Chapter 1

The geometry of Euclidean
Space

We consider the basic operations of vectors in 3 and 3 dim. space: vector
addition, scalar multiplication, dot product and cross product. In section 1.6

we generalize these notions to n dim’l space.

1.1 Vectors in 2, 3 dim space

1.1.1 Lines, Planes and the Space
(1) The set of all real numbers is denoted by R.
(2) The set of all ordered pairs of real numbers (z,y) is denoted by R2.
(3) The set of all ordered triples of real numbers (x,v, 2) is denoted by R3.

The planes in R3®determined by z = 0.(resp. # = 0 and y = 0) are called
zy-plane, (resp. yz-plane, zz-plane) These planes divides the space into
eight parts: Each of them is called octant. If every component is positive, it
is called the first octant.

Example 1.1.1. (1) The xz-plane is the set of all points with y = 0:
{(z,y) | y =0}
(2) Similarly, the zy-plane is determined by z = 0:

{(z,y,2) | 2= 0}.
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2nd quadrant| 1st quadrant

o

3rd quadrant| 4-th quadrant

Figure 1.1: quadrant

(3) z-axis is determined by

or
{(z,9,2) |y=0,2=0}.
Definition 1.1.2. A vector in R™,n = 2,3 is an ordered pair(triple) of real
numbers, such as
(a1,a2), or (a1, asz,as).
a1, ao are called z-coordinate, y-coordinate or z-component, y-component
of (a1, a2). The point (0,0) is called the origin and denoted by O.

We use the boldface to denote vectors, e.g, a = (a1, a2) or a = (a1, az,as3)
are standard notations for vectors. The notation @ is also used. A point P in
R™ can be represented by an ordered pair of real numbers (a1, as) or (a1, az, as)
called Cartesian coordinate) of P. Thus, vectors are identified with points

in the plane or space.

Rz = {(al,ag) ‘ al € R, as € R}

Vector addition and scalar multiplication-algebraic view

The operation of addition can be extended to R3. Given two triples, a =

(a1,az2,a3),b = (b1, by, bs), we define

a+b = (a1,a2,a3) + (b1, b2, b3) = (a1 + b1, a2 + ba, az + b3)
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Figure 1.2: Coordinate plane
to be the sum of (a1, ag,as) and (by,be, b3). Thus we see that
a+b=Db+a.

Two vectors a = (a1, a2,a3) and b = (b1, ba, b3) are equal if a; = by, as = by
and a3 = bs. The vector 0 = (0,0,0) is the zero element. The vector
—(a1,a2,a3) = (—a1, —ag, —as) is called the additive inverse or negative
of (a1, a9, as).

Commutative law and associate law for additions:
(1) (z,y,2) + (u,v,w) = (u,v,w) + (z,y, 2) (commutative law)

(i) (z,9,2) + (u,v,w)) + (I, m,n)

= (z,y,2) + (u,v,w) + (I, m,n)) (associate law)

The difference is defined as
(a1,a2,a3) — (b1,b2,b3) = (a1 — b1, a2 — ba, az — bs).

Example 1.1.3.

(6,0,2) + (—10,3,2) = (—4,3,4)
(3,0,3) — (5,0,—2) = (—2,0,5)
(0,0,0) + (1,3,2) = (1,3,2)

For any real o, and (a1, as,ag) in R3, the scalar multiple a(a1, as,a3) is
defined as

alay,as,a3) = (aay, aag, aas).

Additions and scalar multiplication has the following properties:
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@) (@f)(z,y,2) = a(B(z,y,2))
(ii) (a+B)(z,y,2) = a(x,y,2) + B(=,y,2)
(i) o((z,y,2) + (u,v,w)) = alz,y, 2) + a(u, v, w)
(iv) (0,0,0) = (0,0,0)
(v) 0(z,y,2) = (0,0,0)
(vi) L(z,y,2) = (2,y,2)

Example 1.1.4.

3(6,—3,2) = (18, -9, 6)
1(3,5, —2) (3,5,-2)
0(1,3,2) = (0,0,0)
(=2) (=2,1,3) = (4,—2,—6)

(z,y) + (u,v) = (x+u,y +v)
a(z,y) = (o, ay)

Example 1.1.5. Show
(1) (a+B)(x,y) = e, y) + Bz, y)
2) al(z,y) + (u,v)) = a(z,y) + a(u,v)
sol) (1) LHS is
(4 B)(z,y) = (
=

= (a
a(r,y) + B(z,y)

(a+ B)z, (a+ B)y)
= (azx + Bz, ay + Py)
az, ay) + (Bz, By)

(associate law)
(distributive law)
(distributive law)
(property of 0 )
(property of 0)

(property of 1)



1.1. VECTORS IN 2, 3 DIM SPACE 5
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Figure 1.3: A point P(aj,as,as) as a vector

(2) LHS is

al(z,y) + (u,v)) = a(x + u,y + v)
= (a(z +u), oy +v))
= (ax + au, ay + av)

azx,ay) + (au, av)

= (a
=oa(z,y) + a(u,v)

Vectors-Geometric view

We can associate a vector a with a point (a1, as, as) in the space. For example,
we can visualize it with an arrow starting at the origin and ending at the point
a = (a1, az,a3). One can also interpret a vector as directed line segment
i.e, a line segment with specified magnitude and direction.

Referring to the Figure 1.4, we denote the directed line segment PQ from
P to Q by P—é P and @ are called tail and head respectively. A vector with
tail at the origin is called a position vector. If two vectors have the same
magnitude direction, we regard it as the same vector. In this case two vector
can overlap exactly when moved in parallel Referrmg to the parallelogram
ABDC in Figure 1.4, we see AB C’D and AC’ BD

See figure 1.5 (1). If two vectors u, v have the same tail P, the sum u+v
is the vector ending at the opposite vertex of the parallelogram formed by u

and v .
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Figure 1.5: sum of two vectors

Figure 1.6: v and —v
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S

Figure 1.7: scalar multiple of v
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(i) u+v=v+u (commutative law)

(i) (u+v)+w=u+(v+w) (associate law)

Scalar multiple of a vector

For a real number(scalar) s and a vector v, the scalar multiple sv(see Fig 1.11)
is the vector having magnitude |s| times that of v, having the same direction
as v when s > 0, opposite direction when s < 0.

The following hold:

(iii) (st)u = s(tu) (associative law)
(iv) (s+t)Hu=su+tu (distributive law)
(v) s(u+v)=su+sv (distributive law)
(vi) s0=0 (0-vector)

(vii) Ou=0 (0)

(viii) lu=u (1)

Example 1.1.6. Show that (—s)v = —(sv) for any scalar s and vector v.

Example 1.1.7 (3D).

a=(a,a2,a3)

a1, ao, as are called z-component, y- component, z -component of a.
As in figure 1.8 when A = (a1, ag,ag) shift the line segment O A by b; along z-
axis, by b along y-axis, bs along z-axis is denoted by BP. Then the coordinate
of B is (b1,b2,b3), Pis (a1 + b1, az + be,as + b3) and OBPA is parallelogram.
Hence

— —

—
OA+ OB =OP.
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P(a1 + b1, a2 + b2, a3 + b3)

Yy
/N B(br, b2, bs)

Figure 1.8: Addition

z

Figure 1.9: standard basis vector

Standard basis vectors

Definition 1.1.8. The following vectors i, j, k are called (standard basis
vector) of R? (Figure 1.13).

i=(1,0,0), j=(0,1,0), k= (0,0,1)

Remark 1.1.9. (1) For a given v = (a1, as,as3)
(a1,az2,a3) = a1(1,0,0) + a(0,1,0) + a3(0,0,1) = a1i + asj + ask
Example 1.1.10. Write the following using standard basis vectors.
(1) v=1(-1/2,3,5)
(2) Express 3a —2b when a = (3,5,0), b=(—4,1,1)

_>
(3) For two points P(1,4,3), Q(4,1,2), express PQ
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(4) For three points A(0,—1,4), B(2,4,1), C(3,0,2), express
Loa+ Loy loc
3439 g

sol. (1) v=(-1/2)i+3j+5k
(2) 3a—2b =3(3i+5j) —2(—4i+j+k)
=(9+8)i+(15—2)j+ (—2)k =17i + 13j — 2k
3) P :( —1)'+(1—4)‘+(2—3)k:3i—3j—k
(4) (1/2)0A + (1/3)0B + (1/6)0C
= (1/2)(=j + 4K) + (1/3)(2i + 4j + k) + (1/6)(3i + 2k)
= (7/6)i+ (5/6)j + (8/3)k

1.2 More about vectors

Parametric equation of lines(Point-Direction form)

Figure 1.10: A line is determined by a point and a vector

— —
((t)=OPy+tPyP =b+ta

The equation of the line ¢ through the tip of OP, and pointing in the

direction of PyP is {(t) = b + ta where ¢ takes all real values. In coordinate
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form, we have

r = x1+ at,
y = yi+0t,
z = z1+ct,

where b = (21,y1,21) and a = (a,b,¢).

Example 1.2.1. (1) Find equation of line through (2, 1,5) in the direction
of 4i — 2j + bk.

(2) In what direction, the the line x =3t — 2,y =t — 1,z = Tt + 4 points ?

(1) v=(2,1,5) + t(4,-2,5)
(2) (3,1,7) =3i+j+ 7k

=

Example 1.2.2. Does the two lines (z,y,z) = (t,—6t + 1,2t — 8) and (3t +
1,2t,0) intersect ?

If two line intersect, we must have
(t1,—6t1,2t; — 8) = (3t2 + 1, 2t9,0)

for some numbers ¢, t2.(Note: we have used two different parameters ¢; and

t2). But since the system of equation

t1 = 3ta+1
—6t; = 2to
2t1—8 =0

has no solution, the lines do not meet.

Two point form

We describe the equation of line through two points a, b.

The direction is given by v = b — a. So by point -direction form

(t)=a+t(b—a).
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If P = (z1,y1,21) is the tip of a and Q = (x2,y2,22) is the tip of b, then

v = (9 — 1,Y2 — Y1, 22 — 21). Writing it componentwise, we see

r = :El—l-(l’Q—:El)t

y = y+(—n)t

z = z1+ (20— 21)t
Solving these for ¢, we see

r—rn Y-y - FA

t = =
T2 — X1 Y2 — Y1 Z2 — 21

This is another equation of line.

Example 1.2.3. Find eq. of a line through (2,1, —-3) and (6, —1, —5).

Example 1.2.4. Find eq. of line segment between (1,1, —3) and (2,—1,0)

0<t<1
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Figure 1.27 The result of the
wheel in Figure 1.26 rolling
through a central angle of ¢.

|3n2-¢

lk o

Figure 1.28 AP with its tail at
the origin.

The last two equations of (9) yield
b=58h+6=—2f —1 = f=-1

Using f; = —1 in the second equation of (9), we find that #, = 1. Note that the
values #; = —1 and t, = 1 also satisfy the first equation of (9); therefore, we have
solved the system. Setting ¢+ = —1 in the set of parametric equations for the first
line gives the desired intersection point, namely, (0, 1, 2). <

Parametric Equations in General

Vector geometry makes it relatively easy to find parametric equations for a variety
of curves. We provide two examples.

EXAMPLE 7 If a wheel rolls along a flat surface without slipping, a point on the
rim of the wheel traces a curve called a eycloid, as shown in Figure 1.26.

¥y

\

Figure 1.26 The graph of a cycloid.

Suppose that the wheel has radius a and that coordinates in R? are chosen so that
the point of interest on the wheel is initially at the origin. After the wheel has
rolled through a central angle of f radians, the situation is as shown in Figure 1.27.
We seek the vector O P, the position vector of P, in terms of the parameter ?.
Evidenﬂl; QP = OA+ AP, where the point A is the center of the wheel. The
vector O A is not difficult to determine. Its j-component must be 4, since the center
of the wheel does not vary vertically. Its i-component must equal the distance the
wheel has rolled; if 7 is measured in radians, then thiﬂistance is at, the length
of the arc of the circle having central angle 7. Hence, OA = ari + aj. s

The value of vector methods biomes apparent when we determine AP.
Parallel translate the picture so that A P has its tail at the origin, as in Figure 1.28.
From the parametric equations of a circle of radius a,

= 3 " . [3m . . .
AP =acos 7—! 1+ asin 7—! J= —asinri—acost],

from the addition formulas for sine and cosine. We conclude that

m; = ﬁ +ﬁ = (ati + aj) + (—asinti — a cos tj)
=a(t —sint)i+a(l —cost)j,
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1.31 The involute.

1.2 More About Vectors 15

so the parametric equations are

{x:a(r—sinl)

y = a(l —cost) ' ®

EXAMPLE 8 If you unwind adhesive tape from a nonrotating circular tape dis-
penser so that the unwound tape is held taut and tangent to the dispenser roll, then
the end of the tape traces a curve called the invelute of the circle. Let’s find the
parametric equations for this curve, assuming that the dispensing roll has constant
radius a and is centered at the origin. (As more and more tape is unwound, the
radius of the roll will, of course, decrease. We’ll assume that little enough tape is
unwound so that the radius of the roll remains constant.)

Considering Figure 1 £9>, we see that the positg vector ( OP of the desired
point P is the vector sum O B+ B li._;l"o determine O B and B P, we use the angle
0 between the positive x-axis and O B as our parameter. Since B is a point on the
circle,

ﬁ =acosfi+asingj.

Unwound
tape

B Involute / 4 o P
%

9 p \ a6 0—n/2
X
/(a, 0)

o

—
Figure 1.29 Unwinding tape, as Figure 1.30 The vector B P must
in Example 8. The point P make an angle of 8 — /2 with the
describes a curve known as the positive x-axis.

involute of the circle.

To find the \E:)tor ﬁ’ , parallel translate it so that its tail is at the origin. Figure 1.30
shows that B P’s length must be af, the amount of unwound tape, and its direction
must be such that it makes an angle of 8 — 7 /2 with the positive x-axis. From our
experience with circular geometry and, perhaps, polar coordinates, we see that
B% is described by

BP = af cos (9—%)i-{—aesin(@—%)j:aésin@i—a@cos@j.

Hence,
ﬁ = ﬁ -+ ﬁ = a(cos® +Osinf) i+ a(sind — B cosd)j.
So

x =a(cosO + 0 sinh)
y =a(sin@ — 0 cosf)

are the parametric equations of the involute, whose graph is pictured in Fig-
ure 1.31. *

SIVHIP TP FYIIOS

i b,

m
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P(z,y) = (at + acosB,a + asinf)

at |

Figure 1.11: Cycloid

Assume a circle of radius a is rolling on the x-axis. Let P be a point on
the circle located at the origin in the beginning. As the circle rolls, P starts
to move from the origin. (Fig 1.11) The trajectory of P is called a cycloid. If
circle rotates by ¢ radian, then P = (z,y) is given by

x =at+ acosb, Yy =a -+ asinf. (1.1)
Since 0 = 37” —t,cosf) = —sint, sinf = — cost, we have
x = a(t —sint), y = a(l — cost).

1.3 Inner product, length, distance

Dot product-Inner product

Definition 1.3.1. Given two vectors a = aji+asj+ask and b = byi+boj+bsk
we define
a1by + azbs + asbs

to be the dot product or (inner product) of a and b and write a - b.
Example 1.3.2. Let a=2i —3j+k, b=1i+2j — k. Find

(1) a-a

(2) a-b

(3) a-(a—3b)

(4) (3a+2b)-(a—b)
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(l)a-a=4+9+1=14
2)a-b=2-6-1=-5
(3)a-(a—3b)=(2i—-3j+k) - (—i—9j+4k)

=—-24274+4=29
(4) 3a+2b)- (a—b) = (8i — 5§ + k) - (i — 5 + 2k)
=8+25+2=235

=

Proposition 1.3.3 (Properties of Inner Product). For vectors a, b, ¢ and

scalar a, the following hold:
(1) a-a >0 (equality holds only when a=0)
(2) a-b=b-a
(3) (a+b)-c=a-c+b-c

(4) (ca)-b=a(a-b)

(5) llall = va-a
Proof. These can be proved easily. O

Example 1.3.4. For a, b, ¢ Show the following.
(1) (@a—b)-c=a-c—b-c
(2) a-(b+c)=a-b+a-c
3)a-(b—c)=a-b—a-c
(4) a-b=g([al® + [[b]I* — [la - b[*)

We see
(1) (A=) -e = (a+ (~1)b)) - =a-c+ (~1)b) - w
=a-c+(-1)b-c=a-c—b-c
(2)a-(b+c)=(b+c)ra=b-at+c-a=a-b+a-c
B)a-(b—c)=(b—c)ra=b-a—c-a=a-b—a-c
(4) Ja—b|? = (a—b) - (a—b) =a-(a—b) —b- (a—b)
=—a-a—a-b-—b-a+b-b=|al|>-2a-b+|b|?
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Figure 1.12: Angle between two vectors

Length of vectors

The length, norm of a vector a = (a1, az, a3) is

V(a1 —0)2 + (a2 — 0)2 + (a3 — 0)2 = y/a} + a3 + a3

denoted by ||a]|. Also we note that

lall = (a- )"/,

Example 1.3.5. Find the lengths of the following vectors.
(1) a=(3,2,1)
(2) 3i—4j+k
H
(3) AB when A(2,—1/3,—1), B(8/3,0,1).

(1) la) =vVo9+4+1=+14
(2) 131 — 4+ k|l = VO+T6+ 1 = V26
(3) [IAB[l = /(8/3 = 2)> + (0 — (—1/3))2 + (1 — (~1))?

AT = VA3

=

Definition 1.3.6. A vector with norm 1 is called a unit vector. Any nonzero
vector a can be made into a unit vector by setting a/||a||. This process is called

a normalization.

Example 1.3.7. Normalize the followings.
1) i+j+k
(2) 3i+4k

(3) ai—j+ck
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(1) (VB + (VB + (1/VE)k
(2) (3/5)i+ (4/5)k
3) (a/V1i+a?+cA)i—(1/V1i+a?+c?)j+ (¢/V1+a?+ )k

Angle between two vectors

Proposition 1.3.8. Let a,b be two nonzero vectors in R? or R? and let 6 be

the angle between them. Then
a-b = [a]|[[b]| cosf

ad hence
_1 a - b

0 =cos™ ——.
[all bl

— — —
Proof. Let a= AB, b= AC. Then a—b = CB. LetZCAB = . Then by

c

0
A

a B
|BC|* = |AB|* + |AC|? — 2|AB| |AC| cosf

Figure 1.13: law of cosine
the law of cosine (figure 1.13) we have
b —alf* = [lal|* + [[b]]* — 2]Jall [Ib]| cos6.
The left hand side is

la—b|> = (a—b)-(a—Dh)
= a-a—a-b—-b-a+b-b
= |a* —2a-b+|b|*

Hence we obtain
llal| ||b]| cosd = a-b.
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O

Corollary 1.3.9. Two nonzero vector a and b are perpendicular, orthog-

onal if and only if a-b = 0.
Example 1.3.10. Find the angle between i+ j + 2k and —i + 2j + k.
By proposition 1.2.10,

(i+j+2K) - (—i+2j+k) —1+2+2 3 1

itj+ok[—i+2j+k]| Vitltdvitdil 6 2

Hence the angle is cos™'(1/2) = /3.
[

Corollary 1.3.11. Given two points A(ay,as,as), B(b1,be,b3), the area of
the triangle OAB is

1
5\/(%53 — azbs)? + (agby — a1b3)? + (a1be — agby)?

— —
Proof. Let OA=a, OB =b, ZBOA = 6. Then the area of AOAB is

%|OA| OB| sinf
1
= slallbll V1= cos?6

1
=5 Vlal?[Ib* - (a-b)?

1
= 5\/@% + a3+ a3) (b7 + b3 + b3) — (arby + azbs + azbs)?

1
= 5\/(a2b3 — agbz)z + (a3b1 — albg)2 + (a1b2 — a2b1)2.

O
Example 1.3.12. Find the area of the triangle with vertices A(a,0,0), B(0,b,0),C(0,0,¢).

Shift(translate) A to the origin, then the points B, C' are moved to the
points (—a,b,0) and (—a,0,c). Hence

1 1
~/(be = 0)2+ (0 + ac)? + (0 + ab)? = = /b2 + c2a? + a2b2.
2 2



1.3. INNER PRODUCT, LENGTH, DISTANCE 19
Theorem 1.3.13 (Cauchy-Schwarz inequality). For any two vectors a, b
la-b| < [la]| /b

holds, and the equality holds iff a and b are parallel.

Proof. We may assume a, b are nonzero. Let 6 be the angle between a and
b. Then by prop 1.3.8

|a-b| = [[a]l [[b]| | cos ] < [al| [[b]]

holds. Since ||a||||b|| # 0, if equality holds |cos@| =1 i.e, # = 0 or w. Hence
a and b are parallel. O

Remark 1.3.14. The Cauchy-Schwarz inequality reads, componentwise, as
(az + by + cz)? < (a® + 0% + ) (a® + y* + 2%).

Example 1.3.15. Show Cauchy-Schwarz inequality for i 4 3j + 2k, —i + j.

Since the inner product and lengths are

(i+3j+2k)-(-i+j)=-14+3=2,
li+3j+2k| || —i+jl=vVI+9+4VI+1=28=2V7

we have
[(i+3j +2k) - (i+ )] < [[i+3j+2k[[|| —i+]].

=

Theorem 1.3.16 (Triangle inequality). For any two vector a, b it holds that
la+ bl < lafl + [[b]|

and equality holds when a, b are parallel and having same direction.

Proof. We have
la+b|* = (a+b)- (a+b) = [al|* +2a-b+]|b]*

By C-S
la+bl* < [la* + 2]lal bl + b]* = (all + [Ib])>.



20 CHAPTER 1. THE GEOMETRY OF EUCLIDEAN SPACE

Jo

19) T
Figure 1.14: ig and jg

Equality holds iff
a-b = [la] [[b],

i.e, the angle is 0. O

Example 1.3.17. Show triangle inequality for —i + j and i + 3j + 2k.
Sum and difference is

|G+ 3j+2k)+ (—i+Jj)| = |4 +2k|| = V16+4
=2V = 4.4721...

i3 +2k|| + || —i+jll=vVI+9+4+VI+1
=V14+V2 = 5.1558...

Hence
[+ 3] +2k) + (=i + )| < [i+3j+2k[|+ [ —i+]l.

=

Definition 1.3.18. If two vectors a, b satisfy a-b = 0 then we say they are

orthogonal(perpendicular).

Example 1.3.19. For any real 6, the two vectors iy = (cos#)i + (sin6)j,

jo = —(sin )i+ (cosh)j are orthogonal.

Example 1.3.20. Find a unit vector orthogonal to 2i — j+ 3k and i+ 2j+ 9k.
Let ai 4+ bj + ck be the desired vector. Then a, b, ¢ are determined by

2a — b+ 3¢ = 0 (orthogonality)
a + 2b + 9¢ = 0 (orthogonality)
a? +b* + ¢ = 1 (unicity).
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Hence the desired vector is

+—— (3i+3j—K).

8-
Ne)

Orthogonal projection

Given two nonzero vectors a and b, we may define the orthogonal projec-
tion of b onto a to be the vector p given in the figure 1.15. Since p is a scalar

multiple of a, there is a constant ¢ such that p = ca. We let
b=ca+q,

where q is a vector orthogonal to a. Taking inner product with a, we have
a-b=ca-a.

Hence we obtain ¢ = (a-b)/(a-a). Thus the orthogonal projection is

Figure 1.15: Projection of b onto a

The length of p is

|a - b| |a - b|
Ipll = ——5 llall = ==~ = IIb| cos 6.
a]l llall

This agrees with the geometric interpretation.
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Definition 1.3.21. For nonzero vector b and any vector a, we define
a-b

projab =p = —HaH2a.

We call it orthogonal projection of b onto a.

Example 1.3.22. a=3i+2j—k, b =i+ j+ 2k. Find orthogonal projection

of b onto a.

The orthogonal projection is

ab  3-1+2-1+4(-1)-2

= 342k

Ja2® 9+4+1 (31 +2j — k)
9. 6. 3
—ﬂl—f‘ﬁ—ﬁk

Theorem 1.3.23. For any two nonzero u and v, we can write v as the sum
of two orthogonal vectors a + b, where a is the projection of v onto u and b

1s orthogonal to u. This decomposition is unique.

Proof. Denote by a the projection of v onto u and let b = v —a. Then

u-v N u-v b
V=——=u+v—-——su=a .
[[ulf? [[ulf?

We can check b is orthogonal to u:

u-v
u-b=u-({v—-+—5u
( [u? >

u-v

=u-vVv—-—=su-
[ul|?

u
=u-v—u-v=0.

This is an orthogonal decomposition. To see the uniqueness, assume there is

real number a s.t. v=au+ c, with u-c =0. Then

u-v=u-(au+c)=au-u+u-c=alul’
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Hence we see

u-v

ou = —-=u
[[ulf?

= a
c=v—au = v—a = b.

Thus the decomposition of v along u and its orthogonal component is unique.
O

Definition 1.3.24. The vector a is called the component parallel to u

and b is the component orthogonal to u.(orthogonal complement).

Example 1.3.25. Find the orthogonal decomposition of v = 3i+5j+k w.r.t.
u=i+2j—k.

Let a be the projection of v onto u and b = v — a. Then

u-v

a=——-—u
[[u[?
1-3+2-54+(-1)-1 .
= i+2j—k
Tr4a+1 (42— k)
= 2i+4j— 2k
b= (3i+5j + k) — (2i + 4j — 2k)
—i+j+3k

Here a is parallel to u, b is orthogonal to u and v =a + b.

Do examples 4,5 in p.22, 23.

Triangle inequality
Theorem 1.3.26. For any vectors a, b, we have
la+b| < [laf| + [[b].

Use C-S.

Physical applications

Displacement : If an object has moved from P to @, then P@ is the displace-

ment.
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Example 1.3.27. A ship is running on the sea at the speed of 20km to north.
but the current is flowing at the speed of 20km to the east, then in one hr,
the displacement of the ship is (20v/2,20v/2).

1.4 Matrices and Cross product

Cross product

Definition 1.4.1. Let a, b be two vectors in R?(not R?). The cross product
of a, b, denoted by a x b is the vector whose length and direction are given as

follows:

(1) The length is the area of the parallelogram spanned by a and b.(zero if
a, b are parallel). Alternatively,

la < b|[ = [|al[[[b]| sin 6,

where 6 is the angle between a and b.

(2) The direction of axb is perpendicular to a and b, and the triple (a, b,ax

b) form a right-handed set of vectors.

length = |[b|| |sin @)

Y
b~

X

Algebraic rules:
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(1) ax b =0, if a, b are parallel or one of them is zero.
(2) axb=—(bxa)
(3) ax(b+c)=axb+axc
(4) (a+b)xc=axc+bxc
(5) (ea) x b = a(a x b) for scalar a.
Multiplication rules:
(1)ixj=k, jxk=i, kxi=]j.
(2) axb=—(bxa)
B)ixi=jxj=kxk=0

Note that
ax(bxc)#(axb)xec.

For example

ix(ixj)=ixk=—-j#(@{Axi)xj=0.

2 x 2 matrix

The array of numbers a1, aq2, as1, a9 in the form

a a
A |G a1
a1 a2
is called 2 x 2 matrix and
a2
[a11 a12], [ ]
a2

25

are the first row and second column. The real number ajjase — aj2a9; is

determinant and denoted by

det(A) = ai; a2

a1 a2
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Example 1.4.2. Find determinant of 2 x 2 matrices.

1 2
-2 1

3 4
21

0 3

—3-8=—5,
~1 1

=0—(-3) =3, =1-(-4)=5

Proposition 1.4.3. The area of parallelogram determined by the two vectors
ai+ bj and ci+ dj is |ad — be|. This is the absolute value of the determinant

of the matriz determined by two two vectors:

Proof. Let u = ai + bj, v = ci + dj and 6 be the angle between them. Then

the area of the parallelogram is

lull [v]| sin® = [Jul [Iv]| v/1 - cos2 6
= V2 [[v[? - (u-v)?
= /(@ + ) (Z + &) — (ac + bd)?
= \/(12d2 + b2C2 - Qabcd
= |ad — bc|.

3 X 3 matrix

A typical 3 x 3 matrix is given by

aip a2 aig
a1 Q22 a3

azy as2 ass
Here
a2

[a31 a32 a33]7 as2

as2
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are third row and second column. The determinant is defined as

air a2 a13

Qg Q23 a1 Qg3 a1 a2
a1 agy agz| = ai — a2 + a3 . (L2)
as2 a3s3 a3l  ass3 asr  as2
az1p asz as3
Example 1.4.4.
b2 5 6 4 6 4 5
4 5 6]=1 -2 +3 =-3+12—-9=0.
8 9 79 7 8
7 8 9
1 1
4 8 2 8 2 4
2 4 = —1 +1 =36—-304+6=12.
9 27 3 27 39
3 9 27

Definition 1.4.5. If we exchange rows and columns of the following matrices

ailp a2 ais

ailp  ai2
) a21 (22 (23

a1  a22
[A31 a32 a33 ]

to get

ail a21 asi

ailp  a21
) aiz Q22 (32

a2 a22
[a13 a23 as33 |

then resulting matrices are called the transpose.

Properties of determinant-skip for the time being

Theorem 1.4.6. (1) Determinant of transposed matriz is the same the De-

terminant of original matriz.
(2) If we exchange any two rows(columns), then determinant changes signs.
(3) |det(aA)| = a™|det(A)]

(4) Adding a scalar multiple of row (column) to another row (column) does

not change determinant.
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Proof. (1) For 2 x 2

ail a1 ail a2
= a11022 — A21G12 = Q11022 — (12021 =
a2  G22 a1 a2
For 3 x 3
a1l a1 asy
a2  G32 a2  G32 a2 G2
alg Qg2 as2| = ail —ag + as1
az3 Q33 a13 Q33 a13 Q23

a3 a3 ass
= ay1(agas3 — az2a23) — azi(a12a33 — az2a13)
+ az1(a12a23 — a2a13)
= ay1(aga33 — az2a23) — G21a12a33 + A21032013
+ a31012023 — 431022013
= ay1(agas3 — az3a3z) — a12a21033 + A12a23031
+ a13a21a32 — @13022a31
= a11(a226l33 - a23a32) - a12(a216l33 - 6123(131)

+ aiz(aziasz — axaz)

az2 23 as1 23 as1 a22
= a1 — a12 + a3
az2 ass asy ass asy as2

aip a2 aig
= |G21 Q22 Qa23

aszr as2 as3

(4) 2 x 2 case is easy.

For 3 x 3, we see by expanding w.r.t. first row

a1 +tag1 aio +tase aiz + taos
a1 a2 a3

asi asz2 ass

a2 a23 a1 Qg3

= (a11 + taz) — (a2 + tag)
agz  as3 as1 ass
a1 Q22

+ (a13 + ta23)
azr as2
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a2 023 a1 Q23 as1 a3
= ail — a12 + a3
as2 ags asy asg asy ag2
a2 a9y az1 as3 az1 a2
+1t| axn — ag + aog
asy ass asy ass asy a3
ai1 a2 ais a1 Q22 a23

= |ag1 a2 ao3| +tlasy a2 as3

aszr azz2 ass aszr azz2 ass

Exchange second and third rows, do not change the value. By (2) there must

be a sign change. Hence it is 0.

a11 +tag1 a1z +tage a1z + tass a1l a2 a3
a1 a2 a3 = |a21 a2 a3
asy as2 ass asy age ass
Hence (4) holds. O

The RHS of 1.2 is expansion w.r.t first row. By theorem 1.4.6, (1), (2),
we can expand w.r.t. any row or column, except we multiply (—1)i/. So if

we expand w.r.t 2nd row

a11 a2 Q13

al2  G13 a1l a13 ail a2
a1 Q22 a3 = —a21 + ag2 — a3

asze ass a3l ass a3l as32
a3l asz2 ass

If we expand w.r.t 3rd column

ailp aiz2 a3

a21 Q22 ailp aig ailp aig
a1 Qg2 G3| = a13 — ag3 + ass

azr as2 azr as2 a1 a2
a3z; asz as3

Corollary 1.4.7. (1) Determinant of a matriz one of whose row is zero is

ZETO.

(2) If any two rows (columns) are equal, the determinant is zero.
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Example 1.4.8. The followings are expanded w.r.t 2nd, 3rd row.

bz 4 6 13 13
4 5 6|=-2 5 -8 =12-60+48 =0.
79 79 4 6
78 9
1 2 3
2 3 1 3 1 2
4 0 6= -8 +0 =0-+48+0=148.
0 6 4 6 4 0
0 80

Cross product-using determinant

In the previous section, we have defined the cross product using geometry, but
did not show how to compute it. Now we can give a formula for the cross

product using the determinant:

Definition 1.4.9 (Alternative definition). For a = a1i + asj + ask and b =
b1i + boj + bsk, the cross product a x b is defined by

az as
by b3

a; as
b1 b3

ayp a2
b1 bo

axb= i— j+ k. (1.3)

Using the definition of determinant (1.2) symbolically, we have
i j k
axb= a; ag asj-

by by b3

Example 1.4.10. i xi=0, jxj=0, kxk=0.

Example 1.4.11. Compute (2i — j + 3k) x (i+ j + 2k).

By the definition of cross product, we see

i
(2i—j+3k) x (i+j+2k)=|2 —1 3|=-5i—j+3k
1
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A geometric meaning of the cross product

To see the relation with the geometric definition of the cross product, we define

the triple product of three vectors: Let

a=a1i+ asj+ ask,b =b1i+ b2j + bsk,c = c1i + coj + c3k.

The dot product between (axb) and c is (ax b)-c, called the triple product

(a x b) - ¢ of three vectors, a,b and c. We see by definition

as az|. ay as|, ap a2 . .
axb)-c = i— k|- (cii+coj+ sk
(axb) <b2 bl by b5 by b ) ( Jt esk)

az as ap as ap a2

= cl — co + C3
by b3 by b3 by b
i C2 (3 ap a2 as

= |ay az as| = bl bg b3 .
by by b3 cp c2 3

We observe the following properties of (a x b):

(1)

If ¢ is a vector in the plane spanned by a, b, then the third row in the
determinant is a linear combination of the first and second row, and
hence (a x b) - ¢ = 0. In other words, the vector a x b is orthogonal to

any vector in the plane spanned by a and b.

We compute length of a x b.

2 2 2
”a % b”2 _ az a3 ay as ap a2
b2 b3 bl b3 b1 bg
= (agbg — a2b2)2 + (a1b3 — b1a3)2 + (a1b2 — b1a2)2
= (af + a3 +a3)(b] + b3 + 3) — (a1by + asbz + asbs)”.
Hence

lax bl = [la*|[b]|* ~ (a-b)* = [|a*||b][*(1 — cos* #) = [lal|*||b||* sin® 6.

So we conclude that a x b is a vector perpendicular to the plane P

spanned by a and b with length ||al|||b]|| sin §|.
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(3) Finally, the right handed rule can be checked with i x j = k.

Hence this alternative definition is the same as the geometric definition of

the cross product given earlier.
Theorem 1.4.12 (Alternative cross Product). For a, b, c, it holds that

(1) ||a x b|| = ||al|||b||sin @, the area of the parallelogram spanned by a and
b.

(2) a x b is perpendicular to a and b, and the triple (a,b,a x b) form a
right-handed rule.

Component formula using determinant

ik
(ali + asj + agk) X (bli + boj + bgk) =|a1 a2 as
b1 by b3

= (agbs — agb2)i — (a1bs — agb1)j + (a1b2 — azby k.
Example 1.4.13. Find (i +j) x (j — 2k).

i+j)x(—2k)=ixj—2ixk+jxj—2ixk=-2i+2j+k.

=
Theorem 1.4.14 (Cross product II).
(1) [[ux v|? = |[u]]?||v]]® — (u-Vv)2. In particular, u x u = 0.
(2) If is 0 the angle between u and v, |[u x v|| = |[ul| |v] sin@. Hence nec.

and suff. condition for u and v are parallel is u x v = 0.
(3) (uxv)-w=u-(vxw).
(4) (uxv)-u=(uxv)-v=0,ie uxv is orthogonal to u and v.

(5) |(a x b) - c| is the volume of parallelepiped formed by three vectors a,b
and c.(See below)
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Proof. Let u = a1i+ aoj + agk, v = b1i+ boj + bsk, w = c1i + c9j + c3k.

(1) Ju x v||? = ||[ul?||v]|*> — (u- v)? as shown before.

Souxu=0.

(2) Since u-v = ||ul| [|[v|| cosf, we have by (1)

lux v = /ulP[[v]Z = (u-v)?
= |lul[[[v]| V1 — cos2

= [[ul{[v]} sin.

(3)
az ag|, ap asj, ai 2 . .
Uxv) w= i— + k|- (cii+coj+csk
(V) (bg o N T e TS )“ 2+ esk)
az as a1 as aip ag
= c1 — co + c3
by b3 b1 b3 by bo
ayp a2 as
=|b1 by b3
Cc1 C2 C3
exapnding w.r.t first row, this is
by b3 by b3 b1 bo
=a — as + a3
C2 C3 c1 €3 c1 C2
by bg|. |b1 b3|. |b1 b
:(a1i+a2j+a3k)-< SRR F R ! zk)
Co C3 c1 C3 1 C2
=u-(vxw).
(4) Using (3) and corollary 1.4.7, we see
a; ag as
(uxv)-u: b1 b2 bg = 0.
a; ag as
ayp az as
(uXV)'V: b1 b2 bg = 0.
b1 by b3
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uxv

)0

Figure 1.16: right handed rule

Geometry of Determinant

2 x 2 matrix: If a = (a1,a2) and b = (b1, b2) then we can view them as vectors
in R3 and define

i j k
axb= a; ag 0| = Zl 22 k= (a1b2 — a2b1)k.
by by 0of 077

Hence ||a x b|| is the area of the parallelogram formed by the two vectors.

Example 1.4.15. Find the area of triangle with vertices at (1,1), (0,2) and

(3,2).

Two sides are (0,2) — (1,1) = (—1,1) and (3,2) — (1,1) = (2,1). Thus
-1 1

the area is the absolute value of % ) = —%.

=

Proposition 1.4.16. The volume of parallelepiped with sides a, b, ¢ is give

by the absolute value of triple product (a X b) - ¢ which is the determinant

a; ag as
[(axb)-cl= b by by
Cc1 C2 C3

Proof. Consider a parallelogram with two sides a, b as bottom of the paral-

lelepiped. Then the height is length of the orthogonal projection of ¢ onto
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% ax bH Hence the volume is

a X b which is Taxb]

(axb)-c
WaXb :’(aXb)‘C‘.

Area(bottom) x height = ||a x bl|

Example 1.4.17. Three points A(1,2,3), B(0,1,2), C(0, 3,2) are given. Find
the volume of hexahedron having three vectors OA, OB, OC as sides.

By proposition 1.4.16, we have

1 2
3 2

2 3
3 2

2 3
1 2

+0 = 4.

o O =

2 3
1 2|=1
3 2

Torque

Imagine we are trying to fasten a bolt with a wrench. If one apply the force F as

the figure, we see the amount force acting to the action of bolt is ||r||||F| sin 6.



36 CHAPTER 1. THE GEOMETRY OF EUCLIDEAN SPACE

4
-\ " |F||siné

Figure 1.17: Turning a hexagonal bolt with a wrench with force F. Torque
vector is r X F.

Then

Amount of Torque = (length of wrench)(component ofF | wrench)

= [lel[[F[|sin 6 = [lr < FJ].

Also, the direction of the vector r x F is the same direction as the bolt moves.

Hence it is natural to define r X F to be the torque vector.

Rotation of a rigid body

Figure 1.18: velocity v and angular velocity w has relation v =w x r.

Consider a rigid body B rotating about an axis L. (See fig 1.18 ). What

is the relation between the velocity of a point on the object and the rotational



1.5. EQUATIONS OF PLANES 37

velocity?

First we need to define a vector w, the angular velocity of the rotation.
The rotational motion of B can be described by a vector along axis
of rotation w. The vector points along the axis of rotation with its direction
determined by the right handed rule. Its magnitude is the angular speed
(measured in radians per unit time) at which the object spins. The vector
w is called the angular velocity vector and w is angular speed, w = ||w]|.
Next fix a point O(the origin) on the axis of rotation, and let r(t) = OP be

the position vector of the point P. Let w the vector along z-axis s.t. w = ||w]|.

Assume L is z-axis and « is distance from P to L. Then o = ||r||sin @ (r
points to P). Consider the tangent vector v at P. Since P moves around a

circle of radius «a perpendicular to w (parallel to zy-plane, counterclockwise),

we see,
Ar = (radius of circle )(angle swept by Q)
= |[[r|[sin6(Ag).
Thus
ar) ||r||sin9%
At~ At’

As At — 0, we obtain the (line) velocity and angular velocity by

i A¢
v=lim —, w= lim —.
At50 At At—0 At
Hence
[|v|]| = wa = wl|r|| sin 6 = ||w]|||r]|| sin . (1.4)

Then by definition of cross product,

V=wXTr. (1.5)

1.5 Equations of Planes

Let P be a plane and Py = (z0, %0, 20) & point on that plane, and suppose

that n = Ai + Bj + Ck is a normal vector. Let P = (x,y, z) be any point in
—

R3. Then P lies in the plane iff the vector PyP = (z — 20,y — %0, 2 — 20) is
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N
perpendicular to n, that is, PyP - n = 0. In other words,

(Ai+ Bj+ Ck) - [(z — 20)i+ (y — yo)j + (= — 20)k] = 0.

n P(z,y,2)

Py(z0, yo, z0)

Figure 1.19: A plane is det’d by a point and normal vector

Proposition 1.5.1. Equation of plane through (xo,yo,20) that has normal
vector n 1S
A(x —z0) + B(y — vo) + C(2 — 20) =0,

or

Az + By+Cz—D =0,

where D = —(Axg + Byo + Czp).

Example 1.5.2. Find the equation of plane through the points A(—3,0,—1),
B(-2,3,2), C(1,1,3).

Draw some graph describing the normal vector.

Find a vector n orthogonal to plane.

— —
n=AB x AC
i j k
=[-2-(=3) 3-0 2—(=1)
1-(=3) 1-0 3—(-1)
3 3 1 3 1 3
j k
1 4 4 4 4 1

1 —

= 9i +8j — 11k.
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By proposition 1.5.1, the equation is
9z +3)+8(y—0)—11(z+1)=0

or 9z + 8y — 112 4+ 16 = 0.

Distance from a point to plane

P(:Chylvzl)

Figure 1.20: Distance from a point to plane

Proposition 1.5.3. The distance from P(x1,y1,21) to the plane Ax + By +

Cz4+D=0is
|A:L'1—|—By1+CZ1+D|

VAT BT 2

Proof. Let n be a normal vector to the plane. If Q(xo,yo, 20) lies in the plane,
H

the distance from P to the plane is the orthogonal projection of PQ along n.
Note that from A(x—x¢)+B(y—vo) +C(z—20) = 0, we see n//Ai+ Bj+ Ck.
H

Hence length of the orthogonal projection of PQ along n is

— —

n- PQ n - PQ)|

e | =
[l ]

_ [A(@o —21) + Blyo — 1) + Cz0 — 21|

I+ B+ O
_ ‘Axo—i—Byo—i-CZo — Az; — By, —021’
- Ny
_|—D—A3:1—By1—0z1|_|A3:1+By1—|-0z1—|—D|
VR B0 R
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Example 1.5.4. Find the distance from (3,4, —2) to the plane 2z —y+2—4 =
0.

Using above proposition, distance is

2-3—1-4+1-(-2)—4 |-4 2v6
Vi+1+1 V6 3

=

Example 1.5.5. Find a unit vector perpendicular to the plane 4z —3y+z—4 =
0 and express it as a cross product of two unit orthogonal vectors lying in the

plane.

Let S be the given plane. By proposition 1.5.1 we see 4i — 3j + k is

orthogonal to §. Hence a unit normal vector is

4i-3j+k 1
noso oStk 1 g e,
VE+(-3)22+12 V26

Now in order to express this as a cross product of two vectors lying in the plane,
we choose three arbitrary points in S. For example, we choose (1,0, 0), (0,0,4), (2,1, —1).

Then we obtain two vectors

u=(1,0,0)—(2,1,-1)=—-i—j+k
v =(0,0,4) — (2,1,—-1) = —2i — j + 5k

which lie in the plane §. Now we orthogonalize them.

Let a be the orthogonal projection of v onto u. Then let b =v — a.

u-v 8
= — = —(—1—1 k
S ERE T
u-v .. 8, . .
b:v—wu:(—21—J+5k)—§(—1—3+k)

1
= (21 +5) + 7k).

Now normalize them.

a 1 b 1
aj=—=—(—i—j+k), by =— =—(2i+5j+ 7k).
al] 3 bl /78
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We can check that

(-1)-2+(-1)-5+1-7

a;-b; = = O(orthogonal
1- D1 V378 ( g )
. i j k
a1><b1:— -1 -1 1
326
2 5 7
1 -1 1], -1 1 - -1 -1 K
= — 1—
326 5 7 2 7 ! 2 5
1
= ———(4i - 3j + k).
\/%( j + k)

Parametric equation of a plane

Figure 1.21: A plane is det’d by a point and two vectors
Proposition 1.5.6. A parametric equation for a plane the through the point
Py = (c1,¢2,¢3) and parallel to a and b is given by

x(s,t) = sa+tb+c.

Distance between a point and a line
Example 1.5.7. Find the distance from the point Py(2,1,3) to the line £(t) =
t(—1,1,-2) + (2,3,-2).

Choose any point B on the line and find an orthogonal decomposition
H
of BPF, onto the direction vector a = (—1,1, —2) of the line. Then the length
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Figure 1.22: Distance from a point to a line

of the orthogonal complement is the distance. Choose B = (2,3, —2). Then

-
BPy:=b = (2,1,3) —(2,3,-2)
= (0,-2,5).

Hence the orthogonal projection onto a is

a-b
pab = ——=a
: all?

= (2,-2,4).
Thus the distance is

Hb - pab” = H(07 _275) - (27 _274)” = \/g

Distance between two parallel planes

To find the distance between two parallel planes, we first compute a normal

vector common to both planes. Now choose one point from each plane, say
—

P; from the plane II;(i = 1,2). Then find the projection of P;P» onto the

common normal vector.

Distance between two skewed lines

Two lines are said to be skewed if they are neither intersecting nor parallel.
It follows that they must lie in two parallel planes and the distance between
the lines is equal to the distance between the planes. Let us describe how to
find the distance between them.

Assume we have two parallel planes II; and IIs containing each lines. They
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Change the view

Figure 1.23: Distance between two lines is the length of proj,b

share a common normal vector n. Assume a; and as are two direction vectors of
the planes.(verify) Then the normal vector is obtained by taking cross product
of a; and as. Let P € £1, P> € {5 be any two points on each line. Then we
compute the projection of Pl—f)g onto n. Moving the projection along the line

£1 so that the head ends at P», we see its length is the desired distance.

Example 1.5.8. Find the distance between the two lines
01(t) = (0,5,—1) +t(2,1,3), and l5(t) = (—1,2,0) + ¢t(1,—1,0).

We have a; = (2,1,3) and ay = (1,—1,0). Choose P = (2,6,2) and
P, = (0,1,0). Then b = (2,6,2) — (0,1,0) = (2,5,2). While

n=a; xay=(21,3) x (1,—1,0) = (3,3, -3).

Normalizing, we let n = (1,1, —1)/4/3. Now the projection of b onto n is

. (2+5-2)(1,1,-1) 5
rojnb = (b -n)n = =—(1,1,-1).
proj (b-n) 7 7 3( )

Hence the distance is . .
(1,1, -1)|| = —.
[Fa2-0] -7
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1.6 n-dim Euclidean space

Vectors in n -dim space

The set of all points with n-coordinates
R" = {(ay,a9,...,ay) | a1,a2,...,a, € R}

is called n-dimensional Euclidean space. Addition and scalar multiplica-

tion can be defined as

(a1,az,...,a,) + (b1,b2,...,b,) = (a1 +b1,a2 + b2, ..., an + by)

s(ay,ag,...,a,) = (say,sas, ..., say).
The identity (0,0,...,0) in R™ is the zero element. The inverse of (a1, as, ..., a,)
is (—a1,—ag,...,—ay), or —(ay,as,...,a,). For two points P(ay,as,...,a,)

and Q(by,be,...,by,), the set
PQ={(1—1t)(a1,az,...,a,) +t(by,ba,...,b,) | 0<t <1}

is called the line segment P(Q and

\/(al — b1)2 + (ag — b2)2 +- 4 (ap — bn)Z
is the length of PQ. Also the set
>
PQ={(1—-t)(ay,a2,...,an) +t(b1,bo,...,by) | —o0 <t < o0}
is the line PQ.

If the three points P(ay,...,a,), Q(b1,...,by,), R(c1,...,c,) are not lying

in the same line, then the set
{r(a1,...,an) +s(b1,...,bn) +t(c1,...,cn) | —00 <1 st <oo,r+s+t=1}

is called the plane determined by P, @, R.
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Standard basis vector

We let
e; = (1,0,0,...,0)
e; =(0,1,0,...,0)
es =(0,0,1,...,0)
e, =(0,0,0,...,1).
Then any vector in R™ can be written as a scalar combination of e, e, ..., €,:
(a1,a2,...,a,) = aje) + azes + -+ - + apey,.
The vectors e, es,..., e, are the standard basis vectors of R". Clearly,
we have
L )0 @#))
€i € = ..
1 (i=7).

Theorem 1.6.1. We have the following:
(i) (ax+py)-z=ax-z+ Py =z (associate law)
(ii) x - y=y-x (commutative law)
(iii) x-x >0
(iv) x-x=01iff x=0.

Example 1.6.2. Let u = 3e; — 4es + 2e4, v = € + 2e3 + 2e3 — 3e4 be in R%.

FExpress 2u — 7v using standard basis vector.

Using standard basis vector, 2u — 7v is

2u — 7v = 2(3e; — 4es + 2e4) — T(e1 + 2e2 + 2e3 — 3ey)
= (6e; — 8eq + 4ey) + (—Te; — 1deq — 14e3 + 21ey)
=(6—-"T)e1+(—8—14)ea + (0 — 14)es + (4 + 21)ey
= —e1 — 22e9 — 14e3 + 25ey.

!By definition 1.1.8, the vectors ey, es, e3 are denoted by i,j, k in R?
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Figure 1.24: The angle between two vectors

=

For two vector u = a;e; + ases + - -+ 4+ ane,, v = bieg + bseg + - -+ + b€,

their inner product is defined as
n
u-v=aby +axby +--- 4+ ayb, :Zaibi
i=1

This satisfies proposition 1.3.3. The length of a vector u is defined as

Jull = (a3 + -+ a2)'2 = Va-u

and the distance between two vectors u and v is defined as ||[u — v/|.

One can even define the angle between u and v by

1 a1y + - + anby
(@ + -+ a2)/2(02 + -+ b2)1/2°

0 = cos™! v cos™
[l v

Example 1.6.3. Find the inner product of u = e; — 2e2 + 3es + 2e4, v =
2e| + e — 3es3 — ey.

uv=2—-2-9-—-2=-11.
O]
Example 1.6.4. Find the angle between u = e; —es+e4, v = —ey —e3+2e4.

The angle between u and v is

o 0+1+0+2 .
COS = COS

VA+1+404+1)0+14+1+4)

NE

Sl
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=

Theorem 1.6.5 (Cauchy-Schwarz inequality). For any two vectors a, b in

n-dim space the following holds. Equality holds iff a and b are parallel.
la- b < la] ||b]].

Proof. For n > 3 our early proof is unclear. Thus we prove this again. We
may assume none of the vectors are zero. Recall the orthogonal decomposition
of b onto a, i.e, we write

b=ka+c,

where ka is the projection of b and ¢ = b — ka is the orthogonal complement.
By orthogonality(a - ¢ = 0),
211412 2(1.2( 412 2 211 al12] 12
lall"l[b]” = llall*(&"[lall” + [lc[[*) = &~[|a]|"[all
Thus
K2[lall* < [b]>.

b-a
faz: We see

Since k =

la- bl* < [la]]*|[b].

Theorem 1.6.6 (Triangle inequality). For any two vectors u, v in n-dim
space the following holds. Equality holds iff u and v are parallel and same
direction.

u+ v < flufl +v].

Proof.

Jlutv[> = (u+v)-(u+v)
= u-ut2u-v+v-v
< u-u+2ufjv)+v-v

= (ufl + vl
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General matrix

Let m,n be any natural numbers. The arrays a;; (1 <i<m, 1 <j <n)

aii a12 te A1n
a1 az - Ao,
Gml Om2 " Gmn

is said to be an m x n matrix and denote by

[aij} l<ism [aij ]mxn or [aij]
1<y

<n

If m = 1, then 1 x n matrix consists of one row and is called row vector, and
if n =1 then m x 1 matrix is column vector. If m = n, it is called square

matrix. a;; is called ij-entry. The 1 X n matrix
Qi1 G2t Qip ]
is i-th row vector, m x 1 matrix

alj

agj

is j-th column vector.

Example 1.6.7. What is 4-th row and second column of the 4 x 3 matrix?

0 -2 12
3 1 4
-1 0 5

1 -3 7
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4-th row and second column is

(1 -3 7], .

Matrix addition, multiplication

Let A and B be two m x n matrices. Then the matrix sum A + B is the
m X n matrix whose (7, ) entries are the sum of a; ; and b; ;. If k is any scalar,

define the scalar multiplication kA by
(kA)U = kaij.
i.e, each entry is multiplied by k.

Definition 1.6.8 (Matrix multiplication). If A = [a;;] is m X n matrix and

B = [by] is n x p matrix, then the m X p matrix

[Z aikbkj]
k=1 11

<i<m

<ji<p

is the product of A and B denoted by AB. In other words, the product of
A and B is AB and its ij-component is the inner product of i — th row of A
and j — th column of B.

Example 1.6.9. Product of 2 x 3 and 3 x 4 matrices

02 3 -2

2 31 -4 9 19 -12
-2 1 5 =3 |=

-1 1 4 6 -1 —6 3
20 -2 1

Example 1.6.10. Product of 1 x 3 and 3 x 2 matrices

21 3] 1 3| =] -5 13]
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Example 1.6.11. Product of 3 x 4 and 4 x 1 matrices

x
0 1 2043z 4+w
-1 -3 Y11= —x 4+ 2y — 3w
z
2 4 20 + 2z + 4w
w

Definition 1.6.12. The following n X n matrix is

100 0
010
00 1
(000 -+ 1|

n X n identity matrix and denote it by I,,.

Proposition 1.6.13 (Properties of matrix multiplication). Let A, B and C

are matrices where the multiplication AB and BC' etc, makes sense. Then
(1) A(BC) = (AB)C.
(2) k(AB) = (kA)B = A(kB)
(3) A(B+C)=AB+ AC
(4) (A+ B)C = AC + BC
whenever the multiplication makes sense.

Transpose.
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Also, for any n x n matrix A, it holds that
Al,=1,A=A.

I, is identity element in multiplication.

ot

Definition 1.6.16. If for any vector u, v € R"™ and scalar a € R, a function
T:R"™ — R™ is defined by

Example 1.6.15.

o O =
S = O
_= o O

(1) T(u+v)=T(u)+T(v)
(2) T(au) =aT(u)
we say T is a linear transformation(mapping, function).

Example 1.6.17. Express a given linear transformation 7': R — R™ using

the standard basis vector.

Since any vector in R™ can be written as a;e; + ases + - -- + ape, and T

is determined by the values at these vectors.

T(are1 + azes + -+ + ape,) = T(a1e1) + T'(agez) + - - - + T(anen)
=uT(e1)+ axT(er) + -+ apT(en).

Since T'(e1),T(e2),...,T(ey,) are in R™, we can write it as linear combinations
of e1,ey,...,e,. Hence there exist numbers ¢;; (1 <i<m,1 <j < n)s.t.

m

i=1
Hence

T(are1 + ages + -+ + ape,) = ZajT(ej) = Z Ztijaj e;. (1.7)

j=1 i=1 \j=1

This procedure can be written in matrix form Eq. (1.6). The matrix having
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t;; as 1j-th component

t11 t1o tin

to1  to2 ton
mat(7T') =

75m1 tm2 e tmn

is called matrix of 7. Let us multiply the column vector a;e; + ases + - - - +

aney, to the right of this matrix.

t1n tiz - tin a1 t11a1 + ti2a2 + - - +tinay
tor too - top as tor1a1 + togag + - - - + tonay
tmi tm2 - tmn anp, tmial + tmaao + - + tnan

Compare this with equation (1.7). Then rhs vector has T'(a1e1 + ases + -+ +
aney,) as its component. Conversely, any m x n matrix [t;;] is given, then it
determines linear transformation 7': R” — R as in equation (1.7). Hence
linear transformation 7: R™ — R™ has one-one correspondence with m x n
matrix as follows:

mat: T — [ e -T(ej) }

1<i<m

<js<n

Proposition 1.6.18. For two linear transformations T: R™ — R™, U: RP —
R™ 4t holds that
mat(7 o U) = mat(T") mat(U).

Example 1.6.19. For the given two linear transformations 7: R" — R™,
U: RP — R"™ check Proposition 1.6.18 holds.

T(‘Tayaz) = (3y — 2T+ y)
U(s,t) = (2s —t, s+ 2t,—3s).

The matrices for T' and U are

0 3 -1

mat(7) = L1 o

] , mat(U) = 1 2
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Hence

2 -1
0 3 -1 6 6
mat(7) mat(U) = L1 0] 1 2 2[3 1].
0

On the other hand

(ToU)(s,t) =T(2s —t,s+2t,—3s)
= (3(s+2t) — (—3s),(2s — t) + (s + 2t))
= (6s + 6t,3s + t).
So
mat(T o U) =

6 6
3.1
Hence the following holds.

mat(7 o U) = mat(T") mat(U).

Determinant

We have seen 3 x 3 2 x 2. Using these, we define determinant of n x n matrix

by induction. We expand w.r.t 1st column.

air a2 -+ Qin Q22 Q23 -+ G2p
a1 a2 -+ Q2p asz as3 - a3p
=an ) . +
Gpl Ap2 *°°  Gpp Gp2 QAp3 -+ App
a1 - Q2(i—1)  A23i+1) T G2n
. azr - a3(i-1) A3@+1) 0 A3n
(D) ay | : o N

An1  **° Qui-1) Gn@G+1) °° Ann
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a1 Q22 - Ag(p—1)

asy azz - a3(p—1)
+(_1)1+na1n ‘

Anl Qn2 " Qp(n-1)

The i-th term on the right is (—1)'*%ay; times the determinant of (n — 1) x
(n — 1) obtained by deleting first row and i-column.

Theorem 1.4.6 and corollary 1.4.7 hold for any square matrices.

Expansion with respect to any row
LetA;; be the (n — 1) x (n — 1) matrix obtained by deleting i-row and j-th
column. Expand w.r.t i-th row, we see

Al =Y (1) a4

Jj=1
and if we expand w.r.t j-th row, we see

n

Al = (=) ;| Ayl

i=1

Example 1.6.20. Expand w.r.t 2nd row

1 0
1 0 4 -1
=—0| 1 0 2|+(-1)
3 1 0 2
0 -3 0 2 -3 0
2 0 -3 0
2 —1 0 2 -1 3
—0l3 1 2[+4]3 1 0
2 00 2 0 -3
0 2 3 2
-9
-3 0 2 0
~1 3 2 —1
14.92 +4(-3)
3 1
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Example 1.6.21. Solve

3. + 2y 4+ z = 1
y + z = 0
r + y = 3.
Use Cramer’s rule
3 21
1 1 2 1 2 1
01 1]|= -0 = —
10 10 11
110
Then x1, 79 and x3 are
1 21 311 3 21
1 1 1
1’1:_—2 3 1 1 :—1, T2 :_—2 0 0 1 :4, 1’3:_—2 01 0
010 1 30 11 3
]

1.7 Cylindrical and spherical coordinate

Cylindrical coordinate system

Given a point P = (z,y, z), we can use polar coordinate for (z,y)-plane. Then
it holds that

r = rcosb,
Cylindrical to Cartesain y = rsinf,
z = =z

We say (r,0,z) is cylindrical coordinate of P. Conversely, the cylindrical

coordinate (r,#, z) is given by

P2 = 2?42
Cartesain to Cylindrical ¢ tanf = %,
z = =z

The expression (r, 0, z) is not unique.
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Figure 1.25: cylindrical coordinate

Example 1.7.1. The set of all points » = a in cylindrical coordinate is
{(z.y.2) | 2® +y* = a®}.
This is a cylinder (Figure 1.25).
Example 1.7.2. r = 3 cos @ gives
r? =3rcosf = 22 +y* = 3z
This is again a cylinder.

Example 1.7.3. Change cylindrical coordinate (6,7/3,4) to Cartesian coor-

dinate.

sol.
x=6cos(m/3) =3, y=6sin(n/3)=3V3, z=4.

So (z,y,2) = (3,3V3,4).

tan~" (y/x) (

21 + tan~!(y/x) (

=< m+tan"t(y/x) (z <0)
(
(

S
vV
=
<
V
(=)
=

/2
| 37/2

x=0, y<0)
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Example 1.7.4. Identify the surface given by the equation z = 2r in cylin-

drical coordinate.
2% = 4r?* = 4(2* + y?). This is a cone.
]

Example 1.7.5. Change the equation x4 % — 22 = 1 to cylindrical coordi-

nate.

r?—z2=1.

Spherical coordinate system

g a’p{ w
A p sin ¢ dO
pd ¢
¢ d¢
p
70 i
p sin ¢ >

X psin ¢ do
We call (p, ¢,0) to be the spherical coordinate of P.

2 2

r=psing pP=r’+z
r
Shperical to cylindrical ¢ 6 =60 tan ¢ = 2

zZ=pcos¢ =0



o8 CHAPTER 1. THE GEOMETRY OF EUCLIDEAN SPACE
z

Figure 1.26: Spherical-coordinate

For P = (x,y, z) we have

x = psin¢cosd p>0
Shperical to Cartesian ¢ y = psin¢sinf 0<0<2m
zZ = pcos ¢ 0<o<m

Conversely, we can write p, ¢, 6 in terms of z, y, 2.

p=vVr2+y?+22

Cartesian to shperical ¢ €08 ¢ =

tanf =

D Iw

Now the second condition has an alternate expression:We see from the figure

r=psing, 2z = pcoso.

Hence cos ¢ = % can be replaced by

tan ¢ = :
z
Example 1.7.6. (1) Find spherical coord. of (1,—1,1) and plot.
(2) Find cartesian coord. of (3,7/6,7/4).
(3) Find spherical coord. of (2,—3,6).

(4) Find spherical coord. of (—3,—3,v/6).
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sold (1) p=+/3.
¢ =cos 1(Z) = cos—l(i) ~ 0.955 = 54.74°.
p V3

Since the point (1, —1) lies in the 4-th quadrant, we see

Y T

6: t - ) = —

arc an(x) 1
3) p=22+(-3)2+62=,/22+(-3)2+62="T.
— cos~ 1 (%) = cos—1
¢ = cos (p) =cos™ .

Also, the point lies in the fourth quadrant, we have

0 =21 + tan~' (—3/2).

=V9+9+6=2V6

-1 \/6 _11 U
=Cos " —= =008 = = —
¢ 26 2 3
9:W+tan_1(:—):ﬂ+£:%

Hence spherical coordinate is (2v/6,7/3, 57 /4).
=

Example 1.7.7. Express the surface (1) zz = 1 and (2) 22 +9?> — 22 =1 in

spherical coordinate.
sol.) (1) Since xz = p?sin¢cosfcos ¢ = 1, we have the equation
p?sin 26 cos ¢ = 2.

(2) Since 22 +y?—2% = 22 +9? +22 222 = p>—2(pcos ¢)? = p?(1—2cos? @),
the equation is 1 + p? cos 2¢ = 0.
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Figure 1.27: Standard basis for spherical coordinate

Standard basis for cylindrical and spherical coordinates

For cylindrical coordinates, the following sets are standard basis vectors:

o= HAtu
r — ) )
V2 + 2

These vary depending on the points and are defined so that only the coordinate

e, =k

indicated by the subscript increases. Now ey is given by

—yi+ xj
N 2 —l—y2'

In this way (er,ep, e,) form a right handed coordinate system.

€ =€, X e, =

For spherical coordinates the followings are standard basis vectors.

e, = ) e sin ¢ cos #i + sin ¢ sin 0j 4 cos ¢k
Va2 +y? + 22

es; = cos@cosbi+ cos@sinbj— sin gk

ey = it = —sin #i 4 cos 6j.



