Chapter 3

Differentiation

3.1 Tangents and Derivatives at a point

Finding tangent to the graph of a function

Definition 3.1.1. The slope of the curve y = f(z) at a point P = (xq, f(x0))

is the number
lim f(zo+h) — f(wo)
h—0 h

provided it exists. The tangent line to the curve at the point P is the line
through P with this slope.

The rate of change of y = f(x) between P(xq,yo) and Q(x1,y1) is

J(w1) — f(=0)

Tr1 — X

Msec =

In the limit, it is the slope of tangent line.

Hence the slope of tangent line at P is

Mygn, = lim M — lim f(.CCO + h) — f(x())

T1—T0 T1 — o h—0 h

Rate of change:Derivative at a point

Definition 3.1.2. The derivative of a function f(x) at a point is given by

h—0 h

exists, it is called derivative at x = xg.
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Tangent

Xo X1

Figure 3.1: Tangent and secant

Example 3.1.3. Interpretations:
(1) The slope of y = f(x) at xg
(2) The slope of tangent to the curve y = f(x) at g
(3) The rate of change of f with respect to x at x

4) The derivative f'(zg) at the point.
(4) p

3.2 Derivative as a function

Definition 3.2.1. If the derivative of a function f(z) at a

Fe) — tim LT =S @)

h—0 h

exists, it is called the derivative (function) of f(x). (Treated as a function) f
is said to be differentiable at x. If f is differentiable at all points of domain
we say f is differentiable. We also use the notation df /dx, (d/dx)f for f’.

Alternative formula for the derivative is

Try some examples in the text.
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One sided derivative

Definition 3.2.2. Suppose f is defined on [a,b]. Then at each end point the

one sided derivative is defined by

fla+h) - f(a)

f(a™) = lim

h—0+ h ’
1y o SO+ —fO) . f(b) = f(b—h)
S = i h =, h '

Example 3.2.3. Using definition, find (d/dz)z3.
Set f(x) = 3

f(z+h) = f(x) = h{(z+h)? +z(z+h) + 27}

lim ©(f(z + h) — £(2)} = lim (e + B)? + (o + h) + 2%} = 32

So f'(z) = 322

m
Example 3.2.4. The one sided derivatives of f(z) = |z| at x = 0 are f'(07)
= —1 and f/(0") = 1. Hence f is not differentiable at x = 0. (Figure 3.2)

y = |z|

Figure 3.2: y = ||

When does a function do not have derivative at a point?

Example 3.2.5. The function defined by

Fa) = {xsin(l/m), x#0
0, z=0
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Figure 3.3: Cases with no derivative

is conti at x = 0 but not differentiable.
Since —|z| < f(z) < and limg_0 |z| = lim,—,o = 0 by theorem f is
conti. at x = 0. But the limit

lim 2 dnsin L —0b = lim sin &
nsoh R a0 h

does not exist, f is not differentiable x = 0.

Differentiable functions are continuous

Theorem 3.2.6. If f is differentiable at x = a, then f is conti. at x = a.

Proof. By definition of derivative we have

fim (F(a 1)~ @} = (Jim 3 {7+ = fG@)}) - (Jimn) =o.

h—0

Hence f(x) is conti. at z = a.

Intermediate Value property of derivatives(Darboux’s theorem)

Theorem 3.2.7. If a,b are any two points in an interval where f is differen-
tiable, then f' takes any value between f'(a) and f'(b).

3.3 Differentiation Rules

Proposition 3.3.1. Suppose f, g are differentiable functions. Then

(1) For any constant C, % =0 for any constant C.
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d

(2) When n is positive integer , 4=x™ = na""!.

(8) For any constant C, d(dcxu) =

(4) Lutv)=9 4 d

d
(5) G2 = v+ u.

du dv

d v —u g

(6) %(%): dv2 .

(7) For any real number n, %x” =na" L
Proof. (2) Use

= (=) (P a2 2

() = fim h
L u(z + h) —u(z) v(x + h) —ov(z)
= }111;%{ ; v(z + h) +u(z) A }

Try to prove the product rule and draw Figure for product rule.

Av w(x)Av

Figure 3.4: product rule

Higher order derivative
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(n) _ dy(n—l) Ay

y dx - dx™

3.4 The Derivative as a Rate of change

Definition 3.4.1. The instantaneous rate of change of f at x is

h—0 h

provided the limit exists.

How to describe a moving object?

How fast 7 etc. First we assume an object is moving along a line(coordinate

line) and its position is given as a function of time:
s= (0
Then the displacement of the object over the time interval ¢ to ¢ + At is
As = f(t+ At) — f(t)

and define the average velocity of the object over that time interval is

_ displacement _ As _ f(t+At) — f(¢)
~ elapsed time At At

Vaw

Definition 3.4.2. Velocity(instantaneous velocity) is the derivative of a po-
sition function w.r.t time. If a moving object position is given by s = f(t),

then the velocity at ¢ is

provided the limit exists.

Definition 3.4.3. (Speed) is the absolute value of the velocity, i.e, Speed

ds

Speed = |v(t)| = =
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Acceleration is
a(t) — d_’l) — @
Cdt A2

Third derivative is called a Jerk

3.5 Derivative of Trig functions

Use definition to find the derivative of f(x) = sinz.

sin(z + h) —sinx

= lim
h—0 h
. sinzcosh+coszsinh —sinx
= lim
h—0 h
. . cosh—1 . sinh
=ginz lim ———— + cosx lim ——
—0 h h—0 h

=sinxz-0+4+cosz -1 =cosz.

Hence % sin z = cos x. Similarly, we have

—cosx = —sinzx

dzx

Other trigonometric functions are defined by the following relation and their
derivatives can be found using differentiation rules:
sin x 1 1 coS T

tanx = , secx = , Cscx =-——, cotx = —
cos T cos T sinx sin x

The derivative of tan x is

(sinz) cosx — (cosx) sinx 1 9
—tanz = 5 = 5 =sec’ T
dz cos? ¥ cos?

Summarizing, we have

d
Proposition 3.5.1. (1) I sinz = cosz
x

d
(2) — cosx = —sinx

dzx

d
(3) @tan:c =sec’x

d
(4) 7, SecT = sec z tan x
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Figure 3.5: Chain rule

d
(5) e —cscxcot x

d
(6) %cotx = —csc?x

3.6 Chain rule

Chain Rule

Theorem 3.6.1. (1) If f(u) is differentiable at u = g(x) and g is differ-
entiable at x, then the composite function f o g is differentiable at x

and

(fog)(@) = f(g(@))d (@)
Iy = f(u), u=g(z) then

dy
dzx

_
x_du

d_u
dx

u=g(z) x

Proof. (Intuitive) Let Au = g(x+Ax)—g(x) be the change of u corresponding
to the change of Az. (We assume g(z + Ax) # g(x)) We might consider

Ay Ay Au
Ar Aung A7)
lim % = lim %%
Az—0 Ax Az—0 Au Ax
Ay . Au
T Aub0 Au Arso Az
_dydu

" dudz
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Repeated Use

Example 3.6.2. y = cos(1 + z4)°

Given function is the composite of y = cosu and u = (1 + 2*)>. Hence

dy . du
— = —sinu—.
du dz
On the other hand, since (1 + z*)® is a composite function of u = v® and
v =1+ 2%, use Chain rule again
du 4 3
= ot 4ab,
T vt - dx
Hence p
W sin(1 4+ 2*)% - 20(1 + 21)*23. O
dz
=

Outside-Inside Rule

Example 3.6.3. The derivative of |z| can be computed as follows: Notice

that |z| = V2. Hence
d 1
&2 L9 = |i

dx 2/z2 x|

Example 3.6.4. Find slope of tangent line to y = (1 —22)3 at x = 1.

, x#0.

Derivatives of Power function

Find derivative of f(z) = u"(x) for any real r and x > 0.

Theorem 3.6.5. Since u" = e" v
d . dnu  Tdu jdu
drt T e T wdr Y

3.7 Implicit differentiation

There are situation where some relation between x and y defines some graph,
but not graph of any function. Suppose z, y satisfy y° + sinzy = 23y. This

relation defines a function implicitly.
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Implicitly defined function

Assuming y is a differentiable function of z satisfying some relation like F'(z,y) =
0, we take derivative of F(z,y) = 0 w.r.t x using the chain rule. Then solv-
ing for dy/dx we find the derivative. This procedure is called an Implicit

differentiation.

d

d . d
. (y5) + @(sm xy) = . (:ng)
d d d
5y4£ + (cos zy) <y + x%) = 322y + x3£.

Hence
dy 32y — ycos xy

dr  byt4 zcosxy — x3

Example 3.7.1. (1) 2% +y? = 3zy. Find dy/dz and d?y/dx>.
(2) Find equation of tangent line to 23 + y3 = 3xy at (3/2,3/2).

(1) Taking derivative we have

d
(3% — 3@% = 3y — 3a2.

By chain rule

dy dy 2 Py L dy
<6ydx 3> T + (3y 3:c)d$2 = 3d:c 6x.
Hence
dy _y—a’
der Y2 —x
2
dy  —2((y-2°)/(y* —2) y+2y—2*)/(y* —x) — 2
de? y2 —x '
(2) At (3/2,3/2), dy/dx = —1. The tangent line is
3 3
y-—(m—§>+§——x+3 O
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3.8 Inverse functions and Their Derivatives

Definition 3.8.1. A function f is one-to-one on a domain D if f(z1) # f(x2)

whenever 1 # xo.

Definition 3.8.2. Suppose a function f is one-to-one on a domain D with

range R. The inverse function f~! exists and is defined by
1) = aif f(a) =b.

The domain of f~! is R and range is D.

(ftof)(x)=2z, z€D

(fof Ny =y, yeR

Derivatives of inverse function

Theorem 3.8.3. Suppose [ is differentiable in I. If f'(x) is never zero, then
1 emists, differentiable. Furthermore for a € I, f(a) =b,

Set y = f(z). Then the inverse function is x = f~'(y), and its derivative is

dzx 1

or - ael
dy y=f(a) dy/d:da::a

Proof. Differentiate x = (f~' o f)(x) = f~'(f(x)) = f~(y) w.r.t = using the
Chain rule, we have

L= (/") (f@)f' ().
Setting x = a, we see 1 = (f~1)'(f(a))f'(a). Thus
(f7(b) =1/f'(a).

Usually, we use the notation y = f~!(z). The graph of y = f(x) and that

of y = f~!(x) are symmetric w.r.t the line y = z.

Example 3.8.4. (1) f(z) = 2" + 823 + 42 — 2. Find (f~1)(-2).
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Figure 3.6: Slope of inverse function

[z
f71

Inx = flz %dt

Figure 3.7: Graph of inverse functions, Graph of Inz and e*

(2) f(z) =sin"!z. Find f'.

(1) Since f’ = 725 4 2422 +4 > 4 inverse f~! exists. Since f(0) = —2

we have

PN
(fT)(=2)=(f )(f(o))—f,(o) T
(2) y =sin" 1z, x = siny. Hence
d 1 o dy _ 1 N 1
P dr/dy — (d/dy)siny
1 1 1

cosy \/1—sin2y V1=
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Derivative of the natural Logarithmic function
f(x) = e®. The derivative of its inverse function f~!(z) = Inz,z > 0 is

@) = e

Alterative way: Let y = Inx. Implicit differentiation w.r.t. z gives

e = 1z
dy
v _
€ dx
dy B 1 B
de  e¥ z

If u(z) is any positive differentiable function,

1du
—1 =—— . 1
T nu(x) udx’u>0 (3.1)
When 2z < 0 one can use u = bz, (b = —1) and the chain rule to derive
d 1 d
-1 - — .=
dx n(bz) bx dx(bx)
1 d
= _ . — b
bz dac( 7)
1
o
Thus we have
=L 220 (3.2)
dx 2 ) '

Example 3.8.5. The point where the line through of origin y = mx is tangent
to the graph of y = Inx.

We must have m = % and mz = Inz. Hence we get m = é and z = e.
=

The number e is sometimes defined as

e =exp(l) = In"}(1) = 2.718281828 - - - . (3.3)
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Derivative of ¢” and log, x

By definition, a® = ¢*®. Thus

d T _ d zlna zlna _ .z
T —de =Inae a’lna
L L
d:ca =aq nad

y = log, x is defined as the inverse function of y = a*(a > 0,a # 1). Thus
log,z=y<d ==z

log,(a®) = , for all , and a(°%«®) =z (z > 0).

log;y x is written as logz and called common logarithmic function.

Derivative of log, x

We have |
n
1 = —. 4
Oga €T ln a (3 )
Proof.
aloga) — .
Inal®8®) — Ing
log,z-Ina = Inx
Inx
log,z = bha
So
—log, = = 1
dx a® = zlna
and
1 1 du
—log, u = —.
dx Ba ulna dx

Logarithmic Differentiation

Find dy/da if y = CH 2@

Derivatives of Power function

We prove the following theorem which was stated earlier.
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Theorem 3.8.6. For any real r, %uf = u“lg—’;.
Proof. Since u" = "™ we have
d dlnu 1du du
r r T r—1
—u =ru =ur'—— =ru"—.
dx dx u dx dx

Example 3.8.7. Differentiate f(z) = 2% 2 >0
Write f(z) = 2* = erlnz g,

d

f’(x) _ %(eaxlnz)

(eﬂnz)%(x In )

1
= (g 4z -)
x

= z°(lnz+1).

O

Example 3.8.8. Sketch the graph of 2/%. To do this, we first investigate the
behavior of the function as x — 07 and z — co. To study the limit, we take

the logarithm:
Inz

lim Inz"/* = lim — =0
T—00 r—00 I
Hence 1
nw
lim /% = exp(lim —) =€’ =1
T— 00 Tr—r00 xr
Meanwhile |
lim InzY% = lim 2T —00
z—0t rz—0t T
Hence |
lim 2'/% = exp( lim M) =e =0
z—0t rz—0t X

To see the local extrema, take the derivative and find the critical point. f'(z) =
(1 —Inz)/2* = 0 for z = e. By checking the sign of f’(z) near z = e, we
conclude x = e is a point of local maximum.

The number ¢ as a limit

Theorem 3.8.9. The number e satisfies

e = lim (1 + z)"/°.

z—0



16 CHAPTER 3. DIFFERENTIATION

local max

Figure 3.8: Graph of y = z!/*

Proof. If f(z) =Inz. Then f'(1) = 1|,—1 = 1. By definition of derivative

Tz

| = fA)= tm ROFD I 42

z—0+ X z—0t

al

= In[lim (14 2)

z—0t

Now exponentiate.

3.9 Inverse trig functions

Y )
y=sin"lz 4 y=cos 'z
e &
1 1 T 3
1 1 \
_g, L x
I~

Figure 3.9: y =sin"'z Figure 3.10: y = cos™ 'z
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Inverse sine

Restrict the function sinx on [—7n/2,7/2]. Then sinz: [-7/2,7/2] — [—1,1]

is one-to - one function. So the inverse exists. Define
sin "tz [-1,1] — [-7/2,7/2].

whenever x = siny for € [~7/2,7/2]. Graph is as in figure 3.9. sin~!z is

sometimes written as arcsin x.

Inverse cosine

Restrict cosz to [0, 7], we obtain cos™! z as

cos ta: [~1,1] — [0,7].

If cosz = y for any x € [0, 7] then cos™!y = z is defined and figure is in 3.10

written as cos~!x or arccos x.

Example 3.9.1. (1) sin~*(1/2) = 7/6
(2) sin™t1 =72
Example 3.9.2. (1) cos™(1/2) =7/3

(2) cos™t0=m/2
1
ay L\

x>0 z <0

1

Figure 3.11: § = cos™ 'z

Example 3.9.3.

1

sin Ttz 4coste ==, coslz4cosH(—z)=7

bo | 3
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Figure 3.12: sin~!'x

Inverse of tanz

The function tan x is one to one on (—/2,7/2), thus it has an inverse tan~! x
tan lz: R — (—7/2,7/2)

for any # € R. Thus tanz = « iff tan™! o = 2. See figure 3.13. It is written

1

as tan™ * x or arctanx.

tan~!1=m/4 tan"10 = 0.

y
y=m/2
Y= tan™'
1 1 1 1 1 T
-3 -2 = 1 2 3
y=-m/2

Figure 3.13: y = tan~ ! 2

Example 3.9.4. Find the derivative of tan™! .
From y = f(z) = tanz, we see by Theorem 3.8.3

1
f'(z)
1
1+ tan? x

) =

1+ 92

Thus (f~1)(z) = ﬁ
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Example 3.9.5. Find derivatives
(1) y=sintz, (jz| <1).
(2) y=seclz, (Jz| >1).

(3) Let y = sec™! 2. Then x = secy. Taking derivative w.r.t =, we get
1 =secytany(dy/dz). Thus

dy 1
dr secytany’

We need to change it to expression in z.
For z > 1, tany = Va2 — 1. Hence, we have

dy 1
e S Y
dr  zvz22?2 -1 v
For x < —1, use (x — —x) to get
d 1
__ 1
dr —xva2? -1
Hence
sec” " x |z| > 1.

dz C|zVa2 =1

Other inverse trig functions

Inverses of cscx, secx, cot
csclo R —(=1,1) = [-7/2,7/2] — {0}
seclz:R—(-1,1) = [0,7] — {x/2}

cot7 1z : R — (0,7). (Note that the range is different from that of tan~—!x)

Proposition 3.9.6. The derivatives of inverse trig. functions :

d 1
1) —sinle = ———
()dxsm X m
d 1

V1—22
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Yy
Yy =
y:csc_lx
m l l l
\ -3 = -1
| | | | | | T
-3 -2 -1 1 2 3
Yy
A T
y=sec 'z \//
| | | | |
-3 —2 -1 1\&3
B -
Figure 3.14:
d 1 1
(3) d—tan T= T
d 1 1
—csc T = — sz > 1
(4) — o
d 1
5) —sec lz , el >1
%) dx lz|va? —1 o

d
—cot7lg = — .
(6) dz " 1+ a2
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Proposition 3.9.7. The following relations hold.

costz = (m/2) —sinlz
cot™lz = (n/2) —tan"lx
cscle = (7/2) —sec lz
cot 7tz = tan!(1/x)
sec lz = cos7!(1/x)
cscle = sin~(1/x)

Example 3.9.8. (1) Find sin(cos~!(3/5))
(2) Simplify tan(sin~! a)
(1) Let 6 = cos™%(3/5). Then cosf = 3/5 and 0 < 6 < 7. Hence

9 4
infg=14/1-——=-—.
sin 55 = E

(2) Let @ =sin~!a. Then sinf = a and —7/2 < 0 < /2.
cosf = /1 —a?.

Hence

tan @ = sinf/cosf = a/\/1 — a?.

Integral of tan x, cot x,secx and cscx

sinzx

/ tanzdr = / dx
COS T

du

u

= —lnju/+C

= —In|cosz|+C
1
n
| cos x|
= In|secz|+ C.

=1
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For sec x we need special trick:

t
/secxdw = /secxwdx

(secx + tanx)

/ (sec? x + sec x tan ) P
= x
secx + tanx

du
u
= Infu|+C

= In|secx +tanz|+ C.

For cscxz we do similarly. Thus we have

[secxdx = In|secz + tanz|+ C
[escxdr = —In|cscx + cotz|+ C.

3.10 Related Rates

Skip this section.

3.11 Linearization and differential

Definition 3.11.1. Given a differentiable function f, the linear function

L(z) = f(a) + f'(a)(z — a)
is called the linearization of f at a.
Example 3.11.2. (1) Find the linearization of cosz at /2.

(2) Find an approx value of v/1.003 using the linearization of /1 + x at

z=0.
(3) Find the linearization of {’/ﬁ at t =0
(4) Find an approx value of v/4.8

(5) Find the linearization of cosx at 7/2. Ans —z + 7/2.

(6) Find the linearization of (1 +z)*. Ans 1 + k.
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Differential

Definition 3.11.3. Let y = f(x) be differentiable. We can treat dz(differential)
like an independent variable. In this point of view, the quantity dy defined by

is called the differential of f.

The geometric meaning of differential is given in Figure 3.15. We observe
Ay = fla+dr) - f(a), fla+dz)=fla)+ Ay~ f(a)+dy.

We see that dy is precisely the change of the tangent line as x changes by an
amount of dr = Az. In other words, dy is an approximation of exact change
Ay.

Ay
"(a)dx

—/ﬂ::Ami

|
T T+ Ax

Figure 3.15: Differential dy = f’(a)dz and Ay

Example 3.11.4. Find differential of
(1) y=2% —sinz
(2) y =sinu(x)
(3) tan(3z)

(4) d(tiz)-
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Estimating with differentials

Ar

AA

Example 3.11.5.

Radius of a circle is enlarged from 10 to 10.1. Use dA to estimate the

increase in area. Compare with exact increase. A = 772,

dA = 2rrdr = 27(10)(0.1) = 2rm?.

Actual increase is A(10.1) — A(10) = 27((10.1)?> — 100) = 2.017.

Error in differential approximation

We estimate the change in y in more detail.

Theorem 3.11.6. We have
Af = f'(a)Ax + eAx,

where € = 0 as Az — 0.

Proof.

approximation error = Af —df
— Af- fl(a)Ae
= fla+Az) - f(a) - f'(a)Az

- (farbn S ) a

= eAx.
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flat+Az)—f(a)

Ax

Since f is differentiable, we know € := ( - f (a)) approaches 0 as

Ax approaches 0. Thus

true estimated
change change error

Af =f(a)Az + eAx

Proof of Chain rule

Assume y = f(u) is a diff’ble function of u and u = g(x) is a diff’ble function
of . Then the composite function y = f(g(x)) is diff’ble and by theorem
there exist €1, €2 which approaches 0 as Awu, Az approaches 0 in such a way
that

Ay = f(ug)Au+ e2Au
Au = ¢ (x9)Az + e Az

Hence
Ay = (f'(uo) + €2)(¢'(z0) + €1)Az
Ay _
Az
Let Ax — 0. Then we obtain the Chain rule.

(f'(uo) + €e2)(g'(w0) + €1).

Example 3.11.7. Converting mass to energy: The Newton’s law

d
F:md—;}:ma

is not exactly true when an object is moving at very high speed, because the

mass increases with velocity. In Einstein’s correction, the mass is

2

mo v
= = 14+ —).
" V1—v?/c? mol +2c2)
So the new mass is
N mu?
By multiplying ¢?
2 1 o5 1
(m —mg)c* =~ S = §m0 =A(KE).

Thus the change in the mass corresponds to the change in the Kinetic Energy.



