
Chapter 10

Infinite Sequence and Series

10.1 Sequences

Example 10.1.1. (1)

1, 3, 5, 7, . . .

(2) n-th term is given by (−1)n+11/n:

1,−1

2
,
1

3
,−1

4
, . . . , (−1)n+1 1

n
, . . .

(3) Certain rules

1,
1

2
,
1

2
,−1

3
,−1

3
,−1

3
,
1

4
,
1

4
,
1

4
,
1

4
, . . .

Sequence as graph

Example 10.1.2. (1) an = (n− 1)/n.

1

1 2 3 4 5

b

b
b b b

Figure 10.1: an = (n− 1)/n

(2) an = (−1)n1/n.

(3) an = sin(nπ/6).
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Figure 10.2: an = (−1)n1/n
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Figure 10.3: an = sin(nπ/6)

Recursive relation

Some sequence are defined through recursive relation such as

a1 = 1,

an+1 = 2an + 1, n = 1, 2, 3, . . .

or

a1 = 1, a2 = 2,

an+2 = an+1 + an, n = 1, 2, 3, . . .

b b
b
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y

r = 0.2θ

Figure 10.4: 2-D sequence
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10.1.1 Convergence of a sequence

Definition 10.1.3. We say {an} converges to L, if for any ε > 0, there

exists some N s.t. for all n > N it holds that

|an − L| < ε.

In this case we write

lim
n→∞

an = L or {an} → L.

L is the called the limit of an. If {an} does not converge, we say {an}
diverges.

Properties of limit

Example 10.1.4. (1) lim
n→∞

lnn/n = 0.

(2) lim
n→∞

n(e1/n − 1) = 1.

(3) Find lim
n→∞

(
n+ 1

n− 1

)n

.

sol. (1) Let f(x) = lnx/x. Then

lim
n→∞

f(n) = lim
x→∞

f(x) = lim
x→∞

(lnx)′

x′
= lim

x→∞
1

x
= 0.

lim
n→∞

lnn/n = 0.

(2) Set x = 1/n. Then it corresponds to the limit of f(x) = (ex − 1)/x as

x → 0. By L’Hopital’s rule

lim
x→0

f(x) = lim
x→0

ex = 1.

lim
n→∞

n(e1/n − 1) = 1.

Theorem 10.1.5 (Sanwich theorem). Suppose an, bn, cn satisfy an ≤ bn ≤ cn

and lim
n→∞

an = lim
n→∞

cn = L. Then lim
n→∞

bn = L.
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Limits arising often

Proposition 10.1.6.

(1) lim
n→∞

lnn

n
= 0.

(2) lim
n→∞

n
√
n = 1.

(3) lim
n→∞

x1/n = 1, x > 0.

(4) lim
n→∞

xn = 0, |x| < 1.

(5) lim
n→∞

(

1 +
x

n

)n
= ex, x ∈ R.

(6) lim
n→∞

xn

n!
= 0, x ∈ R.

Proof. (1) See Example 10.1.4.

(2) Let an = n1/n. Then ln an = lnn1/n = lnn
n . Since this approaches 0 and

ex is continuous at 0, we have an = eln an → e0 = 1 by theorem.

(3) Set an = x1/n. Since the limit of ln an = lnx1/n = lnx
n is 0, we see

x1/n = an = eln an converges to e0 = 1.

(4) Use the definition. Given ε > 0, we must find n, s.t. for |x| < ε1/n

|xn − 0| < ε holds. Since lim
n→∞

ε1/n = 1 there is an N s.t |x| < ε1/N

holds. Now if n > N we have |x|n < |xN | < ε.

(5) Let an = (1 + x/n)n. Then lim
n→∞

ln an = lim
n→∞

ln (1 + x/n)n = n ln (1 + x/n)

and by L’Hopital’s rule we see

lim
n→∞

ln(1 + x/n)

1/n
= lim

n→∞
x

1 + x/n
= x.

Hence an = (1 + x/n)n = eln an converges to ex.

(6) First we will show that

−|x|n
n!

≤ xn

n!
≤ |x|n

n!

and |x|n/n! → 0. Then use Sandwich theorem. If M is any number

greater than |x|, then |x|/M < 1 and hence (|x|/M)n → 0. If n > M

|x|n
n!

=
|x|n

1 · 2 · · ·M(M + 1) · · · n ≤ |x|n
M !Mn−M

=
MM

M !

( |x|
M

)n
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holds. But MM/M ! is fixed number. As n → ∞ (|x|/M)n approaches

0. So |x|n/n! approaches 0. Finally by Sandwich theorem we get the

result.

Example 10.1.7. (1) lim
n→∞

(
1

1000

)1/n

= 1.

(2) lim
n→∞

(
101000n2

)1/n
= lim

n→∞
(101/n)1000 lim

n→∞
n2/n = 1 · lim

n→∞

(

n1/n
)2

= 1.

(3) lim
n→∞

(

1− 2

n

)n

= e−2.

(4) lim
h→0+

(1 + h)1/h = lim
n→∞

(

1 +
1

n

)n

= e.

(5) lim
n→∞

10n

n!
= 0.

(6) The set of all x satisfying lim
n→∞

|x|n
5n

= 0 is |x| < 5.

Example 10.1.8. lim
n→∞

n
√
5n + 1 = 1.

sol. Since ln(5n + 1)1/n = ln(5n+ 1)/n → 0 above limit is e0 = 1.

Example 10.1.9. Show that lim
n→∞

lnn/nε = 0 for any ε > 0.

sol. By L’Hopital rule 3.6.5

lim
n→∞

lnn

nε
= lim

n→∞
1/n

εnε−1
= lim

n→∞
1

εnε
= 0.

Monotone Sequence

Definition 10.1.10. If an satisfies

a1 ≤ a2 ≤ · · · ≤ an ≤ · · ·

then an is called an increasing sequence (nondecreasing sequence).
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Definition 10.1.11. If there is a number M such that an ≤ M for all n, then

this sequence is said to be bounded from above. Any such M is called an

upper bound. If the smallest number exists among all upper bound, then

it is called the least upper bound. Similarly, we say a sequence bounded

from below if there is a number N such that an ≥ N for all n, Any such

an N is called a lower bound. If the largest number exists among all lower

bound, then it is called the greatest lower bound. If a sequence has both

lower bound and upper bound, then we say it is bounded.

Example 10.1.12. For the sequence an = 1 − 1/2n, M = 1 is an upper

bound and any number bigger than 1 is an upper bound. The smallest such

number(if exists) is least upper bound.

Theorem 10.1.13. If an increasing sequence has an upper bound, it con-

verges(to the least upper bound).

Suppose L is a least upper bound, we observe two things:

(1) an ≤ L for all n, and

(2) for any ε > 0 there is a term aN greater than L− ε.

The first assertion is trivial. For the second, suppose there does not exist such

aN , it holds that an ≤ L − ε for all n, which is a contradiction. Thus for

n ≥ N

L− ε < an ≤ L.

Hence |L− an| < ε for n ≥ N and we have an → L.

L
sn
ε

N

b

b

b

b

b

b

b
b

b
b

b b b b b b b b b b b b b b b b b b b b

Figure 10.5: Nondecreasing(increasing) sequence and least upper bound L

For decreasing sequence, we can define similar concept.

Definition 10.1.14. If an satisfies

a1 ≥ a2 ≥ · · · ≥ an · · ·
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an is called a decreasing sequence. If sn ≥ N , then N is called a lower

bound(lower bound). The largest such number is called the greatest lower

bound.

10.2 Infinite Series

A sequence given as the sum of an infinite sequence of numbers is called

infinite series.

Example 10.2.1. If we denote the sum of first n- term of an = 1/2n by sn

then

s1 = a1 =
1

2

s2 = a1 + a2 =
1

2
+

1

4
=

3

4

s3 = a1 + a2 + a3 =
1

2
+

1

4
+

1

8
=

7

8
...

In general, the series {sn} is written as

sn = a1 + a2 + a3 + · · ·+ an =

n∑

k=1

ak.

We write the infinite series as
∑∞

n=1 an or
∑

an (whether it converges or not!)

Definition 10.2.2. an is called n-th term and sn =
∑n

k=1 ak is called n-th

partial sum. If the limit of {sn} is L, then we say
∑

an converges to L and

write
∑∞

n=1 an = L or a1 + a2 + a3 + · · · = L . If a series does not converges,

we say it diverges.

Example 10.2.3 (Telescoping Series). Find the sum
∞∑

n=1

1/n(n + 1).

sol. We use the identity 1/n(n+ 1) = 1/n − 1/(n + 1) to see

sn =

(
1

1
− 1

2

)

+

(
1

2
− 1

3

)

+ · · ·+
(
1

n
− 1

n+ 1

)

.

Since sn = 1− 1/(n + 1), we see sn → 1.
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Divergent Series

Example 10.2.4.
∑∞

n=1(n+1)/n diverges since n-th term is greater than 1.

Example 10.2.5.
∑∞

n=1 sin(πn/2) diverges.

sol.

1, 0,−1, 0, 1, . . .

Since s4 = s8 = · · · = s4n = 0 and s2 = s6 = · · · = s4n+2 = 1 the sequence sn

oscillates between 0 and 1.

Theorem 10.2.6 (n-th term test). If
∑

an converges then an → 0.

Proof. Suppose
∑∞

n=1 an converges then sn and sn−1 must have the same limit.

Since an = sn − sn−1 we see lim an = lim sn − lim sn−1 = 0.

Theorem 10.2.7 (nth term test). If lim an 6→ 0 or lim an does not exists,

then
∑

an diverges.

Example 10.2.8.
∑

(n− 1)/n diverges since an = (n− 1)/n → 1.

Example 10.2.9.
∑

(−1)n ln(lnn) diverges since ln(ln n) → ∞.

Theorem 10.2.10. Suppose
∑

an,
∑

bn converges. Then

(1)
∑

(an + bn) =
∑

an +
∑

bn,

(2)
∑

(an − bn) =
∑

an −∑ bn,

(3)
∑

kan = k
∑

an.

Example 10.2.11.

(1)

∞∑

n=1

2n − 1

3n
=

∞∑

n=1

2n

3n
−

∞∑

n=1

1

3n
=

2

3

1

1− 2/3
− 1

3

1

1− 1/3
=

3

2
.

(2)
∞∑

n=1

3n − 2n

6n
=

∞∑

n=1

3n

6n
−

∞∑

n=1

2n

6n
=

∞∑

n=1

1

2n
−

∞∑

n=1

1

3n
=

1

2
.

What’s wrong with the following argument?

1 =

∞∑

n=1

(
1

n
− 1

n+ 1

)

=
∑ 1

n
−
∑ 1

n+ 1
= ∞−∞.
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Example 10.2.12.

(1)

∞∑

n=1

2n − 1

3n
=

∞∑

n=1

2n

3n
−

∞∑

n=1

1

3n
=

2

3

1

1− 2/3
− 1

3

1

1− 1/3
=

3

2
.

(2)

∞∑

n=1

3n − 2n

6n
=

∞∑

n=1

3n

6n
−

∞∑

n=1

2n

6n
=

∞∑

n=1

1

2n
−

∞∑

n=1

1

3n
=

1

2
.

Example 10.2.13 (Snowflake - See exer. 94). (1) Find the length ℓn of curve

Cn.

(1) It suffices to consider one side. After the first step the length is

ℓ2 = ℓ1 −
1

3
ℓ1 +

2

3
ℓ1 =

4

3
ℓ1.

After the second step the length is (43 )
2ℓ1 and so on, so ℓn = (43 )

nℓ1 → ∞.

(2) Find the area of the region An enclosed by the curve Cn, and show that

limnAn = (8/5)A1. After a few steps the area is

A2 = A1 + 3
1

32
A1 =

4

3
A1,

A3 = A1 + 3
1

32
A1 + 12

1

34
A1,

A4 = A1 + 3
1

32
A1 + 12

1

34
A1 + 24

1

36
A1,

An = A1 + 3
1

32
A1 + · · · + 3× 2n−1 1

32n−1
A1.

A1

ℓ1

and so on

Figure 10.6: Growing Snowflake

10.3 Integral Test

Example 10.3.1. Determine whether the following series converges or not.

∑ 1

n2
= 1 +

1

4
+

1

9
+ · · · + 1

n2
+ · · ·
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sol. Set f(x) = 1/x2. Then

sn = 1 +
1

4
+

1

9
+ · · ·+ 1

n2
= f(1) + f(2) + f(3) + · · ·+ f(n)

and

f(2) =
1

22
<

∫ 2

1

1

x2
dx

f(3) =
1

32
<

∫ 3

2

1

x2
dx

...

f(n) =
1

n2
<

∫ n

n−1

1

x2
dx.

sn = f(1) + f(2) + f(3) + · · ·+ f(n) < 1 +

∫ n

1

1

x2
dx = 2− 1

n
.

Thus sn is bounded, increasing, and hence converges.

Theorem 10.3.2 (Integral Test). Suppose f(x) is nonnegative, non-increasing

for x ≥ 1 and an = f(n). Then the series
∑∞

n=1 an converges iff
∫∞
1 f(x) dx

converges.

(a)
∫ n+1
n f(x) dx ≤ an

an

n n + 1

(b) an ≤
∫ n
n−1 f(x) dx

an

nn − 1

Figure 10.7: Integral Test

Proof. Since f is decreasing and f(n) = an, we see from figure 10.7(a) that
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∫ n+1
n f(x) dx ≤ an. So

∫ n+1

1
f(x) dx ≤ a1 + a2 + · · ·+ an. (10.1)

On the other hand, we see from figure 10.7 (b), that an ≤
∫ n
n−1 f(x) dx, (n =

2, 3, 4, . . . ). Hence we have

a2 + a3 + · · · + an ≤
∫ n

1
f(x) dx.

Finally together with (10.1) we see

∫ n+1

1
f(x) dx ≤ a1 + a2 + · · ·+ an ≤ a1 +

∫ n

1
f(x) dx.

Letting n → ∞, we obtain the result.

Example 10.3.3 (p-series). Let p be a fixed number. Then

∞∑

1

1

np
=

1

1p
+

1

2p
+ · · ·+ 1

np
+ · · ·

converges when p > 1 and diverges when p ≤ 1. For p = 1, we see

∫ ∞

1

1

x
dx = lim

b→∞
[ln b]b1 = ∞.

So the harmonic series

1 +
1

2
+

1

3
+ · · ·+ 1

n
+ · · ·

diverges.

Example 10.3.4. Test the convergence of

∞∑

1

1

1 + n2
.

We see

∫ ∞

1

1

1 + x2
dx = lim

b→∞
[tan−1 x]b1 = lim

b→∞
[tan−1 b− tan−1 1] =

π

4
.
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10.3.1 Series with nonnegative terms

∑ 1

n3
,
∑ 1

3n + 1
.

Example 10.3.5. Investigate the convergence of
∞∑

n=1

1

n2
.

sol. Use the inequality 1/n2 < 1/n(n − 1) and partial fraction,

sn =
1

12
+

1

22
+

1

32
+ · · ·+ 1

n2

<
1

1 · 1 +
1

1 · 2 +
1

2 · 3 + · · ·+ 1

n(n− 1)

= 1 +

(

1− 1

2

)

+

(
1

2
− 1

3

)

+ · · ·+
(

1

n− 1
− 1

n

)

= 2− 1

n
< 2.

Hence sn is bounded above and monotonic increasing hence converges.

Example 10.3.6 (Harmonic series).

∑ 1

n
= 1 +

1

2
+

1

3
+ · · · + 1

n
+ · · ·

diverges since

1 +
1

2
+

1

3
+

1

4
︸ ︷︷ ︸

> 2/4

+
1

5
+

1

6
+

1

7
+

1

8
︸ ︷︷ ︸

> 4/8

+
1

9
+

1

10
+ · · ·+ 1

16
︸ ︷︷ ︸

> 8/16

+ · · ·

10.4 Comparison Test

Theorem 10.4.1 (The Comparison Test). Let an ≥ 0.

(a) The series
∑

an converges if an ≤ cn for all n > N and
∑

cn converges

(b) The series
∑

an diverges if an ≥ dn for all n > N and
∑

dn diverge.

Proof. In (a), the partial sum is bounded by

M = a1 + a2 + · · · an +

∞∑

n=N+1

cn.
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Hence if
∑

cn converges, then
∑

an converges by Theorem 10.1.13. In (b),

the partial sum is greater than

M∗ = a1 + a2 + · · · an +

∞∑

n=N+1

dn.

But the series
∑∞

n=N+1 dn diverges. Hence so does
∑

an.

Example 10.4.2. Look at the tail part of

3 + 600 + 5000 +
1

3!
+

1

4!
+

1

5!
+ · · ·+ 1

n!
+ · · · .

Then 1/n! < 1/2n for n = 4, 5, 6, . . . and
∑

1/2n converges. Hence the series

converges.

Limit Comparison Test

Example 10.4.3. Investigate the convergence of

∞∑

1

n

2n3 − n+ 3
.

sol. Let

an =
n

2n3 − n+ 3
=

1

2n2 − 1 + 3/n

and use the fact that an behaves similar to 1/2n2. If cn = 1/2n2 then

limn→∞ an/cn = 1. Hence for any ε there is N such that if n > N for some N

then the following holds:

1− ε ≤ an
cn

≤ 1 + ε.

In other words,

(1− ε)cn ≤ an ≤ (1 + ε)cn.

Since
∑

n≥N cn converges
∑

n≥N an converges by comparison.

Theorem 10.4.4 (Limit Comparison Test). (1) Suppose an > 0 and there
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is a series
∑

cn (cn > 0) which converges and if

lim
n→∞

an
cn

= L > 0

then
∑

an converges.

(2) Suppose an > 0 and there is a series
∑

dn (dn > 0) which diverges and

if

lim
n→∞

an
dn

= L > 0

then
∑

an diverges.

Proof. We prove (1) only. Since L/2 > 0 there is an N such that for all n > N

we have ∣
∣
∣
∣

an
cn

− L

∣
∣
∣
∣
<

L

2
.

Hence

−L

2
<

an
cn

− L <
L

2
or

L

2
<

an
cn

<
3L

2
.

Hence
L

2
cn < an <

3L

2
cn.

Example 10.4.5. (1)
∑∞

1
n+1

100n3+n+1
converges since

∑∞
1

1
n2 converges

(2)
∑∞

20
1

3n−1000n converges since
∑∞

1
1
3n converge

(3)
∑∞

1
2n+1

n2+4n+1

(4) Does
∑∞

2
lnn
n3/2 converge ?

(5) Compare
∑∞

1
(lnn)1/2

(n lnn+1) with
∑∞

2
1

n(lnn)1/2
. Use integral test.

∫ ∞

2

dx

x(lnx)1/2
=

∫ ∞

ln 2

du

u1/2
= ∞.

10.5 Ratio test and Root Tests

There are many series whose behvior is similar to geometric series. In such

cases, we may compare with certain geometric series. The idea is to assume

an ∼ Cρn for some ρ > 0 and try to estimate r. There are two ways:
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(1) compute the ratio: limn→∞
an+1

an
, or

(2) compute the n-th root: limn→∞ n
√
an.

Ratio Test

Example 10.5.1. It is not easy to find general term of a1 = 1, an+1 =
nan
3n+2 .

But its ratio is easy to compute.

Theorem 10.5.2 (Ratio Test). Suppose an > 0 and if the limit exists.

lim
n→∞

an+1

an
= ρ.

Then exactly one of the following holds.

(1) The sum
∑

an converges if ρ < 1

(2) The sum
∑

an diverges if ρ > 1

(3) The test is inconclusive if ρ = 1.

Proof. (1) Let ρ < 1. Then choose any r between ρ and 1 and set ε = r − ρ.

Then since

lim
n→∞

an+1

an
= ρ,

there exists a natural number N such that for all n > N ,

∣
∣
∣
∣

an+1

an
− ρ

∣
∣
∣
∣
< ε

holds. Since an+1/an < ρ+ ε = r, we see

aN+1 < raN

aN+2 < raN+1 < r2aN

...

aN+m < raN+m−1 < rmaN .

We compare an with a series general term is rmaN . Since
∑∞

m=1 r
maN con-

verges,
∑∞

n=N+1 an converges. (2) Suppose ρ > 1. Then exist an M such that

for n > M , it holds that
an+1

an
> 1.
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Hence the series diverges:

aM < aM+1 < aM+2 < · · · .

(3) The case ρ = 1. Both the series
∑

1/n2 and
∑

1/n. But the former

converges and the latter diverges.

Example 10.5.3.

(1)
∑ n!n!

(2n)!

(2)
∑ (2n + 5)

3n

(3)
∑ 2n

n!

sol.

(1) Ratio Test

an+1

an
=

(n+ 1)!(n + 1)!(2n)!

n!n!(2n+ 2)(2n + 1)(2n)!

=
(n+ 1)(n+ 1)

(2n + 2)(2n + 1)
=

n+ 1

4n+ 2
→ 1

4
.

(2)
an+1

an
=

(2n+1 + 5)3n

3n+1(2n + 5)
=

2n+1 + 5

3(2n + 5)
→ 2

3

(3)
an+1

an
=

2n+1n!

(n+ 1)!2n
=

2

n+ 1
→ 0

Example 10.5.4. Find the range of x which makes the following converge.

1 +
x2

2
+

x4

4
+

x6

6
+ · · · .

sol. For n > 1, an = x2n−2/(2n − 2)

an+1

an
=

x2n(2n − 2)

2nx2n−2
=

(2n− 2)x2

2n
→ x2.
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So converges if |x| < 1 and diverges if |x| > 1. When |x| = 1 the series diverges

since it behaves like

1 +
1

2
+

1

4
+

1

6
· · · = 1 +

1

2

(

1 +
1

2
+

1

3
+

1

4
+ · · ·

)

.

Estimation of the error
∑∞

n=1 an − SN =

∑N+1
n=1 an

For ρ < 1 If the series is approximated by its N -th partial sum, then the error

is

aN+1 + aN+2 + · · · .

So if N is large, for some r with ρ < r < 1 we have

an+1

an
< r, n ≥ N.

Here the estimate of errors is

aN+1 + aN+2 + · · · ≤ raN + r2aN + · · · = aN · r

1− r
.

Example 10.5.5. Investigate

1

3
+

2

9
+

1

27
+

4

81
+ · · ·+ f(n)

3n
+ · · · .

f(n) =







n, n even

1, n odd.

sol. Since an = f(n)
3n we have

an+1

an
=

f(n+ 1)

3f(n)
=







1
3n , n even

n+1
3 , n odd.

So we cannot use ratio test. However if we take n-th root,

n
√
an =

n
√

f(n)

3
=







n
√
n

3 , n even

1
3 , n odd.



96 CHAPTER 10. INFINITE SEQUENCE AND SERIES

and n
√
n converges to 1. Since

lim
n→∞

n
√
an =

1

3

we can compare this series with (13)
n and conclude that it converges (as above

example).

n-th Root Test

Theorem 10.5.6 (n-th Root Test). Suppose n
√
an → ρ. Then

(1)
∑

an converges if ρ < 1.

(2)
∑

an diverges if ρ > 1.

(3) We cannot tell anything if ρ = 1.

Proof. (1) Suppose ρ < 1. Choose r between ρ and 1 and set ε = ρ − r > 0.

Since n
√
an converges to ρ there is some N s.t. when n is greater than N , it

holds that

| n
√
an − ρ| < ε.

In other words, n
√
an < ρ+ ε = r < 1. Hence

an < (ρ+ ε)n

holds. So
∑

(ρ+ ε)n converges and by comparison test
∑∞

n=N an converges.

(2) Suppose ρ > 1 then n
√
an > 1 for suff. large n an > 1. So diverges.

(3) The case ρ = 1: No conclusion can be drawn since both the series
∑

1/n2 and
∑

1/n have ρ = 1 while one converges and the other not.

Example 10.5.7.
∑∞

n=1
n
2n converges since n

√
n
2n = n

√
n
2 → 1

2 .

Example 10.5.8.
∑∞

n=1
3n

nn converges since n

√
3n

nn = 3
n → 0.
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10.6 Absolute and conditional convergence

Alternating Series

Definition 10.6.1. Suppose an > 0 for all n. A series of the form

a1 − a2 + a3 − a4 + · · ·

is called an alternating series.

The following are examples of alternating series.

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · ·

1− 2 + 3− 4 + 5− 6 + · · ·

But

1− 1

2
− 1

3
+

1

4
+

1

5
− 1

6
− 1

7
+ · · ·

is not an alternating series.

Theorem 10.6.2 (Alternating Series Test, Leibniz theorem). Suppose the

following three conditions hold.

(1) an > 0.

(2) an ≥ an+1.

(3) an → 0.

Then
∑∞

n=1(−1)n+1an converges.

s10 s2 s4 s3

a1

L

−a4

a3

−a2

Figure 10.8: Partial sum of alternating series
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Proof. The idea is to show that the sum of even number of terms form a

bounded, increasing sequence so that it converges by Theorem 10.1.13. Sup-

pose n is even (n = 2m) then the partial sum

s2m = (a1 − a2) + (a3 − a4) + · · ·+ (a2m−1 − a2m)

is increasing. Hence s2m+2 ≥ s2m. But we also see

s2m = a1 − (a2 − a3)− (a4 − a5)− · · · − (a2m−2 − a2m−1)− a2m.

Hence s2m is less than a1. In other words, s2m is bounded above, hence

converges. Let L = lim s2m be its limit. Now suppose n is odd (n = 2m+ 1).

Then

s2m+1 = s2m + a2m+1.

Then since a2m+1 → 0, lim s2m+1 = lim(s2m + a2m+1) = L.

Example 10.6.3. The series

∑

(−1)n+1 1

n
= 1− 1

2
+

1

3
− 1

4
+ · · ·

converges.

Example 10.6.4.

∑

(−1)n+1 1√
n
= 1− 1√

2
+

1√
3
− 1√

4
+ · · ·

converges.

Example 10.6.5.

∑

(−1)n+1

√
n√

n+ 1
=

1√
2
−

√
2√
3
+

√
3√
4
−

√
4√
5
+ · · ·

diverges by n-th term test.

Example 10.6.6.

2

1
− 1

1
+

2

3
− 1

3
+

2

5
− 1

5
+ · · ·+ 2

2n− 1
− 1

2n− 1
+ · · ·
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is alternating. But it is not monotonically decreasing. But

(
2

1
− 1

1

)

+

(
2

3
− 1

3

)

+

(
2

5
− 1

5

)

+ · · ·

+

(
2

2n− 1
− 1

2n − 1

)

+ · · · = 1 +
1

3
+

1

5
+ · · ·+ 1

2n− 1
+ · · ·

So diverges.

Example 10.6.7. Investigate
∞∑

n=2

(−1)n
lnn

n+ 1
.

sol. We let

f(x) =
lnx

x+ 1
.

Then f(n) = lnn/(n+1) and f ′(x) = ((x+1)/x−lnx)/(x+1)2. For sufficiently

large x, (x+1)/x− lnx < 0. Hence f(x) is decreasing function. For example,

for x ≥ 8, f(x) is decreasing. So an = f(n) is decreasing for n ≥ 8. By Leibniz

theorem the series converges.

Partial Sum of Alternating Series

We look at the partial sums of an alternating series:

s1 = a1,

s2 = a1 − a2, So s2 < s1.

s3 = a1 − a2 + a3 = a1 − (a2 − a3), So s2 < s3 < s1.

s4 = a1 − a2 + a3 − a4 = a1 − a2 + (a3 − a4), So s2 < s4 < s3 < s1.

Thus s2m+1 is decreasing and s2m is increasing. Let L be its sum. Then

s2m < s2m+2 < · · · < L
︸ ︷︷ ︸

|s2m−L|

< · · · < s2m+1

︸ ︷︷ ︸

|s2m−s2m+1|

< s2m−1

But since

|s2m − L| < |s2m − s2m+1| = a2m+1,

|s2m+1 − L| < |s2m+2 − s2m+1| = a2m+2
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we see

|sn − L| < an+1.

In other words, the partial sum is a good approximation to the true sum with

error bound an+1. Since an is decreasing sn+1 is better approximation than

sn.

Theorem 10.6.8 (Alternating Series Estimation Theorem). Suppose
∑

(−1)n+1an

is an alternating series satisfying the conditions of Leibniz theorem. Then the

partial sum

sn = a1 − a2 + a3 + · · ·+ (−1)n+1an

is a good approximation with an error bound less than an+1.

Example 10.6.9. estimate

∞∑

n=0

(−1)n

2n
= 1− 1

2
+

1

4
+ · · · = 2

3

with first six term.

sol. The error bound is a7 = 1/64. The true value up to six terms is

s6 = 1− 1

2
+

1

4
− 1

8
+

1

16
− 1

32
=

21

32
.

So the true error is |2/3 − 21/32| = 1/96 which is less than a7 = 1/64.

Example 10.6.10. Use s10 or s100 to estimate

∞∑

n=1

(−1)n−1

n
= 1− 1

2
+

1

3
− · · · = ln 2 = 0.69314 · · ·

sol. True error of

s10 = 1− 1

2
+

1

3
− 1

4
+ · · · − 1

10
= 0.64563 · · ·

is 0.0475 · · · < a11 = 1/11. The true error of

s100 = 1− 1

2
+

1

3
− 1

4
+ · · · − 1

100
= 0.68881 · · ·

is 0.00433 · · · < a111 = 1/111.
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Absolute convergence and Conditional Convergence

Definition 10.6.11. If
∑

|an| converges then
∑

an is said to converge ab-

solutely.

Theorem 10.6.12. If
∑ |an| converges then so does

∑
an.

Proof.

−|an| ≤ an ≤ |an|

holds for all n. Hence

0 ≤ an + |an| ≤ 2|an|.

Since
∑ |an| converges and an + |an| ≥ 0

∑

(an + |an|)

converges by comparison. Subtracting converging series, we have

∑

an =
∑

(an + |an|)−
∑

|an|

and so
∑

an converges.

Corollary 10.6.13. If
∑

an diverges, so does
∑ |an|.

Example 10.6.14. (1)
∑∞

n=1(−1)n+1 1
n2 = 1− 1

4 +
1
9 + · · ·+. Its n-th term

an = (−1)n+1

n2 satisfies |an| = 1
n2 . Since

∑ 1
n2 converges we see the series

∑∞
n=1(−1)n+1 1

n2 converges absolutely. The series
∑∞

n=1(−1)n+1 1
n2 , of

course converges.

(2) The n-th term of
∑ cos n

n2 satisfies |an| = | cos n|
n2 ≤ 1

n2 . Since
∑ 1

n2 con-

verges,
∑ cosn

n2 converges.

(3)
∑

(−1)n+1 1

n
= 1− 1

2
+

1

3
− 1

4
+ · · ·

But
∑ |an| =

∑ 1
n diverges by integral test. Thus the series does not

converge absolutely. Still, this series converges (by Leibniz theorem).

(4)
∑ (−1)n

np converges absolutely for p > 1 but does not converges absolutely

for p ≤ 1. However, the series converges for all p > 0.
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Definition 10.6.15. A series which converges but does not converge not

absolutely converges conditionally.

Rearrangement of Series for Absolutely Convergent Series

Theorem 10.6.16 (Rearrangement of Series). Suppose
∑

an converges abso-

lutely and bn is a rearrangement of an. Then
∑

bn converges absolutely and

and ∞∑

n=1

an =
∞∑

n=1

bn.

Here we have bk = an(k) for some 1-1 function n(k).

Proof. See exercise 68 of the text book.

Example 10.6.17. We know the following converges absolutely:

1− 1

2
+

1

4
− 1

8
+

1

16
− 1

32
+ · · · = 2

3
.

Hence rearranging it in any order we get

1 +
1

4
− 1

2
+

1

16
+

1

64
− 1

8
+ · · ·

We can guarantee this series converges to 2
3 . We know the series

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · ·

converges but not absolutely. Hence its rearrangement may not converge. In

fact, even if it converges it may converge to a different value.

Consider one rearrangement:

(

1− 1

2

)

+

(
1

3
+

1

5
− 1

4

)

+

(
1

7
+

1

9
− 1

6

)

+

(
1

11
+

1

13
− 1

8

)

+ · · ·

Then sum may be bigger than ln 2 = 0.69314 · · · .

Product of two series

Suppose
∑∞

n=0 an,
∑∞

n=0 bn converge absolutely. Then

( ∞∑

n=0

an

)

×
( ∞∑

n=0

bn

)

= (a0 + a1 + · · ·+ an + · · · )× (b0 + b1 + · · ·+ bn + · · · ).
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Finite partial sum is

(a0 + a1 + · · · + an)× (b0 + b1 + · · · + bn).

We can write it as

a0b0 + (a0b1 + a1b0) + (a0b2 + a1b1 + a2b0) + · · ·
+ · · ·+ (a0bn + a1bn−1 + · · · + an−1b1 + anb0).

In the limit,

( ∞∑

n=0

an

)

×
( ∞∑

n=0

bn

)

= a0b0 + (a0b1 + a1b0) + (a0b2 + a1b1 + a2b0) + · · ·
+ · · · (a0bn + a1bn−1 + · · · + an−1b1 + anb0) + · · ·

Since it converges absolutely, it value does not change.

Theorem 10.6.18. Suppose both
∑∞

n=0 an and
∑∞

n=0 bn converge absolutely.

If we set cn =
∑k

n=0 akbn−k then
∑

cn converge absolutely and

∞∑

n=0

cn =

( ∞∑

n=0

an

)

×
( ∞∑

n=0

bn

)

.

10.7 Power Series

Definition 10.7.1. A power series about x = 0 is a series of the form

∞∑

n=0

anx
n = a0 + a1x+ a2x

2 + · · ·+ anx
n + · · ·

A power series about x = a is a series of the form

∞∑

n=0

an(x− a)n.

Here an are the coefficients and a is called the center.

Example 10.7.2. (1) (Geometric series)
∑∞

n=1
(x−1)n

2n = 1
21
+ (x−1)2

22
+ (x−1)3

23
+

· · ·
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(2)
∑∞

n=1(−1)n−1 xn

n = x− x2

2 + x3

3 − · · ·

(3)
∑∞

n=1(−1)n−1 x2n−1

2n−1 = x− x3

3 + x5

5 − · · ·

(4)
∑∞

n=0
xn

n! = 1 + x+ x2

2! +
x3

3! + · · ·

(5)
∑∞

n=0 n!x
n = 1 + x+ 2!x2 + 3!x3 + · · ·

Theorem 10.7.3 (Convergenec of Power Series). Given a power series
∑∞

n=0 an(x−
x0)

n

(1) Suppose it converges at a point x1 (6= x0). Then it converges absolutely

for all points x satisfying |x− x0| < |x1 − x0|.

(2) Suppose it diverges at x2 it. Then it diverges for all x with |x − x0| >
|x2 − x0|.

Proof. Suppose
∑∞

n=0 an(x1−x0)
n converges. Then limn→∞ an(x1−x0)

n = 0.

Hence for suff. large n, it holds that |an(x1 − x0)
n| ≤ 1 and we see

|an(x− x0)
n| = |an(x1 − x0)

n|
∣
∣
∣
∣

x− x0
x1 − x0

∣
∣
∣
∣

n

≤
∣
∣
∣
∣

x− x0
x1 − x0

∣
∣
∣
∣

n

.

Hence for all x with |x − x0| < |x1 − x0|, the series
∑∞

n=0 an(x1 − x0)
n

converges absolutely. Now suppose the series
∑∞

n=0 an(x2 − x0)
n diverges

and
∑∞

n=0 an(x − x0)
n converge for some x satisfying |x − x0| > |x2 − x0|.

Then by (1) the series
∑∞

n=0 an(x2 − x0)
n must converge, which is a con-

tradiction. Hence the series
∑∞

n=0 an(x − x0)
n must diverges for any x with

|x− x0| > |x2 − x0|.

By Theorem 10.7.3, there are three possibilities for the series
∑∞

n=0 an(x−
x0)

n:

(1) It converges for x0 only;

(2) It converges absolutely for all x;

(3) There exists an R such that for all x with |x − x0| < R it converges

absolutely and diverges for all x with |x− x0| > R.

We see that in case (1) R = 0, and in case (2) R = ∞. In general, the number

R is called the radius of convergence of
∑∞

n=0 an(x− x0)
n.
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Theorem 10.7.4. For
∑∞

n=0 an(x− x0)
n, the radius of convergence is given

as follows:

R = lim
n→∞

∣
∣
∣
∣

an
an+1

∣
∣
∣
∣

(10.2)

R = lim
n→∞

1
n
√

|an|
(10.3)

provided that either of the limit exists.

Proof. Suppose the limit in (10.2) exists. Then

lim
n→∞

∣
∣
∣
∣

an+1(x− x0)
n+1

an(x− x0)n

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
|x− x0| =

|x− x0|
R

.

Now by ratio test (Theorem 10.5.2), the power series converges absolutely for

|x− x0|/R < 1 and diverges if |x− x0|/R > 1. Hence R given by (10.2) is

the radius of convergence. One can show (10.3) holds if we use n-th root test

(Theorem 10.5.6).

The set of all point for which the series converges form an interval I (called

the interval of convergence) and I satisfies

(x0 −R,x0 +R) ⊂ I ⊂ [x0 −R,x0 +R].

Example 10.7.5. Find the interval of convergence.

(1)

∞∑

n=0

nnxn

(2)

∞∑

n=1

xn

n2

(3)

∞∑

n=1

(−1)n−1xn

n

(4)

∞∑

n=0

xn

n!
.

sol. (1)

R = lim
n→∞

nn

(n+ 1)n+1
= lim

n→∞

(
n

n+ 1

)n 1

n+ 1
= 0.
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1−1

b x

1−1

xbb

1−1

xb

1−1

x

Figure 10.9: interval of convergence

(2)

R = lim
n→∞

(n+ 1)2

n2
= 1.

When x = ±1,
∑∞

n=1((±1)n/n2) both converges. Hence I = [−1, 1].

(3)

R = lim
n→∞

n+ 1

n
= 1.

For x = 1,
∑∞

n=1((−1)n−1/n) is alternating, so converges. While for x = −1,
∑∞

n=1(1/n) diverges. So I = (−1, 1].

(4) Since

R = lim
n→∞

(n+ 1)!

n!
= ∞

the interval of convergence is (−∞,∞).

Theorem 10.7.6 (Term by term differentiation). Suppose
∑∞

n=0 an(x− x0)
n

converges for all |x−x0| < R for some R > 0, i.e., the function f(x) is defined

by

f(x) =

∞∑

n=0

an(x− x0)
n, |x− x0| < R. (10.4)

Then

(i) f(x) is differentiable on (x0 −R,x0 +R) and its derivative is

f ′(x) =
∞∑

n=1

nan(x− x0)
n−1, |x− x0| < R. (10.5)
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(ii) f(x) is integrable on (x0 −R,x0 +R) and

∫

f(x) dx =

∞∑

n=0

an
(x− x0)

n+1

n+ 1
+ C, |x− x0| < R. (10.6)

The radius convergence of the power series (10.5) and (10.6) are also R.

Proof. Suppose

R = lim
n→∞

∣
∣
∣
∣

an
an+1

∣
∣
∣
∣
.

The radius of convergence of the power series (10.5) is given by Theorem 10.7.4

lim
n→∞

∣
∣
∣
∣

(n+ 1)an+1

(n+ 2)an+2

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

an+1

an+2

∣
∣
∣
∣
= R.

Similarly, the radius of convergence of (10.6) is also R.

Corollary 10.7.7. The series in Theorem 10.7.6 is differentiable infinitely

many times on (x0 −R,x0 +R) and its k-th derivative is given by

f (k)(x) =
∞∑

n=k

n(n− 1) · · · (n − k + 1)an(x− x0)
n−k,

|x− x0| < R,

(10.7)

k = 0, 1, . . . .

Example 10.7.8 (Caution!). The (not a power!) series

∞∑

n=1

sin(n!x)

n2

converges for all x, but if we differentiate it we get

∞∑

n=1

n! cos(n!x)

n2

which does not converges for any x.
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Product of two Power series

Theorem 10.7.9. Suppose both A(x) =
∑∞

n=0 anx
n, B(x) =

∑∞
n=0 bnx

n con-

verge absolutely for |x| < R and

cn = a0bn + a1bn−1 + · · ·+ anb0 =
k∑

n=0

akbn−k.

Then
∑∞

n=0 cnx
n converge absolutely to A(x)B(x) for |x| < R also, and

( ∞∑

n=0

anx
n

)

×
( ∞∑

n=0

bnx
n

)

=
∞∑

n=0

cnx
n.

Example 10.7.10. Use

∞∑

n=0

xn = 1 + x+ x2 + · · · = 1

1− x
, for |x| < 1

to get the power series for 1/(1 − x)2.

sol. We let A(x) = B(x) =
∑∞

n=0 x
n. Then we see

cn = a0bn + a1bn−1 + · · ·+ anb0 =
k∑

n=0

akbn−k = n+ 1.

Hence

A(x)B(x) =

∞∑

n=0

cnx
n =

∞∑

n=0

(n+ 1)xn.

This series could be obtained by differentiation.

Example 10.7.11. Compute the first few terms of

( ∞∑

n=0

(n+ 1)xn

)( ∞∑

n=0

(−1)nxn

)

sol.

(
1 + x+ 2x2 + 3x3 + · · ·

) (
1− x+ x2 − x3 + x4 · · ·

)

= 1 + 2x2 + x3 + 3x4 + 2x5 · · ·
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10.8 Taylor and Maclaurin Series

In the previous discussions we have seen that a power series defines a continu-

ous function on I. How about its converse? Suppose f is differentiable n-times.

Is it possible to express it in power series ? A power series
∑∞

n=0 an(x − a)n

represents a function on its interval of convergence I

f(x) =
∞∑

n=0

an(x− a)n, x ∈ I.

We shall later show

∞∑

n=0

f (n)(a)

n!
(x− a)n

=f(a) + f ′(a)(x− a) + · · ·+ f (n)(a)

n!
(x− a)n + · · · .

This is called Taylor series of f(x) at a (If a = 0, it is also called Maclaurin

series).

Example 10.8.1. Find Taylor series of f(x) = 1/x at a = 2.

sol.

f(x) =
1

x
, f ′(x) = −x−2, f ′′(x) = 2!x−3, · · · , f (n)(x) = (−1)nn!x−(n+1),

f(2) =
1

2
, f ′(2) = − 1

22
,

f ′′(x)
2!

=
1

2−3
, · · · , f (n)(2)

n!
=

(−1)n

2n+1
.

Taylor Polynomial

Consider

y = P1(x) := f(a) + f ′(x0)(x− a).

This is linear approximation to f(x). Similarly we can consider

y = P2(x) := f(a) + f ′(a)(x − a) +
f ′′(a)
2

(x− a)2.
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p1

p3

p5

p7

p9

sin x

x

y

Figure 10.10: Taylor polynomials for sinx

which has same derivative up to second order. By the same way one can find

a polynomial Pn(x) of degree n. It is called a Taylor polynomial of degree

n Then we see

P (k)
n (a) = f (k)(a), k = 0, 1, · · · , n.

Pn(x) = f(a) + f ′(a)(x− a) + · · ·+ f (n)(a)

n!
(x− a)n. (10.8)

The difference(error) is defined as

Rn(x) = f(x)− Pn(x)

and called the remainder

f(x) = Pn(x) +Rn(x)

is called n-th Taylor formula of f(x) at a.

Example 10.8.2. Find Taylor polynomial for cos x.

Example 10.8.3.

f(x) =







exp(−1/x2), x 6= 0

0, x = 0.
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y =

{

e−1/x2

x 6= 0

0 x = 0

x

y

Figure 10.11: Non convergent Taylor polynomials for e−1/x2

is infinitely differentiable at 0, but the Taylor series converges only at x = 0.

In fact we can show that f (n)(0) = 0, n = 0, 1, . . . . So the Taylor polynomial

Pn(x) = 0 and Rn(x) = f(x). Hence Pn(x) 6→ f(x).

10.9 Convergence of Taylor Series, Error estimates

Theorem 10.9.1 (Taylor’s Theorem with Remainder). Suppose f(x) is dif-

ferentiable n + 1 times on an open interval I containing a and Pn(x) is the

Taylor polynomial given by (10.8). Then

Rn(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1. (10.9)

Definition 10.9.2. Suppose f(x) is infinitely differentiable on I and

lim
n→∞

Rn(x) = 0, x ∈ I

then we say the Taylor series at a converges to f(x) and we we write

f(x) =

∞∑

n=0

f (n)(a)

n!
(x− a)n, x ∈ I.

Here Rn(x) = f(x)− Pn(x) is the remainder.

Corollary 10.9.3. Suppose there is some M such that f(x) satisfies |f (n+1)(x)| ≤
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M for all x ∈ I. Then

|Rn(x)| ≤ M
|x− x0|n+1

(n+ 1)!
, x ∈ I. (10.10)

Example 10.9.4. At a = 0, we have

ex = 1 + x+ · · · + xn

n!
+Rn(x).

Here

|Rn(x)| ≤ ec
xn+1

(n+ 1)!
.

Example 10.9.5. (1) Maclaurin series of sinx, cos x, ex:

sinx =

∞∑

n=0

(−1)nx2n+1

(2n+ 1)!
, −∞ < x < ∞

cos x =

∞∑

n=0

(−1)nx2n

(2n)!
, −∞ < x < ∞

ex =
∞∑

n=0

xn

n!
, −∞ < x < ∞

(2) Maclaurin series of ln(1 + x) on (0,∞)

ln(1 + x) =

∞∑

n=1

(−1)n−1xn

n
, −1 < x ≤ 1

(3) Maclaurin series of 1/(1− x)

1

1− x
=

∞∑

n=0

xn, −1 < x < 1

(4) Taylor series of
√
x is at 1.

Example 10.9.6 (Substitution). Find series for cos x2 near x = 0.

Example 10.9.7 (Multiplication). Find series for x sinx2 near x = 0.

Example 10.9.8. Find Taylor expansion of

ex cos x.
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sol.

ex cos x =

(

1 + x+
x2

2!
+

x3

3!
+ · · ·

)

·
(

1− x2

2!
+

x4

4!
+ · · ·

)

=

(

1 + x− x3

3
− x4

6
· · ·
)

.

Example 10.9.9 (Truncation Error). For what values of x can we replace

sinx by sinx ≈ x− x3

3! with error less than 3× 10−4?

sinx ≈ x− x3

3!
= p3(x) = p4(x).

Hence we see the error term is either R3(x) or R4(x). We use the latter since

it is more accurate value. R4(x) =
f(5)(c)

5! |x|5, we let

|x|5
5!

≤ 3× 10−4.

Proof of Taylor’s Formula with Remainder

With

Pn(x) =f(a) + f ′(a)(x− a) + · · ·+ f (n)(a)

n!
(x− a)n

we set

φn(x) = Pn(x) +K(x− a)n+1.

This function has same first n-derivative as f at a. We can choose K so that

φn(x) agrees with f(x). The idea is to fix x = b and choose K so that φn(b)

agrees with f(b). So

f(b) = Pn(b) +K(b− a)n+1, or K =
f(b)− Pn(b)

(b− a)n+1
(10.11)

and

F (x) = f(x)− φn(x)

is the error. We use Rolle’s theorem. First, since F (b) = F (a) = 0, we have

F ′(c1) = 0, for some c1 ∈ (a, b).
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Next, because F ′(a) = F ′(c1) = 0, we have

F ′′(c2) = 0, for some c2 ∈ (a, c1).

Now repeated application of Rolle’s theorem to F ′′, etc show there exist

c3 in (a, c2) such that F ′′′(c3) = 0,

c4 in (a, c3) such that F (4)(c4) = 0,

...

cn in (a, cn−1) such that F (n)(cn) = 0,

cn+1 in (a, cn) such that F (n+1)(cn+1) = 0.

But since F (x) = f(x)− φn(x) = f(x)− Pn(x)−K(x− a)n+1, we see

F (n+1)(c) = f (n+1)(c) − 0− (n+ 1)!K.

Hence

K =
f (n+1)(c)

(n+ 1)!
, c = cn+1.

So

f(b) = Pn(b) +
f (n+1)(c)

(n+ 1)!
(b− a)n+1. (10.12)

Now since b is arbitrary, we can set b = x. Furthermore, if Rn → as

n → ∞, we obtain Taylor’s theorem.

10.10 Binomial Series and Applications

Binomial Series

First assume m is a positive integer and consider the binomial expansion

(1 + x)m = 1 +mx+
m(m+ 1)

2!
x2 + · · ·+

(
m

k

)

xk + · · ·+ xm.

Here (
m

k

)

=
m(m− 1) · · · (m− k + 1)

k!
, n = 0, 1, 2, . . . .
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We now consider the Taylor series of (1 + x)m for any real m. Since

f(x) = (1 + x)m

f ′(x) = m(1 + x)m−1

f ′′(x) = m(m− 1)(1 + x)m−2

· · ·
f (k)(x) = m(m− 1)(m − 2) · · · (m− k + 1)(1 + x)m−k,

(10.13)

we obtain the Taylor series

(1 + x)m = 1 +mx+
m(m+ 1)

2!
x2 + · · · +

(
m

k

)

xk + · · · . (10.14)

We can show the radius of convergence is R = 1. When m is an integer, the

derivatives f (k)(x) = 0 for k ≥ m, and we obtain the usual binomial expansion

as a special case.

Example 10.10.1.

1

(1 + x)
= 1− x+ x2 − x3 + · · ·+ (−1)kxk + · · ·

(1+x)1/2 = 1+
x

2
+
(12)(−1

2 )

2!
x2+

(12)(−1
2)(−3

2 )

3!
x3+

(12)(−1
2 )(−3

2 )(−5
2)

4!
x4+· · ·

= 1 +
x

2
− x2

8
+

x3

16
− 5x4

128
+ · · · . (10.15)

Substitution gives

√

1− x2 = 1− x2

2
− x4

8
+ · · · , |x2| < 1

or
√

1− x3 = 1− x3

2
− x6

8
+ · · · |x3| < 1

or even √

1− 1

x
= 1− 1

2x
− 1

8x2
+ · · · |1

x
| < 1

are possible.

Example 10.10.2. Express
∫
sin

√
x dx as a power series and use it to eval-



116 CHAPTER 10. INFINITE SEQUENCE AND SERIES

uate
∫ 1
0 sin

√
x dx.

sin
√
x = x1/2 − x3/2

3!
+

x5/2

5!
− x7/2

7!
+ · · ·

∫ 1

0
sin

√
x dx =

2

3
x3/2 − 2

5 · 3!x
5/2 +

2

7 · 5!x
7/2 − 2

9 · 7!x
9/2 + · · ·

∣
∣
∣
∣

1

0

=
2

3
− 2

5 · 3! +
2

7 · 5! −
2

9 · 7! + · · ·

Example 10.10.3. Find
√
1.2 up to two decimal point.

sol. Let f(x) =
√
1 + x. Then

√
1.2 = f(0.2). Hence from equation (10.14)

We see Taylor series at x0 = 0 is

f(x) = 1 +
1

2
x+ · · · +

(
1/2

n

)

xn +Rn+1(x),

Rn(x) =
1

(n+ 1)!
f (n+1)(x̄)xn+1 (0 ≤ x̄ ≤ 0.2).

For n = 1,

R1(0.2) = −1

2
f ′′(x̄)(0.2)2 = −1

2

1

2
(−1

2
)(1+x̄)−3/2 = −0.005(1+x̄)−3/2, (0 ≤ x̄ ≤ 0.2)

Hence
√
1.2 ≈ 1 + (1/2)(0.2) = 1.1 and the error satisfies |R1(0.2)| < 0.005.

Example 10.10.4. Find Maclaurin series of arctan x.

sol. Note that for |x| < 1 the arctan x has convergent power series:

(arctan x)′ =
1

1 + x2
=

∞∑

n=0

(−1)nx2n.

Integrate it from 0 to x

arctan x =

∫ x

0

∞∑

n=0

(−1)nt2n dt

=

∞∑

n=0

(−1)nx2n+1

2n+ 1
, |x| < 1.

Thus

arctan x = x− x3

3
+

x5

5
− x7

7
+ · · ·
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This formula can be used to compute π. For example,

π

4
= arctan 1 = 1− 1

3
+

1

5
− 1

7
+ · · ·

The error with n-term is 1/(2n+1). So to get the error less than 10−3, we need

2n + 1 ≈ 1000, n = 500 terms. Because of its slowness, we suggest another

methods. For example, if

α = tan−1 1

2
, β = tan−1 1

3
,

then

tan(α+ β) =
tanα+ tan β

1− tanα tan β
=

1
2 +

1
3

1− 1
6

= 1 = tan
π

4

and
π

4
= α+ β = tan−1 1

2
+ tan−1 1

3
.

Now use the Taylor series for tan−1 x with x = 1
2 and x = 1

3 . This is faster.

For example

tan−1 1

2
= (

1

2
)− 1

3
(
1

2
)3 +

1

5
(
1

2
)5 − 1

7
(
1

2
)7 +R1

8 = 0.463467...

tan−1 1

3
= (

1

3
)− 1

3
(
1

3
)3 +

1

5
(
1

3
)5 +R2

6 = 0.321810..

Here |R1
8| ≤ 1

9(
1
2 )

9 = 1
4,500 and |R2

6| ≤ 1
7(

1
3 )

7 = 1
15,309 and

tan−1 1

2
+ tan−1 1

3
= 0.7852777

Multiply by 4 we get

π ≈ 3.14111...

which is accurate at least three decimals.

Similar idea can be used to the following problem:

Example 10.10.5. Estimate

ln 2 = ln(1 + 1) = 1− 1

2
+ · · ·+ (−1)n−1

n
+Rn(1).
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Since

|Rn(1)| ≤
1

n+ 1

we need to take large n. However, we can do the following:

ln 2 = ln
4

3
+ ln

3

2
2 = ln(1 +

1

3
) + ln(1 +

1

2
)

and use Taylor series.

Example 10.10.6. Estimate
∫ 1
0 sinx2 dx with error less than 0.001.

sol. First note that

sinx2 = x2 − x6

3!
+

x10

5!
− x14

7!
+ · · ·

Integrating

∫ 1

0
sinx2 dx =

1

3
− 1

7 · 3! +
1

11 · 5! −
1

15 · 7! + · · ·

Since
1

11 · 5! < 0.00076

it suffices to take two terms.

Example 10.10.7. Estimate sin(0.1) up to third digit 3.

sol. Taylor polynomial of sinx at x0 = 0

sinx = x− 1

3!
x3 +

1

5!
x5 − · · ·+ (−1)n−1 1

(2n − 1)!
x2n−1 +R2n−1(x).

Since | sin x| ≤ 1, for | cos x| ≤ 1

|R2n−1(x)| = |R2n(x)| ≤
|x|2n+1

(2n + 1)!
.

If n = 1, sinx ∼ x and the error for sin(0.1) ∼ 0.1 is

|R2(0.1)| ≤
(0.1)3

3!
< 10−3

we have sin(0.1) ≈ 0.1 and the error is less than ±(1/6) × 10−3.
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Indeterminate forms

Example 10.10.8. Find

lim
x→1

lnx

x− 1
.

Use the Taylor series of lnx ar x = 1.

Example 10.10.9. Find

lim
x→0

sinx− x+ (x3/6)

x4
.

sol. x0 = 0. Taylor polynomial of sinx atx0 = 0 is

sinx = x− x3

6
+R4(x) and |R4(x)| ≤

|x|5
5!

.

Hence ∣
∣
∣
∣

sinx− x+ (x3/6)

x4

∣
∣
∣
∣
=

∣
∣
∣
∣

R4(x)

x4

∣
∣
∣
∣
≤ |x|

5!

and limit is 0.

Example 10.10.10. Find

lim
x→0

(
1

sinx
− 1

x

)

.

sol.

1

sinx
− 1

x
=

x− sinx

x sinx

=
x−

(

x− x3

3! +
x5

5! − · · ·
)

x ·
(

x− x3

3! +
x5

5! − · · ·
)

=
x3
(

1
3! − x2

5! + · · ·
)

x2
(

1− x2

3! + · · ·
)
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Euler’s identity

eiθ = 1 +
iθ

1!
+

i2θ2

2!
+

i3θ3

3!
+

i4θ4

4!
+ · · ·

=

(

1− θ

2!
+

θ4

4!
− θ6

6!
+ · · ·

)

+ i

(

θ − θ3

3!
+

θ5

5!
− · · ·

)

= cos θ + i sin θ.


