
Chapter 3

Differentiation

3.1 Tangents and Derivatives at a point

Finding tangent to the graph of a function

Definition 3.1.1. The slope of the curve y = f(x) at a point P = (x0, f(x0))

is the number

lim
h→0

f(x0 + h)− f(x0)

h

provided it exists. The tangent line to the curve at the point P is the line

through P with this slope.

The rate of change of y = f(x) between P (x0, y0) and Q(x1, y1) is

msec =
f(x1)− f(x0)

x1 − x0

In the limit, it is the slope of tangent line.

Hence the slope of tangent line at P is

mtan = lim
x1→x0

f(x1)− f(x0)

x1 − x0
= lim

h→0

f(x0 + h)− f(x0)

h

Rate of change:Derivative at a point

Definition 3.1.2. The derivative of a function f(x) at a point is given by

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h

exists, it is called derivative at x = x0.
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Figure 3.1: Tangent and secant

Example 3.1.3. Interpretations:

(1) The slope of y = f(x) at x0

(2) The slope of tangent to the curve y = f(x) at x0

(3) The rate of change of f with respect to x at x0

(4) The derivative f ′(x0) at the point.

3.2 Derivative as a function

Definition 3.2.1. If the derivative of a function f(x) at a

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

exists, it is called the derivative (function) of f(x). (Treated as a function) f

is said to be differentiable at x. If f is differentiable at all points of domain

we say f is differentiable. We also use the notation df/dx, (d/dx)f for f ′.

Alternative formula for the derivative is

f ′(x) = lim
z→x

f(z)− f(x)

z − x

Try some examples in the text.
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One sided derivative

Definition 3.2.2. Suppose f is defined on [a, b]. Then at each end point the

one sided derivative is defined by

f ′(a+) = lim
h→0+

f(a+ h)− f(a)

h
,

f ′(b−) = lim
h→0−

f(b+ h)− f(b)

h
= lim

h→0+

f(b)− f(b− h)

h
.

Example 3.2.3. Using definition, find (d/dx)x3.

sol. Set f(x) = x3

f(x+ h)− f(x) = h{(x+ h)2 + x(x+ h) + x2}

lim
h→0

1

h
{f(x+ h)− f(x)} = lim

h→0
{(x+ h)2 + x(x+ h) + x2} = 3x2

So f ′(x) = 3x2

Example 3.2.4. The one sided derivatives of f(x) = |x| at x = 0 are f ′(0−)

= −1 and f ′(0+) = 1. Hence f is not differentiable at x = 0. (Figure 3.2)

y = |x|

Figure 3.2: y = |x|

When does a function do not have derivative at a point?

Example 3.2.5. The function defined by

f(x) =







x sin(1/x), x 6= 0

0, x = 0
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Figure 3.3: Cases with no derivative

is conti at x = 0 but not differentiable.

sol. Since −|x| ≤ f(x) ≤ and limx→0 |x| = limx→0 = 0 by theorem f is

conti. at x = 0. But the limit

lim
h→0

1

h

{

h sin
1

h
− 0

}

= lim
h→0

sin
1

h

does not exist, f is not differentiable x = 0.

Differentiable functions are continuous

Theorem 3.2.6. If f is differentiable at x = a, then f is conti. at x = a.

Proof. By definition of derivative we have

lim
h→0

{f(a+ h)− f(a)} =

(

lim
h→0

1

h
{f(a+ h)− f(a)}

)

·
(

lim
h→0

h

)

= 0.

Hence f(x) is conti. at x = a.

Intermediate Value property of derivatives(Darboux’s theorem)

Theorem 3.2.7. If a, b are any two points in an interval where f is differen-

tiable, then f ′ takes any value between f ′(a) and f ′(b).

3.3 Differentiation Rules

Proposition 3.3.1. Suppose f , g are differentiable functions. Then

(1) For any constant C, dC
dx = 0 for any constant C.
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(2) When n is positive integer , d
dxx

n = nxn−1.

(3) For any constant C, d(Cu)
dx = C du

dx .

(4) d
dx(u± v) = du

dx ± dv
dx .

(5) d(uv)
dx = v du

dx + u dv
dx .

(6) d
dx

(

u
v

)

=
v du
dx

−u dv
dx

v2
.

(7) For any real number n, d
dxx

n = nxn−1.

Proof. (2) Use

zn − xn = (z − x)(zn−1 + zn−2x+ · · ·+ xn−2z + xn−1)

(4)

d

dx
(uv) = lim

h→0

u(x+ h)v(x+ h)− u(x)v(x)

h

= lim
h→0

{

u(x+ h)− u(x)

h
v(x+ h) + u(x)

v(x + h)− v(x)

h

}

= u′(x)v(x) + u(x)v′(x).

Try to prove the product rule and draw Figure for product rule.

v(x)

∆v

u(x)v(x)
v(x)∆u

u(x)∆v

u(x)∆u

Figure 3.4: product rule

Higher order derivative

f ′′(x) =
d2y

dx2
=

d

dx

(

dy

dx

)
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y(n) =
dy(n−1)

dx
=

dny

dxn

3.4 The Derivative as a Rate of change

Definition 3.4.1. The instantaneous rate of change of f at x0 is

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h

provided the limit exists.

How to describe a moving object?

How fast ? etc. First we assume an object is moving along a line(coordinate

line) and its position is given as a function of time:

s = f(t)

Then the displacement of the object over the time interval t to t+∆t is

∆s = f(t+∆t)− f(t)

and define the average velocity of the object over that time interval is

vav =
displacement

elapsed time
=

∆s

∆t
=

f(t+∆t)− f(t)

∆t

Definition 3.4.2. Velocity(instantaneous velocity) is the derivative of a po-

sition function w.r.t time. If a moving object position is given by s = f(t),

then the velocity at t is

v(t) = lim
h→0

f(t+ h)− f(t)

h

provided the limit exists.

Definition 3.4.3. (Speed) is the absolute value of the velocity, i.e, Speed

Speed = |v(t)| =
∣

∣

∣

∣

ds

dt

∣

∣

∣

∣
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Acceleration is

a(t) =
dv

dt
=

d2s

dt2

Third derivative is called a Jerk

3.5 Derivative of Trig functions

Use definition to find the derivative of f(x) = sinx.

= lim
h→0

sin(x+ h)− sinx

h

= lim
h→0

sinx cos h+ cos x sinh− sinx

h

= sinx lim
h→0

cos h− 1

h
+ cos x lim

h→0

sinh

h

= sinx · 0 + cos x · 1 = cosx.

Hence d
dx sinx = cos x. Similarly, we have

d

dx
cos x = − sinx

Other trigonometric functions are defined by the following relation and their

derivatives can be found using differentiation rules:

tan x =
sinx

cos x
, sec x =

1

cos x
, csc x =

1

sinx
, cot x =

cos x

sinx

The derivative of tan x is

d

dx
tanx =

(sinx)′ cos x− (cos x)′ sinx

cos2 x
=

1

cos2 x
= sec2 x

Summarizing, we have

Proposition 3.5.1. (1)
d

dx
sinx = cos x

(2)
d

dx
cosx = − sinx

(3)
d

dx
tanx = sec2 x

(4)
d

dx
secx = secx tan x
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◦
x

◦
u = g(x)

◦
y = f(u)

y = f(g(x))

Figure 3.5: Chain rule

(5)
d

dx
cscx = − cscx cot x

(6)
d

dx
cot x = − csc2 x

3.6 Chain rule

Chain Rule

Theorem 3.6.1. (1) If f(u) is differentiable at u = g(x) and g is differ-

entiable at x, then the composite function f ◦ g is differentiable at x

and

(f ◦ g)′(x) = f ′(g(x))g′(x)

If y = f(u), u = g(x) then

dy

dx

∣

∣

∣

∣

x

=
dy

du

∣

∣

∣

∣

u=g(x)

· du
dx

∣

∣

∣

∣

x

Proof. (Intuitive) Let ∆u = g(x+∆x)−g(x) be the change of u corresponding

to the change of ∆x. (We assume g(x+∆x) 6= g(x)) We might consider

∆y

∆x
=

∆y

∆u

∆u

∆x
, (∆u 6= 0)

lim
∆x→0

∆y

∆x
= lim

∆x→0

∆y

∆u

∆u

∆x

= lim
∆u→0

∆y

∆u
lim

∆x→0

∆u

∆x

=
dy

du

du

dx
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Repeated Use

Example 3.6.2. y = cos(1 + x4)5

sol. Given function is the composite of y = cos u and u = (1+ x4)5. Hence

dy

du
= − sinu

du

dx
.

On the other hand, since (1 + x4)5 is a composite function of u = v5 and

v = 1 + x4, use Chain rule again

du

dx
= 5v4 · 4x3.

Hence
dy

dx
= − sin(1 + x4)5 · 20(1 + x4)4x3.

Outside-Inside Rule

Example 3.6.3. The derivative of |x| can be computed as follows: Notice

that |x| =
√
x2. Hence

d

dx

√
x2 =

1

2
√
x2

· 2x =
x

|x| , x 6= 0.

Example 3.6.4. Find slope of tangent line to y = (1− 2x)3 at x = 1.

Derivatives of Power function

Find derivative of f(x) = ur(x) for any real r and x > 0.

Theorem 3.6.5. Since ur = er lnu

d

dx
ur = rur

d lnu

dx
= urr

1

u

du

dx
= rur−1du

dx
.

3.7 Implicit differentiation

There are situation where some relation between x and y defines some graph,

but not graph of any function. Suppose x, y satisfy y5 + sinxy = x3y. This

relation defines a function implicitly.
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Implicitly defined function

Assuming y is a differentiable function of x satisfying some relation like F (x, y) =

0, we take derivative of F (x, y) = 0 w.r.t x using the chain rule. Then solv-

ing for dy/dx we find the derivative. This procedure is called an Implicit

differentiation.

d

dx

(

y5
)

+
d

dx
(sinxy) =

d

dx

(

x3y
)

5y4
dy

dx
+ (cos xy)

(

y + x
dy

dx

)

= 3x2y + x3
dy

dx
.

Hence
dy

dx
=

3x2y − y cos xy

5y4 + x cos xy − x3
.

Example 3.7.1. (1) x3 + y3 = 3xy. Find dy/dx and d2y/dx2.

(2) Find equation of tangent line to x3 + y3 = 3xy at (3/2, 3/2).

sol.

(1) Taking derivative we have

(3y2 − 3x)
dy

dx
= 3y − 3x2.

By chain rule

(

6y
dy

dx
− 3

)

dy

dx
+ (3y2 − 3x)

d2y

dx2
= 3

dy

dx
− 6x.

Hence
dy

dx
=

y − x2

y2 − x
,

d2y

dx2
=

−2
(

(y − x2)/(y2 − x)
)2

y + 2(y − x2)/(y2 − x)− 2x

y2 − x
.

(2) At (3/2, 3/2), dy/dx = −1. The tangent line is

y = −
(

x− 3

2

)

+
3

2
= −x+ 3.
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3.8 Inverse functions and Their Derivatives

Definition 3.8.1. A function f is one-to-one on a domain D if f(x1) 6= f(x2)

whenever x1 6= x2.

Definition 3.8.2. Suppose a function f is one-to-one on a domain D with

range R. The inverse function f−1 exists and is defined by

f−1(b) = a if f(a) = b.

The domain of f−1 is R and range is D.

(f−1 ◦ f)(x) = x, x ∈ D

(f ◦ f−1)(y) = y, y ∈ R

Derivatives of inverse function

Theorem 3.8.3. Suppose f is differentiable in I. If f ′(x) is never zero, then

f−1 exists, differentiable. Furthermore for a ∈ I, f(a) = b,

(f−1)′(b) =
1

f ′(a)
.

Set y = f(x). Then the inverse function is x = f−1(y), and its derivative is

dx

dy

∣

∣

∣

∣

y=f(a)

=
1

dy/dx|x=a

, a ∈ I

Proof. Differentiate x = (f−1 ◦ f)(x) = f−1(f(x)) = f−1(y) w.r.t x using the

Chain rule, we have

1 = (f−1)′(f(x))f ′(x).

Setting x = a, we see 1 = (f−1)′(f(a))f ′(a). Thus

(f−1)′(b) = 1/f ′(a).

Usually, we use the notation y = f−1(x). The graph of y = f(x) and that

of y = f−1(x) are symmetric w.r.t the line y = x.

Example 3.8.4. (1) f(x) = x7 + 8x3 + 4x− 2. Find (f−1)′(−2).
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f(x)

f−1(x)

Figure 3.6: Slope of inverse function

f(x)

f−1(x)
e

ln x =
∫ x

1

1

t
dt

y = ln x
y = 1

x

y = ex

Figure 3.7: Graph of inverse functions, Graph of lnx and ex

(2) f(x) = sin−1 x. Find f ′.

sol. (1) Since f ′ = 7x6 + 24x2 + 4 ≥ 4 inverse f−1 exists. Since f(0) = −2

we have

(f−1)′(−2) = (f−1)′(f(0)) =
1

f ′(0)
=

1

4
.

(2) y = sin−1 x, x = sin y. Hence

d

dx
sin−1 x =

dy

dx
=

1

dx/dy
=

1

(d/dy) sin y

=
1

cos y
=

1
√

1− sin2 y
=

1√
1− x2

.
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Derivative of the natural Logarithmic function

f(x) = ex. The derivative of its inverse function f−1(x) = lnx, x > 0 is

(f−1)′(x) =
1

f ′(f−1(x))

=
1

ef−1(x)

=
1

elnx
=

1

x
.

Alterative way: Let y = lnx. Implicit differentiation w.r.t. x gives

ey = x

ey
dy

dx
= 1

dy

dx
=

1

ey
=

1

x
.

If u(x) is any positive differentiable function,

d

dx
lnu(x) =

1

u

du

dx
, u > 0. (3.1)

When x < 0 one can use u = bx, (b = −1) and the chain rule to derive

d

dx
ln(bx) =

1

bx
· d

dx
(bx)

=
1

bx
· d

dx
(bx)

=
1

x
.

Thus we have
d

dx
ln |x| = 1

x
, x 6= 0. (3.2)

Example 3.8.5. The point where the line through of origin y = mx is tangent

to the graph of y = lnx.

sol. We must have m = 1
x and mx = lnx. Hence we get m = 1

e and x = e.

The number e is sometimes defined as

e = exp(1) = ln−1(1) = 2.718281828 · · · . (3.3)
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Derivative of ax and loga x

By definition, ax = ex lna. Thus

d

dx
ax =

d

dx
ex lna = ln aex lna = ax ln a.

d

dx
au = au ln a

du

dx

y = loga x is defined as the inverse function of y = ax(a > 0, a 6= 1). Thus

loga x = y ⇔ ay = x

loga(a
x) = x, for all x, and a(loga x) = x, (x > 0).

log10 x is written as log x and called common logarithmic function.

Derivative of loga x

We have

loga x =
lnx

ln a
. (3.4)

Proof.

a(loga x) = x

ln a(loga x) = lnx

loga x · ln a = lnx

loga x =
lnx

ln a
.

So
d

dx
loga x =

1

x ln a

and
d

dx
loga u =

1

u ln a

du

dx
.

Logarithmic Differentiation

Find dy/dx if y = (x2+1)1/3(x−3)1/2

x+5 .

Derivatives of Power function

We prove the following theorem which was stated earlier.
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Theorem 3.8.6. For any real r, d
dxu

r = ur−1 du
dx .

Proof. Since ur = er lnu we have

d

dx
ur = rur

d lnu

dx
= urr

1

u

du

dx
= rur−1du

dx
.

Example 3.8.7. Differentiate f(x) = xx, x > 0

sol. Write f(x) = xx = ex lnx. So

f ′(x) =
d

dx
(ex lnx)

= (ex lnx)
d

dx
(x lnx)

= ex lnx(lnx+ x · 1
x
)

= xx(lnx+ 1).

Example 3.8.8. Sketch the graph of x1/x. To do this, we first investigate the

behavior of the function as x → 0+ and x → ∞. To study the limit, we take

the logarithm:

lim
x→∞

lnx1/x = lim
x→∞

lnx

x
= 0

Hence

lim
x→∞

x1/x = exp( lim
x→∞

lnx

x
) = e0 = 1

Meanwhile

lim
x→0+

lnx1/x = lim
x→0+

lnx

x
= −∞.

Hence

lim
x→0+

x1/x = exp( lim
x→0+

lnx

x
) = e−∞ = 0.

To see the local extrema, take the derivative and find the critical point. f ′(x) =

(1 − lnx)/x2 = 0 for x = e. By checking the sign of f ′(x) near x = e, we

conclude x = e is a point of local maximum.

The number e as a limit

Theorem 3.8.9. The number e satisfies

e = lim
x→0

(1 + x)1/x.
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1

2

1 2 3 4 5 6 7 8 9 10

b

local max

Figure 3.8: Graph of y = x1/x

Proof. If f(x) = lnx. Then f ′(1) = 1
x |x=1 = 1. By definition of derivative

1 = f ′(1) = lim
x→0+

ln(1 + x)− ln 1

x
= lim

x→0+
ln[(1 + x)

1

x ]

= ln[ lim
x→0+

(1 + x)
1

x ].

Now exponentiate.

3.9 Inverse trig functions

b

b

1−1

y = sin−1 x

x

y

−π
2

π
2

Figure 3.9: y = sin−1 x

b

b

1−1

y = cos−1 x

x

y

π
2

π

Figure 3.10: y = cos−1 x
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Inverse sine

Restrict the function sinx on [−π/2, π/2]. Then sinx : [−π/2, π/2] → [−1, 1]

is one-to - one function. So the inverse exists. Define

sin−1 x : [−1, 1] −→ [−π/2, π/2].

whenever x = sin y for x ∈ [−π/2, π/2]. Graph is as in figure 3.9. sin−1 x is

sometimes written as arcsin x.

Inverse cosine

Restrict cos x to [0, π], we obtain cos−1 x as

cos−1 x : [−1, 1] −→ [0, π].

If cos x = y for any x ∈ [0, π] then cos−1 y = x is defined and figure is in 3.10

written as cos−1 x or arccos x.

Example 3.9.1. (1) sin−1(1/2) = π/6

(2) sin−1 1 = π/2

Example 3.9.2. (1) cos−1(1/2) = π/3

(2) cos−1 0 = π/2

x

θ

1

1

x > 0

θ

x 1

1

x < 0

Figure 3.11: θ = cos−1 x

Example 3.9.3.

sin−1 x+ cos−1 x =
π

2
, cos−1 x+ cos−1(−x) = π
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cos−1 x

1
x

sin−1 x

Figure 3.12: sin−1 x

Inverse of tan x

The function tan x is one to one on (−π/2, π/2), thus it has an inverse tan−1 x

tan−1 x : R −→ (−π/2, π/2)

for any x ∈ R. Thus tan x = α iff tan−1 α = x. See figure 3.13. It is written

as tan−1 x or arctan x.

tan−1 1 = π/4 tan−1 0 = 0.

1 2 3−1−2−3

y = tan−1 x
x

y
y = π/2

y = −π/2

Figure 3.13: y = tan−1 x

Example 3.9.4. Find the derivative of tan−1 x.

From y = f(x) = tan x, we see by Theorem 3.8.3

(f−1)′(y) =
1

f ′(x)

=
1

1 + tan2 x

=
1

1 + y2
.

Thus (f−1)′(x) = 1
1+x2 .
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Example 3.9.5. Find derivatives

(1) y = sin−1 x, (|x| ≤ 1).

(2) y = sec−1 x, (|x| ≥ 1).

sol. (3) Let y = sec−1 x. Then x = sec y. Taking derivative w.r.t x, we get

1 = sec y tan y(dy/dx). Thus

dy

dx
=

1

sec y tan y
.

We need to change it to expression in x.

For x > 1, tan y =
√
x2 − 1. Hence, we have

dy

dx
=

1

x
√
x2 − 1

, x > 1.

For x < −1, use (x → −x) to get

dy

dx
=

1

−x
√
x2 − 1

, x < −1.

Hence
d

dx
sec−1 x =

1

|x|
√
x2 − 1

, |x| > 1.

Other inverse trig functions

Inverses of csc x, secx, cot x

csc−1 x : R− (−1, 1) → [−π/2, π/2] − {0}

sec−1 x : R− (−1, 1) → [0, π] − {π/2}

cot−1 x : R → (0, π). (Note that the range is different from that of tan−1 x)

Proposition 3.9.6. The derivatives of inverse trig. functions :

(1)
d

dx
sin−1 x =

1√
1− x2

(2)
d

dx
cos−1 x = − 1√

1− x2
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1 2 3−1−2−3

y = cot−1 x

x

y
y = π

π
2

1 2 3−1−2−3

y = csc−1 x

x

y
π
2

−π
2

1 2 3−1−2−3

π

−π

A

B

y = sec−1 x

x

y

Figure 3.14:
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tan−1 x =

1

1 + x2
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dx
csc−1 x = − 1

|x|
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, |x| > 1
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, |x| > 1
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d
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cot−1 x = − 1

1 + x2
.



3.9. INVERSE TRIG FUNCTIONS 21

Proposition 3.9.7. The following relations hold.

cos−1 x = (π/2) − sin−1 x

cot−1 x = (π/2) − tan−1 x

csc−1 x = (π/2) − sec−1 x

cot−1 x = tan−1(1/x)

sec−1 x = cos−1(1/x)

csc−1 x = sin−1(1/x)

Example 3.9.8. (1) Find sin(cos−1(3/5))

(2) Simplify tan(sin−1 a)

sol. (1) Let θ = cos−1(3/5). Then cos θ = 3/5 and 0 ≤ θ ≤ π. Hence

sin θ =

√

1− 9

25
=

4

5
.

(2) Let θ = sin−1 a. Then sin θ = a and −π/2 ≤ θ ≤ π/2.

cos θ =
√

1− a2.

Hence

tan θ = sin θ/ cos θ = a/
√

1− a2. (3.5)

Integral of tan x, cotx, sec x and csc x

∫

tanx dx =

∫

sinx

cos x
dx

= −
∫

du

u

= − ln |u|+ C

= − ln | cos x|+ C

= ln
1

| cos x| + C

= ln | sec x|+ C.
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For sec x we need special trick:

∫

secx dx =

∫

secx
(sec x+ tanx)

(sec x+ tanx)
dx

=

∫

(sec2 x+ sec x tan x)

sec x+ tanx
dx

=

∫

du

u

= ln |u|+ C

= ln | sec x+ tanx|+ C.

For csc x we do similarly. Thus we have

∫

secx dx = ln | sec x+ tanx|+ C
∫

cscx dx = − ln | csc x+ cot x|+ C.

3.10 Related Rates

Skip this section.

3.11 Linearization and differential

Definition 3.11.1. Given a differentiable function f , the linear function

L(x) = f(a) + f ′(a)(x− a)

is called the linearization of f at a.

Example 3.11.2. (1) Find the linearization of cos x at π/2.

(2) Find an approx value of
√
1.003 using the linearization of

√
1 + x at

x = 0.

(3) Find the linearization of 1
3
√
x4+1

at x = 0

(4) Find an approx value of
√
4.8

(5) Find the linearization of cos x at π/2. Ans −x+ π/2.

(6) Find the linearization of (1 + x)k. Ans 1 + kx.



3.11. LINEARIZATION AND DIFFERENTIAL 23

Differential

Definition 3.11.3. Let y = f(x) be differentiable. We can treat dx(differential)

like an independent variable. In this point of view, the quantity dy defined by

dy := f ′(x)dx

is called the differential of f.

The geometric meaning of differential is given in Figure 3.15. We observe

∆y = f(a+ dx)− f(a), f(a+ dx) = f(a) + ∆y ≈ f(a) + dy.

We see that dy is precisely the change of the tangent line as x changes by an

amount of dx = ∆x. In other words, dy is an approximation of exact change

∆y.

dx = ∆x

f ′(a)dx
∆y

x x+∆x

Figure 3.15: Differential dy = f ′(a)dx and ∆y

Example 3.11.4. Find differential of

(1) y = x3 − sinx

(2) y = sinu(x)

(3) tan(3x)

(4) d( x
1+x ).
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Estimating with differentials

Example 3.11.5.

b

∆r

∆A

Radius of a circle is enlarged from 10 to 10.1. Use dA to estimate the

increase in area. Compare with exact increase. A = πr2,

dA = 2πrdr = 2π(10)(0.1) = 2πm2.

Actual increase is A(10.1) −A(10) = 2π((10.1)2 − 100) = 2.01π.

Error in differential approximation

We estimate the change in y in more detail.

Theorem 3.11.6. We have

∆f = f ′(a)∆x+ ǫ∆x,

where ǫ → 0 as ∆x → 0.

Proof.

approximation error = ∆f − df

= ∆f − f ′(a)∆x

= f(a+∆x)− f(a)− f ′(a)∆x

=

(

f(a+∆x)− f(a)

∆x
− f ′(a)

)

∆x

= ǫ∆x.
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Since f is differentiable, we know ǫ :=
(

f(a+∆x)−f(a)
∆x − f ′(a)

)

approaches 0 as

∆x approaches 0. Thus

true

change

∆f =

estimated

change

f ′(a)∆x +
error
ǫ∆x

Proof of Chain rule

Assume y = f(u) is a diff’ble function of u and u = g(x) is a diff’ble function

of x. Then the composite function y = f(g(x)) is diff’ble and by theorem

there exist ǫ1, ǫ2 which approaches 0 as ∆u,∆x approaches 0 in such a way

that

∆y = f ′(u0)∆u+ ǫ2∆u

∆u = g′(x0)∆x+ ǫ1∆x.

Hence

∆y = (f ′(u0) + ǫ2)(g
′(x0) + ǫ1)∆x

∆y

∆x
= (f ′(u0) + ǫ2)(g

′(x0) + ǫ1).

Let ∆x → 0. Then we obtain the Chain rule.

Example 3.11.7. Converting mass to energy: The Newton’s law

F = m
dv

dt
= ma

is not exactly true when an object is moving at very high speed, because the

mass increases with velocity. In Einstein’s correction, the mass is

m =
m0

√

1− v2/c2
≈ m0(1 +

v2

2c2
).

So the new mass is

m ≈ m0 +
mv2

2c2
.

By multiplying c2

(m−m0)c
2 ≈ 1

2
mv2 − 1

2
m02 = ∆(KE).

Thus the change in the mass corresponds to the change in the Kinetic Energy.


