
Chapter 1

The geometry of Euclidean

Space

We consider the basic operations of vectors in 3 and 3 dim. space: vector

addition, scalar multiplication, dot product and cross product. In section 1.6

we generalize these notions to n dim’l space.

1.1 Vectors in 2, 3 dim space

1.1.1 Lines, Planes and the Space

(1) The set of all real numbers is denoted by R.

(2) The set of all ordered pairs of real numbers (x, y) is denoted by R
2.

(3) The set of all ordered triples of real numbers (x, y, z) is denoted by R
3.

The planes in R
3determined by z = 0.(resp. x = 0 and y = 0) are called

xy-plane, (resp. yz-plane, zx-plane) These planes divides the space into

eight parts: Each of them is called octant. If every component is positive, it

is called the first octant.

Example 1.1.1. (1) The xz-plane is the set of all points with y = 0:

{(x, y) | y = 0}.

(2) Similarly, the xy-plane is determined by z = 0:

{(x, y, z) | z = 0}.
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Figure 1.1: quadrant

(3) x-axis is determined by






y = 0

z = 0

or

{(x, y, z) | y = 0, z = 0}.

Definition 1.1.2. A vector in R
n, n = 2, 3 is an ordered pair(triple) of real

numbers, such as

(a1, a2), or (a1, a2, a3).

a1, a2 are called x-coordinate, y-coordinate or x-component, y-component

of (a1, a2). The point (0, 0) is called the origin and denoted by O.

We use the boldface to denote vectors, e.g, a = (a1, a2) or a = (a1, a2, a3)

are standard notations for vectors. The notation ~a is also used. A point P in

R
n can be represented by an ordered pair of real numbers (a1, a2) or (a1, a2, a3)

called Cartesian coordinate) of P. Thus, vectors are identified with points

in the plane or space.

R
2 = {(a1, a2) | a1 ∈ R, a2 ∈ R}.

Vector addition and scalar multiplication-algebraic view

The operation of addition can be extended to R
3. Given two triples, a =

(a1, a2, a3),b = (b1, b2, b3), we define

a+ b = (a1, a2, a3) + (b1, b2, b3) = (a1 + b1, a2 + b2, a3 + b3)
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to be the sum of (a1, a2, a3) and (b1, b2, b3). Thus we see that

a+ b = b+ a.

Two vectors a = (a1, a2, a3) and b = (b1, b2, b3) are equal if a1 = b1, a2 = b2

and a3 = b3. The vector 0 = (0, 0, 0) is the zero element. The vector

−(a1, a2, a3) = (−a1,−a2,−a3) is called the additive inverse or negative

of (a1, a2, a3).

Commutative law and associate law for additions:

(i) (x, y, z) + (u, v, w) = (u, v, w) + (x, y, z) (commutative law)

(ii) ((x, y, z) + (u, v, w)) + (l,m, n)

= (x, y, z) + ((u, v, w) + (l,m, n)) (associate law)

The difference is defined as

(a1, a2, a3)− (b1, b2, b3) = (a1 − b1, a2 − b2, a3 − b3).

Example 1.1.3.

(6, 0, 2) + (−10, 3, 2) = (−4, 3, 4)

(3, 0, 3) − (5, 0,−2) = (−2, 0, 5)

(0, 0, 0) + (1, 3, 2) = (1, 3, 2)

For any real α, and (a1, a2, a3) in R
3, the scalar multiple α(a1, a2, a3) is

defined as

α(a1, a2, a3) = (αa1, αa2, αa3).

Additions and scalar multiplication has the following properties:
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(i) (αβ)(x, y, z) = α(β(x, y, z)) (associate law)

(ii) (α+ β)(x, y, z) = α(x, y, z) + β(x, y, z) (distributive law)

(iii) α((x, y, z) + (u, v, w)) = α(x, y, z) + α(u, v, w) (distributive law)

(iv) α(0, 0, 0) = (0, 0, 0) (property of 0 )

(v) 0(x, y, z) = (0, 0, 0) (property of 0 )

(vi) 1(x, y, z) = (x, y, z) (property of 1 )

Example 1.1.4.

3 (6,−3, 2) = (18,−9, 6)

1 (3, 5,−2) = (3, 5,−2)

0 (1, 3, 2) = (0, 0, 0)

(−2) (−2, 1, 3) = (4,−2,−6)

(x, y) + (u, v) = (x+ u, y + v)

α(x, y) = (αx, αy)

Example 1.1.5. Show

(1) (α+ β)(x, y) = α(x, y) + β(x, y)

(2) α((x, y) + (u, v)) = α(x, y) + α(u, v)

sol. (1) LHS is

(α+ β)(x, y) = ((α+ β)x, (α + β)y)

= (αx+ βx, αy + βy)

= (αx, αy) + (βx, βy)

= α(x, y) + β(x, y)
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Figure 1.3: A point P (a1, a2, a3) as a vector

(2) LHS is

α((x, y) + (u, v)) = α(x+ u, y + v)

= (α(x + u), α(y + v))

= (αx+ αu, αy + αv)

= (αx, αy) + (αu, αv)

= α(x, y) + α(u, v)

Vectors-Geometric view

We can associate a vector a with a point (a1, a2, a3) in the space. For example,

we can visualize it with an arrow starting at the origin and ending at the point

a = (a1, a2, a3). One can also interpret a vector as directed line segment

i.e, a line segment with specified magnitude and direction.

Referring to the Figure 1.4, we denote the directed line segment PQ from

P to Q by
−→
PQ. P and Q are called tail and head respectively. A vector with

tail at the origin is called a position vector. If two vectors have the same

magnitude direction, we regard it as the same vector. In this case two vector

can overlap exactly when moved in parallel. Referring to the parallelogram

ABDC in Figure 1.4, we see
−→
AB =

−→
CD and

−→
AC =

−→
BD.

See figure 1.5 (1). If two vectors u, v have the same tail P , the sum u+v

is the vector ending at the opposite vertex of the parallelogram formed by u

and v .
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Figure 1.7: scalar multiple of v

(i) u+ v = v + u (commutative law)

(ii) (u+ v) +w = u+ (v +w) (associate law)

Scalar multiple of a vector

For a real number(scalar) s and a vector v, the scalar multiple sv(see Fig 1.11)

is the vector having magnitude |s| times that of v, having the same direction

as v when s > 0, opposite direction when s < 0.

The following hold:

(iii) (st)u = s(tu) (associative law)

(iv) (s+ t)u = su+ tu (distributive law)

(v) s(u+ v) = su+ sv (distributive law)

(vi) s0 = 0 (0-vector)

(vii) 0u = 0 (0 )

(viii) 1u = u (1 )

Example 1.1.6. Show that (−s)v = −(sv) for any scalar s and vector v.

Example 1.1.7 (3D).

a = (a1, a2, a3)

a1, a2, a3 are called x-component, y- component, z -component of a.

As in figure 1.8 when A = (a1, a2, a3) shift the line segment OA by b1 along x-

axis, by b2 along y-axis, b3 along z-axis is denoted by BP . Then the coordinate

of B is (b1, b2, b3), P is (a1 + b1, a2 + b2, a3 + b3) and OBPA is parallelogram.

Hence
−→
OA+

−→
OB =

−→
OP.
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Standard basis vectors

Definition 1.1.8. The following vectors i, j, k are called (standard basis

vector) of R3 (Figure 1.13).

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1)

Remark 1.1.9. (1) For a given v = (a1, a2, a3)

(a1, a2, a3) = a1(1, 0, 0) + a2(0, 1, 0) + a3(0, 0, 1) = a1i+ a2j+ a3k

Example 1.1.10. Write the following using standard basis vectors.

(1) v = (−1/2, 3, 5)

(2) Express 3a− 2b when a = (3, 5, 0), b = (−4, 1, 1)

(3) For two points P (1, 4, 3), Q(4, 1, 2), express
−→
PQ
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(4) For three points A(0,−1, 4), B(2, 4, 1), C(3, 0, 2), express

1

2

−→
OA+

1

3

−→
OB +

1

6

−→
OC

sol. (1) v = (−1/2)i + 3j+ 5k

(2) 3a− 2b = 3(3i+ 5j)− 2(−4i+ j+ k)

= (9 + 8)i+ (15− 2)j+ (−2)k = 17i+ 13j− 2k

(3)
−→
PQ = (4− 1)i+ (1− 4)j+ (2− 3)k = 3i− 3j− k

(4) (1/2)
−→
OA + (1/3)

−→
OB + (1/6)

−→
OC

= (1/2)(−j + 4k) + (1/3)(2i + 4j+ k) + (1/6)(3i + 2k)

= (7/6)i + (5/6)j + (8/3)k

1.2 More about vectors

Parametric equation of lines(Point-Direction form)

b a
P0

P = (x, y, z)

y

x

z

O

~OP0

~OP

Figure 1.10: A line is determined by a point and a vector

ℓ(t) =
→

OP0 + t
→

P0P = b+ ta

The equation of the line ℓ through the tip of ~OP0 and pointing in the

direction of ~P0P is ℓ(t) = b + ta where t takes all real values. In coordinate
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form, we have

x = x1 + at,

y = y1 + bt,

z = z1 + ct,

where b = (x1, y1, z1) and a = (a, b, c).

Example 1.2.1. (1) Find equation of line through (2, 1, 5) in the direction

of 4i− 2j+ 5k.

(2) In what direction, the the line x = 3t− 2, y = t− 1, z = 7t+ 4 points ?

sol. (1) v = (2, 1, 5) + t(4,−2, 5)

(2) (3, 1, 7) = 3i+ j+ 7k.

Example 1.2.2. Does the two lines (x, y, z) = (t,−6t + 1, 2t − 8) and (3t +

1, 2t, 0) intersect ?

sol. If two line intersect, we must have

(t1,−6t1, 2t1 − 8) = (3t2 + 1, 2t2, 0)

for some numbers t1, t2.(Note: we have used two different parameters t1 and

t2). But since the system of equation

t1 = 3t2 + 1

−6t1 = 2t2

2t1 − 8 = 0

has no solution, the lines do not meet.

Two point form

We describe the equation of line through two points a,b.

The direction is given by v = b− a. So by point -direction form

ℓ(t) = a+ t(b− a).
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If P = (x1, y1, z1) is the tip of a and Q = (x2, y2, z2) is the tip of b, then

v = (x2 − x1, y2 − y1, z2 − z1). Writing it componentwise, we see

x = x1 + (x2 − x1)t

y = y1 + (y2 − y1)t

z = z1 + (z2 − z1)t

Solving these for t, we see

t =
x− x1
x2 − x1

=
y − y1
y2 − y1

=
z − z1
z2 − z1

This is another equation of line.

Example 1.2.3. Find eq. of a line through (2, 1,−3) and (6,−1,−5).

Example 1.2.4. Find eq. of line segment between (1, 1,−3) and (2,−1, 0)

sol. 0 ≤ t ≤ 1
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Assume a circle of radius a is rolling on the x-axis. Let P be a point on

the circle located at the origin in the beginning. As the circle rolls, P starts

to move from the origin. (Fig 1.11) The trajectory of P is called a cycloid. If

circle rotates by t radian, then P = (x, y) is given by

x = at+ a cos θ, y = a+ a sin θ. (1.1)

Since θ = 3π
2 − t, cos θ = − sin t, sin θ = − cos t, we have

x = a(t− sin t), y = a(1− cos t).

1.3 Inner product, length, distance

Dot product-Inner product

Definition 1.3.1. Given two vectors a = a1i+a2j+a3k and b = b1i+b2j+b3k

we define

a1b1 + a2b2 + a3b3

to be the dot product or (inner product) of a and b and write a · b.

Example 1.3.2. Let a = 2i− 3j+ k, b = i+ 2j− k. Find

(1) a · a

(2) a · b

(3) a · (a− 3b)

(4) (3a+ 2b) · (a− b)
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sol. (1) a · a = 4 + 9 + 1 = 14

(2) a · b = 2− 6− 1 = −5

(3) a · (a− 3b) = (2i − 3j+ k) · (−i− 9j+ 4k)

= −2 + 27 + 4 = 29

(4) (3a+ 2b) · (a− b) = (8i− 5j+ k) · (i− 5j+ 2k)

= 8 + 25 + 2 = 35

Proposition 1.3.3 (Properties of Inner Product). For vectors a, b, c and

scalar α, the following hold:

(1) a · a ≥ 0 (equality holds only when a = 0)

(2) a · b = b · a

(3) (a+ b) · c = a · c+ b · c

(4) (αa) · b = α(a · b)

(5) ‖a‖ =
√
a · a

Proof. These can be proved easily.

Example 1.3.4. For a, b, c Show the following.

(1) (a− b) · c = a · c− b · c

(2) a · (b+ c) = a · b+ a · c

(3) a · (b− c) = a · b− a · c

(4) a · b = 1
2(‖a‖2 + ‖b‖2 − ‖a− b‖2)

sol. We see

(1) (a− b) · c = (a+ (−1)b)) · c = a · c+ ((−1)b) ·w
= a · c+ (−1)b · c = a · c− b · c

(2) a · (b+ c) = (b+ c) · a = b · a+ c · a = a · b+ a · c
(3) a · (b− c) = (b− c) · a = b · a− c · a = a · b− a · c
(4) ‖a− b‖2 = (a− b) · (a− b) = a · (a− b)− b · (a− b)

= a · a− a · b− b · a+ b · b = ‖a‖2 − 2a · b+ ‖b‖2
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Length of vectors

The length, norm of a vector a = (a1, a2, a3) is

√

(a1 − 0)2 + (a2 − 0)2 + (a3 − 0)2 =
√

a21 + a22 + a23

denoted by ‖a‖. Also we note that

‖a‖ = (a · a)1/2.

Example 1.3.5. Find the lengths of the following vectors.

(1) a = (3, 2, 1)

(2) 3i− 4j+ k

(3)
−→
AB when A(2,−1/3,−1), B(8/3, 0, 1).

sol. (1) ‖a‖ =
√
9 + 4 + 1 =

√
14

(2) ‖3i− 4j+ k‖ =
√
9 + 16 + 1 =

√
26

(3) ‖
−→
AB‖ =

√

(8/3 − 2)2 + (0− (−1/3))2 + (1− (−1))2

=
√

4/9 + 1/9 + 4 =
√
41/3

Definition 1.3.6. A vector with norm 1 is called a unit vector. Any nonzero

vector a can be made into a unit vector by setting a/‖a‖. This process is called
a normalization.

Example 1.3.7. Normalize the followings.

(1) i+ j+ k

(2) 3i+ 4k

(3) ai− j+ ck
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sol. (1) (1/
√
3) i+ (1/

√
3) j+ (1/

√
3)k

(2) (3/5) i + (4/5)k

(3) (a/
√
1 + a2 + c2) i− (1/

√
1 + a2 + c2) j+ (c/

√
1 + a2 + c2)k

Angle between two vectors

Proposition 1.3.8. Let a,b be two nonzero vectors in R
2 or R

3 and let θ be

the angle between them. Then

a · b = ‖a‖ ‖b‖ cos θ

ad hence

θ = cos−1
a · b

‖a‖ ‖b‖ .

Proof. Let a =
−→
AB, b =

−→
AC. Then a − b =

−→
CB. Let∠CAB = θ. Then by

�
�
�
�
�
�
�
�
�A

A
A
A
A
AA
B

C

a

b

θ

|BC|2 = |AB|2 + |AC|2 − 2|AB| |AC| cos θ

Figure 1.13: law of cosine

the law of cosine (figure 1.13) we have

‖b− a‖2 = ‖a‖2 + ‖b‖2 − 2‖a‖ ‖b‖ cos θ.

The left hand side is

‖a− b‖2 = (a− b) · (a− b)

= a · a− a · b− b · a+ b · b
= ‖a‖2 − 2a · b+ ‖b‖2.

Hence we obtain

‖a‖ ‖b‖ cos θ = a · b.
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Corollary 1.3.9. Two nonzero vector a and b are perpendicular, orthog-

onal if and only if a · b = 0.

Example 1.3.10. Find the angle between i+ j+ 2k and −i+ 2j+ k.

sol. By proposition 1.2.10,

(i+ j+ 2k) · (−i+ 2j+ k)

‖i+ j+ 2k‖ ‖ − i+ 2j+ k‖ =
−1 + 2 + 2√

1 + 1 + 4
√
1 + 4 + 1

=
3

6
=

1

2
.

Hence the angle is cos−1(1/2) = π/3.

Corollary 1.3.11. Given two points A(a1, a2, a3), B(b1, b2, b3), the area of

the triangle OAB is

1

2

√

(a2b3 − a3b2)2 + (a3b1 − a1b3)2 + (a1b2 − a2b1)2

Proof. Let
−→
OA = a,

−→
OB = b, ∠BOA = θ. Then the area of △OAB is

1

2
|OA| |OB| sin θ

=
1

2
‖a‖ ‖b‖

√

1− cos2 θ

=
1

2

√

‖a‖2 ‖b‖2 − (a · b)2

=
1

2

√

(a21 + a22 + a23)(b
2
1 + b22 + b23)− (a1b1 + a2b2 + a3b3)2

=
1

2

√

(a2b3 − a3b2)2 + (a3b1 − a1b3)2 + (a1b2 − a2b1)2.

Example 1.3.12. Find the area of the triangle with vertices A(a, 0, 0), B(0, b, 0), C(0, 0, c).

sol. Shift(translate) A to the origin, then the points B,C are moved to the

points (−a, b, 0) and (−a, 0, c). Hence

1

2

√

(bc− 0)2 + (0 + ac)2 + (0 + ab)2 =
1

2

√

b2c2 + c2a2 + a2b2.
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Theorem 1.3.13 (Cauchy-Schwarz inequality). For any two vectors a, b

|a · b| ≤ ‖a‖ ‖b‖

holds, and the equality holds iff a and b are parallel.

Proof. We may assume a, b are nonzero. Let θ be the angle between a and

b. Then by prop 1.3.8

|a · b| = ‖a‖ ‖b‖ | cos θ| ≤ ‖a‖ ‖b‖

holds. Since ‖a‖ ‖b‖ 6= 0, if equality holds | cos θ| = 1 i.e, θ = 0 or π. Hence

a and b are parallel.

Remark 1.3.14. The Cauchy-Schwarz inequality reads, componentwise, as

(ax+ by + cz)2 ≤ (a2 + b2 + c2)(x2 + y2 + z2).

Example 1.3.15. Show Cauchy-Schwarz inequality for i+ 3j+ 2k, −i+ j.

sol. Since the inner product and lengths are

(i+ 3j+ 2k) · (−i+ j) = −1 + 3 = 2,

‖i+ 3j+ 2k‖ ‖ − i+ j‖ =
√
1 + 9 + 4

√
1 + 1 =

√
28 = 2

√
7

we have

|(i+ 3j+ 2k) · (−i+ j)| ≤ ‖i+ 3j+ 2k‖ ‖ − i+ j‖.

Theorem 1.3.16 (Triangle inequality). For any two vector a, b it holds that

‖a+ b‖ ≤ ‖a‖+ ‖b‖

and equality holds when a, b are parallel and having same direction.

Proof. We have

‖a+ b‖2 = (a+ b) · (a+ b) = ‖a‖2 + 2a · b+ ‖b‖2.

By C-S

‖a+ b‖2 ≤ ‖a‖2 + 2‖a‖ ‖b‖ + ‖b‖2 = (‖a‖+ ‖b‖)2.
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Equality holds iff

a · b = ‖a‖ ‖b‖,

i.e, the angle is 0.

Example 1.3.17. Show triangle inequality for −i+ j and i+ 3j+ 2k.

sol. Sum and difference is

‖(i+ 3j+ 2k) + (−i+ j)‖ = ‖4j+ 2k‖ =
√
16 + 4

= 2
√
5 = 4.4721 . . .

‖i+ 3j+ 2k‖+ ‖ − i+ j‖ =
√
1 + 9 + 4 +

√
1 + 1

=
√
14 +

√
2 = 5.1558 . . .

Hence

‖(i+ 3j+ 2k) + (−i+ j)‖ ≤ ‖i+ 3j+ 2k‖+ ‖ − i+ j‖.

Definition 1.3.18. If two vectors a, b satisfy a · b = 0 then we say they are

orthogonal(perpendicular).

Example 1.3.19. For any real θ, the two vectors iθ = (cos θ)i + (sin θ)j,

jθ = −(sin θ)i+ (cos θ)j are orthogonal.

Example 1.3.20. Find a unit vector orthogonal to 2i− j+3k and i+2j+9k.

sol. Let ai+ bj+ ck be the desired vector. Then a, b, c are determined by

2a− b+ 3c = 0 (orthogonality)

a+ 2b+ 9c = 0 (orthogonality)

a2 + b2 + c2 = 1 (unicity).
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Hence the desired vector is

± 1√
19

(3i+ 3j− k) .

Orthogonal projection

Given two nonzero vectors a and b, we may define the orthogonal projec-

tion of b onto a to be the vector p given in the figure 1.15. Since p is a scalar

multiple of a, there is a constant c such that p = ca. We let

b = ca+ q,

where q is a vector orthogonal to a. Taking inner product with a, we have

a · b = ca · a.

Hence we obtain c = (a · b)/(a · a). Thus the orthogonal projection is

p =
a · b
‖a‖2 a.

q

O

θ

b

B

ℓa

p

Figure 1.15: Projection of b onto a

The length of p is

‖p‖ =
|a · b|
‖a‖2 ‖a‖ =

|a · b|
‖a‖ = ‖b‖ cos θ.

This agrees with the geometric interpretation.
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Definition 1.3.21. For nonzero vector b and any vector a, we define

projab = p =
a · b
‖a‖2a.

We call it orthogonal projection of b onto a.

Example 1.3.22. a = 3i+2j−k, b = i+ j+2k. Find orthogonal projection

of b onto a.

sol. The orthogonal projection is

a · b
‖a‖2a =

3 · 1 + 2 · 1 + (−1) · 2
9 + 4 + 1

(3i+ 2j− k)

=
9

14
i+

6

14
j− 3

14
k.

Theorem 1.3.23. For any two nonzero u and v, we can write v as the sum

of two orthogonal vectors a+ b, where a is the projection of v onto u and b

is orthogonal to u. This decomposition is unique.

Proof. Denote by a the projection of v onto u and let b = v− a. Then

v =
u · v
‖u‖2u+ v − u · v

‖u‖2u ≡ a+ b.

We can check b is orthogonal to u:

u · b = u ·
(

v − u · v
‖u‖2u

)

= u · v − u · v
‖u‖2 u · u

= u · v − u · v = 0.

This is an orthogonal decomposition. To see the uniqueness, assume there is

real number α s.t. v = αu+ c, with u · c = 0. Then

u · v = u · (αu+ c) = αu · u+ u · c = α‖u‖2.
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Hence we see

αu =
u · v
‖u‖2u = a

c = v − αu = v − a = b.

Thus the decomposition of v along u and its orthogonal component is unique.

Definition 1.3.24. The vector a is called the component parallel to u

and b is the component orthogonal to u.(orthogonal complement).

Example 1.3.25. Find the orthogonal decomposition of v = 3i+5j+k w.r.t.

u = i+ 2j− k.

sol. Let a be the projection of v onto u and b = v− a. Then

a =
u · v
‖u‖2u

=
1 · 3 + 2 · 5 + (−1) · 1

1 + 4 + 1
(i+ 2j− k)

= 2i+ 4j− 2k

b = (3i+ 5j+ k)− (2i+ 4j− 2k)

= i+ j+ 3k.

Here a is parallel to u, b is orthogonal to u and v = a+ b.

Do examples 4,5 in p.22, 23.

Triangle inequality

Theorem 1.3.26. For any vectors a,b, we have

‖a+ b‖ ≤ ‖a‖+ ‖b‖.

Use C-S.

Physical applications

Displacement : If an object has moved from P to Q, then ~PQ is the displace-

ment.
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Example 1.3.27. A ship is running on the sea at the speed of 20km to north.

but the current is flowing at the speed of 20km to the east, then in one hr,

the displacement of the ship is (20
√
2, 20

√
2).

1.4 Matrices and Cross product

Cross product

Definition 1.4.1. Let a,b be two vectors in R
3(not R2). The cross product

of a,b, denoted by a×b is the vector whose length and direction are given as

follows:

(1) The length is the area of the parallelogram spanned by a and b.(zero if

a,b are parallel). Alternatively,

‖a× b‖ = ‖a‖‖b‖ sin θ,

where θ is the angle between a and b.

(2) The direction of a×b is perpendicular to a and b, and the triple (a,b,a×
b) form a right-handed set of vectors.

Algebraic rules:
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(1) a× b = 0, if a, b are parallel or one of them is zero.

(2) a× b = −(b× a)

(3) a× (b+ c) = a× b+ a× c

(4) (a+ b)× c = a× c+ b× c

(5) (αa)× b = α(a× b) for scalar α.

Multiplication rules:

(1) i× j = k, j× k = i, k× i = j.

(2) a× b = −(b× a)

(3) i× i = j× j = k× k = 0

Note that

a× (b× c) 6= (a× b)× c.

For example

i× (i× j) = i× k = −j 6= (i× i)× j = 0.

2× 2 matrix

The array of numbers a11, a12, a21, a22 in the form

A =

[

a11 a12

a21 a22

]

is called 2× 2 matrix and

[a11 a12],

[

a12

a22

]

are the first row and second column. The real number a11a22 − a12a21 is

determinant and denoted by

det(A) =

∣

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

∣
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Example 1.4.2. Find determinant of 2× 2 matrices.

∣

∣

∣

∣

∣

3 4

2 1

∣

∣

∣

∣

∣

= 3− 8 = −5,

∣

∣

∣

∣

∣

0 3

−1 1

∣

∣

∣

∣

∣

= 0− (−3) = 3,

∣

∣

∣

∣

∣

1 2

−2 1

∣

∣

∣

∣

∣

= 1− (−4) = 5

Proposition 1.4.3. The area of parallelogram determined by the two vectors

ai+ bj and ci + dj is |ad − bc|. This is the absolute value of the determinant

of the matrix determined by two two vectors:

det

[

a b

c d

]

.

Proof. Let u = ai + bj, v = ci + dj and θ be the angle between them. Then

the area of the parallelogram is

‖u‖ ‖v‖ sin θ = ‖u‖ ‖v‖
√

1− cos2 θ

=
√

‖u‖2 ‖v‖2 − (u · v)2

=
√

(a2 + b2)(c2 + d2)− (ac+ bd)2

=
√

a2d2 + b2c2 − 2abcd

= |ad− bc|.

3× 3 matrix

A typical 3× 3 matrix is given by







a11 a12 a13

a21 a22 a23

a31 a32 a33






.

Here

[a31 a32 a33],







a12

a22

a32






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are third row and second column. The determinant is defined as

∣

∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

∣

= a11

∣

∣

∣

∣

∣

a22 a23

a32 a33

∣

∣

∣

∣

∣

− a12

∣

∣

∣

∣

∣

a21 a23

a31 a33

∣

∣

∣

∣

∣

+ a13

∣

∣

∣

∣

∣

a21 a22

a31 a32

∣

∣

∣

∣

∣

. (1.2)

Example 1.4.4.

∣

∣

∣

∣

∣

∣

∣

1 2 3

4 5 6

7 8 9

∣

∣

∣

∣

∣

∣

∣

= 1

∣

∣

∣

∣

∣

5 6

8 9

∣

∣

∣

∣

∣

− 2

∣

∣

∣

∣

∣

4 6

7 9

∣

∣

∣

∣

∣

+ 3

∣

∣

∣

∣

∣

4 5

7 8

∣

∣

∣

∣

∣

= −3 + 12− 9 = 0.

∣

∣

∣

∣

∣

∣

∣

1 1 1

2 4 8

3 9 27

∣

∣

∣

∣

∣

∣

∣

= 1

∣

∣

∣

∣

∣

4 8

9 27

∣

∣

∣

∣

∣

− 1

∣

∣

∣

∣

∣

2 8

3 27

∣

∣

∣

∣

∣

+ 1

∣

∣

∣

∣

∣

2 4

3 9

∣

∣

∣

∣

∣

= 36− 30 + 6 = 12.

Definition 1.4.5. If we exchange rows and columns of the following matrices

[

a11 a12

a21 a22

]

,







a11 a12 a13

a21 a22 a23

a31 a32 a33







to get
[

a11 a21

a12 a22

]

,







a11 a21 a31

a12 a22 a32

a13 a23 a33







then resulting matrices are called the transpose.

Properties of determinant-skip for the time being

Theorem 1.4.6. (1) Determinant of transposed matrix is the same the De-

terminant of original matrix.

(2) If we exchange any two rows(columns), then determinant changes signs.

(3) |det(αA)| = αn|det(A)|

(4) Adding a scalar multiple of row (column) to another row (column) does

not change determinant.
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Proof. (1) For 2× 2

∣

∣

∣

∣

∣

a11 a21

a12 a22

∣

∣

∣

∣

∣

= a11a22 − a21a12 = a11a22 − a12a21 =

∣

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

∣

.

For 3× 3

∣

∣

∣

∣

∣

∣

∣

a11 a21 a31

a12 a22 a32

a13 a23 a33

∣

∣

∣

∣

∣

∣

∣

= a11

∣

∣

∣

∣

∣

a22 a32

a23 a33

∣

∣

∣

∣

∣

− a21

∣

∣

∣

∣

∣

a12 a32

a13 a33

∣

∣

∣

∣

∣

+ a31

∣

∣

∣

∣

∣

a12 a22

a13 a23

∣

∣

∣

∣

∣

= a11(a22a33 − a32a23)− a21(a12a33 − a32a13)

+ a31(a12a23 − a22a13)

= a11(a22a33 − a32a23)− a21a12a33 + a21a32a13

+ a31a12a23 − a31a22a13

= a11(a22a33 − a23a32)− a12a21a33 + a12a23a31

+ a13a21a32 − a13a22a31

= a11(a22a33 − a23a32)− a12(a21a33 − a23a31)

+ a13(a21a32 − a22a31)

= a11

∣

∣

∣

∣

∣

a22 a23

a32 a33

∣

∣

∣

∣

∣

− a12

∣

∣

∣

∣

∣

a21 a23

a31 a33

∣

∣

∣

∣

∣

+ a13

∣

∣

∣

∣

∣

a21 a22

a31 a32

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

∣

.

(4) 2× 2 case is easy.

For 3× 3, we see by expanding w.r.t. first row
∣

∣

∣

∣

∣

∣

∣

a11 + ta21 a12 + ta22 a13 + ta23

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

∣

= (a11 + ta21)

∣

∣

∣

∣

∣

a22 a23

a32 a33

∣

∣

∣

∣

∣

− (a12 + ta22)

∣

∣

∣

∣

∣

a21 a23

a31 a33

∣

∣

∣

∣

∣

+ (a13 + ta23)

∣

∣

∣

∣

∣

a21 a22

a31 a32

∣

∣

∣

∣

∣
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= a11

∣

∣

∣

∣

∣

a22 a23

a32 a33

∣

∣

∣

∣

∣

− a12

∣

∣

∣

∣

∣

a21 a23

a31 a33

∣

∣

∣

∣

∣

+ a13

∣

∣

∣

∣

∣

a21 a22

a31 a32

∣

∣

∣

∣

∣

+ t

(

a21

∣

∣

∣

∣

∣

a22 a23

a32 a33

∣

∣

∣

∣

∣

− a22

∣

∣

∣

∣

∣

a21 a23

a31 a33

∣

∣

∣

∣

∣

+ a23

∣

∣

∣

∣

∣

a21 a22

a31 a32

∣

∣

∣

∣

∣

)

=

∣

∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

∣

+ t

∣

∣

∣

∣

∣

∣

∣

a21 a22 a23

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

∣

.

Exchange second and third rows, do not change the value. By (2) there must

be a sign change. Hence it is 0.

∣

∣

∣

∣

∣

∣

∣

a11 + ta21 a12 + ta22 a13 + ta23

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

∣

.

Hence (4) holds.

The RHS of 1.2 is expansion w.r.t first row. By theorem 1.4.6, (1), (2),

we can expand w.r.t. any row or column, except we multiply (−1)i+j . So if

we expand w.r.t 2nd row

∣

∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

∣

= −a21

∣

∣

∣

∣

∣

a12 a13

a32 a33

∣

∣

∣

∣

∣

+ a22

∣

∣

∣

∣

∣

a11 a13

a31 a33

∣

∣

∣

∣

∣

− a23

∣

∣

∣

∣

∣

a11 a12

a31 a32

∣

∣

∣

∣

∣

.

If we expand w.r.t 3rd column

∣

∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

∣

= a13

∣

∣

∣

∣

∣

a21 a22

a31 a32

∣

∣

∣

∣

∣

− a23

∣

∣

∣

∣

∣

a11 a12

a31 a32

∣

∣

∣

∣

∣

+ a33

∣

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

∣

.

Corollary 1.4.7. (1) Determinant of a matrix one of whose row is zero is

zero.

(2) If any two rows (columns) are equal, the determinant is zero.
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Example 1.4.8. The followings are expanded w.r.t 2nd, 3rd row.

∣

∣

∣

∣

∣

∣

∣

1 2 3

4 5 6

7 8 9

∣

∣

∣

∣

∣

∣

∣

= −2

∣

∣

∣

∣

∣

4 6

7 9

∣

∣

∣

∣

∣

+ 5

∣

∣

∣

∣

∣

1 3

7 9

∣

∣

∣

∣

∣

− 8

∣

∣

∣

∣

∣

1 3

4 6

∣

∣

∣

∣

∣

= 12− 60 + 48 = 0.

∣

∣

∣

∣

∣

∣

∣

1 2 3

4 0 6

0 8 0

∣

∣

∣

∣

∣

∣

∣

= 0

∣

∣

∣

∣

∣

2 3

0 6

∣

∣

∣

∣

∣

− 8

∣

∣

∣

∣

∣

1 3

4 6

∣

∣

∣

∣

∣

+ 0

∣

∣

∣

∣

∣

1 2

4 0

∣

∣

∣

∣

∣

= 0 + 48 + 0 = 48.

Cross product-using determinant

In the previous section, we have defined the cross product using geometry, but

did not show how to compute it. Now we can give a formula for the cross

product using the determinant:

Definition 1.4.9 (Alternative definition). For a = a1i + a2j + a3k and b =

b1i+ b2j+ b3k, the cross product a× b is defined by

a× b =

∣

∣

∣

∣

∣

a2 a3

b2 b3

∣

∣

∣

∣

∣

i−
∣

∣

∣

∣

∣

a1 a3

b1 b3

∣

∣

∣

∣

∣

j+

∣

∣

∣

∣

∣

a1 a2

b1 b2

∣

∣

∣

∣

∣

k. (1.3)

Using the definition of determinant (1.2) symbolically, we have

a× b =

∣

∣

∣

∣

∣

∣

∣

i j k

a1 a2 a3

b1 b2 b3

∣

∣

∣

∣

∣

∣

∣

.

Example 1.4.10. i× i = 0, j× j = 0, k× k = 0.

Example 1.4.11. Compute (2i− j+ 3k) × (i+ j+ 2k).

sol. By the definition of cross product, we see

(2i− j+ 3k)× (i+ j+ 2k) =

∣

∣

∣

∣

∣

∣

∣

i j k

2 −1 3

1 1 2

∣

∣

∣

∣

∣

∣

∣

= −5i− j+ 3k.
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A geometric meaning of the cross product

To see the relation with the geometric definition of the cross product, we define

the triple product of three vectors: Let

a = a1i+ a2j+ a3k,b = b1i+ b2j+ b3k, c = c1i+ c2j+ c3k.

The dot product between (a×b) and c is (a×b) ·c, called the triple product

(a× b) · c of three vectors, a,b and c. We see by definition

(a× b) · c =

(∣

∣

∣

∣

∣

a2 a3

b2 b3

∣

∣

∣

∣

∣

i−
∣

∣

∣

∣

∣

a1 a3

b1 b3

∣

∣

∣

∣

∣

j+

∣

∣

∣

∣

∣

a1 a2

b1 b2

∣

∣

∣

∣

∣

k

)

· (c1i+ c2j+ c3k)

=

∣

∣

∣

∣

∣

a2 a3

b2 b3

∣

∣

∣

∣

∣

c1 −
∣

∣

∣

∣

∣

a1 a3

b1 b3

∣

∣

∣

∣

∣

c2 +

∣

∣

∣

∣

∣

a1 a2

b1 b2

∣

∣

∣

∣

∣

c3

=

∣

∣

∣

∣

∣

∣

∣

c1 c2 c3

a1 a2 a3

b1 b2 b3

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

∣

∣

∣

∣

∣

∣

∣

.

We observe the following properties of (a× b):

(1) If c is a vector in the plane spanned by a,b, then the third row in the

determinant is a linear combination of the first and second row, and

hence (a × b) · c = 0. In other words, the vector a× b is orthogonal to

any vector in the plane spanned by a and b.

(2) We compute length of a× b.

‖a× b‖2 =

∣

∣

∣

∣

∣

a2 a3

b2 b3

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

a1 a3

b1 b3

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

a1 a2

b1 b2

∣

∣

∣

∣

∣

2

= (a2b3 − a2b2)
2 + (a1b3 − b1a3)

2 + (a1b2 − b1a2)
2

= (a21 + a22 + a23)(b
2
1 + b22 + b23)− (a1b1 + a2b2 + a3b3)

2.

Hence

‖a×b‖2 = ‖a‖2‖b‖2− (a ·b)2 = ‖a‖2‖b‖2(1−cos2 θ) = ‖a‖2‖b‖2 sin2 θ.

So we conclude that a × b is a vector perpendicular to the plane P
spanned by a and b with length ‖a‖‖b‖| sin θ|.
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(3) Finally, the right handed rule can be checked with i× j = k.

Hence this alternative definition is the same as the geometric definition of

the cross product given earlier.

Theorem 1.4.12 (Alternative cross Product). For a, b, c, it holds that

(1) ‖a × b‖ = ‖a‖‖b‖ sin θ, the area of the parallelogram spanned by a and

b.

(2) a × b is perpendicular to a and b, and the triple (a,b,a × b) form a

right-handed rule.

Component formula using determinant

(a1i+ a2j+ a3k)× (b1i+ b2j+ b3k) =

∣

∣

∣

∣

∣

∣

∣

i j k

a1 a2 a3

b1 b2 b3

∣

∣

∣

∣

∣

∣

∣

= (a2b3 − a3b2)i− (a1b3 − a3b1)j+ (a1b2 − a2b1)k.

Example 1.4.13. Find (i+ j)× (j− 2k).

sol. (i+ j)× (j− 2k) = i× j − 2i× k + j× j − 2j× k = −2i+ 2j+ k.

Theorem 1.4.14 (Cross product II).

(1) ‖u× v‖2 = ‖u‖2‖v‖2 − (u · v)2. In particular, u× u = 0.

(2) If is θ the angle between u and v, ‖u× v‖ = ‖u‖ ‖v‖ sin θ. Hence nec.

and suff. condition for u and v are parallel is u× v = 0.

(3) (u× v) ·w = u · (v ×w).

(4) (u× v) · u = (u× v) · v = 0, i.e, u× v is orthogonal to u and v.

(5) |(a × b) · c| is the volume of parallelepiped formed by three vectors a,b

and c.(See below)
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Proof. Let u = a1i+ a2j+ a3k, v = b1i+ b2j+ b3k, w = c1i+ c2j+ c3k.

(1) ‖u× v‖2 = ‖u‖2‖v‖2 − (u · v)2 as shown before.

So u× u = 0.

(2) Since u · v = ‖u‖ ‖v‖ cos θ, we have by (1)

‖u× v‖ =
√

‖u‖2‖v‖2 − (u · v)2

= ‖u‖ ‖v‖
√

1− cos2 θ

= ‖u‖ ‖v‖ sin θ.

(3)

(u× v) ·w =

(∣

∣

∣

∣

∣

a2 a3

b2 b3

∣

∣

∣

∣

∣

i−
∣

∣

∣

∣

∣

a1 a3

b1 b3

∣

∣

∣

∣

∣

j+

∣

∣

∣

∣

∣

a1 a2

b1 b2

∣

∣

∣

∣

∣

k

)

· (c1i+ c2j+ c3k)

=

∣

∣

∣

∣

∣

a2 a3

b2 b3

∣

∣

∣

∣

∣

c1 −
∣

∣

∣

∣

∣

a1 a3

b1 b3

∣

∣

∣

∣

∣

c2 +

∣

∣

∣

∣

∣

a1 a2

b1 b2

∣

∣

∣

∣

∣

c3

=

∣

∣

∣

∣

∣

∣

∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

∣

∣

∣

∣

∣

∣

∣

exapnding w.r.t first row, this is

= a1

∣

∣

∣

∣

∣

b2 b3

c2 c3

∣

∣

∣

∣

∣

− a2

∣

∣

∣

∣

∣

b1 b3

c1 c3

∣

∣

∣

∣

∣

+ a3

∣

∣

∣

∣

∣

b1 b2

c1 c2

∣

∣

∣

∣

∣

= (a1i+ a2j+ a3k) ·
(∣

∣

∣

∣

∣

b2 b3

c2 c3

∣

∣

∣

∣

∣

i−
∣

∣

∣

∣

∣

b1 b3

c1 c3

∣

∣

∣

∣

∣

j+

∣

∣

∣

∣

∣

b1 b2

c1 c2

∣

∣

∣

∣

∣

k

)

= u · (v ×w).

(4) Using (3) and corollary 1.4.7, we see

(u× v) · u =

∣

∣

∣

∣

∣

∣

∣

a1 a2 a3

b1 b2 b3

a1 a2 a3

∣

∣

∣

∣

∣

∣

∣

= 0.

(u× v) · v =

∣

∣

∣

∣

∣

∣

∣

a1 a2 a3

b1 b2 b3

b1 b2 b3

∣

∣

∣

∣

∣

∣

∣

= 0.
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u× v

v

u

θ

Figure 1.16: right handed rule

Geometry of Determinant

2×2 matrix: If a = (a1, a2) and b = (b1, b2) then we can view them as vectors

in R
3 and define

a× b =

∣

∣

∣

∣

∣

∣

∣

i j k

a1 a2 0

b1 b2 0

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

a1 a2

b1 b2

∣

∣

∣

∣

∣

k = (a1b2 − a2b1)k.

Hence ‖a× b‖ is the area of the parallelogram formed by the two vectors.

Example 1.4.15. Find the area of triangle with vertices at (1, 1), (0, 2) and

(3, 2).

sol. Two sides are (0, 2)− (1, 1) = (−1, 1) and (3, 2)− (1, 1) = (2, 1). Thus

the area is the absolute value of 1
2

∣

∣

∣

∣

∣

−1 1

2 1

∣

∣

∣

∣

∣

= −3
2 .

Proposition 1.4.16. The volume of parallelepiped with sides a, b, c is give

by the absolute value of triple product (a× b) · c which is the determinant

|(a× b) · c| =

∣

∣

∣

∣

∣

∣

∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

∣

∣

∣

∣

∣

∣

∣

.

Proof. Consider a parallelogram with two sides a, b as bottom of the paral-

lelepiped. Then the height is length of the orthogonal projection of c onto
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a× b which is
∥

∥

∥

(a×b)·c
‖a×b‖2

a× b
∥

∥

∥. Hence the volume is

Area(bottom)× height = ‖a× b‖
∥

∥

∥

∥

(a× b) · c
‖a× b‖2 a× b

∥

∥

∥

∥

= |(a× b) · c|.

Example 1.4.17. Three points A(1, 2, 3), B(0, 1, 2), C(0, 3, 2) are given. Find

the volume of hexahedron having three vectors OA, OB, OC as sides.

sol. By proposition 1.4.16, we have

∣

∣

∣

∣

∣

∣

∣

1 2 3

0 1 2

0 3 2

∣

∣

∣

∣

∣

∣

∣

= 1

∣

∣

∣

∣

∣

1 2

3 2

∣

∣

∣

∣

∣

− 0

∣

∣

∣

∣

∣

2 3

3 2

∣

∣

∣

∣

∣

+ 0

∣

∣

∣

∣

∣

2 3

1 2

∣

∣

∣

∣

∣

= −4.

Torque

Imagine we are trying to fasten a bolt with a wrench. If one apply the forceF as

the figure, we see the amount force acting to the action of bolt is ‖r‖‖F‖ sin θ.
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b

θr
F

‖F‖ sin θ

Figure 1.17: Turning a hexagonal bolt with a wrench with force F. Torque
vector is r× F.

Then

Amount of Torque = (length of wrench)(component ofF ⊥ wrench)

= ‖r‖‖F‖ sin θ = ‖r× F‖.

Also, the direction of the vector r×F is the same direction as the bolt moves.

Hence it is natural to define r× F to be the torque vector.

Rotation of a rigid body

b

b

b

O y

x

L

z

α P

B

ω

r

v
θ

Figure 1.18: velocity v and angular velocity ω has relation v = ω × r.

Consider a rigid body B rotating about an axis L. (See fig 1.18 ). What

is the relation between the velocity of a point on the object and the rotational
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velocity?

First we need to define a vector ω, the angular velocity of the rotation.

The rotational motion of B can be described by a vector along axis

of rotation ω. The vector points along the axis of rotation with its direction

determined by the right handed rule. Its magnitude is the angular speed

(measured in radians per unit time) at which the object spins. The vector

ω is called the angular velocity vector and ω is angular speed, ω = ||ω||.
Next fix a point O(the origin) on the axis of rotation, and let r(t) = ~OP be

the position vector of the point P . Let ω the vector along z-axis s.t. ω = ||ω||.

Assume L is z-axis and α is distance from P to L. Then α = ||r|| sin θ (r

points to P ). Consider the tangent vector v at P . Since P moves around a

circle of radius α perpendicular to ω (parallel to xy-plane, counterclockwise),

we see,

∆r ≈ (radius of circle )(angle swept by Q)

= ||r|| sin θ(∆φ).

Thus
∥

∥

∥

∥

∆r

∆t

∥

∥

∥

∥

≈ ||r|| sin θ∆φ

∆t
.

As ∆t → 0, we obtain the (line) velocity and angular velocity by

v = lim
∆t→0

∆r

∆t
, ω = lim

∆t→0

∆φ

∆t
.

Hence

||v|| = ωα = ω||r|| sin θ = ||ω||||r|| sin θ. (1.4)

Then by definition of cross product,

v = ω × r. (1.5)

1.5 Equations of Planes

Let P be a plane and P0 = (x0, y0, z0) a point on that plane, and suppose

that n = Ai+ Bj+ Ck is a normal vector. Let P = (x, y, z) be any point in

R
3. Then P lies in the plane iff the vector

−→
P0P = (x − x0, y − y0, z − z0) is
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perpendicular to n, that is,
−→
P0P · n = 0. In other words,

(Ai+Bj+ Ck) · [(x− x0)i+ (y − y0)j+ (z − z0)k] = 0.

b

n P (x, y, z)

P0(x0, y0, z0)

Π

Figure 1.19: A plane is det’d by a point and normal vector

Proposition 1.5.1. Equation of plane through (x0, y0, z0) that has normal

vector n is

A(x− x0) +B(y − y0) + C(z − z0) = 0,

or

Ax+By + Cz −D = 0,

where D = −(Ax0 +By0 + Cz0).

Example 1.5.2. Find the equation of plane through the points A(−3, 0,−1),

B(−2, 3, 2), C(1, 1, 3).

sol. Draw some graph describing the normal vector.

Find a vector n orthogonal to plane.

n =
−→
AB ×

−→
AC

=

∣

∣

∣

∣

∣

∣

∣

i j k

−2− (−3) 3− 0 2− (−1)

1− (−3) 1− 0 3− (−1)

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

3 3

1 4

∣

∣

∣

∣

∣

i−
∣

∣

∣

∣

∣

1 3

4 4

∣

∣

∣

∣

∣

j+

∣

∣

∣

∣

∣

1 3

4 1

∣

∣

∣

∣

∣

k

= 9i+ 8j− 11k.
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By proposition 1.5.1, the equation is

9(x+ 3) + 8(y − 0)− 11(z + 1) = 0

or 9x+ 8y − 11z + 16 = 0.

Distance from a point to plane

v n

P (x1, y1, z1)

Q(x0, y0, z0)

Π

Figure 1.20: Distance from a point to plane

Proposition 1.5.3. The distance from P (x1, y1, z1) to the plane Ax+ By +

Cz +D = 0 is
|Ax1 +By1 +Cz1 +D|√

A2 +B2 + C2
.

Proof. Let n be a normal vector to the plane. If Q(x0, y0, z0) lies in the plane,

the distance from P to the plane is the orthogonal projection of
−→
PQ along n.

Note that from A(x−x0)+B(y−y0)+C(z−z0) = 0, we see n//Ai+Bj+Ck.

Hence length of the orthogonal projection of
−→
PQ along n is

∥

∥

∥

∥

∥

∥

n ·
−→
PQ

‖n‖2 n

∥

∥

∥

∥

∥

∥

=
|n ·

−→
PQ|

‖n‖

=
|A(x0 − x1) +B(y0 − y1) + C(z0 − z1)|√

A2 +B2 + C2

=
|Ax0 +By0 + Cz0 −Ax1 −By1 − Cz1|√

A2 +B2 + C2

=
| −D −Ax1 −By1 − Cz1|√

A2 +B2 + C2
=

|Ax1 +By1 +Cz1 +D|√
A2 +B2 + C2

.
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Example 1.5.4. Find the distance from (3, 4,−2) to the plane 2x−y+z−4 =

0.

sol. Using above proposition, distance is

|2 · 3− 1 · 4 + 1 · (−2)− 4|√
4 + 1 + 1

=
| − 4|√

6
=

2
√
6

3
.

Example 1.5.5. Find a unit vector perpendicular to the plane 4x−3y+z−4 =

0 and express it as a cross product of two unit orthogonal vectors lying in the

plane.

sol. Let S be the given plane. By proposition 1.5.1 we see 4i − 3j + k is

orthogonal to S. Hence a unit normal vector is

n = ± 4i− 3j+ k
√

42 + (−3)2 + 12
= ± 1√

26
(4i− 3j+ k).

Now in order to express this as a cross product of two vectors lying in the plane,

we choose three arbitrary points in S. For example, we choose (1, 0, 0), (0, 0, 4), (2, 1,−1).

Then we obtain two vectors

u = (1, 0, 0) − (2, 1,−1) = −i− j+ k

v = (0, 0, 4) − (2, 1,−1) = −2i− j+ 5k

which lie in the plane S. Now we orthogonalize them.

Let a be the orthogonal projection of v onto u. Then let b = v − a.

a =
u · v
‖u‖2u =

8

3
(−i− j+ k)

b = v − u · v
‖u‖2u = (−2i− j+ 5k)− 8

3
(−i− j+ k)

=
1

3
(2i+ 5j+ 7k).

Now normalize them.

a1 =
a

‖a‖ =
1√
3
(−i− j+ k), b1 =

b

‖b‖ =
1√
78

(2i+ 5j+ 7k).
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We can check that

a1 · b1 =
(−1) · 2 + (−1) · 5 + 1 · 7√

3 ·
√
78

= 0(orthogonal)

a1 × b1 =
1

3
√
26

∣

∣

∣

∣

∣

∣

∣

i j k

−1 −1 1

2 5 7

∣

∣

∣

∣

∣

∣

∣

=
1

3
√
26

(∣

∣

∣

∣

∣

−1 1

5 7

∣

∣

∣

∣

∣

i−
∣

∣

∣

∣

∣

−1 1

2 7

∣

∣

∣

∣

∣

j+

∣

∣

∣

∣

∣

−1 −1

2 5

∣

∣

∣

∣

∣

k

)

= − 1√
26

(4i− 3j+ k).

Parametric equation of a plane

y

x

z

O

b
P

c

b
P0

a

Π

Figure 1.21: A plane is det’d by a point and two vectors

Proposition 1.5.6. A parametric equation for a plane the through the point

P0 = (c1, c2, c3) and parallel to a and b is given by

x(s, t) = sa+ tb+ c.

Distance between a point and a line

Example 1.5.7. Find the distance from the point P0(2, 1, 3) to the line ℓ(t) =

t(−1, 1,−2) + (2, 3,−2).

sol. Choose any point B on the line and find an orthogonal decomposition

of
−→
BP0 onto the direction vector a = (−1, 1,−2) of the line. Then the length
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a

b

B

P0

b− pab

Figure 1.22: Distance from a point to a line

of the orthogonal complement is the distance. Choose B = (2, 3,−2). Then

−→
BP0 := b = (2, 1, 3) − (2, 3,−2)

= (0,−2, 5).

Hence the orthogonal projection onto a is

pab =
a · b
‖a‖2a

= (2,−2, 4).

Thus the distance is

‖b− pab‖ = ‖(0,−2, 5) − (2,−2, 4)‖ =
√
5.

Distance between two parallel planes

To find the distance between two parallel planes, we first compute a normal

vector common to both planes. Now choose one point from each plane, say

Pi from the plane Πi(i = 1, 2). Then find the projection of
−→
P1P2 onto the

common normal vector.

Distance between two skewed lines

Two lines are said to be skewed if they are neither intersecting nor parallel.

It follows that they must lie in two parallel planes and the distance between

the lines is equal to the distance between the planes. Let us describe how to

find the distance between them.

Assume we have two parallel planes Π1 and Π2 containing each lines. They
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ℓ1

P1

n

a1

ℓ2

a2

P2

b

b n

P1

P2

ℓ1

ℓ2

Change the view

Figure 1.23: Distance between two lines is the length of projnb

share a common normal vector n. Assume a1 and a2 are two direction vectors of

the planes.(verify) Then the normal vector is obtained by taking cross product

of a1 and a2. Let P1 ∈ ℓ1, P2 ∈ ℓ2 be any two points on each line. Then we

compute the projection of
−→
P1P2 onto n. Moving the projection along the line

ℓ1 so that the head ends at P2, we see its length is the desired distance.

Example 1.5.8. Find the distance between the two lines

ℓ1(t) = (0, 5,−1) + t(2, 1, 3), and ℓ2(t) = (−1, 2, 0) + t(1,−1, 0).

sol. We have a1 = (2, 1, 3) and a2 = (1,−1, 0). Choose P1 = (2, 6, 2) and

P2 = (0, 1, 0). Then b = (2, 6, 2) − (0, 1, 0) = (2, 5, 2). While

n = a1 × a2 = (2, 1, 3) × (1,−1, 0) = (3, 3,−3).

Normalizing, we let n = (1, 1,−1)/
√
3. Now the projection of b onto n is

projnb = (b · n)n =
(2 + 5− 2)√

3

(1, 1,−1)√
3

=
5

3
(1, 1,−1).

Hence the distance is
∥

∥

∥

∥

5

3
(1, 1,−1)

∥

∥

∥

∥

=
5√
3
.
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1.6 n-dim Euclidean space

Vectors in n -dim space

The set of all points with n-coordinates

R
n = {(a1, a2, . . . , an) | a1, a2, . . . , an ∈ R}

is called n-dimensional Euclidean space. Addition and scalar multiplica-

tion can be defined as

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn)

s(a1, a2, . . . , an) = (sa1, sa2, . . . , san).

The identity (0, 0, . . . , 0) in R
n is the zero element. The inverse of (a1, a2, . . . , an)

is (−a1,−a2, . . . ,−an), or −(a1, a2, . . . , an). For two points P (a1, a2, . . . , an)

and Q(b1, b2, . . . , bn), the set

PQ = {(1 − t)(a1, a2, . . . , an) + t(b1, b2, . . . , bn) | 0 ≤ t ≤ 1}

is called the line segment PQ and

√

(a1 − b1)2 + (a2 − b2)2 + · · · + (an − bn)2

is the length of PQ. Also the set

←→
PQ = {(1 − t)(a1, a2, . . . , an) + t(b1, b2, . . . , bn) | −∞ < t < ∞}

is the line PQ.

If the three points P (a1, . . . , an), Q(b1, . . . , bn), R(c1, . . . , cn) are not lying

in the same line, then the set

{r(a1, . . . , an) + s(b1, . . . , bn) + t(c1, . . . , cn) | −∞ < r, s, t < ∞, r+ s+ t = 1}

is called the plane determined by P, Q, R.
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Standard basis vector

We let

e1 = (1, 0, 0, . . . , 0)

e2 = (0, 1, 0, . . . , 0)

e3 = (0, 0, 1, . . . , 0)

...

en = (0, 0, 0, . . . , 1).

Then any vector in R
n can be written as a scalar combination of e1, e2, . . . , en:

(a1, a2, . . . , an) = a1e1 + a2e2 + · · · + anen.

The vectors e1, e2, . . . , en are the standard basis vectors of Rn. Clearly,

we have

ei · ej1 =







0 (i 6= j)

1 (i = j).

Theorem 1.6.1. We have the following:

(i) (αx+ βy) · z = αx · z+ βy · z (associate law)

(ii) x · y = y · x (commutative law)

(iii) x · x ≥ 0

(iv) x · x = 0 iff x = 0.

Example 1.6.2. Let u = 3e1 − 4e2 +2e4, v = e1 +2e2 +2e3 − 3e4 be in R
4.

Express 2u− 7v using standard basis vector.

sol. Using standard basis vector, 2u− 7v is

2u− 7v = 2(3e1 − 4e2 + 2e4)− 7(e1 + 2e2 + 2e3 − 3e4)

= (6e1 − 8e2 + 4e4) + (−7e1 − 14e2 − 14e3 + 21e4)

= (6− 7)e1 + (−8− 14)e2 + (0− 14)e3 + (4 + 21)e4

= −e1 − 22e2 − 14e3 + 25e4.

1By definition 1.1.8, the vectors e1, e2, e3 are denoted by i, j,k in R
3
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θ

Figure 1.24: The angle between two vectors

For two vector u = a1e1 + a2e2 + · · · + anen, v = b1e1 + b2e2 + · · · + bnen,

their inner product is defined as

u · v = a1b1 + a2b2 + · · ·+ anbn =

n
∑

i=1

aibi

This satisfies proposition 1.3.3. The length of a vector u is defined as

‖u‖ = (a21 + · · · + a2n)
1/2 =

√
u · u

and the distance between two vectors u and v is defined as ‖u− v‖.
One can even define the angle between u and v by

θ = cos−1
u · v

‖u‖ ‖v‖ = cos−1
a1b1 + · · ·+ anbn

(a21 + · · ·+ a2n)
1/2(b21 + · · ·+ b2n)

1/2
.

Example 1.6.3. Find the inner product of u = e1 − 2e2 + 3e3 + 2e4, v =

2e1 + e2 − 3e3 − e4.

sol.

u · v = 2− 2− 9− 2 = −11.

Example 1.6.4. Find the angle between u = e1−e2+e4, v = −e2−e3+2e4.

sol. The angle between u and v is

cos−1
0 + 1 + 0 + 2

√

(1 + 1 + 0 + 1)(0 + 1 + 1 + 4)
= cos−1

1√
2
=

π

4
.
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Theorem 1.6.5 (Cauchy-Schwarz inequality). For any two vectors a, b in

n-dim space the following holds. Equality holds iff a and b are parallel.

|a · b| ≤ ‖a‖ ‖b‖.

Proof. For n > 3 our early proof is unclear. Thus we prove this again. We

may assume none of the vectors are zero. Recall the orthogonal decomposition

of b onto a, i.e, we write

b = ka+ c,

where ka is the projection of b and c = b− ka is the orthogonal complement.

By orthogonality(a · c = 0),

‖a‖2‖b‖2 = ‖a‖2(k2‖a‖2 + ‖c‖2) ≥ k2‖a‖2‖a‖2.

Thus

k2‖a‖2 ≤ ‖b‖2.

Since k = b·a
‖a‖2

, we see

‖a · b‖2 ≤ ‖a‖2‖b‖2.

Theorem 1.6.6 (Triangle inequality). For any two vectors u, v in n-dim

space the following holds. Equality holds iff u and v are parallel and same

direction.

‖u+ v‖ ≤ ‖u‖+ ‖v‖.

Proof.

‖u+ v‖2 = (u+ v) · (u+ v)

= u · u+ 2u · v+ v · v
≤ u · u+ 2‖u‖‖v‖ + v · v
= (‖u‖ + ‖v‖)2.
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General matrix

Let m,n be any natural numbers. The arrays aij (1 ≤ i ≤ m, 1 ≤ j ≤ n)













a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn













is said to be an m× n matrix and denote by

[

aij

]

1 ≤ i ≤ m

1 ≤ j ≤ n

,
[

aij

]

m×n
or [aij ]

If m = 1, then 1×n matrix consists of one row and is called row vector, and

if n = 1 then m× 1 matrix is column vector. If m = n, it is called square

matrix. aij is called ij-entry. The 1× n matrix

[

ai1 ai2 · · · ain

]

is i-th row vector, m× 1 matrix













a1j

a2j
...

amj













is j-th column vector.

Example 1.6.7. What is 4-th row and second column of the 4× 3 matrix?













0 −2 12

3 1 4

−1 0 5

1 −3 7












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sol. 4-th row and second column is

[

1 −3 7
]

,













−2

1

0

−3













Matrix addition, multiplication

Let A and B be two m × n matrices. Then the matrix sum A + B is the

m×n matrix whose (i, j) entries are the sum of ai,j and bi,j. If k is any scalar,

define the scalar multiplication kA by

(kA)ij = kaij .

i.e, each entry is multiplied by k.

Definition 1.6.8 (Matrix multiplication). If A = [aij ] is m × n matrix and

B = [bkl] is n× p matrix, then the m× p matrix

[

n
∑

k=1

aikbkj

]

1 ≤ i ≤ m

1 ≤ j ≤ p

is the product of A and B denoted by AB. In other words, the product of

A and B is AB and its ij-component is the inner product of i − th row of A

and j − th column of B.

Example 1.6.9. Product of 2× 3 and 3× 4 matrices

[

2 3 1

−1 1 4

]







0 2 3 −2

−2 1 5 −3

2 0 −2 1






=

[

−4 9 19 −12

6 −1 −6 3

]

Example 1.6.10. Product of 1× 3 and 3× 2 matrices

[

2 1 −3
]







−3 5

1 −3

0 −2






=
[

−5 13
]
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Example 1.6.11. Product of 3× 4 and 4× 1 matrices







0 2 3 1

−1 2 0 −3

2 0 1 4



















x

y

z

w













=







2y + 3z + w

−x+ 2y − 3w

2x+ z + 4w







Definition 1.6.12. The following n× n matrix is



















1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1



















n× n identity matrix and denote it by In.

Proposition 1.6.13 (Properties of matrix multiplication). Let A,B and C

are matrices where the multiplication AB and BC etc, makes sense. Then

(1) A(BC) = (AB)C.

(2) k(AB) = (kA)B = A(kB)

(3) A(B +C) = AB +AC

(4) (A+B)C = AC +BC

whenever the multiplication makes sense.

Transpose.

(AT )T = A

(AB)T = BTAT .

a · b = aTb.

Lemma 1.6.14. For nay m× n matrix A and n× p matrix B, we have

AIn = A, InB = B.
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Also, for any n× n matrix A, it holds that

AIn = InA = A.

In is identity element in multiplication.

Example 1.6.15.
[

1 0

0 1

]

,







1 0 0

0 1 0

0 0 1







Definition 1.6.16. If for any vector u, v ∈ R
n and scalar α ∈ R, a function

T : Rn → R
m is defined by

(1) T (u+ v) = T (u) + T (v)

(2) T (αu) = αT (u)

we say T is a linear transformation(mapping, function).

Example 1.6.17. Express a given linear transformation T : Rn → R
m using

the standard basis vector.

Since any vector in R
n can be written as a1e1 + a2e2 + · · · + anen and T

is determined by the values at these vectors.

T (a1e1 + a2e2 + · · · + anen) = T (a1e1) + T (a2e2) + · · ·+ T (anen)

= a1T (e1) + a2T (e2) + · · ·+ anT (en).

Since T (e1), T (e2), . . . , T (en) are in R
m, we can write it as linear combinations

of e1, e2, . . . , em. Hence there exist numbers tij (1 ≤ i ≤ m, 1 ≤ j ≤ n) s.t.

T (ej) =
m
∑

i=1

tijei (1 ≤ j ≤ n). (1.6)

Hence

T (a1e1 + a2e2 + · · ·+ anen) =

n
∑

j=1

ajT (ej) =

m
∑

i=1





n
∑

j=1

tijaj



 ei. (1.7)

This procedure can be written in matrix form Eq. (1.6). The matrix having
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tij as ij-th component

mat(T ) =













t11 t12 · · · t1n

t21 t22 · · · t2n
...

...
. . .

...

tm1 tm2 · · · tmn













is called matrix of T . Let us multiply the column vector a1e1 + a2e2 + · · ·+
anen to the right of this matrix.













t11 t12 · · · t1n

t21 t22 · · · t2n
...

...
. . .

...

tm1 tm2 · · · tmn

























a1

a2
...

an













=













t11a1 + t12a2 + · · ·+ t1nan

t21a1 + t22a2 + · · ·+ t2nan
...

tm1a1 + tm2a2 + · · · + tmnan













Compare this with equation (1.7). Then rhs vector has T (a1e1 + a2e2 + · · ·+
anen) as its component. Conversely, any m × n matrix [tij ] is given, then it

determines linear transformation T : Rn → R
m as in equation (1.7). Hence

linear transformation T : Rn → R
m has one-one correspondence with m × n

matrix as follows:

mat: T 7→
[

ei · T (ej)
]

1 ≤ i ≤ m

1 ≤ j ≤ n

Proposition 1.6.18. For two linear transformations T : Rn → R
m, U : Rp →

R
n it holds that

mat(T ◦ U) = mat(T ) mat(U).

Example 1.6.19. For the given two linear transformations T : Rn → R
m,

U : Rp → R
n check Proposition 1.6.18 holds.

T (x, y, z) = (3y − z, x+ y)

U(s, t) = (2s − t, s + 2t,−3s).

sol. The matrices for T and U are

mat(T ) =

[

0 3 −1

1 1 0

]

, mat(U) =







2 −1

1 2

−3 0






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Hence

mat(T ) mat(U) =

[

0 3 −1

1 1 0

]







2 −1

1 2

−3 0






=

[

6 6

3 1

]

.

On the other hand

(T ◦ U)(s, t) = T (2s − t, s+ 2t,−3s)

= (3(s + 2t)− (−3s), (2s − t) + (s+ 2t))

= (6s + 6t, 3s + t).

So

mat(T ◦ U) =

[

6 6

3 1

]

.

Hence the following holds.

mat(T ◦ U) = mat(T ) mat(U).

Determinant

We have seen 3× 3 2× 2. Using these, we define determinant of n× n matrix

by induction. We expand w.r.t 1st column.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · . . .
...

an1 an2 · · · ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= a11

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a22 a23 · · · a2n

a32 a33 · · · a3n

· · · · · · . . .
...

an2 an3 · · · ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

· · ·+ (−1)1+ia1i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a21 · · · a2(i−1) a2(i+1) · · · a2n

a31 · · · a3(i−1) a3(i+1) · · · a3n
...

. . .
...

...
. . .

...

an1 · · · an(i−1) an(i+1) · · · ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ · · ·
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+(−1)1+na1n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a21 a22 · · · a2(n−1)

a31 a32 · · · a3(n−1)

· · · · · · . . .
...

an1 an2 · · · an(n−1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

The i-th term on the right is (−1)1+ia1i times the determinant of (n − 1) ×
(n− 1) obtained by deleting first row and i-column.

Theorem 1.4.6 and corollary 1.4.7 hold for any square matrices.

Expansion with respect to any row

LetAij be the (n − 1) × (n − 1) matrix obtained by deleting i-row and j-th

column. Expand w.r.t i-th row, we see

|A| =
n
∑

j=1

(−1)i+jaij |Aij |

and if we expand w.r.t j-th row, we see

|A| =
n
∑

i=1

(−1)i+jaij|Aij |.

Example 1.6.20. Expand w.r.t 2nd row

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 −1 3 0

0 −1 0 4

3 1 0 2

2 0 −3 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −0

∣

∣

∣

∣

∣

∣

∣

−1 3 0

1 0 2

0 −3 0

∣

∣

∣

∣

∣

∣

∣

+ (−1)

∣

∣

∣

∣

∣

∣

∣

2 3 0

3 0 2

2 −3 0

∣

∣

∣

∣

∣

∣

∣

− 0

∣

∣

∣

∣

∣

∣

∣

2 −1 0

3 1 2

2 0 0

∣

∣

∣

∣

∣

∣

∣

+ 4

∣

∣

∣

∣

∣

∣

∣

2 −1 3

3 1 0

2 0 −3

∣

∣

∣

∣

∣

∣

∣

= −2

∣

∣

∣

∣

∣

0 2

−3 0

∣

∣

∣

∣

∣

+ 3

∣

∣

∣

∣

∣

3 2

2 0

∣

∣

∣

∣

∣

+ 4 · 2
∣

∣

∣

∣

∣

−1 3

1 0

∣

∣

∣

∣

∣

+ 4(−3)

∣

∣

∣

∣

∣

2 −1

3 1

∣

∣

∣

∣

∣

= −2 · 6 + 3 · (−4) + 8 · (−3)− 12 · 5
= −108.
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Example 1.6.21. Solve

3x + 2y + z = 1

y + z = 0

x + y = 3.

sol. Use Cramer’s rule

∣

∣

∣

∣

∣

∣

∣

3 2 1

0 1 1

1 1 0

∣

∣

∣

∣

∣

∣

∣

= 3

∣

∣

∣

∣

∣

1 1

1 0

∣

∣

∣

∣

∣

− 0

∣

∣

∣

∣

∣

2 1

1 0

∣

∣

∣

∣

∣

+ 1

∣

∣

∣

∣

∣

2 1

1 1

∣

∣

∣

∣

∣

= −2.

Then x1, x2 and x3 are

x1 =
1

−2

∣

∣

∣

∣

∣

∣

∣

1 2 1

3 1 1

0 1 0

∣

∣

∣

∣

∣

∣

∣

= −1, x2 =
1

−2

∣

∣

∣

∣

∣

∣

∣

3 1 1

0 0 1

1 3 0

∣

∣

∣

∣

∣

∣

∣

= 4, x3 =
1

−2

∣

∣

∣

∣

∣

∣

∣

3 2 1

0 1 0

1 1 3

∣

∣

∣

∣

∣

∣

∣

= −4.

1.7 Cylindrical and spherical coordinate

Cylindrical coordinate system

Given a point P = (x, y, z), we can use polar coordinate for (x, y)-plane. Then

it holds that

Cylindrical to Cartesain











x = r cos θ,

y = r sin θ,

z = z.

We say (r, θ, z) is cylindrical coordinate of P . Conversely, the cylindrical

coordinate (r, θ, z) is given by

Cartesain to Cylindrical











r2 = x2 + y2,

tan θ = y
x ,

z = z.

The expression (r, θ, z) is not unique.
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r

z

x y

z

θ

(r, θ, z)

Figure 1.25: cylindrical coordinate

Example 1.7.1. The set of all points r = a in cylindrical coordinate is

{(x, y, z) | x2 + y2 = a2}.

This is a cylinder (Figure 1.25).

Example 1.7.2. r = 3cos θ gives

r2 = 3r cos θ ⇒ x2 + y2 = 3x

This is again a cylinder.

Example 1.7.3. Change cylindrical coordinate (6, π/3, 4) to Cartesian coor-

dinate.

sol.

x = 6cos(π/3) = 3, y = 6 sin(π/3) = 3
√
3, z = 4.

So (x, y, z) = (3, 3
√
3, 4).

θ =































tan−1(y/x) (x > 0, y ≥ 0)

2π + tan−1(y/x) (x > 0, y < 0)

π + tan−1(y/x) (x < 0)

π/2 (x = 0, y > 0)

3π/2 (x = 0, y < 0)
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Example 1.7.4. Identify the surface given by the equation z = 2r in cylin-

drical coordinate.

sol. z2 = 4r2 = 4(x2 + y2). This is a cone.

Example 1.7.5. Change the equation x2 + y2 − z2 = 1 to cylindrical coordi-

nate.

sol. r2 − z2 = 1.

Spherical coordinate system

We call (ρ, φ, θ) to be the spherical coordinate of P .

Shperical to cylindrical















r = ρ sinφ

θ = θ

z = ρ cos φ



















ρ2 = r2 + z2

tanφ =
r

z

θ = θ
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ρ
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z
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Figure 1.26: Spherical-coordinate

For P = (x, y, z) we have

Shperical to Cartesian















x = ρ sinφ cos θ

y = ρ sinφ sin θ

z = ρ cosφ







ρ ≥ 0

0 ≤ θ < 2π

0 ≤ φ ≤ π







Conversely, we can write ρ, φ, θ in terms of x, y, z.

Cartesian to shperical























ρ =
√

x2 + y2 + z2

cosφ =
z

ρ

tan θ =
y

x
.

Now the second condition has an alternate expression:We see from the figure

r = ρ sinφ, z = ρ cosφ.

Hence cosφ = z
ρ can be replaced by

tanφ =
r

z
.

Example 1.7.6. (1) Find spherical coord. of (1,−1, 1) and plot.

(2) Find cartesian coord. of (3, π/6, π/4).

(3) Find spherical coord. of (2,−3, 6).

(4) Find spherical coord. of (−3,−3,
√
6).
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sol. (1) ρ =
√
3.

φ = cos−1(
z

ρ
) = cos−1(

1√
3
) ≈ 0.955 ≈ 54.74o.

Since the point (1,−1) lies in the 4-th quadrant, we see

θ = arctan(
y

x
) =

7π

4
.

(3) ρ =
√

22 + (−3)2 + 62 =
√

22 + (−3)2 + 62 = 7.

φ = cos−1(
z

ρ
) = cos−1

6

7
.

Also, the point lies in the fourth quadrant, we have

θ = 2π + tan−1(−3/2).

(4)

ρ =
√
9 + 9 + 6 = 2

√
6

φ = cos−1
√
6

2
√
6
= cos−1

1

2
=

π

3

θ = π + tan−1(
−1

−1
) = π +

π

4
=

5π

4
.

Hence spherical coordinate is (2
√
6, π/3, 5π/4).

Example 1.7.7. Express the surface (1) xz = 1 and (2) x2 + y2 − z2 = 1 in

spherical coordinate.

sol. (1) Since xz = ρ2 sinφ cos θ cosφ = 1, we have the equation

ρ2 sin 2φ cosφ = 2.

(2) Since x2+y2−z2 = x2+y2+z2−2z2 = ρ2−2(ρ cos φ)2 = ρ2(1−2 cos2 φ),

the equation is 1 + ρ2 cos 2φ = 0.
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Figure 1.27: Standard basis for spherical coordinate

Standard basis for cylindrical and spherical coordinates

For cylindrical coordinates, the following sets are standard basis vectors:

er =
xi+ yj
√

x2 + y2
, eθ, ez = k.

These vary depending on the points and are defined so that only the coordinate

indicated by the subscript increases. Now eθ is given by

eθ = ez × er =
−yi+ xj
√

x2 + y2
.

In this way (er, eθ, ez) form a right handed coordinate system.

For spherical coordinates the followings are standard basis vectors.

eρ =
xi+ yj+ zj
√

x2 + y2 + z2
= sinφ cos θi+ sinφ sin θj+ cosφk

eφ = cosφ cos θi+ cosφ sin θj− sinφk

eθ =
−yi+ xj
√

x2 + y2
= − sin θi+ cos θj.


