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Chapter 8

Techniques of Integration

8.1 Integration by Parts

Some Examples of Integration

Example 8.1.1.

w/4
/ V14 cosdx dx.
0
Use ) 0
cos’h = —I_C%.

Example 8.1.2. Find

/ sec x dx.

The idea is to multiply sec x 4+ tan z both the numerator and denominator:

secx + tanx
secrdx = secr - ——— dx
secx + tanx
_ /secQw—Fsecxtanwd
a secr + tanx
du
u
= In|secx + tanz|+ C.

Similarly, we obtain

/cscxdm = —In|escz + cotx| + C.
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Integral tables
(1) /#du = ltam_l “ (a>0).

a? +u? a a

du = sin~1 ¥ (a > 0).

Example 8.1.3. For [1/(4 + 92?)dz, use substitution first. Let 3z/2 = u
then 3/2dx = du, and

1 1 1
. de=-— 4
/4+9x2 v 4/1+(3§)2 ‘

1 1
_6/1+u2du

1 3
=3 tan ! §:E + C.
Integral by parts
i(uv) ud—v + vd—u
dz dz dz’

Integrating w.r.t =
dv du
uv—/u%d$+/v%d:p

:/udv+/vdu.

Thus

Proposition 8.1.4 (Integration by Parts I).

/udv:uv—/vdu. (8.1)

Proposition 8.1.5 (Integration by Parts II).

/&@W@Mw:ﬂmmm—/fmmem (8.2)

Proposition 8.1.6 (Definite integral).

b b
| 1@ @ o = f@g@) - [ f@)gla) da.



8.1. INTEGRATION BY PARTS

Example 8.1.7. Find the following
(1) / rsinzdx
0

(2) / Inzdz.

(1) Let w = x, dv = sinx dz. Then du = dx, v = —cosz. (Fig 8.1)

/ xsinx dr = [z(— COS:E)]E)T—/ (—cosx)dz
0 0

=7+ [sinz]j

= T.

(2) Let w = Inx, dv = dx. Then we have du = (1/x)dx, v = x.

/haa:da:: (lna:):n—/a:-%da:

=zlnzx —z+C.

Figure 8.1:

Repeated integration by parts
Example 8.1.8. Find /3:2 sinz dzx.

Let u = x2, dv = sinx dx. Then du = 2xdx, v = — cos ¢ and hence

/a:2 sinz dr = 2?(— cosx) — /(— cos x)2x dx

= —a:2cosx+/2xcosa:da:.
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f and its derivative g and its integral
x? (+) e’
2x (—) e’
2 (+) e’
0 e’

Again, set u = 2z, dv = cosx dx. Then du = 2dz, v = sinx.

/wzsinwdw:—wzcosx+23$sinw—/2sinwdw

2

= —g“cosz +2xsinx +2cosx + C.

Example 8.1.9. Find /m2ex dx.

flz) =22, g(z) = e

f and its derivative g and its integral
3 (+) sinz
322 (—) —cos T
6x (+) —sinz
6 (—) cos x
0 sinx
Example 8.1.10. Find /x?’ sinz dzx.
Use the table above
/a:?’sina:dx = —z3cosz + 3% sinz + 6z cosx — 6sinz + C.
Example 8.1.11. Find /ex sinz dx.
If u=¢*, dv =sinxdx, then du = e*dx, v = — cos .

/exsinxdx:e:”(—cosx)—/em(—cosw)dx

= —excosw—k/excosxdx.
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Again let u = €, dv = cosz dx so that du = e*dx, v = sinx.

/exsinzndznz—excosx+/excos:17d:n

= —e*cosz+esiny — /ex sinz dzx.
Solving this for [ e*sinz dz we obtain

1
/ex sinzdr = gex(sina: —cosz) + C.

Reduction formula

Example 8.1.12. Express [ cos™ zdz in terms of low power of cos z.

/cos"_1 zcosxdr = cos" lsinz+ (n—1) / sin® x cos" % & dx

= cos" tsinz + (n—1) /(1 — cos®x) cos" 2z dx

= cos" lsinz + (n—1) / cos" 2xdr — (n — 1) /cos"a:da:.
So

n/cos"xda: = cos" ! Sinaz+(n—1)/cos"_23:daj.

Example 8.1.13. Prove

/(a2 422 dy = z(a? £ 2?)  2na?

1
2 2\n—1

+ d _2).
o+ 1 +2n+1/(a ) de, (n#—3)
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Integration by parts
/(a2 + 22" dx = z(a® £ 2?)" — /3: ~n(a? + 22" 1(+22) dx
= z(a® + )" — /2n(a2 + 23" (a0 £ 2% — a®) dx
= z(a® £ 22" — 2n/(a2 + 2%)" da
+ 2na® /(a2 + 23" d.
Ifn#-1/2,

z(a® £ 22" n 2na?
2n+1 2n+1

/(a2 L) de — /(a2 42?1 gy

8.2 Integration of Trigonometric function

Products of powers of Sines and Cosines
Integral of sin™ x cos™ x

(1) If m is odd, then set m = 2k + 1 and use sin?z = 1 — cos® z sinx dx =

—d(cos z) to transform it to

/Sin%H xeos" xdr = — /(1 — cos? )F cos™ x d(cos x).

(2) If nis odd n = 2k + 1, use cos?z = 1 —sin’x coszdr = d(sinx) to

obtain

/sinm zcos® T g dy = /sinm z(1 — sin? z)* d(sin ).

(3) If both m, n are even, use sin? z = (1 —cos 22)/2, cos® z = (14 cos 2z)/2

to lower the degree and repeat the previous technique.

Example 8.2.1. Find /sin5xdx.

/Sin53:d3: =— /(1 — cos?z)%d(cos z)
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=— /(1 — 2cos® x + cos’ x) d(cos z)

= ——cos5x+§cos

5

34 —cosx+ C.

Example 8.2.2. Find /sin2 x cos® x dz.

/ sin? z cos® z dx = /sin2 z(1 — sin® z) d(sin )

1 1
= —gsin5x+§sin3x+0.

Example 8.2.3. Find /sin4 x cos? x dz.

2
/sin4xc052xdx:/<1 005295) <1+cos2x> "

2 2

1
:g/(1—2cos2w+cos22x) (1 + cos2x) dx
1
= g/(l—cos23:—cos2 2:E+cos323:) dz
1 1 4
:§/<1—cos23:—$+(1—sin22x)0052$> dx
1
:1—6/(1—cos4x—sin22w'2cos2w) dz
1 1 1
:1—6<w—zsin4x—§sin32w> + C.

Integral of /1 & sinax, /1 & cosax

Use the double angle formula.

sin2A = 2sin Acos A
cos2A =2cos’ A —1=1—2sin? A.

Change the form 1+ sinaz, 1 + cosaz to a complete square.

K
Example 8.2.4. Find / V1 —sinx dx.
0
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Use the identity:

1 —sinz=1- 2sin(§)cos(g) = (sin(g) - cos(%))z.

. T
s1n——cos§ dx

/ \/1—sin$d:n:/ 5
0 0

/”/2< z x) /’T T T d
= cos— —sin— | + (sin — — COS —> T
0 2 2 /2 2 2

/2
= [ZSinE + 2cos E]W + [—2(:08E —2sin£r

2 210 2 2 w/2
=(V2+vV2-2)+ (-2+ V2 +V2)
=4(vV2-1).
=
w/2
Example 8.2.5. Find / V1 + cos 2z dux.
0
1+ cos 2z = 2cos? z,
w/2 w/2
/ \/1—1—00523::\/5/ |cos x| dx
0 0
= ﬁ[sinx]g/z
=2,
=

Tangent and secant
Recall

1 + tan? z = sec? x,

(tan z)’ = sec? z,

(secx) = secxtanx.

Example 8.2.6. /Secazdx.
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Multiply sec z + tan .

t
/Seczndzn :/secx(secx—i- an ) i

secx + tanx

t /
_/(secx—i— an ) i

secx + tanx

=In|secz + tanz| + C.

Example 8.2.7. /taanseca:da;.

3

Since tan?zsecx = (sec’z — 1)secx = sec®z — secx, we can find

fse03 xdr. Let u = secx, dv = sec? z dx then v = tanz, du = sec z tan x dz,

we have

/sec?’xdaz :secxtanx—/(tanx)secxtanxdm
:secxtanx—/(seczx—1)seca:da:

zsecxtanx—/Sec?’xdx—l—/secxdx.

Hence we obtain

1 1
/Sec?’xdx: §Secxtan:17—|—§/sec:nd:n.

Hence

/tan2 rsecrdr =

—

sec® zdx — /secxdaz

1
secrtanx — 5 secx dx

N = DN =

1
secrtan — §ln|sec:17—|—tan:17| +C.

Example 8.2.8. /tanGxdx.
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Since tan?z = sec?z — 1
/tan6xdx = /tan4x(sec2 x—1)dz

= /tan4xsec2a;da;— /tan4xdx

tan’ z sec $d$—/tan2x(sec2:p— 1)dz

/tan T sec a:da:—/tan2xse(:2xdx+/tan2xdx
1
5

tan® z sec :L"d:l:—/tan2xseczxdx—|—/(sec2:n—1)dx

1
tan® :E—gtan r+tanx —x + C.

Remark 8.2.9. For cotx or cscx, use

1+ cot?z = csc? T,

(cotz) = —csc? z,

(cscx) = — cscx cot .

Products such as sinmx sin nx, sinmx cos nx, cos mx cos nx

Addition formula:

in( ) = sin A cos B + cos Asin B
in( ) = sin A cos B — cos Asin B
cos(A + B) = cos Acos B — sin Asin B
( ) = cos Acos B + sin Asin B.

:r>
U:J

:r>
U:J

From these we get(with A = mz, B = nx)
. . 1
sin ma sin nz = §[cos(m —n)x — cos(m + n)z]
. L. . .
sin mx cos nx = i[sm(m —n)x + sin(m + n)z]

1
COS M COS NT = E[cos(m —n)x + cos(m + n)zl.
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/6
Example 8.2.10. / sin 4z sin 3z dx.
0

sol.

w/6 1 /6
/ sin 4z sin 3z dr = 3 / (cosz — cos Tx) dz
0 0
/6

—1 sina:—lsin%n ==
S 2 7 o T

8.3 Trig Substitution

Quadratic term

2

For the terms of the forms a® — u?, a® + u? u? — a?, we can try to substitute

u=asinf, u=atanf, u = asecf resp.

a? —u? = a® — a?sin? 0 = a®(1 — sin® ) = a® cos? 0 (8.3)
a® +u? = a® + d®tan? 0 = a®(1 + tan” 0) = a*sec®f (8.4)
u? — a? = a%sec? 0 — a? = a*(sec? § — 1) = a® tan? 6. (8.5)

Note the domain of definition
(1) uw=asinf is defined on —7/2 < 6 < 7/2.
(2) u=atan® @ = tan"'(u/a) on —7/2 < O < 7/2.

(3) u = asecl @ = sec™'(u/a) Since |u| > a 0 < 0 < 7/2 (if u > a), or
/2 <0 < (if u < —a).

du

E le 8.3.1. | —.
xample / Z
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Va? + 22 a x
x x l‘2 — ag

a a
a?

— 2

r =atanf r = asinf T = asect

Figure 8.2: trig substitution

Use substitution u = atan 6, du = asec? 6 df to get
g

du _[a sec2 0 db
a?+u? a?sec? 0

do

Example 8.3.2. Find / Va2 —u?du, (a>0).
Use u = asinf, du = acosf df to get

/\/&2—u2du:/acosﬁ'acosﬁdﬂ

o2
= 7/(1+00529)d6
2

a sin 26
_?<9+ 5 >+C

= %(9+sin90050) +C

2 2
=L (245 1-2 )+
2 a  a a?

2
1
= %sin_1 L iu\/a2 —u2+C.
a

N
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du
Example 8.3.3. Find/i, u| >a > 0).
p s (I )

Let uw = asect
u? — a? = a®(sec?d — 1)
= a®tan? 4,
du = asecfOtanddf.

Then

asecftan 6 do

du
/\/u2—a2 _/ a| tan 6]
/Secﬁdﬁ (0<0<m/2)

—/Se09d9 (m/2 <0 <m)

- In|secd +tand| +C (0 <6 < 7/2)
| —In|secO+tanb|+C (7/2<60 <)

( u u? — a?
nj—+—|4+C (u>a)
a a
7_ 2
Y L L (u < —a).
a a
On the other hand,
w2 — a2

u
__i_i
a a

In

:ln‘u—kvu?—a?‘ —Ina.

15
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U uZ — a? a
—In|—— =In
a a w— Vu2 — a2
I a(u—l—\/H)
(u —Vu? —a?)(u + Vu? — a?)
a(u+ vVu? — a?)
=In 5
a
N u+m
N a
=In u—i—\/uz—aZ‘—lna.
Hence J
i
7:ln‘u—|— ’LL2—(12‘—|—C/.
| 7= X
Example 8.3.4. /
1Y /—3:2

Let x = 3tanf (—7/2 < 0 < 7/2), dz = 3sec? 6 db,
/ /3se029
Vi + 3secl

= /sec@d@

= In|secf + tan | + C

($)2+1+$
3 3

zln(x+M(+C.

+C

=In

Involving ax? + bz + ¢ — Completing the square

For factors like ax? + bz +c, (a,b # 0), use u = z+b/(2a) to get az?+bxr+c =

a(u? £ p?).
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Example 8.3.5. Find / V2r — x?dz.

Since 2z — a2 =1 — (x — 1)2 u = x — 1 we have as in example 8.3.2
with a = 1,

/\/2$—x2dm:/\/1—u2du
1 1
:§sin_1u—|—§u\/1—u2—|—0
1 1
= §sin_1(ac—1)+§(x—1)\/2w—x2+0.

m
dx
E le 8.3.6. —_.
xamplie /3:2+:E—|—1
B trtl=(x+1/2?+3/4u=2+1/2a=3/2
/ dx _/ du
24+zx+1 ) u243/4
2 _1 2u
= —tan " —+C
NERE
9 2r+1
= —ta +C.
V3 V3
m

8.4 Integration of Rational functions by partial frac-

tion
When p(z), q(x) are rational functions, we can always write it as

p(z) r(z)
(@) q(x)
for some polynomial Q(z),r(x), where the degree of r(x) is less than that of

q(z). (i-e., the fraction must be proper)
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Distinct linear factors

Suppose a1, . .., a, are distinct and p(z) is polynomial of degree of is less than

r. Then we can set

p(gj) Al . Ar

Goa) o) rea i (5.

Here A;’s can be obtained by method of undetermined coefficients.(There is

another method, called Heaviside cover up method, see below)

dx d
/(m—al)---(w—ar) ; nlz — o+ C

1
Example 8.4.1. Find /de
x(x + 2)

One can find the following partial fraction

r+1 1 1

z(r +2) %+2(x+2)'

/7w+1 dw—l/ l—i— ! dz
r(z+2) 2 r x+2

1
= §ln|$(aj—|—2)| + C.

2x +1

dx.
-z

Example 8.4.2. Find/

Since 23 — 2 = x(z — 1)(x + 1) we can set

20 +1 A B C
=T+

-z =z x—1 x+1°

Solving for A, B,C we get A= —1, B=23/2, C = —1/2. Hence

2 1 — —
/ T dx:/ —1+ 3/2 + 1/2 dx
3 —z x z—1 =z+1

1
:—ln\xl—kgln]w—l\—§ln\x+1\+0.
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Repeated linear factor

Assume the degree of p(z) is less than that of r(x). Then

p() Ay A oy A
(x —a)" x—a+(x—a)2+ (x —a)"

To find the coefficients Ay, Ag, ..., A,, multiply (z — «)". Then
p(z) = Ai(z — Oz)T_1 + Ay(z — a)r_l 44 A,

Now use method of undetermined coefficients to find A;’s. Another nice way
of finding Als by derivative will be introduced below. Once As are known,

we can find the integral:

/%dz:/@f@*(wézaﬁ*'”*ﬁ) &
A -4

-« (x —a)r—1

=Aln|z—al -

(L’2

Example 8.4.3. Find /mdm

Since z? = (x — 2)? 4 4(z — 2) + 4, we have

Hence

/ﬁd“:/<wi2+<w:l2>2+<w:l2>3>dw

:ln|x—2|—w - +C.
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Irreducible quadratic factor

Suppose 22 + Bix + Y1, ...,2% + Brx + 7, are distinct quadratic factor with-
out having real roots(we say irreducible quadratic factor). Suppose p(z) is

polynomial of degree less than 2r. So we have

p(a:) . zr: Bﬂ? + CZ
@+ Bz +m) @+ Bat+y) S a*+Bir+y

for some Bi,...,B, and C1,...,C,. Hence

p(x) Bix + C;
/(x2+ﬁ1x+71)~-(x2+ﬁrx+'yr Z/ﬂ—kﬂ,x—l—%dx

Again we can find the coefficients by method of undetermined coefficients.

Now since

Bix + C; = 242z + Bi) + Dy, (D; = C; — By3;/2)

2?4+ B + i) + Di,

M|U:11\3|U:1

we have

/ 2Bil’+0i dx:/<@($22+5i$+%)/+ : D; )da:
2?4+ Bix + 7% 2 4Pty 2+ L+

B; D,
:—Zl 2 i 7 —Z d
5 n(z +5m+7)+/x2+5ﬂ+% T

For D;/(x* + B;z + ;) use the formula:
d 1
/7u = —tan_1E+C’.
uw?+a?  a a

2z
E le 8.4.4. Find | ——dx.
xample in /x4—|—a:2+1 T

Since 2* + 22 +1 = (2?2 — 2 + 1)(2® + z + 1), we set

2z . Bix +Cy Box + Cy
424+ 1 22—z+1 224z+1

By comparing, we obtain By = B, =0, C; =1, Cs = —1. Since

2tr+1=(z+1/2)?2+ (V3/2)?
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we see

/ 2x d
—_— "L'
2241

s o)
(x=1/2)2+ (V3/2)*  (x+1/2)2+(V3/2)?

2 221 _12x+1>
= — | tan — tan + C.
\/§< V3 V3

Repeated irreducible quadratic factor

Suppose p(x) is polynomial of degree less than 2r, and 22 + 3z + v does not

have real roots. Then we can set

p(z) Bz + Box + Cy B,x + C,

@t Bty BEtfrry @ tpat? @@t pr )

for some B1, Bo,...,B,,C1,Cs,...,C.. Then

p(z)
__ Py
/<x2+ﬁw+w ’
/( Bix + Cq Box + Cy Byx + C, >
— + e dx.
2?24+ pr+v (224 fr+v)? (2 4 Bz +~)"

By the same way as before we see, with D; = C; — B;3/2

Bix + C; B @(:ﬂ2—|—6$+7)' D;
[emeri= [ (Ftmr toemey) @

— BZ _|_/ Dz d
20— 1)(22 + Bz + 7)1 (22 4 Bz + ) v

For the integral of D;/(z? + Bz +7)* (i > 2), use the recurrence relation

/ du B u . 21 -3 / du
(u? +a2)t  a2(2i — 2)(u? +a?)i-1  a2(2i —2) ) (u2+a2)"1

4 3 2
2 5 6

Example 8.4.5. Find/gj AT o1t dx.
(IIJ‘2+2)3
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3:4+2:133+5:E2+6_A13:+B1 Asx + By Asr + Bs
(22 +2)3 242 (22 +2)2 (24 2)3°

Multiply (22 + 2)3 to see

zt 203 + 527 + 6 = Aya® + Biat 4 (4A; + A)x® + (4B + By)a?
+ (441 + 2A2 + A3)x + 4By + 2Bs + Bs.

Comparing, we get A1 =0, Ay =2, A3 =—-2, Bi =1, Bo =1, B3 =0. Hence

the integrand is

3:4+2x3+53:2+6_ 1 i 2x +1 . —4x
(z2 +2)3 S22 +2 0 (22422 (22 +2)3

Hence

/w4+2x3+5x2+6
dz
(22 +2)3
dz 2z 1 —4x
= d ——d ——d
/m2—|—2+/(x2+2)2 w+/($2+2)2 w+/($2+2)3 o
1 tan~! x 1 + T +1/ 1 dr + 1
= —tan  — — - T
V2 V2o ox?4+2 4(x?+2) 4) a?+2 (224 2)2
5 tan—! % + x—4 + 1 LC
= ——tan  — :
TN R, R T C I Pl

Heaviside cover up method for linear factors

Example 8.4.6.

2241 A B C
(x—1)(z—-2)(z—-3) z-1 -2 x-3

Here
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B (22 +1 5
B_(2—n(x—m 2-3 @D °

icover

_ (3)> +1 _ 10
" (B-1)(3-2)(z—3) @O >

icover

Example 8.4.7. Do the same with

/ T +4
z(x —2)(x+5)

Note
z+4 4 N B N C
r(x—2)(z+5) = x-2 x+5
A - 0+4 2
- [z]0-2)(0+5) 5
2+4
13 = +_ = §
A(@—2)[2+5) 7
o o —-5+4 _ 1
(55 -2 @+5)]
=
Using differentiation-repeated factors
Example 8.4.8.
z—1 A B C
= - - .
(x+1)32 241 (z4+1)2 (z+1)3
Write
r—1=Ax+1)?+Bx+1)+C.
Substitute x = —1 to get C' = —2. Then take derivative
1=24(z+1)+B
and substitute x = —1 to get B = 1. Finally, taking derivative again, we see

A=0.
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8.5 Numerical Integration

Trapezoidal Rule

A:L":h:b_a.
n

xo=a,x1=a+Ax, -+ ,xyp_1 =a+ (n—1)Az,z, =b.

With y,, = f(x;)

b
h
/ f(z)dr ~ §(yo +2y1 4+ 2Yn—1 + Yn).

M(b—a)3

Bl < 2V "
Brl < — 5

b B

Figure 8.3: Trapezoidal Rule

Simpson’s Rule

Replace the definite integral by an integral of quadratic interpolation. Exact
for poly. of degree three. Assume y = Az? + Bz + C is an interpolating
polynomial of f in the sense that y(z;) = f(z;) for vo = —h,x1 = 0,29 = h

h h
/ flz)dr = / (Az® 4+ Bz + C) dx
—h

—h

A 3 2 h
= _J}+ B_J} —I—C:E

3 2 o

2AR3

= +2Ch = §(2Ah2 +6C).
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Since
yo = Ah? — Bh+C, y1 = C, yo = Ah> + Bh+C
we see 9
Yo — 2Y1 + Y2 Y2 — Yo
A=2—"“7- = B— —
omz on 0 T

and the the integral is

h h
g(yo —2y1 +y2 +6y1) = §(y0 +4y1 + y2).

Since this formula is exact for 23, it is in general third order formula. When

Figure 8.4: Simpson’s Rule

the general interval [a,b] is divided by an even number of intervals, we can

apply it repeatedly to get

b
h
/ f(x)dx ~ g(yo + 4y +2y2 +4ys + -+ 2Yn—2 + 4yn—1 + Yn).
a

5
R T
Example 8.5.1. Find an upper bound for the error in estimating f02 5z dx
using Simpson’s rule with n = 5.
Let f(z) = 5z*. Then f*) =120. So M = 120. b—a =2 and n = 4.
The error bound is
M@®b—a)® 120(2)° 1

Eql < — -
R R T 18044 ~ 12

O

Example 8.5.2. What is the minimum number of intervals needed to approx-
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imate above example using the Simpson’s rule with an error less than 1072

We set .
M(b—a) _4
_ 1077,
180n4 <
Then

120(2)°
180n4
4 64(10)4
3

1/4
n > 10 (%) ~ 21.5.

8.6 Improper Integral

Improper Integral

Example 8.6.1. Find the area surrounded by y = 1/y/z, z-axis, y-axis,
x = 1(fig 8.5).

Figure 8.5: Improper Integral

The function 1/4/x is not defined at = 0. So one cannot define the

area like
/ .
0 VI
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But we can use limit such as

1
dzx
A =1 —
(hrewy = i, |
1
— lim [2x1/2]
e—0t €
Y o 1/2
51—1>I61+ (2 2¢ >
= 9. O

Computation of Improper integral

Figure 8.6: Improper integral on [a, b)

Definition 8.6.2 (Convergence of Improper integral).

(1) Suppose f(z) is integrable on all closed subinterval of [a,b) and we have
either lim f(z) = +oo. If the limit

r—b—

L = lim /u f(z)dx (8.7)

u—b—

exists then we say the improper integral converges and write its limit

b u
/ f(z)dz = lim f(x)dz.

u—b~ Jg
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(2) The same definition holds when lim f(z) = foo. We write

z—at

/abf(a;) dr = lim /gb f(z)dx (8.8)

{—at

if the latter limit exists. Otherwise, we say the integral diverges.

(3) The discontinuity can happen at an interior point. In this case, we can

still apply the above definitions.

al 0 b l 0 b

Figure 8.7: Improper integral on (a, b

1
1
Example 8.6.3. / —dx.
P ~1V1—22

Figure 8.8:
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We distinguish two case: (—1,0] and [0, 1).

0 1 CE |
————dzr= lim —dx
/_1 V1— 22 (—=—1+ Jy /1 — 22
0
= lim [sin”'z
{——1t [ ]é
= —sin"!(-1)
oo
2

| v
dr = lim dzx
/o V1—z2 u—1=Jo 1— 2

Hence

1 1 0 1 L |
/ 7@:/ 761:1:—1—/ - dr=m.
—1V1—2? —1V1—2a? 0 V1-—2a?

2
dx
Example 8.6.4. /0 m

The funciton 1/(z — 1)*/3 is not defined at = = 1. Hence we separate

/2 dz _/1 dz +/2 dz
o (@=1¥Jo (a—1)3 )i (a1

/1 dx — lim “ dx
0 (33‘ — 1)4/3 N u—1~ Jo (33‘ — 1)4/3

= lim [—3(x—1)—1/3 h

u—1- 0
3

= lim ——— -3
uinll* (u — 1)1/3

= 00.

1 2
d d
Since /0 m diverges the integral diverges regardless of /1 ﬁ.
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m
Figure 8.9:
On (0, 1]
Lde
Example 8.6.5. Find/ — (p>0).
o ¥
)
x
0 1
Figure 8.10: On (0, 1]
(1) For0<p<1
Uda . /1 x . 217! . 1—gtp 1
p— hm — 1m sl 11m = .
o *P =0t ), 2P ot [1—pl, =0t 1—p 1—p

(2) Forp=1

o 2P

1 U
v _ lim / do _ lim [lnx]% = lim (—In/) = oc.
=0t J1 X 1—0+ £—07+
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(3) Forp>1

L dx L dx
= lim — = lim
0 ZEp Z—>O+ ¢ xP /—o+ | 1 —p

= lim — = oo.

gl-p 7t o1 —-p

The Case when a or b is oo

Definition 8.6.6 (Convergence of Improper integral).

(1) Suppose f(x) is continuous on [a,c0). We set

b
/ flx)dx = hm f(x)dx (8.9)

provided the limit exists.

(2) Similarly, if f(x) is continuous on (—oo, b, we set

b b
/_ f@)de = tim [ f(z)de (8.10)

a——oo [,
provided the limit exists.

(3) If f(x) is continuous on (—oo, o) then we set

b

b
/_ f(x)dz = lim f(x)dx (8.11)

a——00 a

provided the limit exists. In these cases, we say the improper integral

converges. Otherwise, we say the integral diverges.

The function 1/2?

The integral of 1/zP on (0, 1] or [1,00) depends on the value of p. In particular,

the integral on [1,00) is used to decide the convergence of the series > 1/nP.
On [1,00)
Example 8.6.7. Find / (p>0).
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Figure 8.11: Improper integral on [1, c0)

(1) For0<p<1,

® dz v dx e ult=P —1
/ — = lim —:lim[ ] = lim —— = 0.
1 uU— 00 1

P u—oo i P 1—p

(2) Forp=1

* dx “dx
— = lim — = lim [Inz]{ = lim Inu = oco.
1 xP u—oo f1 T U—00 U—00

(3) Forp>1

* dx . Y dx . P Cowttr—1 1
— = lim — = lim = lim =
1

TP u—oo f; aP U—00 1—p 1 U—00 1—p p—l'

Example 8.6.8.

Example 8.6.9.

Test for Convergence

Theorem 8.6.10 (Comparison test). Let 0 < f(x) < g(z) for all x > a.
Then

(1) If/ g(x)dx converges, then/ f(z)dz also converges.

(2) If/ f(z)dz diverges, then/ g(x) dx also diverges.



8.6. IMPROPER INTEGRAL 33

* dzx
Example 8.6.11. Test whether T3
0

e converges or not?
x

We see, for all x > 1, 1/(1 + 23) < 1/23 holds. By example 8.6.7 we
see [ 1/zdx =1/2. Hence by Comparison test [ 1/(1+ %) dx converges.
On the other hand, the integra fol 1/(1+23) dz is well defined on [0, 1]. Hence
Jo° 1/(1+%) dz converges and the value is fol 1/(1+23) de+ {7 1/(142%) da.
(See Fig 8.12)

O

Theorem 8.6.12 (Limit Comparison Test). Assume f(z), g(x) are positive
on [a,00) and suppose

lim M =L>0.

z—o0 g(x)

Then the two integra / f(x)dx and / g(x) dx both converge or both di-

verge.

Proof. (1) Suppose [ g(z)dz converges: Then there is N > a such that
f(z)/g(z) < L+1 holds for all z > N. So we have 0 < f(x) < (L+1)g(x)
and by Limit Comparison Test, [ ;}O f(x) dx converge. Hence faoo f(x)dx
converges to faN f@)de + [ f(z)da.

(2) Suppose faoo g(z) dx diverges:There exists N > a s.t. for all x > N,
f(z)/g(x) > L — L/2 = L/2 holds. Hence f(x) > (L/2)g(xz) > 0 and by
Limit Comparison Test [y f(z)dx diverges. So does [ f(z) da.

Yy
1
__1 by=723
Y 1—&—:10E
y=—1
1+a2
xT
0 1 2

Figure 8.12:
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converges or not?

o
Example 8.6.13. Test whether / *
0 14 e*

Let f(z) =1/(1+¢€%), g(x) = 1/e*. Then

and

/ d—:E = lim d—:E = lim [—e‘x]g = lim (—e_“ + 1) =1.
0

et u—o0 [ et U—>00 U—>00

Hence by Limit Comparison Test, fooo 1/(1 4 e*) dx converges.

@
& x
Example 8.6.14. Test for convergence / PO dx.
2 e =
B T 1
SOl. Set f(flf) = m and g(lﬂ) = ﬁ
Then
2
tim L) _ T oo
r—00 g(;p) T—00 $2 -1
Tdr lim [2y/7], = lim (2{—2&) =00
2 \/5 uU—00 2 uU—00 ’
* | x
By Limit Comparison Test / 71 dx converges.
2 e =
=
Yy
x
0

Figure 8.13:
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Infinite Sequence and Series

10.1 Sequences

Example 10.1.1. (1)
1,3,5,7,...

(2) n-th term is given by (—1)"*!1/n:

11 1 1
L,—=, =, —=, ..., (=D"tt= .
) 2a37 7( ) )

(3) Certain rules

(4) Constant sequence :
3,3,3,...

(5) Digits after decimal point of v/2
4,1,4,1,5,9,. ..

n-th term a,,

Definition 10.1.2. A sequence is a function with the set of natural numbers

as domain.

Sequence as graph

Example 10.1.3. (1) a, = (n—1)/n.

35
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Figure 10.2: a, = (—=1)"1/n

(3) an = /n.

(4) ayn = sin(nm/6).

Figure 10.3: a,, = sin(nn/6)

(5) ay is the n-th digit of 7 after decimal point.
Among these (1), (3), (4) are functions (z — 1)/x, \/z, Inz are restricted
to V.
Subsequence

If all the terms of {a,} appears as some term in {b, } without changing orders

we say {a,} is a subsequence of {b,}.

Example 10.1.4. (1) 1,1,1,1,... is a subsequence of 1,—1,1,—1,....
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(2) {9n} (n=1,2,3,...) is a subsequence of {3n} (n=1,2,3,...).

(3) {1+1/4™} (n=1,2,3,...)is asubsequenceof {1+1/2"} (n =1,2,3,...).

Recursive relation

Some sequence are defined through recursive relation such as

(Il:l,

ant+1 =2an+1, n=123, ...
or

a1 = 17 a2 = 27
an+2:an+l+an7 n:172737"'
10.1.1 Convergence of a sequence

Definition 10.1.5. We say {a,} converges to L, if for any ¢ > 0, there
exists some N s.t. for all n > N it holds that

la, — L| < e.
Otherwise, we say {a,} is said to diverge. If {a,} converges to L, we write

lim a, =L or {a,}— L.

n—oo
L is the called the limit of a,,.
Example 10.1.6. Show that {(n — 1)/n}converges to 1.

We can expect L = 1. For any ¢, |(n — 1)/n — 1| < € holds for n
satisfying |1/n| > e.

Example 10.1.7. Show that {v/n + 2 — y/n} converges to 0.

Let € be given. We want to choose so that

2

Vn+2=Vn-0l= e
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is less than ¢ for all n greater than certain IN. Since

2 1
Ve Ea v
we choose n such that
% <e.
So if N is any natural number greater than 1/£2, it satisfies the goal.

O

Theorem 10.1.8. Suppose and subsequence b, of a, converges to L, then ay,

also converges to L.
Theorem 10.1.9 (Uniqueness). If {a,} converges, it has unique limit.

Proof. Suppose {a,} has two limits L, Ls. Choose ¢ = |L; — Ly|/2 There
exist N7 s.t. for n > N; the following holds

lan, — L1| < e.

Similarly, there exist Ny s.t. for all n > N it holds that
lan, — Lo| < e.

Let N be the greater one of Ny, No. Then for all n > N

|Ly — Lo| = |L1 — an + ay, — La| < |Ly — ay| + |an — Lo|
<€—|—E:’L1—L2‘

holds. A contradiction. So L1 = Ls.

Corollary 10.1.10. If {an} converges, we have lim (a, — ap+1) = 0.

n—oo

Remark 10.1.11. The above condition is not a sufficient for convergence. For
example, the sequence a,, = In(n + 1)/n satisfies a,+1 —a, =In(n+1)/n — 0
but lim,,_s a, = 00.

Properties of limit

Theorem 10.1.12. Suppose lim a, = A, lim b, = B. Then we have
n—oo n—oo
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(1) li_>m {an, +b,} = A+ B
(2) nh_)ngo{an —b,}=A-B
(3) Jim {kan} = kA
(4) nh_{go{an bn}=A-B

(5) nli_)llolo{z—n} — A/B, B#0.

2

lim 5
n—o00 n n—oo n

. 2-3n° . 2/n% -3
hm 57 = 1m ——F— =
n—oo nd 4+ 1 n—>ool—|—1/n5

Theorem 10.1.13 (Continuous function). Suppose the limit of a, is L and
a function f is defined on an interval containing all values of a,, and L, and

continuous at L, then

lim f(an) = f(L)

n— o0

Proof. Since f is continuous at L, we have for any € there is a § such that for
all a,, with |a, — L| < ¢ it holds that |f(a,) — f(L)| < €. Since a,, converges
to L, there is a natural number N s.t. for n > N it holds that |a, — L| < ¢.
Hence |f(an,) — f(L)| < € holds.

Example 10.1.14. (1) lim sin(n7/(2n+1)) =1 (2) limy,—00 ol/vn — 1

n—oo

sol.) (1) Since the limit of n7/(2n + 1) is 7/2 and the function sinz is
continuous at 7/2, we have lim sin (n7/(2n +1)) = 1.
n—o0

(2) Since f(x) = 2V is continuous at = = 0 we have

lim 2Y/vV" — 1.

n— o0

O

Theorem 10.1.15. Suppose f(x) is defined for x > 0 and if {a,} is given by
anp = f(n),n=1,2,3,... and if le f(z) = L then li_)m an, = L.

This theorem holds when f(z) — 400 or f(x) — —oc.

Example 10.1.16. (1) lim Inn/n =0
n—oo
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(2) lim n(e'/"—1)=1

n— o0

1 n
(3) Find lim <”+ ) .

n—soo \n — 1

sol.) (1) Let f(z) =Inxz/z. Then

lim f(n) lim f(x) = lim (no) = lim 1 0.

n—o00 T—00 z—oo g T—00 I

lim Inn/n =0.
n—o0

(2) Set x = 1/n. Then it corresponds to the limit of f(x) = (e —1)/z as
x — 0. By L’Hopital’s rule

S ) =gy =1

lim n(e/” —1) =1.

n—oo

O

Theorem 10.1.17 (Sanwich theorem). Suppose a, by, ¢, satisfy a, < b, < ¢,
and lim a, = lim ¢, = L. Then lim b, = L.

n—o0 n—oo n—o0

Limit used Often

Proposition 10.1.18.

1
(1) lim —2 =0

n—oo n

(2) lim Yn=1

n—o0

(3) lim /" =1, 2 >0

n—o0

(4) lim 2" =0, [z] <1

(5) lim <1+5>":em, zeR
n—00 n
n

(6) lim "~ =0, z €R.

n—oo Nl

Proof. (1) See Example 10.1.16.
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(2) Let a, = n'/™ and take In Ina,, = Inn'/" = th" Since this approaches

0 and e” is continuous at 0 a,, = e — € =1 by theorem 10.1.15.

(3) Set a, = x'/". Since the limit of Ina, = Inz!/™ = me is 0, we see

1/n _

x an, = e converges to e¥ = 1.

(4) Use the definition. given & > 0, we must find n, s.t. for |z| < /"

|z" — 0| < € holds. Since lim /™ = 1 there is an N s.t |z < /N
n—o0

holds. Now if n > N we have |z|* < [2V] < e.

(5) Leta, = (1+x/n)". Then li_)rn Ina, = lim In(1+z/n)" =nln(1+ x/n)

—00
and by L’Hopital’s rule we see

1
lim M = lim L =
n—00 1/n n—00 1—|—gj/n

Hence a,, = (14 z/n)" = e converges to €.

(6) First we will show that

and |z|"/n! — 0. Then use Sandwich theorem. If |z| is greater than M,
then |z|/M < 1 and hence (|z|/M)" — 0. If n > M

=" _ |z[" o= MM a\"
n! 1.2 M(M+1)---n ~ MMM M

M

holds. But MM /M! is fixed number. As noo (|z|/M)™ approaches 0. So
|z|™/n! approaches 0. Finally by Sandwich theorem 10.1.17 we get the
result. z"/n! — 0.

1/n
Example 10.1.19. (1) lim <m> =1
n—o0

(2) Tim (10"°92)"" = Jim (10Y/7)1%% Jim p?™ = 1. lim (nl/") ~ 1.
n—00 n—00 n—00 n—o0o

2 n
(3) lim (1——) =e 2
n—o00 n

(4) lim (1+h)Y" = lim (1 + 1) —e.
n— oo n

h—0t
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|z

(6) The set of all = satisfying lim Ll B’ is, |z/5] < 1, |z| < 5.
n—oo HN

Example 10.1.20. lim v/5n+1=1.

n—oo

Since In(5n + 1)/ = In(5n + 1)/n — 0 above limit is e¥ = 1.

=)
Example 10.1.21. Show that nh—>Holo Inn/n® =0 for any € > 0.
By L’Hopital rule 3.6.5
lim 11qn:lm L/n :limiz O
n—oo NE  n—ooenfTl  n—ooent
=)

Monotone Sequence

Definition 10.1.22. If a,, satisfies

a1§a2<...<an§...

then a, is called an increasing sequence, nondecreasing sequence.

Definition 10.1.23. If there is a number M such that a,, < M for all n, then
this sequence is said to be bounded from above. Any such M is called an
upper bound. If the smallest number exists among all upper bound, then
it is called the least upper bound. Similarly, we say a sequence bounded
from below if there is a number N such that a, > N for all n, Any such
an N is called a lower bound. If the largest number exists among all lower
bound, then it is called the greatest lower bound. If a sequence has both

lower bound and upper bound, then we say it is bounded.

Example 10.1.24. a,, = 1—1/2" M =1 is an upper bound and any number
bigger than 1 is an upper bound. The smallest such number(if exists) is least

upper bound.



10.2. INFINITE SERIES 43

Theorem 10.1.25. If a nondecreasing sequence has an upper bound, it con-

verges(to the least upper bound).

Suppose L is a least upper bound, we observe two things:
(1) an < L for all n, and
(2) for any £ > 0 there is a term ay greater than L — e.

Suppose there does not exist such ay, it holds that a,, < L — ¢ for all n, which

is a contradiction. Thus for n > N
L—e<a, <L

|L — a,| < ¢ and we see a, — L.

Figure 10.4: Nondecreasing(increasing) sequence and least upper bound L

For decreasing sequence, we can define similar concept.
Definition 10.1.26. If a,, satisfies

aL>ag > > Ay

an is called a decreasing sequence. If s, > N, then N is called a lower
bound(lower bound) The largest such number is called the greatest lower

bound.

10.2 Infinite Series

A sequence given as the sum of an infinite sequence of numbers is called

infinite series.
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Example 10.2.1. If we denote the sum of first n- term of a,, = 1/2" by s,
then

1
81—(11—5
— o+ _1+1_3
S9 = a1 a2—2 4—4
NS SO S S
WTMTMRTATITYITICR

The general term {s,} is
n
Sn=a1+a2+a3+"'+an:Zak.
k=1

We write the infinite series as > -~ ; ay or Y a,.(whether it converges or not!)

Definition 10.2.2. a,, is called n-th term and s, = Y ,_; a is called n-th
partial sum. If the limit of {s,} is L, then we say ) a,, converges to L and
write 2?21 an, =L or a; +as+ag+--- =L . If s series does not converges,

we say it diverges.

Example 10.2.3 (Repeating decimals). Write 0.1111--- as series.

Writing 0.111--- = 0.1 4+ 0.01 4 0.001 + - - - we see
al = 0.1,
as = 0.01,
a, = (0.1)".

Hence 0.111 = Y22, 107*.

Definition 10.2.4.
a+ar+art+--

is called a geometric series and r is called a ratio.
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Sp=a+4ar+---4ar"!

rSp = ar +ar® 4 -+ ar’.

Sy — TSy =a — ar”.

Thus s, = a(l —r")/(1 —7).

[ee]
Example 10.2.5 (Telescoping Series). Find the sum Z 1/n(n+1).

n=1

We use the identity 1/n(n+ 1) =1/n—1/(n+ 1) to see

1 1 N 1 1 P 1 1
S, = —_ — — —_ — — — — .
" 1 2 2 3 n n+1

Since s, =1—1/(n+ 1), we see s, — 1.

Divergent Series

Example 10.2.6. Y 2 ,(n+ 1)/n diverges since n-th term is greater than 1.

Example 10.2.7. > > | sin(wn/2) diverges.

1,0,-1,0,1,...
S4 = S8 = :S4n20
but
Sg =86 =+ = Sqpny2 = 1.

So s, oscillates between 0 and 1.

Theorem 10.2.8 (n-th term test). If > ay, converges then a, — 0.
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Proof. Suppose > > a, converges then s,, and s,,_1 must have the same limit.

Since a,, = 8, — Sp—1 we see lima,, = lims,, — lims,_1 = 0.

Theorem 10.2.9 (nth term test). If lima, /4 0 or lima, does not exists,
then > ay, diverges.

Example 10.2.10. > (n — 1)/n diverges since a,, = (n —1)/n — 1.
Example 10.2.11. > (—1)"In(Inn) diverges since In(lnn) — oco.
Theorem 10.2.12. Suppose > ay, Y b, converges. Then

(1) 22(an +bn) = > an + 2 by,

(2) 22(an = bn) = 2 an =3 by,

(3) > kan, =k ap.

Example 10.2.13.

00 0o 00
2" —1 2m 1 2 1 1 1 3
1 — -_— — —_— — = —.
) T T S Ay 3T i1 2
n=1 n=1 n=1
00 00 0o 00 00
3n on 3n on 1 1 1
(2) TP I DD D i) B et
n=1 n=1 n=1 n=1 n=1

What’s wrong with the following argument?

(e}

=3 (5-w1) " T T e

n=

10.3 Integral Test

Example 10.3.1. Determine whether the following series converges or not.

Zl I
n? 4 9 n?

Set f(z) = 1/x2. Then

1 1 1
Sa= 14 g st o = f(1) 4 F2)+ F(3) 4+ ()
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and

f(n):i</n idgn.

—1 1’2

Snzf(l)+f(2)+f(3)+~'+f(n)<1+/1n%dx:2——.

n

Thus s, is bounded, increasing, and hence converges.

47

O

Theorem 10.3.2 (Integral Test). Suppose f(x) is nonnegative, non-increasing

for x> 1 and a, = f(n). Then the series y .- | a, converges iff floo

CONVETGES.

Anl —

1 nn+1 1 n—1n

(a) [ f(z) dz < an (b) an < [, f(z)dx
Figure 10.5: Integral Test

Proof. Since f is decreasing and f(n) = a,, we see from figure
f:H f(z)dz < ay,. So

n+1
/ fx)dr < ay+az+ -+ ap.
1

f(x)dx

10.5(a)
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Also from figure 10.5 (b), we see a,, < ff?—1 f(x)dz, (n=2,3,4,...). Hence

we have "
a2+a3+~-+an§/ f(x)dx
1

and finally

n+1 n
/ f(x)d:n§a1+a2+---+an§a1+/ f(x)dx.
1 1

Example 10.3.3 (p-series). Let p be a fixed number. Then

converges when p > 1 and diverges when p < 1. For p = 1 we see

T b—o0

/ ld:p = lim [lnb]l{ = 00.
1

So the harmonic series

11
I+ -+ -+t

SRS

diverges.

Example 10.3.4. Test the convergence of
o0

1
2 T

1

We see

o

1

/ ——dr = lim [tan~!2]® = lim [tan~'b — tan"11] =
1 14z b—o0 b—o0

AN

10.3.1 Series with nonnegative terms

1 1 (=1
Zﬁ’ Zgn+1’ Z N

o0
. 1
Example 10.3.5. Investigate E 1an = E 1 ol
n—= n—=
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Use the inequality 1/ n?<1 /n(n — 1) and partial fraction,

1 1 1 1
< L + 1 + 1 +- 4 1
1-1 1-2 2-3 n(n —1)
=141 L + L 1 + ot 1 1
a 2 2 3 n—1 n
1
=2 <2
n

Hence s,, is bounded above and monotonic increasing hence converges.

Example 10.3.6 (Harmonic series).

Zl—1+1+1+ 1y
n 2 3 n
diverges since
1+1+1+1+1+1+1+1+1+1+ +1+
2 3 4 5 6 7 8 9 10 16
~——
>2/4 >4/8 >8/16

10.4 Comparison Test
Theorem 10.4.1 (The Comparison Test). Let a, > 0.

(a) The series Y ap converges if a, < ¢, for alln > N and ) ¢, converges

(b) The series Y ay, diverges a, > d,, for alln > N and ) d, diverge.
Proof. In (a), the partial sum is bounded by

[ee)
M=a+ay+---ap+ Z Cn.
n=N+1

Hence if )" ¢, converges, then Y a, converges by Theorem 10.1.25. In (b),

the partial sum is greater than

(o]
M =ay+ag+---ap+ Z dy,.
n=N+1
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But the series 2 . d,, diverges. Hence so does ) ay,.

Example 10.4.2. Look at the tail part of

1 11 1
34600+ 5000 + g5 + 5 + o o F

31 51 PRI

Then 1/n! < 1/2™ for n = 4,5,6,... and > 1/2" converges. Hence the series

converges.

Limit Comparison Test

Example 10.4.3. Investigate the convergence of

o0

> s

- ond —n+3°
Let )

n

T o _n+3  2m?_1+3/n

and use the fact that a, behaves similar to 1/2n%. 1If ¢, = 1/2n? then
limy, o an /¢y, = 1. Hence for any ¢ there is N such that if n > N for some N
then the following holds:

1—5§a—"§1+6.
Cn

In other words,
(1—¢e)en <an < (1+¢)cy,.

Since ), <y Cn converges » . -\ ap converges by comparison.
m

Theorem 10.4.4 (Limit Comparison Test). (1) Suppose a, > 0 and there

is a series Y ¢y (cn > 0) which converges and if

La
lim =2 =¢>0

n—00 Cp,

then > a,, converges.

(2) Suppose a, > 0 and there is a series Y d, (d, > 0) which diverges and
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if
lim & = ¢>0

n—oo n

then > ay, diverges.

Proof. We prove part 1. Since ¢/2 > 0 there is an N such that for all n > N

we have
an < c
— —c —.
b, 2
Hence 3
c G, c Gn C
—— <2 -—c<-or o< < —
2%, T2y S0
Hence

c 3c
Example 10.4.5. (1) > ° ﬁ% converges since Y 7° 25 converges

e 1 : oo 1
(2) > 50 37—1o00, converges since ) i converge

0 24l
(3) 1 n2—f4n+1

(4) Does > 5° h;—]g converge ?

1
(5) Compare »_7° (Sl?n"nﬂ with > o7 i 1/2 Use integral test.

/°° dx _/wd_u_oo
2 $(1H$)1/2_ 1n2u1/2_ .

10.5 Ratio test and Root Tests

nan

Example 10.5.1. It is not easy to find general term of a1 = 1, ant1 = 357%.

But its ratio is clearly seen.

Ratio Test
Theorem 10.5.2 (Ratio Test). Suppose a, > 0 and if the limit exists.

. An+1
lim —2+ =p

n—00 QA

Then exactly one of the following holds.

(1) The sum Y ay converges if p <1
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(2) The sum Y a, diverges if p > 1
(8) The test is inconclusive if p = 1.

Proof. (1) Let p < 1. Then choose any r between p and 1 and set € = r — p.

Then since

. An+1
lim

n—00 (A,

9

there exists a natural number N such that for all n > N,

Gn41
an,

— p‘ <e
holds. Since ap41/a, < p+¢e=r, we see

aN+1 < Tran

ant2 < ran+1 < rlay

AN+m < TaN+m—1 < 1"aN.

We compare a, with a series general term is r™ay. Since Y r™ay con-
verges, > 0 41 Gn converges. (2) Suppose p > 1. Then exist an M such that

for n > M, it holds that
An+1 > 1
Qn

Hence the series diverges:

ap < apf41 < app42 < v

(3) The case p = 1. Both the series . 1/n? and Y 1/n. But the former

converges and the latter diverges.

Example 10.5.3.
nln!
> 2n)!
(2) Z M

3n

3 Y2
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sol.) (1) Ratio Test

any1  (n4+1)n+1)!(2n)!

an,  nn!(2n+2)(2n +1)(2n)!
4+ Dn+1)  n+l
S (2n+2)2n+1)  4n+2

1
N

(2) Tl _ (2ntl 4+ 5)3n  2ntl 4 e (3) Tl _ ontlpl
a,  3"TL(2n +5)  3(27 +5) 3 a,  (n+1)120

2
—0

n+1

Example 10.5.4. Find the range of x which makes the following converge.
AL A A
2 4 6 '

For n > 1, a, = 2*"2/(2n — 2)

2n o o 2
Gng1 _ T (2n —2) _ (2n — 2)x a2
an, 2nx2n—2 2n

So converges if |x| < 1 and diverges if |x| > 1. When |z| = 1 the series diverges

since it behaves like

1+1+1+1 —1+1 1+1+1+1+
2 4 6 2 2 3 4 '

Estimate error

For p < 1 If the series is approximated by its N- partial sum, then the error is

aN+1t+any2 + -

So if N is large, for some r with p < r < 1 we have

Gp41
Qnp

<r, n>N.
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Here the estimate of errors is

’
1—7

an+1+ans2 + - Sray +rfay + - =ay -

Example 10.5.5. Investigate

=SSP S S
3 9 27 81 3n
n, n even
f(n) =
1, n odd.
Since a,, = fé:f) we have
any1  f(n+1) %, n even
i 3f(n) ntl o odd.

3 0

So we cannot use ratio test. However if we take n-th root,

and {/n converges to 1

n—o0

1
lim a, = 3

we can compare this series with (%)"

n-th Root Test

Theorem 10.5.6 (n-th Root Test). Suppose {/a, — p. Then
(1) > a, converges if p < 1.
(2) > a, diverges if p > 1.
(8) We cannot tell anything if p = 1.

Proof. (1) Suppose p < 1. Choose r between p and 1 and set ¢ = p —r > 0.

Since {/a, converges to p there is some N s.t. when n is greater than NV, it



10.6. ALTERNATING SERIES, ABSOLUTE AND CONDITIONAL CONVERGENCES55

holds that
| an — p| < e.

In other words, /a, < p+¢ec =1 < 1. Hence
an < (p+e)"

holds. So > (p + €)™ converges and by comparison test > >~ \ a, converges.
(2) Suppose p > 1 then {/a, > 1 for suff. large n a,, > 1. So diverges.
(3) The case p = 1: No conclusion can be drawn since both the series

3>>1/n? and Y 1/n have p = 1 while one converges and the other not.

oo n : no__ n 1
Example 10.5.7. > "° | i converges since {/5x = {/5 — 5.

oco 3" : n/3" _ 3
Example 10.5.8. converges since {/:z = = — 0.

n=1 nn nn"

10.6 Alternating Series, absolute and conditional

convergence

Alternating Series

Definition 10.6.1. Suppose a,, > 0 for all n. A series of the form
ap—ag+az—ag+---

is called an alternating series.

The following are examples of alternating series.

114_1 1+1 1+
2 3 4 5 6

1—243-445—6+--

But

is not an alternating series.

Theorem 10.6.2 (Alternating Series Test, Leibniz theorem). Suppose the

following three conditions hold.

(1) an > 0.
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(2) p 2 Apy1.
(3) an — 0.

Then S22 (—1)""ta,, converges.

—as

—aq

a3

ai

Figure 10.6: Partial sum of alternating series

Proof. The idea is to show that the sum of even number of terms form a
bounded, increasing sequence so that it converges by Theorem 10.1.25. Sup-

pose n is even (n = 2m) then the partial sum
Som = (a1 — ag2) + (a3 — aq) + -+ + (a2m—1 — a2m)
is increasing. Hence Sop192 > Sop,. But we also see
Som = a1 — (ag —az) — (a4 — as) — -+ — (a2m—2 — G2m—1) — a2m.

Hence sg,, is less than a;. In other words, so,, is bounded above, hence
converges. Let L = lim sy, be its limit. Now suppose n is odd (n = 2m + 1).
Then

S$2m+1 = S2m + A2m+1-

Then since agp+1 — 0, lim 9,11 = lim(s9y, + agm+1) = L.

Example 10.6.3. The series
1 1 1
B e e
Z( ) n 2 + 3 *

converges.
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Example 10.6.4.

converges.

Example 10.6.5.

diverges by n-th term test.

Example 10.6.6.

+ 2 L +
2n—1 2n-—1

is alternating. But it is not monotonically decreasing. But

G

(2 S T I L
n—1 2n—1 N 3 5 2n — 1
So diverges.
> Inn
Example 10.6.7. Investigate -1)" .
p g ;::2( )n+1
We let
o) = Inz
41

Then f(n) =Inn/(n+1) and f'(z) = ((z+1)/z—Inzx)/(x+1)?. For sufficiently
large x, (x+1)/z —Inx < 0. Hence f(x) is decreasing function. For example,
for x > 8, f(x) is decreasing. So a,, = f(n) is decreasing for n > 8. By Leibniz

theorem the series converges.
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Partial Sum of Alternating Series

We look at the partial sums of an alternating series:

§1 = aq,
So = a1 — ag, S0 so < S1.
s3=ay —az +az =a; — (ay — asg), So sg < s3 < s71.

Sg=a1—az+az—ag=a; —az+ (a3 —ayg), So so < 54 < 83 < 57.
Thus som1 is decreasing and sa,, is increasing. Let L be its sum. Then

Som < Soma2 < < L <o < Somp1 < Som—1

|s2m—L|

|52m_52m+1‘

But since

|Som — L| < |S2m — S2m+1] = G2m+1,
|som+1 — L| < |S2m+2 — S2m+1| = a2m+42
WwWeE see
|$n — L| < apy1-

In other words, the partial sum is a good approximation to the true sum with
error bound a,4+1. Since a, is decreasing s,41 is better approximation than

Sn.-

Theorem 10.6.8 (Alternating Series Estimation Theorem). Suppose >_(—1)""ta,
is an alternating series satisfying the conditions of Leibniz theorem. Then the
partial sum

sp=a; —az+az+---+(=1)"a,

is a good approrimation with an error bound less than anpi1-

Example 10.6.9. estimate

i(_l)n_l L S
— o2 A -3

with first five term.
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The error bound is ag = 1/64. The true value up to five terms is

1
S5=1——+

1 1 1 21
2 4

1
s 16 3 32

So the true error is |2/3 — 21/32| = 1/96 which is less than ag = 1/64.

|
Example 10.6.10. Use sy or sigg to estimate
o
—1)n! 11
ZL:1——+——---:ln2:0.69314~-
n 2 3
n=1
True error of
1 1 1 1
— ] o4+ 4. —0.64563---
S10 2+3 4—1— 0 0.64563
is 0.0475- -+ < aj; = 1/11. The true error of
1 1 1 1
S T 1.--
5100 2+3 4+ 100 0.6888
is 0.00433 - - - < a111 = 1/111.
|

Absolute convergence and Conditional Convergence

Definition 10.6.11. If ) |a,| converges then ) a,, is said to converge ab-
solutely.

Theorem 10.6.12. If > |a,| converges then so does > a,.

Proof.

_’an’ S (€79 S ‘an‘

holds for all n. Hence
0 < ap + |an| < 2|ay].

Since Y |ay| converges and a,, + |a,| >0

Z(an + |an|)
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converges by comparison. Subtracting converging series, we have

D an =2 (antlanD) =3 ol
and so Y a, converges.

Corollary 10.6.13. If Y a, diverges, so does ) |ay|.

Example 10.6.14. (1) >0° (-1)"" L =1-2+1+.. +. Its n-th term

n=1
_1\n+1
an = % satisfies |ap| = # Since ) # converges we see the series
S0 1 (=1)"T1 L converges absolutely. The series > o0 (—1)"™ L of
course converges.
(2) The n-th term of ) “5" satisfies |a,| = |c252n\ < L. Since 3 & con-
verges, »_ “5% converges.
®) 1 1 1 1
R B e
Z( ) n 2 3 4

But 3 Jan| = 3.4 diverges by integral test. Thus the series does not

converge absolutely. Still, this series converges (by Leibniz theorem).

4) > (Gt converges absolutely for p > 1 but does not converges absolutely

npP

for p < 1. However, the series converges for all p > 0.

Definition 10.6.15. A series which converges but does not converge not

absolutely converges conditionally.

Rearrangement of Series for Absolutely Convergent Series

Theorem 10.6.16 (Rearrangement of Series). Suppose > a,, converges abso-

lutely and by, is a rearrangement of a,. Then ) b, converges absolutely and

00 00
E an:an.
n=1 n=1

Here we have b, = a, ) for some 1-1 function n(k).

and

Example 10.6.17. We know the following converges absolutely:

. 1+1 1+1 1+ 2
2 4 8 16 32 3
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Hence rearranging it in any order we get

1—1—1 1+1—|-1 1+
4 2 16 64 8

We can guarantee this series converges to % We know the series

converges but not absolutely. Hence its rearrangement may not converge. In
fact, even if it converges it may converge to a different value.

Consider one rearrangement:

A U T AU S WA S AU BN TS A
2 3 5 4 7 9 6 1 13 8
Then sum may be bigger than In2 = 0.69314 - - - .

Product of two series

Suppose Y 0% an, > oo by converge absolutely. Then

(Zan> X (an> =(ap+ar+-+an+-)x(bo+bi+- - +by+--).
n=0 n=0

Finite partial sum is
(ap+ai+---+an) x (bo+ b1 + -+ by).
We can write it as

aobo + (aob1 + aibo) + (aobs + aiby + azbo) + -+ -
+ -+ (aoby + arbp—1+ -+ + an_1b1 + anbo).

(55) ()

= apbg + (a0b1 + albo) + (a0b2 +ai1b; + agbo) + -
+ -+ (aobn + arbp—1 4 -+ + an—1b1 + anbo) + -+

In the limit,
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Since it converges absolutely, it value does not change.

Theorem 10.6.18. Suppose both Y7 a, and Y 7 by converge absolutely.
If we set ¢, = ZfLZO agbn_i then > ¢, converge absolutely and

10.7 Power Series

Definition 10.7.1. A power series about x = 0 is a series of the form

o
Zanx":ao+a1az—|—a2:ﬂ2—|—---+an3:"—|—---

n=0

A power series about z = a is a series of the form

Z ap(z —a)".
n=0

Here a,, are the coeflficients and x( is the center.

Example 10.7.2. (1) (Geometric series) > > ; (x;})" = 2L1+(505—21)2+(5‘35—31)3+

(2) Y ()i m -
(3) 22021(_1)n_1:§n—_1 zx—%+%5_...
4) YN D =l o+ S

(5) o ynla™ =14z + 2% + 3% + -

Theorem 10.7.3 (Convergenec of Power Series). Given a power series y > an(x—

a:o)"

(1) Suppose it converges at a point x1 (# o). Then it converges absolutely

for all points x satisfying |x — xo| < |x1 — x0].

(2) Suppose it diverges at xo it. Then it diverges for all x with |x — x| >

|332 —$0|-
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Proof. Suppose > 7 an(x1 —x0)" converges. Then lim,, o a, (21 —20)" = 0.

Hence for suff. large n, it holds that |a,(x; — z¢)"| < 1 and

n n
T — X T — X

|an(z — 20)"| < |an(z1 — 20)"| <

T1 — Zo T1 — Zo

Hence for all z with |z — xg| < |z1 — xo|, the series Y 7 an(x1 — xo)"
converges absolutely. Now suppose the series Y ° an(z2 — zo)" diverges
and Y 7 jan(x — x)" converge for some x satisfying |x — x¢| > |z — 0.
Then by (1) the series Y ° an(z2 — x¢)" must converge, which is a con-
tradiction. Hence the series Y 7 an(x — 2¢)™ must diverges for any x with

| — xo| > |22 — 0]

From Theorem 10.7.3, there are three possibilities for the series 7 an(z—

a:o)":
(1) Tt converges for x( only;
(2) Tt converges absolutely for all x;

(3) There exists an R such that for all x with |z — z¢| < R it converges
absolutely and diverges for all = with |x — z¢| > R.

We see that in case (1) R = 0, and in case (2) R = co. In general, the number

R (0 < R < o) is called the radius of convergence of > 7 jan(xz — zo)".

Theorem 10.7.4. For Y >°  a,(z — z0)", the radius of convergence is given

as follows:
R= lim |—= (10.1)
n—oo an+1
1
R= lim (10.2)

n—oo o |an|

provided that either of the limit exists.

Proof. Suppose the limit in (10.1) exists. Then

1
nt An4-1

an

n—00 an(x — a:o)" =

n—o0

ol = TR

Now by ratio test (Theorem 10.5.2), the power series converges absolutely for
|z — z9|/R < 1 and diverges if |z — zo|/R > 1. Hence R given by (10.1) is
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the radius of convergence. One can show (10.2) holds if we use n-th root test
(Theorem 10.5.6).

The set of all point for which the series converges form an interval I (called

the interval of convergence) and I satisfies
(xo—R,z0+R)CIC [x() — R, xg +R].

Example 10.7.5. Find the interval of convergence.

(1) Z n'z"
n=0

@)
2
R = lim (n+1) =
n— 00 n

When z = +1, 322, ((£1)"/n?) converges absolutely. Hence I = [—1,1].
(3)

1.

R= lm "1

n—oo N

Forz =1, > ((—1)""1/n) is alternating, so conditionally converges. While
z=—15%,(-1/n) diverges. I = (—1,1].

(4) '
R = lim (n+ 1)t =00

n—o00 n!

O

Theorem 10.7.6 (Term by term differentiation). Suppose > o7 an(x — o)™

converges for all |z — xg| < R for some R > 0, i.e.,

fl@)=> an(x—20)", |z —z0| <R (10.3)
n=0

Then
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(i) f(z) is differentiable on (xog — R,zo + R) and its derivative is
f(z) = Z nan(z — 20)" ', |r —x0| < R. (10.4)
n=1

(ii) f(x) is integrable on (xg — R,zo + R) and

0 . n+1
/f(x)d$:;an%+0, |z — x0| < R. (10.5)
The radius convergence of (10.4) and (10.5) are also R.

Proof. Suppose

Qn

R = lim

n—oo

Gp41

The radius of convergence of (10.4) is given by Theorem 10.7.4
(Tl + 1)6Ln+1 An+1

= lim
n+2)any2

n—o0

lim = R.
n—oo (

An42

Similarly, the radius of convergence of (10.5) is obtained.

Corollary 10.7.7. The series in Theorem 10.7.6 is differentiable infinitely

many times on (xog — R,xo + R) and its k-th derivative is given by

(k) (4 :Oonn_ e —k an(z — x0)"F,
F¥(x) g( - (n =k an(z — o) (10.6)

|z — x0| < R,

k=0,1,....

Product of two Power series
Theorem 10.7.8. Suppose both A(x) = .7 anx™, B(x) =3 " byx™ con-

verge absolutely for |z| < R and

k
cn = agby, +arby,—1 + -+ apby = Zakbn—k-

n=0
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Then Y o7 g cpa™ converge absolutely for |z| < R also, and

(i ana:") X (i bna:") = i ™.
n=0 n=0 n=0
Example 10.7.9. Use

0 1
Zx":1+$+ﬂj2+"':1—, for |z <1
-

n=0
to get the power series for 1/(1 — x)2.

We let A(z) = B(x) = > o7 y2". Then we see

k
Cn = aob, + a1bp—1 + -+ apby = Zakbn_k =n+ 1.

n=0
Hence - -
A(z)B(x) = chx" = Z(n + 1)z".
n=0 n=0

This series could be obtained by differentiation.

10.8 Taylor and Maclaurin Series

In the previous discussions we have seen that a power series defines a continu-

ous function on I. How about its converse? Suppose f is differentiable n-times.
. . oy . . . o0 n

Is it possible to express it in power series 7 A power series > ° ;an(z — a)

represents a function on its interval of convergence 1
o
flx) = Zan(az —a)", zel.
n=0
We shall later show

0 £(n) (g
Z f '( )(ZE _ a)n
n=0

n
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This is called Taylor series of f(x) at a (If a = 0, it is also called Maclaurin

series).

Example 10.8.1. Find Taylor series of f(z) = 1/z at a = 2.

sol.
1 / 2 -3 (n) 1 —(nt1)
L, 1 fz) 1 fme) _ =r
f(2) = 57 f (2) _2_27 BY = Fv ! ’ n = on+1

Taylor Polynomial

Consider

y=Pi(x) = f(a) + f'(z0)(x — a).

This is linear approximation to f(z). Similarly we can consider

f"(a)
2

y = Py(x) = f(a) + f(a)(z —a) + (2 —a)”.

which has same derivative up to second order. By the same way one can find
a polynomial P, (z) of degree n. It is called a Taylor polynomial of degree
n Then we see

P(a) = fM(a), k=01, n.

B R I P
P,(x) = f(a)+ f(zo)(x —a)+ -+ (x —a)". (10.7)

n!

The difference(error) is defined as

and called the remainder
f(x) = Py(x) + Ry(x)

is called n-th Taylor formula of f(x) at a.



68 CHAPTER 10. INFINITE SEQUENCE AND SERIES

Example 10.8.2. Find Taylor polynomial for cos x.

Example 10.8.3.

exp(—1/2%),  x#0
0, z = 0.

flz) =

is infinitely differentiable at 0, but the Taylor series converges only at z = 0.
In fact we can show that f (”)(0) =0,n=0,1,.... So the Taylor polynomial
P,(z) =0 and R,(x) = f(x). Hence P,(z) 4 f(x).

10.9 Convergence of Taylor Series, Error estimates

Theorem 10.9.1 (Taylor’s Theorem with Remainder). Suppose f(x) is dif-
ferentiable n + 1 times on an open interval I containing a and P,(x) is the

Taylor polynomial given by (10.7). Then

B f(n—i-l)(c)

R, (x) = m(:ﬂ —a)", (10.8)

Definition 10.9.2. Suppose f(z) is infinitely differentiable on I and

lim R,(x)=0, ze€l

n—oo

then we say the Taylor series at a converges to f(x) and we we write

> £(n) (g
f(a:)zzf n'( )(az—a)", x el
n=0 ’

Here R, (z) = f(x) — P,(x) is the remainder.

Corollary 10.9.3. Suppose there is some M such that f(z) satisfies | f 1 (z)| <
M for allx € I. Then

|3:—3:0|"+1
R, <M —— I. 10.
[ Bn ()] < (n+1)! ve (10.9)

Example 10.9.4. At a = 0, we have

n

x
ex:1+:c+---+m+Rn(;p).
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Here
n+1

()| < ey

Example 10.9.5. (1) Maclaurin series of sinz, cosx, e*:

i(_l)n$2n+1
sinx = T —o00 < T <00
' )
= (2n+1)!
o0
(_1)n$2n
cosxzzi —oo << o0
' )
o (2n)!
o ;L'n
emzz:om, —o <<
n=

(2) Maclaurin series of In(1 + z) on (0, c0)

& -1 n—1,.n
ln(l—l—x)zz()%, -l<z<1

n=1

(3) Maclaurin series of 1/(1 — x)

1 o
= g ", —l<zx<l1
1—2z o

(4) Taylor series of \/x is at 1.

2

Example 10.9.6 (Substitution). Find series for cos z* near z = 0.

2

Example 10.9.7 (Multiplication). Find series for x sin x* near z = 0.

69

Example 10.9.8 (Truncation Error). For what values of x can we replace

sinx by sinx ~ x — g—? with error less than 3 x 10747

. 3
SNy ~1r — —

3

‘ 5
!

Since the error term is R3(z) = ‘:g—, we let

5
% <3x107%
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Proof of Taylor’s Formula with Remainder

With

Pn(l‘) :f(a)+f,(a)(ﬂj—a)+..._|_

we set
bn(x) = Py(z) + K(z — a)" .

This function has same first n-derivative as f at a. We can choose K so that
on(x) agrees with f(x). The idea is to fix z = b and choose K so that ¢, (b)
agrees with f(b). So

f(0) — Pu(b)

f(b) = Py(b) + K(b—a)"", or K = b a1

(10.10)

and
F(z) = f(z) = ¢n(z)

is the error. We use Rolle’s theorem. First, since F'(b) = F(a) = 0, we have
F'(¢1) =0, for some ¢; € (a,b).
Next, because F'(a) = F'(¢1) = 0, we have
F"(cy) =0, for some ¢ € (a,c).
Now repeated application of Rolle’s theorem to F”, etc show there exist
3 in (a,co) such that F"(c3) =0,
cy in (a,c3) such that F®(¢y) =0,
Cn in (a,cp—1) such that F™(¢,) =0,
Cnt1 in (a,c¢,) such that F("H)(an) =0.
But since F(z) = f(z) — ¢n(z) = f(x) — Py(z) — K(x — a)"*!, we see

FOD (o) = f+ () =0 — (n+ 1)K,
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Hence
f(n—i—l)(c)
= m, C=Cnt1-
So )
f(b) = Po(b) + ‘}EnTl(;)(b —a)". (10.11)

Now since b is arbitrary, we can set b = z. Furthermore, if R, — as

n — 00, we obtain Taylor’s theorem.

10.10 Application

Binomial Series
First assume m is a positive integer and consider the binomial expansion
m(m + 1 m
(I+a)" = 1+mx+%x2+'~+ <k>xk+---+xm.

Here

n=0,1,2....

<m> _mm ==kt D)

We now consider the Taylor series of (1 + z)™. Since

f@) = (1 + )"
F(@) = m(1 + 2y
f(x) =m(m—1)(1 + a:)m_2 (10.12)

fP () =m(m—1)(m =2)--- (m—k+1)(1 + 2)"*
we obtain the Taylor series

1
(1+x)m:1+mx+%x2+---+<7Z>:c’f+---. (10.13)
We can show the radius of convergence is R = 1. When m is an integer, the
derivatives f(*)(x) = 0 for k > m, and we obtain the usual binomial expansion

as a special case.
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Example 10.10.1.

1/2 .
(1+x) 1+2+ T a0 x’+ 1 "+
r 22 23 5ot
=l4+-——=4+=—-— . (10.14
+2 8+16 128+ ( )
Substitution gives
2 2t
Vi—22=1-" - +... 2l <1
x 5 8+ , |z <
or 5 .
x x
Vi-zd=1-= - <1
x 5 8+ |z°| <
or even
1 1 1 1
l——=1——— =] <1
x 2r 822 ’a:’

are possible.
Example 10.10.2. Find v/1.2 up to two decimal point.

Let f(x) = v/1+ z. Then V1.2 = f(0.2). Hence from equation (10.13)

We see Taylor series at zg = 0 is

f@) =14 204+ <17/12>x” + Rpia(2),

2
Rpi1(z) = " i )f("“( D)z (0<2<0.2)
For n = 1 Ry(0.2) = (1/2)f"(2)(0.2)> = —0.005(1 + z)™%/2 (0 < z < 0.2).

Hence v 1.2 ~ 1+ (1/2)(0.2) = 1.1 and the error satisfies |R2(0.2)| < 0.005.

Example 10.10.3. Find fsin2 x dx as power series.

Estimate fol sin? z dz within error less than 0.001.

Example 10.10.4. Find Maclaurin series of arctan x.
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Note that for |z| < 1 the arctan x has convergent power series:

1
(arctanz) = 152 Z(—l)"mzn.

Integrate it from 0 to x

x o0
arctanx—/ Z "t2"dt
o0

On(]
n2n+1

(=1
1.
Z 2n—|—1 c el <
n=

Thus
¢ @ 2,
arctanz =2 — — + — — — +-
3 5 7

This formula can be used to compute 7. For example,

T arctanl—1- -+ — 24

— = ar n — —_ — - — —

g e 375 7
The error with n-term is 1/(2n+1). So to get the error less than 1073, we need
2n + 1 = 1000, n = 500 terms. Because of its slowness, we suggest another
methods. For example, if

1
=t LZ
«@ an 5

then

1
t t 5+
tan(a + 8) = ana + tan i

1 —tanatan

and

1 1
%:a—kﬂztan_li—i-tan_lg.

Now use the Taylor series for tan™! 2 with z = % and z = % This is faster.

For example

1 1. 1.1 11 11
_1_:____3 A I A Y 1:
tan~! o = (5) = 3(5)" + £(3)" = () + Ry = 0463467...
1 1. 1.1 1.1
tan ' = = (=) — =(=)3 R2 = 0.321810..
an” o (3) 3(3) +5(3) + R2
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Here |R{| < 3(3)° = ﬁ and |[RE| < 1(3)7 = 157% and

1
tan™!' = + tan~! = = 0.7852777

2

W =

Multiply by 4 we get

w2 3.14111...

which is accurate at least three decimals.

Similar idea can be used to the following problem:

Example 10.10.5. Estimate

1 (_1)n—1
In2=In(1+1)= 1—§+-"+T+Rn+1(1)
Since )
R, () <——
Rt (D] < 5

we need to take large n. However, we can do the following:

4 3 1 1
ln2—ln§'1n§2—ln(1+§)+ln(l+§)

and use Taylor series.

Example 10.10.6. Estimate fol sin 22 dx with error less than 0.001.
First note that

) 9 9 :E6 3310 3314
sinz” =x —5—1—?_?4_...
Integrating
! 1 1 1 1
/0 st =g - et T T
Since .
g7 < 0-00076

it suffices to take two terms.

Example 10.10.7. Estimate sin(0.1) up to third digit 3.
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Taylor polynomial of sinz at xg = 0

n

1 /d\"
sinxzzﬁ<%> sin x

k=0

¥ + Ry ().

z=0

Since |sinz| < 1, for |cosz| < 1

’w‘n—l—l

(n+ 1)1

’Rn—l-l(x)‘ <

Iftn=2
(0.1)3

3!
we have sin(0.1) ~ 0.1 and the error is less than +(1/6) x 1073.

|R3(0.1)] < <1073

Indeterminate forms

Example 10.10.8. Find
Inx

lim
z—=1x —1

Use the Taylor series of Inx ar x = 1.

Example 10.10.9. Find

. . 3 6
ligg ST acj(ac /6)
z—0 X

xg = 0. Taylor polynomial of sinz atzg = 0 is

: z’ jz°
51n3:::1:—€—|—R5(3:) and |Rs(z)| < o
Hence
SiHﬂZ—:L'-l-(:L’g/G)‘ ‘R5(x) ||
= <
x? x* |~ 5!

and limit is 0.

Example 10.10.10. Find

. ( 1 1 >
lim [ — —— .
z—0 \sinx =z
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sol.]
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1 1 T —sinx
sinx x rsinz
mfi :B5
.Z'—(-Z' T‘Fﬁ
o 3 5
X (1‘ y‘i‘y )

Euler’s identity

0

) i 202 303 itet
M TR TR R TR

1 o o+ ¢ (o 63 05

cos 0 + isin 6.




