Chapter 3

Differentiation

3.1 Tangents and Derivatives at a point

Finding tangent to the graph of a function

Definition 3.1.1. The slope of the curve $y=f(x)$ at a point $P=\left(x_{0}, f\left(x_{0}\right)\right)$ is the number

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

provided it exists. The tangent line to the curve at the point P is the line through P with this slope.

The rate of change of $y=f(x)$ between $P\left(x_{0}, y_{0}\right)$ and $Q\left(x_{1}, y_{1}\right)$ is

$$
m_{s e c}=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}
$$

In the limit, it is the slope of tangent line.
Hence the slope of tangent line at P is

$$
m_{t a n}=\lim _{x_{1} \rightarrow x_{0}} \frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

Rate of change:Derivative at a point

Definition 3.1.2. The derivative of a function $f(x)$ at a point is given by

$$
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

exists, it is called derivative at $x=x_{0}$.

Figure 3.1: Tangent and secant

Example 3.1.3. Interpretations:
(1) The slope of $y=f(x)$ at x_{0}
(2) The slope of tangent to the curve $y=f(x)$ at x_{0}
(3) The rate of change of f with respect to x at x_{0}
(4) The derivative $f^{\prime}\left(x_{0}\right)$ at the point.

3.2 Derivative as a function

Definition 3.2.1. If the derivative of a function $f(x)$ at a

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

exists, it is called the derivative (function) of $f(x)$. (Treated as a function) f is said to be differentiable at x. If f is differentiable at all points of domain we say f is differentiable. We also use the notation $d f / d x,(d / d x) f$ for f^{\prime}.

Alternative formula for the derivative is

$$
f^{\prime}(x)=\lim _{z \rightarrow x} \frac{f(z)-f(x)}{z-x}
$$

Try some examples in the text.

One sided derivative

Definition 3.2.2. Suppose f is defined on $[a, b]$. Then at each end point the one sided derivative is defined by

$$
\begin{aligned}
& f^{\prime}\left(a^{+}\right)=\lim _{h \rightarrow 0^{+}} \frac{f(a+h)-f(a)}{h}, \\
& f^{\prime}\left(b^{-}\right)=\lim _{h \rightarrow 0^{-}} \frac{f(b+h)-f(b)}{h}=\lim _{h \rightarrow 0^{+}} \frac{f(b)-f(b-h)}{h} .
\end{aligned}
$$

Example 3.2.3. Using definition, find $(d / d x) x^{3}$.
sol. Set $f(x)=x^{3}$

$$
\begin{gathered}
f(x+h)-f(x)=h\left\{(x+h)^{2}+x(x+h)+x^{2}\right\} \\
\lim _{h \rightarrow 0} \frac{1}{h}\{f(x+h)-f(x)\}=\lim _{h \rightarrow 0}\left\{(x+h)^{2}+x(x+h)+x^{2}\right\}=3 x^{2}
\end{gathered}
$$

So $f^{\prime}(x)=3 x^{2}$

Example 3.2.4. The one sided derivatives of $f(x)=|x|$ at $x=0$ are $f^{\prime}\left(0^{-}\right)$ $=-1$ and $f^{\prime}\left(0^{+}\right)=1$. Hence f is not differentiable at $x=0$. (Figure 3.2)

Figure 3.2: $y=|x|$

When does a function do not have derivative at a point?
Example 3.2.5. The function defined by

$$
f(x)= \begin{cases}x \sin (1 / x), & x \neq 0 \\ 0, & x=0\end{cases}
$$

Figure 3.3: Cases with no derivative
is conti at $x=0$ but not differentiable.
sol. Since $-|x| \leq f(x) \leq$ and $\lim _{x \rightarrow 0}|x|=\lim _{x \rightarrow 0}=0$ by theorem f is conti. at $x=0$. But the limit

$$
\lim _{h \rightarrow 0} \frac{1}{h}\left\{h \sin \frac{1}{h}-0\right\}=\lim _{h \rightarrow 0} \sin \frac{1}{h}
$$

does not exist, f is not differentiable $x=0$.

Differentiable functions are continuous

Theorem 3.2.6. If f is differentiable at $x=a$, then f is conti. at $x=a$.
Proof. By definition of derivative we have

$$
\lim _{h \rightarrow 0}\{f(a+h)-f(a)\}=\left(\lim _{h \rightarrow 0} \frac{1}{h}\{f(a+h)-f(a)\}\right) \cdot\left(\lim _{h \rightarrow 0} h\right)=0 .
$$

Hence $f(x)$ is conti. at $x=a$.

Intermediate Value property of derivatives(Darboux's theorem)

Theorem 3.2.7. If a, b are any two points in an interval where f is differentiable, then f^{\prime} takes any value between $f^{\prime}(a)$ and $f^{\prime}(b)$.

3.3 Differentiation Rules

Proposition 3.3.1. Suppose f, g are differentiable functions. Then
(1) For any constant $C, \frac{d C}{d x}=0$ for any constant C.
(2) When n is positive integer, $\frac{d}{d x} x^{n}=n x^{n-1}$.
(3) For any constant $C, \frac{d(C u)}{d x}=C \frac{d u}{d x}$.
(4) $\frac{d}{d x}(u \pm v)=\frac{d u}{d x} \pm \frac{d v}{d x}$.
(5) $\frac{d(u v)}{d x}=v \frac{d u}{d x}+u \frac{d v}{d x}$.
(6) $\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$.
(7) For any real number $n, \frac{d}{d x} x^{n}=n x^{n-1}$.

Proof. (2) Use

$$
z^{n}-x^{n}=(z-x)\left(z^{n-1}+z^{n-2} x+\cdots+x^{n-2} z+x^{n-1}\right)
$$

(4)

$$
\begin{aligned}
\frac{d}{d x}(u v) & =\lim _{h \rightarrow 0} \frac{u(x+h) v(x+h)-u(x) v(x)}{h} \\
& =\lim _{h \rightarrow 0}\left\{\frac{u(x+h)-u(x)}{h} v(x+h)+u(x) \frac{v(x+h)-v(x)}{h}\right\} \\
& =u^{\prime}(x) v(x)+u(x) v^{\prime}(x) .
\end{aligned}
$$

Try to prove the product rule and draw Figure for product rule.

Figure 3.4: product rule

Higher order derivative

$$
f^{\prime \prime}(x)=\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)
$$

$$
y^{(n)}=\frac{d y^{(n-1)}}{d x}=\frac{d^{n} y}{d x^{n}}
$$

3.4 The Derivative as a Rate of change

Definition 3.4.1. The instantaneous rate of change of f at x_{0} is

$$
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

provided the limit exists.

How to describe a moving object?

How fast ? etc. First we assume an object is moving along a line(coordinate line) and its position is given as a function of time:

$$
s=f(t)
$$

Then the displacement of the object over the time interval t to $t+\Delta t$ is

$$
\Delta s=f(t+\Delta t)-f(t)
$$

and define the average velocity of the object over that time interval is

$$
v_{a v}=\frac{\text { displacement }}{\text { elapsed time }}=\frac{\Delta s}{\Delta t}=\frac{f(t+\Delta t)-f(t)}{\Delta t}
$$

Definition 3.4.2. Velocity(instantaneous velocity) is the derivative of a position function w.r.t time. If a moving object position is given by $s=f(t)$, then the velocity at t is

$$
v(t)=\lim _{h \rightarrow 0} \frac{f(t+h)-f(t)}{h}
$$

provided the limit exists.

Definition 3.4.3. (Speed) is the absolute value of the velocity, i.e, Speed

$$
\text { Speed }=|v(t)|=\left|\frac{d s}{d t}\right|
$$

Acceleration is

$$
a(t)=\frac{d v}{d t}=\frac{d^{2} s}{d t^{2}}
$$

Third derivative is called a Jerk

3.5 Derivative of Trig functions

Use definition to find the derivative of $f(x)=\sin x$.

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin x \cos h+\cos x \sin h-\sin x}{h} \\
& =\sin x \lim _{h \rightarrow 0} \frac{\cos h-1}{h}+\cos x \lim _{h \rightarrow 0} \frac{\sin h}{h} \\
& =\sin x \cdot 0+\cos x \cdot 1=\cos x .
\end{aligned}
$$

Hence $\frac{d}{d x} \sin x=\cos x$. Similarly, we have

$$
\frac{d}{d x} \cos x=-\sin x
$$

Other trigonometric functions are defined by the following relation and their derivatives can be found using differentiation rules:

$$
\tan x=\frac{\sin x}{\cos x}, \quad \sec x=\frac{1}{\cos x}, \quad \csc x=\frac{1}{\sin x}, \quad \cot x=\frac{\cos x}{\sin x}
$$

The derivative of $\tan x$ is

$$
\frac{d}{d x} \tan x=\frac{(\sin x)^{\prime} \cos x-(\cos x)^{\prime} \sin x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x}=\sec ^{2} x
$$

Summarizing, we have
Proposition 3.5.1. (1) $\frac{d}{d x} \sin x=\cos x$
(2) $\frac{d}{d x} \cos x=-\sin x$
(3) $\frac{d}{d x} \tan x=\sec ^{2} x$
(4) $\frac{d}{d x} \sec x=\sec x \tan x$

Figure 3.5: Chain rule
(5) $\frac{d}{d x} \csc x=-\csc x \cot x$
(6) $\frac{d}{d x} \cot x=-\csc ^{2} x$

3.6 Chain rule

Chain Rule

Theorem 3.6.1. (1) If $f(u)$ is differentiable at $u=g(x)$ and g is differentiable at x, then the composite function $f \circ g$ is differentiable at x and

$$
(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

If $y=f(u), u=g(x)$ then

$$
\left.\frac{d y}{d x}\right|_{x}=\left.\left.\frac{d y}{d u}\right|_{u=g(x)} \cdot \frac{d u}{d x}\right|_{x}
$$

Proof. (Intuitive) Let $\Delta u=g(x+\Delta x)-g(x)$ be the change of u corresponding to the change of Δx. (We assume $g(x+\Delta x) \neq g(x)$) We might consider

$$
\begin{aligned}
\frac{\Delta y}{\Delta x}= & \frac{\Delta y}{\Delta u} \frac{\Delta u}{\Delta x},(\Delta u \neq 0) \\
\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x} & =\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta u} \frac{\Delta u}{\Delta x} \\
& =\lim _{\Delta u \rightarrow 0} \frac{\Delta y}{\Delta u} \lim _{\Delta x \rightarrow 0} \frac{\Delta u}{\Delta x} \\
& =\frac{d y}{d u} \frac{d u}{d x}
\end{aligned}
$$

Repeated Use

Example 3.6.2. $y=\cos \left(1+x^{4}\right)^{5}$
sol. Given function is the composite of $y=\cos u$ and $u=\left(1+x^{4}\right)^{5}$. Hence

$$
\frac{d y}{d u}=-\sin u \frac{d u}{d x}
$$

On the other hand, since $\left(1+x^{4}\right)^{5}$ is a composite function of $u=v^{5}$ and $v=1+x^{4}$, use Chain rule again

$$
\frac{d u}{d x}=5 v^{4} \cdot 4 x^{3}
$$

Hence

$$
\frac{d y}{d x}=-\sin \left(1+x^{4}\right)^{5} \cdot 20\left(1+x^{4}\right)^{4} x^{3}
$$

Outside-Inside Rule

Example 3.6.3. The derivative of $|x|$ can be computed as follows: Notice that $|x|=\sqrt{x^{2}}$. Hence

$$
\frac{d}{d x} \sqrt{x^{2}}=\frac{1}{2 \sqrt{x^{2}}} \cdot 2 x=\frac{x}{|x|}, \quad x \neq 0
$$

Example 3.6.4. Find slope of tangent line to $y=(1-2 x)^{3}$ at $x=1$.

Derivatives of Power function

Find derivative of $f(x)=u^{r}(x)$ for any real r and $x>0$.
Theorem 3.6.5. Since $u^{r}=e^{r \ln u}$

$$
\frac{d}{d x} u^{r}=r u^{r} \frac{d \ln u}{d x}=u r^{r} \frac{1}{u} \frac{d u}{d x}=r u^{r-1} \frac{d u}{d x}
$$

3.7 Implicit differentiation

There are situation where some relation between x and y defines some graph, but not graph of any function. Suppose x, y satisfy $y^{5}+\sin x y=x^{3} y$. This relation defines a function implicitly.

Implicitly defined function

Assuming y is a differentiable function of x satisfying some relation like $F(x, y)=$ 0 , we take derivative of $F(x, y)=0$ w.r.t x using the chain rule. Then solving for $d y / d x$ we find the derivative. This procedure is called an Implicit differentiation.

$$
\begin{gathered}
\frac{d}{d x}\left(y^{5}\right)+\frac{d}{d x}(\sin x y)=\frac{d}{d x}\left(x^{3} y\right) \\
5 y^{4} \frac{d y}{d x}+(\cos x y)\left(y+x \frac{d y}{d x}\right)=3 x^{2} y+x^{3} \frac{d y}{d x}
\end{gathered}
$$

Hence

$$
\frac{d y}{d x}=\frac{3 x^{2} y-y \cos x y}{5 y^{4}+x \cos x y-x^{3}}
$$

Example 3.7.1. (1) $x^{3}+y^{3}=3 x y$. Find $d y / d x$ and $d^{2} y / d x^{2}$.
(2) Find equation of tangent line to $x^{3}+y^{3}=3 x y$ at $(3 / 2,3 / 2)$.

sol.

(1) Taking derivative we have

$$
\left(3 y^{2}-3 x\right) \frac{d y}{d x}=3 y-3 x^{2} .
$$

By chain rule

$$
\left(6 y \frac{d y}{d x}-3\right) \frac{d y}{d x}+\left(3 y^{2}-3 x\right) \frac{d^{2} y}{d x^{2}}=3 \frac{d y}{d x}-6 x
$$

Hence

$$
\begin{gathered}
\frac{d y}{d x}=\frac{y-x^{2}}{y^{2}-x} \\
\frac{d^{2} y}{d x^{2}}=\frac{-2\left(\left(y-x^{2}\right) /\left(y^{2}-x\right)\right)^{2} y+2\left(y-x^{2}\right) /\left(y^{2}-x\right)-2 x}{y^{2}-x}
\end{gathered}
$$

(2) At $(3 / 2,3 / 2), d y / d x=-1$. The tangent line is

$$
y=-\left(x-\frac{3}{2}\right)+\frac{3}{2}=-x+3
$$

3.8 Inverse functions and Their Derivatives

Definition 3.8.1. A function f is one-to-one on a domain D if $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ whenever $x_{1} \neq x_{2}$.

Definition 3.8.2. Suppose a function f is one-to-one on a domain D with range R. The inverse function f^{-1} exists and is defined by

$$
f^{-1}(b)=a \text { if } f(a)=b
$$

The domain of f^{-1} is R and range is D.

$$
\begin{array}{ll}
\left(f^{-1} \circ f\right)(x)=x, & x \in D \\
\left(f \circ f^{-1}\right)(y)=y, \quad y \in R
\end{array}
$$

Derivatives of inverse function

Theorem 3.8.3. Suppose f is differentiable in I. If $f^{\prime}(x)$ is never zero, then f^{-1} exists, differentiable. Furthermore for $a \in I, f(a)=b$,

$$
\left(f^{-1}\right)^{\prime}(b)=\frac{1}{f^{\prime}(a)}
$$

Set $y=f(x)$. Then the inverse function is $x=f^{-1}(y)$, and its derivative is

$$
\left.\frac{d x}{d y}\right|_{y=f(a)}=\frac{1}{d y /\left.d x\right|_{x=a}}, \quad a \in I
$$

Proof. Differentiate $x=\left(f^{-1} \circ f\right)(x)=f^{-1}(f(x))=f^{-1}(y)$ w.r.t x using the Chain rule, we have

$$
1=\left(f^{-1}\right)^{\prime}(f(x)) f^{\prime}(x)
$$

Setting $x=a$, we see $1=\left(f^{-1}\right)^{\prime}(f(a)) f^{\prime}(a)$. Thus

$$
\left(f^{-1}\right)^{\prime}(b)=1 / f^{\prime}(a)
$$

Usually, we use the notation $y=f^{-1}(x)$. The graph of $y=f(x)$ and that of $y=f^{-1}(x)$ are symmetric w.r.t the line $y=x$.

Example 3.8.4. (1) $f(x)=x^{7}+8 x^{3}+4 x-2$. Find $\left(f^{-1}\right)^{\prime}(-2)$.

Figure 3.6: Slope of inverse function

Figure 3.7: Graph of inverse functions, Graph of $\ln x$ and e^{x}
(2) $f(x)=\sin ^{-1} x$. Find f^{\prime}.
sol. (1) Since $f^{\prime}=7 x^{6}+24 x^{2}+4 \geq 4$ inverse f^{-1} exists. Since $f(0)=-2$ we have

$$
\left(f^{-1}\right)^{\prime}(-2)=\left(f^{-1}\right)^{\prime}(f(0))=\frac{1}{f^{\prime}(0)}=\frac{1}{4} .
$$

(2) $y=\sin ^{-1} x, x=\sin y$. Hence

$$
\begin{aligned}
\frac{d}{d x} \sin ^{-1} x & =\frac{d y}{d x}=\frac{1}{d x / d y}=\frac{1}{(d / d y) \sin y} \\
& =\frac{1}{\cos y}=\frac{1}{\sqrt{1-\sin ^{2} y}}=\frac{1}{\sqrt{1-x^{2}}} .
\end{aligned}
$$

Derivative of the natural Logarithmic function

$f(x)=e^{x}$. The derivative of its inverse function $f^{-1}(x)=\ln x, x>0$ is

$$
\begin{aligned}
\left(f^{-1}\right)^{\prime}(x) & =\frac{1}{f^{\prime}\left(f^{-1}(x)\right)} \\
& =\frac{1}{e^{f^{-1}(x)}} \\
& =\frac{1}{e^{\ln x}}=\frac{1}{x}
\end{aligned}
$$

Alterative way: Let $y=\ln x$. Implicit differentiation w.r.t. x gives

$$
\begin{aligned}
e^{y} & =x \\
e^{y} \frac{d y}{d x} & =1 \\
\frac{d y}{d x} & =\frac{1}{e^{y}}=\frac{1}{x}
\end{aligned}
$$

If $u(x)$ is any positive differentiable function,

$$
\begin{equation*}
\frac{d}{d x} \ln u(x)=\frac{1}{u} \frac{d u}{d x}, u>0 \tag{3.1}
\end{equation*}
$$

When $x<0$ one can use $u=b x,(b=-1)$ and the chain rule to derive

$$
\begin{aligned}
\frac{d}{d x} \ln (b x) & =\frac{1}{b x} \cdot \frac{d}{d x}(b x) \\
& =\frac{1}{b x} \cdot \frac{d}{d x}(b x) \\
& =\frac{1}{x}
\end{aligned}
$$

Thus we have

$$
\begin{equation*}
\frac{d}{d x} \ln |x|=\frac{1}{x}, x \neq 0 \tag{3.2}
\end{equation*}
$$

Example 3.8.5. The point where the line through of origin $y=m x$ is tangent to the graph of $y=\ln x$.
sol. We must have $m=\frac{1}{x}$ and $m x=\ln x$. Hence we get $m=\frac{1}{e}$ and $x=e$.

The number e is sometimes defined as

$$
\begin{equation*}
e=\exp (1)=\ln ^{-1}(1)=2.718281828 \cdots \tag{3.3}
\end{equation*}
$$

Derivative of a^{x} and $\log _{a} x$
By definition, $a^{x}=e^{x \ln a}$. Thus

$$
\begin{gathered}
\frac{d}{d x} a^{x}=\frac{d}{d x} e^{x \ln a}=\ln a e^{x \ln a}=a^{x} \ln a . \\
\frac{d}{d x} a^{u}=a^{u} \ln a \frac{d u}{d x}
\end{gathered}
$$

$y=\log _{a} x$ is defined as the inverse function of $y=a^{x}(a>0, a \neq 1)$. Thus

$$
\begin{gathered}
\log _{a} x=y \Leftrightarrow a^{y}=x \\
\log _{a}\left(a^{x}\right)=x, \text { for all } x, \text { and } a^{\left(\log _{a} x\right)}=x,(x>0) .
\end{gathered}
$$

$\log _{10} x$ is written as $\log x$ and called common logarithmic function.
Derivative of $\log _{a} x$
We have

$$
\begin{equation*}
\log _{a} x=\frac{\ln x}{\ln a} . \tag{3.4}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
a^{\left(\log _{a} x\right)} & =x \\
\ln a^{\left(\log _{a} x\right)} & =\ln x \\
\log _{a} x \cdot \ln a & =\ln x \\
\log _{a} x & =\frac{\ln x}{\ln a} .
\end{aligned}
$$

So

$$
\frac{d}{d x} \log _{a} x=\frac{1}{x \ln a}
$$

and

$$
\frac{d}{d x} \log _{a} u=\frac{1}{u \ln a} \frac{d u}{d x}
$$

Logarithmic Differentiation

Find $d y / d x$ if $y=\frac{\left(x^{2}+1\right)^{1 / 3}(x-3)^{1 / 2}}{x+5}$.

Derivatives of Power function

We prove the following theorem which was stated earlier.

Theorem 3.8.6. For any real $r, \frac{d}{d x} u^{r}=u^{r-1} \frac{d u}{d x}$.
Proof. Since $u^{r}=e^{r \ln u}$ we have

$$
\frac{d}{d x} u^{r}=r u^{r} \frac{d \ln u}{d x}=u r^{r} \frac{1}{u} \frac{d u}{d x}=r u^{r-1} \frac{d u}{d x}
$$

Example 3.8.7. Differentiate $f(x)=x^{x}, x>0$
sol. Write $f(x)=x^{x}=e^{x \ln x}$. So

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(e^{x \ln x}\right) \\
& =\left(e^{x \ln x}\right) \frac{d}{d x}(x \ln x) \\
& =e^{x \ln x}\left(\ln x+x \cdot \frac{1}{x}\right) \\
& =x^{x}(\ln x+1)
\end{aligned}
$$

Example 3.8.8. Sketch the graph of $x^{1 / x}$. To do this, we first investigate the behavior of the function as $x \rightarrow 0^{+}$and $x \rightarrow \infty$. To study the limit, we take the logarithm:

$$
\lim _{x \rightarrow \infty} \ln x^{1 / x}=\lim _{x \rightarrow \infty} \frac{\ln x}{x}=0
$$

Hence

$$
\lim _{x \rightarrow \infty} x^{1 / x}=\exp \left(\lim _{x \rightarrow \infty} \frac{\ln x}{x}\right)=e^{0}=1
$$

Meanwhile

$$
\lim _{x \rightarrow 0^{+}} \ln x^{1 / x}=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{x}=-\infty
$$

Hence

$$
\lim _{x \rightarrow 0^{+}} x^{1 / x}=\exp \left(\lim _{x \rightarrow 0^{+}} \frac{\ln x}{x}\right)=e^{-\infty}=0
$$

To see the local extrema, take the derivative and find the critical point. $f^{\prime}(x)=$ $(1-\ln x) / x^{2}=0$ for $x=e$. By checking the sign of $f^{\prime}(x)$ near $x=e$, we conclude $x=e$ is a point of local maximum.

The number e as a limit

Theorem 3.8.9. The number e satisfies

$$
e=\lim _{x \rightarrow 0}(1+x)^{1 / x}
$$

Figure 3.8: Graph of $y=x^{1 / x}$

Proof. If $f(x)=\ln x$. Then $f^{\prime}(1)=\left.\frac{1}{x}\right|_{x=1}=1$. By definition of derivative

$$
\begin{aligned}
1 & =f^{\prime}(1)=\lim _{x \rightarrow 0^{+}} \frac{\ln (1+x)-\ln 1}{x}=\lim _{x \rightarrow 0^{+}} \ln \left[(1+x)^{\frac{1}{x}}\right] \\
& =\ln \left[\lim _{x \rightarrow 0^{+}}(1+x)^{\frac{1}{x}}\right] .
\end{aligned}
$$

Now exponentiate.

3.9 Inverse trig functions

Figure 3.9: $y=\sin ^{-1} x$

Figure 3.10: $y=\cos ^{-1} x$

Inverse sine

Restrict the function $\sin x$ on $[-\pi / 2, \pi / 2]$. Then $\sin x:[-\pi / 2, \pi / 2] \rightarrow[-1,1]$ is one-to - one function. So the inverse exists. Define

$$
\sin ^{-1} x:[-1,1] \longrightarrow[-\pi / 2, \pi / 2] .
$$

whenever $x=\sin y$ for $x \in[-\pi / 2, \pi / 2]$. Graph is as in figure $3.9 \cdot \sin ^{-1} x$ is sometimes written as $\arcsin x$.

Inverse cosine

Restrict $\cos x$ to $[0, \pi]$, we obtain $\cos ^{-1} x$ as

$$
\cos ^{-1} x:[-1,1] \longrightarrow[0, \pi] .
$$

If $\cos x=y$ for any $x \in[0, \pi]$ then $\cos ^{-1} y=x$ is defined and figure is in 3.10 written as $\cos ^{-1} x$ or $\arccos x$.

Example 3.9.1. (1) $\sin ^{-1}(1 / 2)=\pi / 6$
(2) $\sin ^{-1} 1=\pi / 2$

Example 3.9.2. (1) $\cos ^{-1}(1 / 2)=\pi / 3$
(2) $\cos ^{-1} 0=\pi / 2$

Figure 3.11: $\theta=\cos ^{-1} x$

Example 3.9.3.

$$
\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}, \quad \cos ^{-1} x+\cos ^{-1}(-x)=\pi
$$

Figure 3.12: $\sin ^{-1} x$

Inverse of $\tan x$

The function $\tan x$ is one to one on $(-\pi / 2, \pi / 2)$, thus it has an inverse $\tan ^{-1} x$

$$
\tan ^{-1} x: \mathbb{R} \longrightarrow(-\pi / 2, \pi / 2)
$$

for any $x \in \mathbb{R}$. Thus $\tan x=\alpha$ iff $\tan ^{-1} \alpha=x$. See figure 3.13. It is written as $\tan ^{-1} x$ or $\arctan x$.

$$
\tan ^{-1} 1=\pi / 4 \tan ^{-1} 0=0
$$

Figure 3.13: $y=\tan ^{-1} x$

Example 3.9.4. Find the derivative of $\tan ^{-1} x$.
From $y=f(x)=\tan x$, we see by Theorem 3.8.3

$$
\begin{aligned}
\left(f^{-1}\right)^{\prime}(y) & =\frac{1}{f^{\prime}(x)} \\
& =\frac{1}{1+\tan ^{2} x} \\
& =\frac{1}{1+y^{2}} .
\end{aligned}
$$

Thus $\left(f^{-1}\right)^{\prime}(x)=\frac{1}{1+x^{2}}$.

Example 3.9.5. Find derivatives
(1) $y=\sin ^{-1} x, \quad(|x| \leq 1)$.
(2) $y=\sec ^{-1} x, \quad(|x| \geq 1)$.
sol. (3) Let $y=\sec ^{-1} x$. Then $x=\sec y$. Taking derivative w.r.t x, we get $1=\sec y \tan y(d y / d x)$. Thus

$$
\frac{d y}{d x}=\frac{1}{\sec y \tan y} .
$$

We need to change it to expression in x.
For $x>1, \tan y=\sqrt{x^{2}-1}$. Hence, we have

$$
\frac{d y}{d x}=\frac{1}{x \sqrt{x^{2}-1}}, \quad x>1 .
$$

For $x<-1$, use $(x \rightarrow-x)$ to get

$$
\frac{d y}{d x}=\frac{1}{-x \sqrt{x^{2}-1}}, \quad x<-1
$$

Hence

$$
\frac{d}{d x} \sec ^{-1} x=\frac{1}{|x| \sqrt{x^{2}-1}}, \quad|x|>1
$$

Other inverse trig functions

Inverses of $\csc x, \sec x, \cot x$
$\csc ^{-1} x: \mathbb{R}-(-1,1) \rightarrow[-\pi / 2, \pi / 2]-\{0\}$
$\sec ^{-1} x: \mathbb{R}-(-1,1) \rightarrow[0, \pi]-\{\pi / 2\}$
$\cot ^{-1} x: \mathbb{R} \rightarrow(0, \pi)$. (Note that the range is different from that of $\left.\tan ^{-1} x\right)$

Proposition 3.9.6. The derivatives of inverse trig. functions :
(1) $\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}}$
(2) $\frac{d}{d x} \cos ^{-1} x=-\frac{1}{\sqrt{1-x^{2}}}$

Figure 3.14:
(3) $\frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}}$
(4) $\frac{d}{d x} \csc ^{-1} x=-\frac{1}{|x| \sqrt{x^{2}-1}},|x|>1$
(5) $\frac{d}{d x} \sec ^{-1} x=\frac{1}{|x| \sqrt{x^{2}-1}},|x|>1$
(6) $\frac{d}{d x} \cot ^{-1} x=-\frac{1}{1+x^{2}}$.

Proposition 3.9.7. The following relations hold.

$$
\begin{aligned}
\cos ^{-1} x & =(\pi / 2)-\sin ^{-1} x \\
\cot ^{-1} x & =(\pi / 2)-\tan ^{-1} x \\
\csc ^{-1} x & =(\pi / 2)-\sec ^{-1} x \\
\cot ^{-1} x & =\tan ^{-1}(1 / x) \\
\sec ^{-1} x & =\cos ^{-1}(1 / x) \\
\csc ^{-1} x & =\sin ^{-1}(1 / x)
\end{aligned}
$$

Example 3.9.8. (1) Find $\sin \left(\cos ^{-1}(3 / 5)\right)$
(2) Simplify $\tan \left(\sin ^{-1} a\right)$
sol. (1) Let $\theta=\cos ^{-1}(3 / 5)$. Then $\cos \theta=3 / 5$ and $0 \leq \theta \leq \pi$. Hence

$$
\sin \theta=\sqrt{1-\frac{9}{25}}=\frac{4}{5}
$$

(2) Let $\theta=\sin ^{-1} a$. Then $\sin \theta=a$ and $-\pi / 2 \leq \theta \leq \pi / 2$.

$$
\cos \theta=\sqrt{1-a^{2}}
$$

Hence

$$
\begin{equation*}
\tan \theta=\sin \theta / \cos \theta=a / \sqrt{1-a^{2}} \tag{3.5}
\end{equation*}
$$

Integral of $\tan x, \cot x, \sec x$ and $\csc x$

$$
\begin{aligned}
\int \tan x d x & =\int \frac{\sin x}{\cos x} d x \\
& =-\int \frac{d u}{u} \\
& =-\ln |u|+C \\
& =-\ln |\cos x|+C \\
& =\ln \frac{1}{|\cos x|}+C \\
& =\ln |\sec x|+C
\end{aligned}
$$

For $\sec x$ we need special trick:

$$
\begin{aligned}
\int \sec x d x & =\int \sec x \frac{(\sec x+\tan x)}{(\sec x+\tan x)} d x \\
& =\int \frac{\left(\sec ^{2} x+\sec x \tan x\right)}{\sec x+\tan x} d x \\
& =\int \frac{d u}{u} \\
& =\ln |u|+C \\
& =\ln |\sec x+\tan x|+C
\end{aligned}
$$

For $\csc x$ we do similarly. Thus we have

$$
\begin{aligned}
\int \sec x d x & =\ln |\sec x+\tan x|+C \\
\int \csc x d x & =-\ln |\csc x+\cot x|+C
\end{aligned}
$$

3.10 Related Rates

Skip this section.

3.11 Linearization and differential

Definition 3.11.1. Given a differentiable function f, the linear function

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

is called the linearization of f at a.
Example 3.11.2. (1) Find the linearization of $\cos x$ at $\pi / 2$.
(2) Find an approx value of $\sqrt{1.003}$ using the linearization of $\sqrt{1+x}$ at $x=0$.
(3) Find the linearization of $\frac{1}{\sqrt[3]{x^{4}+1}}$ at $x=0$
(4) Find an approx value of $\sqrt{4.8}$
(5) Find the linearization of $\cos x$ at $\pi / 2$. Ans $-x+\pi / 2$.
(6) Find the linearization of $(1+x)^{k}$. Ans $1+k x$.

Differential

Definition 3.11.3. Let $y=f(x)$ be differentiable. We can treat $d x$ (differential) like an independent variable. In this point of view, the quantity $d y$ defined by

$$
d y:=f^{\prime}(x) d x
$$

is called the differential of f.
The geometric meaning of differential is given in Figure 3.15. We observe

$$
\Delta y=f(a+d x)-f(a), \quad f(a+d x)=f(a)+\Delta y \approx f(a)+d y
$$

We see that $d y$ is precisely the change of the tangent line as x changes by an amount of $d x=\Delta x$. In other words, $d y$ is an approximation of exact change Δy.

Figure 3.15: Differential $d y=f^{\prime}(a) d x$ and Δy

Example 3.11.4. Find differential of
(1) $y=x^{3}-\sin x$
(2) $y=\sin u(x)$
(3) $\tan (3 x)$
(4) $d\left(\frac{x}{1+x}\right)$.

Estimating with differentials

Example 3.11.5.

Radius of a circle is enlarged from 10 to 10.1. Use $d A$ to estimate the increase in area. Compare with exact increase. $A=\pi r^{2}$,

$$
d A=2 \pi r d r=2 \pi(10)(0.1)=2 \pi m^{2}
$$

Actual increase is $A(10.1)-A(10)=2 \pi\left((10.1)^{2}-100\right)=2.01 \pi$.

Error in differential approximation

We estimate the change in y in more detail.

Theorem 3.11.6. We have

$$
\Delta f=f^{\prime}(a) \Delta x+\epsilon \Delta x
$$

where $\epsilon \rightarrow 0$ as $\Delta x \rightarrow 0$.

Proof.

$$
\begin{aligned}
\text { approximation error } & =\Delta f-d f \\
& =\Delta f-f^{\prime}(a) \Delta x \\
& =f(a+\Delta x)-f(a)-f^{\prime}(a) \Delta x \\
& =\left(\frac{f(a+\Delta x)-f(a)}{\Delta x}-f^{\prime}(a)\right) \Delta x \\
& =\epsilon \Delta x
\end{aligned}
$$

Since f is differentiable, we know $\epsilon:=\left(\frac{f(a+\Delta x)-f(a)}{\Delta x}-f^{\prime}(a)\right)$ approaches 0 as Δx approaches 0 . Thus

$$
\begin{gathered}
\text { true } \\
\text { change } \\
\Delta f
\end{gathered}=\begin{gathered}
\text { estimated } \\
\text { change }
\end{gathered} f^{\prime}(a) \Delta x+\epsilon \Delta x
$$

Proof of Chain rule

Assume $y=f(u)$ is a diff'ble function of u and $u=g(x)$ is a diff'ble function of x. Then the composite function $y=f(g(x))$ is diff'ble and by theorem there exist $\epsilon_{1}, \epsilon_{2}$ which approaches 0 as $\Delta u, \Delta x$ approaches 0 in such a way that

$$
\begin{aligned}
\Delta y & =f^{\prime}\left(u_{0}\right) \Delta u+\epsilon_{2} \Delta u \\
\Delta u & =g^{\prime}\left(x_{0}\right) \Delta x+\epsilon_{1} \Delta x
\end{aligned}
$$

Hence

$$
\begin{gathered}
\Delta y=\left(f^{\prime}\left(u_{0}\right)+\epsilon_{2}\right)\left(g^{\prime}\left(x_{0}\right)+\epsilon_{1}\right) \Delta x \\
\frac{\Delta y}{\Delta x}=\left(f^{\prime}\left(u_{0}\right)+\epsilon_{2}\right)\left(g^{\prime}\left(x_{0}\right)+\epsilon_{1}\right)
\end{gathered}
$$

Let $\Delta x \rightarrow 0$. Then we obtain the Chain rule.
Example 3.11.7. Converting mass to energy: The Newton's law

$$
F=m \frac{d v}{d t}=m a
$$

is not exactly true when an object is moving at very high speed, because the mass increases with velocity. In Einstein's correction, the mass is

$$
m=\frac{m_{0}}{\sqrt{1-v^{2} / c^{2}}} \approx m_{0}\left(1+\frac{v^{2}}{2 c^{2}}\right)
$$

So the new mass is

$$
m \approx m_{0}+\frac{m v^{2}}{2 c^{2}}
$$

By multiplying c^{2}

$$
\left(m-m_{0}\right) c^{2} \approx \frac{1}{2} m v^{2}-\frac{1}{2} m 0^{2}=\Delta(K E)
$$

Thus the change in the mass corresponds to the change in the Kinetic Energy.

