Proposition 7.3.9.

(1)

∫
du√
1 + u2

= sinh−1 u+ C

(2)

∫
du√
u2 − 1

= cosh−1 u+ C, u > 1

(3)

∫
du

1− u2
=







tanh−1 u+ C, if |u| < 1,

coth−1 u+ C, if |u| > 1

(4)

∫
du

u
√
1− u2

= − sech−1 |u|+ C = − cosh−1

(
1

|u|

)

+C

(5)

∫
du

u
√
1 + u2

= − csch−1 |u|+ C = − sinh−1

(
1

|u|

)

+ C

Example 7.3.10.

∫
2 dx√
3 + 4x2

=

∫
du√

a2 + u2
, (u = 2x, a =

√
3)

= sinh−1(
u

a
) + C = sinh−1(

2x√
3
) + C

7.4 Relative Rate of Growth

Definition 7.4.1. Suppose f(x), g(x) are positive for sufficiently large x.

(1) f grows faster than g as x → ∞ if

lim
x→∞

f(x)

g(x)
= ∞
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(2) f(x) grows at a smaller order than g(x) as x → ∞ if

lim
x→∞

f(x)

g(x)
= 0.

In this case we write f = o(g).

(3) f grows at the same rate as g as x → ∞ if

lim
x→∞

f(x)

g(x)
= L, for some postive finite number L.

In this case we write f = O(g).

Example 7.4.2. (1) ex grows faster than x3 as x → ∞

(2) 3x grows faster than 2x as x → ∞

(3) x grows faster than lnx as x → ∞

Example 7.4.3. (1) lnx = o(x) as x → ∞

(2) x2 = o(x3) as x → ∞

(3) x+ sinx = O(x)


