Contents

8	Tech	nniques of Integration	3
	8.1	Integration by Parts	3
	8.2	Integration of Trigonometric function	8
	8.3	Trig Substitution	13
	8.4	Integration of Rational functions by partial fraction	17
	8.5	Numerical Integration	24
	8.6	Improper Integral	26
10	Infir	nite Sequence and Series	35
	10.1	Sequences	35
		10.1.1 Convergence of a sequence	37
	10.2	Infinite Series	43
	10.3	Integral Test	46
		10.3.1 Series with nonnegative terms	48
	10.4	Comparison Test	49
	10.5	Ratio test and Root Tests	51
	10.6	Alternating Series, absolute and conditional convergence	55
	10.7	Power Series	62
	10.8	Taylor and Maclaurin Series	66
	10.9	Convergence of Taylor Series, Error estimates	68
	10.10	Application	71

Chapter 8

Techniques of Integration

8.1 Integration by Parts

Some Examples of Integration

Example 8.1.1.

$$\int_0^{\pi/4} \sqrt{1 + \cos 4x} \, dx.$$

Use

$$\cos^2\theta = \frac{1+\cos 2\theta}{2}.$$

Example 8.1.2. Find

$$\int \sec x \, dx.$$

The idea is to multiply $\sec x + \tan x$ both the numerator and denominator:

$$\int \sec x \, dx = \int \sec x \cdot \frac{\sec x + \tan x}{\sec x + \tan x} \, dx$$
$$= \int \frac{\sec^2 x + \sec x \tan x}{\sec x + \tan x} \, dx$$
$$= \int \frac{du}{u}$$
$$= \ln |\sec x + \tan x| + C.$$

Similarly, we obtain

$$\int \csc x \, dx = -\ln|\csc x + \cot x| + C.$$

Integral tables

(1)
$$\int \frac{1}{a^2 + u^2} du = \frac{1}{a} \tan^{-1} \frac{u}{a} \quad (a > 0).$$

(2) $\int \frac{1}{\sqrt{a^2 - u^2}} du = \sin^{-1} \frac{u}{a} \quad (a > 0).$

Example 8.1.3. For $\int 1/(4+9x^2) dx$, use substitution first. Let 3x/2 = u then 3/2dx = du, and

$$\int \frac{1}{4+9x^2} dx = \frac{1}{4} \int \frac{1}{1+(\frac{3x}{2})^2} dx$$
$$= \frac{1}{6} \int \frac{1}{1+u^2} du$$
$$= \frac{1}{6} \tan^{-1} \frac{3}{2} x + C.$$

Integral by parts

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}.$$

Integrating w.r.t \boldsymbol{x}

$$uv = \int u \frac{dv}{dx} dx + \int v \frac{du}{dx} dx$$
$$= \int u dv + \int v du.$$

Thus

Proposition 8.1.4 (Integration by Parts I).

$$\int u \, dv = uv - \int v \, du. \tag{8.1}$$

Proposition 8.1.5 (Integration by Parts II).

$$\int f(x)g'(x) \, dx = f(x)g(x) - \int f'(x)g(x) \, dx. \tag{8.2}$$

Proposition 8.1.6 (Definite integral).

$$\int_{a}^{b} f(x)g'(x) \, dx = \left[f(x)g(x)\right]_{a}^{b} - \int_{a}^{b} f'(x)g(x) \, dx.$$

Example 8.1.7. Find the following

(1)
$$\int_0^{\pi} x \sin x \, dx$$

(2)
$$\int \ln x \, dx.$$

sol. (1) Let $u = x$, $dv = \sin x \, dx$. Then $du = dx$, $v = -\cos x$. (Fig. 8.1)

$$\int_0^{\pi} x \sin x \, dx = [x(-\cos x)]_0^{\pi} - \int_0^{\pi} (-\cos x) \, dx$$
$$= \pi + [\sin x]_0^{\pi}$$
$$= \pi.$$

(2) Let $u = \ln x$, dv = dx. Then we have du = (1/x)dx, v = x.

$$\int \ln x \, dx = (\ln x)x - \int x \cdot \frac{1}{x} \, dx$$
$$= x \ln x - x + C.$$

Figure 8.1:

Repeated integration by parts

Example 8.1.8. Find $\int x^2 \sin x \, dx$. Sol. Let $u = x^2$, $dv = \sin x \, dx$. Then du = 2x dx, $v = -\cos x$ and hence $\int x^2 \sin x \, dx = x^2(-\cos x) - \int (-\cos x) 2x \, dx$ $= -x^2 \cos x + \int 2x \cos x \, dx$.

f and its derivative		g and its integral
x^2	(+)	e^x
2x	(-)	e^x
2	(+)	e^x
0		e^x

Again, set u = 2x, $dv = \cos x \, dx$. Then $du = 2 \, dx$, $v = \sin x$.

$$\int x^2 \sin x \, dx = -x^2 \cos x + 2x \sin x - \int 2 \sin x \, dx$$
$$= -x^2 \cos x + 2x \sin x + 2 \cos x + C.$$

Example 8.1.9. Find $\int x^2 e^x dx$. **sol.** $f(x) = x^2, g(x) = e^x$

f and its derivative		g and its integral
x^3	(+)	$\sin x$
$3x^2$	(-)	$-\cos x$
6x	(+)	$-\sin x$
6	(-)	$\cos x$
0		$\sin x$

Example 8.1.10. Find $\int x^3 \sin x \, dx$.

Use the table above

$$\int x^3 \sin x \, dx = -x^3 \cos x + 3x^2 \sin x + 6x \cos x - 6 \sin x + C.$$

Example 8.1.11. Find $\int e^x \sin x \, dx$. **sol.** If $u = e^x$, $dv = \sin x \, dx$, then $du = e^x \, dx$, $v = -\cos x$.

$$\int e^x \sin x \, dx = e^x (-\cos x) - \int e^x (-\cos x) \, dx$$
$$= -e^x \cos x + \int e^x \cos x \, dx.$$

Again let $u = e^x$, $dv = \cos x \, dx$ so that $du = e^x \, dx$, $v = \sin x$.

$$\int e^x \sin x \, dx = -e^x \cos x + \int e^x \cos x \, dx$$
$$= -e^x \cos x + e^x \sin x - \int e^x \sin x \, dx.$$

Solving this for $\int e^x \sin x \, dx$ we obtain

$$\int e^x \sin x \, dx = \frac{1}{2} e^x (\sin x - \cos x) + C.$$

Reduction formula

Example 8.1.12. Express $\int \cos^n x \, dx$ in terms of low power of $\cos x$.

sol.

$$\int \cos^{n-1} x \cos x \, dx = \cos^{n-1} \sin x + (n-1) \int \sin^2 x \cos^{n-2} x \, dx$$
$$= \cos^{n-1} \sin x + (n-1) \int (1 - \cos^2 x) \cos^{n-2} x \, dx$$
$$= \cos^{n-1} \sin x + (n-1) \int \cos^{n-2} x \, dx - (n-1) \int \cos^n x \, dx.$$

 So

$$n \int \cos^n x \, dx = \cos^{n-1} \sin x + (n-1) \int \cos^{n-2} x \, dx.$$

Example 8.1.13. Prove

$$\int (a^2 \pm x^2)^n \, dx = \frac{x(a^2 \pm x^2)}{2n+1} + \frac{2na^2}{2n+1} \int (a^2 \pm x^2)^{n-1} \, dx, \quad (n \neq -\frac{1}{2}).$$

sol. Integration by parts

$$\int (a^2 \pm x^2)^n \, dx = x(a^2 \pm x^2)^n - \int x \cdot n(a^2 \pm x^2)^{n-1}(\pm 2x) \, dx$$
$$= x(a^2 \pm x^2)^n - \int 2n(a^2 \pm x^2)^{n-1}(a^2 \pm x^2 - a^2) \, dx$$
$$= x(a^2 \pm x^2)^n - 2n \int (a^2 \pm x^2)^n \, dx$$
$$+ 2na^2 \int (a^2 \pm x^2)^{n-1} \, dx.$$

If $n \neq -1/2$,

$$\int (a^2 \pm x^2)^n \, dx = \frac{x(a^2 \pm x^2)^n}{2n+1} + \frac{2na^2}{2n+1} \int (a^2 \pm x^2)^{n-1} \, dx.$$

8.2 Integration of Trigonometric function

Products of powers of Sines and Cosines

Integral of $\sin^m x \cos^n x$

(1) If m is odd, then set m = 2k + 1 and use $\sin^2 x = 1 - \cos^2 x \sin x \, dx = -d(\cos x)$ to transform it to

$$\int \sin^{2k+1} x \cos^n x \, dx = -\int (1 - \cos^2 x)^k \cos^n x \, d(\cos x).$$

(2) If n is odd n = 2k + 1, use $\cos^2 x = 1 - \sin^2 x \cos x \, dx = d(\sin x)$ to obtain

$$\int \sin^m x \cos^{2k+1} x \, dx = \int \sin^m x (1 - \sin^2 x)^k \, d(\sin x).$$

(3) If both m, n are even, use $\sin^2 x = (1 - \cos 2x)/2$, $\cos^2 x = (1 + \cos 2x)/2$ to lower the degree and repeat the previous technique.

Example 8.2.1. Find
$$\int \sin^5 x \, dx$$
.
Sol. $\int \sin^5 x \, dx = -\int (1 - \cos^2 x)^2 \, d(\cos x)$

$$= -\int (1 - 2\cos^2 x + \cos^4 x) d(\cos x)$$

= $-\frac{1}{5}\cos^5 x + \frac{2}{3}\cos^3 x - \cos x + C.$

x)

Example 8.2.2. Find
$$\int \sin^2 x \cos^3 x \, dx$$
.
sol. $\int \sin^2 x \cos^3 x \, dx = \int \sin^2 x (1 - \sin^2 x) \, d(\sin x) = -\frac{1}{5} \sin^5 x + \frac{1}{3} \sin^3 x + C$.

Example 8.2.3. Find $\int \sin^4 x \cos^2 x \, dx$.

$$sol. \quad \int \sin^4 x \cos^2 x \, dx = \int \left(\frac{1-\cos 2x}{2}\right)^2 \left(\frac{1+\cos 2x}{2}\right) \, dx$$
$$= \frac{1}{8} \int \left(1-2\cos 2x + \cos^2 2x\right) (1+\cos 2x) \, dx$$
$$= \frac{1}{8} \int \left(1-\cos 2x - \cos^2 2x + \cos^3 2x\right) \, dx$$
$$= \frac{1}{8} \int \left(1-\cos 2x - \frac{1+\cos 4x}{2} + (1-\sin^2 2x)\cos 2x\right) \, dx$$
$$= \frac{1}{16} \int \left(1-\cos 4x - \sin^2 2x \cdot 2\cos 2x\right) \, dx$$
$$= \frac{1}{16} \left(x - \frac{1}{4}\sin 4x - \frac{1}{3}\sin^3 2x\right) + C.$$

Integral of $\sqrt{1 \pm \sin ax}$, $\sqrt{1 \pm \cos ax}$

Use the double angle formula.

$$\sin 2A = 2\sin A \cos A$$
$$\cos 2A = 2\cos^2 A - 1 = 1 - 2\sin^2 A.$$

Change the form $1 \pm \sin ax$, $1 \pm \cos ax$ to a complete square.

Example 8.2.4. Find $\int_0^{\pi} \sqrt{1 - \sin x} \, dx$.

sol. Use the identity:

$$1 - \sin x = 1 - 2\sin(\frac{x}{2})\cos(\frac{x}{2}) = \left(\sin(\frac{x}{2}) - \cos(\frac{x}{2})\right)^2.$$
$$\int_0^{\pi} \sqrt{1 - \sin x} \, dx = \int_0^{\pi} \left|\sin\frac{x}{2} - \cos\frac{x}{2}\right| \, dx$$
$$= \int_0^{\pi/2} \left(\cos\frac{x}{2} - \sin\frac{x}{2}\right) + \int_{\pi/2}^{\pi} \left(\sin\frac{x}{2} - \cos\frac{x}{2}\right) \, dx$$
$$= \left[2\sin\frac{x}{2} + 2\cos\frac{x}{2}\right]_0^{\pi/2} + \left[-2\cos\frac{x}{2} - 2\sin\frac{x}{2}\right]_{\pi/2}^{\pi}$$
$$= (\sqrt{2} + \sqrt{2} - 2) + (-2 + \sqrt{2} + \sqrt{2})$$
$$= 4(\sqrt{2} - 1).$$

Example 8.2.5. Find $\int_0^{\pi/2} \sqrt{1 + \cos 2x} \, dx$. sol. $1 + \cos 2x = 2 \cos^2 x$, $\int_0^{\pi/2} \sqrt{1 + \cos 2x} = \sqrt{2} \int_0^{\pi/2} |\cos x| \, dx$ $= \sqrt{2} [\sin x]_0^{\pi/2}$

Е		
ш		

Tangent and secant

Recall

$$1 + \tan^2 x = \sec^2 x,$$

$$(\tan x)' = \sec^2 x,$$

$$(\sec x)' = \sec x \tan x.$$

 $=\sqrt{2}.$

Example 8.2.6. $\int \sec x \, dx$.

sol. Multiply $\sec x + \tan x$.

$$\int \sec x \, dx = \int \frac{\sec x (\sec x + \tan x)}{\sec x + \tan x} \, dx$$
$$= \int \frac{(\sec x + \tan x)'}{\sec x + \tan x} \, dx$$
$$= \ln|\sec x + \tan x| + C.$$

Example 8.2.7.
$$\int \tan^2 x \sec x \, dx.$$

sol. Since $\tan^2 x \sec x = (\sec^2 x - 1) \sec x = \sec^3 x - \sec x$, we can find $\int \sec^3 x \, dx$. Let $u = \sec x$, $dv = \sec^2 x \, dx$ then $v = \tan x$, $du = \sec x \tan x \, dx$, we have

$$\int \sec^3 x \, dx = \sec x \tan x - \int (\tan x) \sec x \tan x \, dx$$
$$= \sec x \tan x - \int (\sec^2 x - 1) \sec x \, dx$$
$$= \sec x \tan x - \int \sec^3 x \, dx + \int \sec x \, dx.$$

Hence we obtain

$$\int \sec^3 x \, dx = \frac{1}{2} \sec x \tan x + \frac{1}{2} \int \sec x \, dx.$$

Hence

$$\int \tan^2 x \sec x \, dx = \int \sec^3 x \, dx - \int \sec x \, dx$$
$$= \frac{1}{2} \sec x \tan x - \frac{1}{2} \int \sec x \, dx$$
$$= \frac{1}{2} \sec x \tan x - \frac{1}{2} \ln|\sec x + \tan x| + C.$$

Example 8.2.8. $\int \tan^6 x \, dx$.

Sol. Since $\tan^2 x = \sec^2 x - 1$ $\int \tan^6 x \, dx = \int \tan^4 x (\sec^2 x - 1) \, dx$ $= \int \tan^4 x \sec^2 x \, dx - \int \tan^4 x \, dx$ $= \int \tan^4 x \sec^2 x \, dx - \int \tan^2 x (\sec^2 x - 1) \, dx$ $= \int \tan^4 x \sec^2 x \, dx - \int \tan^2 x \sec^2 x \, dx + \int \tan^2 x \, dx$ $= \int \tan^4 x \sec^2 x \, dx - \int \tan^2 x \sec^2 x \, dx + \int (\sec^2 x - 1) \, dx$ $= \frac{1}{5} \tan^5 x - \frac{1}{3} \tan^3 x + \tan x - x + C.$

Remark 8.2.9. For $\cot x$ or $\csc x$, use

$$1 + \cot^2 x = \csc^2 x,$$

$$(\cot x)' = -\csc^2 x,$$

$$(\csc x)' = -\csc x \cot x.$$

Products such as $\sin mx \sin nx$, $\sin mx \cos nx$, $\cos mx \cos nx$

Addition formula:

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$
$$\sin(A-B) = \sin A \cos B - \cos A \sin B$$
$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$
$$\cos(A-B) = \cos A \cos B + \sin A \sin B.$$

From these we get(with A = mx, B = nx)

$$\sin mx \sin nx = \frac{1}{2} [\cos(m-n)x - \cos(m+n)x]$$
$$\sin mx \cos nx = \frac{1}{2} [\sin(m-n)x + \sin(m+n)x]$$
$$\cos mx \cos nx = \frac{1}{2} [\cos(m-n)x + \cos(m+n)x].$$

Example 8.2.10. $\int_0^{\pi/6} \sin 4x \sin 3x \, dx.$

sol.

$$\int_0^{\pi/6} \sin 4x \sin 3x \, dx = \frac{1}{2} \int_0^{\pi/6} (\cos x - \cos 7x) \, dx$$
$$= \frac{1}{2} \left[\sin x - \frac{1}{7} \sin 7x \right]_0^{\pi/6} = \frac{2}{7}$$

8.3 Trig Substitution

Quadratic term

For the terms of the forms $a^2 - u^2$, $a^2 + u^2 u^2 - a^2$, we can try to substitute $u = a \sin \theta$, $u = a \tan \theta$, $u = a \sec \theta$ resp.

$$a^{2} - u^{2} = a^{2} - a^{2} \sin^{2} \theta = a^{2} (1 - \sin^{2} \theta) = a^{2} \cos^{2} \theta$$
(8.3)

$$a^{2} + u^{2} = a^{2} + a^{2} \tan^{2} \theta = a^{2} (1 + \tan^{2} \theta) = a^{2} \sec^{2} \theta$$
(8.4)

$$u^{2} - a^{2} = a^{2} \sec^{2} \theta - a^{2} = a^{2} (\sec^{2} \theta - 1) = a^{2} \tan^{2} \theta.$$
(8.5)

Note the domain of definition

(1) $u = a \sin \theta$ is defined on $-\pi/2 \le \theta \le \pi/2$.

(2)
$$u = a \tan \theta \ \theta = \tan^{-1}(u/a) \text{ on } -\pi/2 < \theta < \pi/2.$$

(3) $u = a \sec \theta \ \theta = \sec^{-1}(u/a)$ Since $|u| \ge a \ 0 \le \theta < \pi/2$ (if $u \ge a$), or $\pi/2 < \theta \le \pi$ (if $u \le -a$).

Example 8.3.1. $\int \frac{du}{a^2 + u^2}$.

Figure 8.2: trig substitution

sol. Use substitution $u = a \tan \theta$, $du = a \sec^2 \theta \, d\theta$ to get

$$\int \frac{du}{a^2 + u^2} = \int \frac{a \sec^2 \theta \, d\theta}{a^2 \sec^2 \theta}$$
$$= \int \frac{d\theta}{a}$$
$$= \frac{\theta}{a} + C$$
$$= \frac{1}{a} \tan^{-1} \frac{u}{a} + C.$$

Example 8.3.2. Find $\int \sqrt{a^2 - u^2} \, du$, (a > 0). **sol.** Use $u = a \sin \theta$, $du = a \cos \theta \, d\theta$ to get

$$\int \sqrt{a^2 - u^2} \, du = \int a \cos \theta \cdot a \cos \theta \, d\theta$$
$$= \frac{a^2}{2} \int (1 + \cos 2\theta) \, d\theta$$
$$= \frac{a^2}{2} \left(\theta + \frac{\sin 2\theta}{2}\right) + C$$
$$= \frac{a^2}{2} (\theta + \sin \theta \cos \theta) + C$$
$$= \frac{a^2}{2} \left(\sin^{-1}\frac{u}{a} + \frac{u}{a}\sqrt{1 - \frac{u^2}{a^2}}\right) + C$$
$$= \frac{a^2}{2} \sin^{-1}\frac{u}{a} + \frac{1}{2}u\sqrt{a^2 - u^2} + C.$$

Example 8.3.3. Find
$$\int \frac{du}{\sqrt{u^2 - a^2}}, (|u| > a > 0).$$

sol. Let
$$u = a \sec \theta$$

$$u^{2} - a^{2} = a^{2}(\sec^{2}\theta - 1)$$
$$= a^{2}\tan^{2}\theta,$$
$$du = a\sec\theta\tan\theta\,d\theta.$$

Then

$$\int \frac{du}{\sqrt{u^2 - a^2}} = \int \frac{a \sec \theta \tan \theta \, d\theta}{a | \tan \theta |}$$
$$= \begin{cases} \int \sec \theta \, d\theta \quad (0 < \theta < \pi/2) \\ -\int \sec \theta \, d\theta \quad (\pi/2 < \theta < \pi) \end{cases}$$
$$= \begin{cases} \ln |\sec \theta + \tan \theta| + C \quad (0 < \theta < \pi/2) \\ -\ln |\sec \theta + \tan \theta| + C \quad (\pi/2 < \theta < \pi) \end{cases}$$
$$= \begin{cases} \ln \left| \frac{u}{a} + \frac{\sqrt{u^2 - a^2}}{a} \right| + C \quad (u > a) \end{cases}$$
$$= \begin{cases} -\ln \left| \frac{u}{a} - \frac{\sqrt{u^2 - a^2}}{a} \right| + C \quad (u < -a). \end{cases}$$

On the other hand,

$$\ln \left| \frac{u}{a} + \frac{\sqrt{u^2 - a^2}}{a} \right| = \ln \left| u + \sqrt{u^2 - a^2} \right| - \ln a.$$

$$-\ln\left|\frac{u}{a} - \frac{\sqrt{u^2 - a^2}}{a}\right| = \ln\left|\frac{a}{u - \sqrt{u^2 - a^2}}\right|$$
$$= \ln\left|\frac{a(u + \sqrt{u^2 - a^2})}{(u - \sqrt{u^2 - a^2})(u + \sqrt{u^2 - a^2})}\right|$$
$$= \ln\left|\frac{a(u + \sqrt{u^2 - a^2})}{a^2}\right|$$
$$= \ln\left|\frac{u + \sqrt{u^2 - a^2}}{a}\right|$$
$$= \ln\left|u + \sqrt{u^2 - a^2}\right| - \ln a.$$

Hence

$$\int \frac{du}{\sqrt{u^2 - a^2}} = \ln \left| u + \sqrt{u^2 - a^2} \right| + C'.$$

r	-	-	-	-	
5	-	-	-	-	

Example 8.3.4.
$$\int \frac{dx}{\sqrt{x^2 + 9}}$$
.
sol. Let $x = 3 \tan \theta \ (-\pi/2 < \theta < \pi/2), \ dx = 3 \sec^2 \theta \ d\theta$,

$$\int \frac{dx}{\sqrt{x^2 + 9}} = \int \frac{3 \sec^2 \theta}{3 \sec \theta} \ d\theta$$

$$= \int \sec \theta \ d\theta$$

$$= \ln |\sec \theta + \tan \theta| + C$$

$$= \ln \left| \sqrt{\left(\frac{x}{2}\right)^2 + 1} + \frac{x}{2} \right| + C$$

$$= \ln \left| \sqrt{\left(\frac{3}{3}\right)^2 + 1} + \frac{3}{3} \right| + \frac{1}{3}$$
$$= \ln \left| x + \sqrt{x^2 + 9} \right| + C.$$

Involving $ax^2 + bx + c$ — Completing the square

For factors like $ax^2 + bx + c$, $(a, b \neq 0)$, use u = x + b/(2a) to get $ax^2 + bx + c = a(u^2 \pm p^2)$.

Example 8.3.5. Find $\int \sqrt{2x - x^2} \, dx$.

sol. Since $2x - x^2 = 1 - (x - 1)^2$ u = x - 1 we have as in example 8.3.2 with a = 1,

$$\int \sqrt{2x - x^2} \, dx = \int \sqrt{1 - u^2} \, du$$

= $\frac{1}{2} \sin^{-1} u + \frac{1}{2} u \sqrt{1 - u^2} + C$
= $\frac{1}{2} \sin^{-1} (x - 1) + \frac{1}{2} (x - 1) \sqrt{2x - x^2} + C.$

Example 8.3.6. $\int \frac{dx}{x^2 + x + 1}$.

sol. $x^2 + x + 1 = (x + 1/2)^2 + 3/4 \ u = x + 1/2 \ a = \sqrt{3}/2$
 $\int \frac{dx}{x^2 + x + 1} = \int \frac{du}{u^2 + 3/4}$
 $= \frac{2}{\sqrt{3}} \tan^{-1} \frac{2u}{\sqrt{3}} + C$
 $= \frac{2}{\sqrt{3}} \tan^{-1} \frac{2x + 1}{\sqrt{3}} + C.$

8.4 Integration of Rational functions by partial fraction

When p(x), q(x) are rational functions, we can always write it as

$$\frac{p(x)}{q(x)} = Q(x) + \frac{r(x)}{q(x)}$$

for some polynomial Q(x), r(x), where the degree of r(x) is less than that of q(x). (i.e., the fraction must be proper)

Distinct linear factors

Suppose $\alpha_1, \ldots, \alpha_r$ are distinct and p(x) is polynomial of degree of is less than r. Then we can set

$$\frac{p(x)}{(x-\alpha_1)\cdots(x-\alpha_r)} = \frac{A_1}{x-\alpha_1} + \dots + \frac{A_r}{x-\alpha_r}.$$
(8.6)

Here A_i 's can be obtained by method of undetermined coefficients.(There is another method, called Heaviside cover up method, see below)

$$\int \frac{dx}{(x-\alpha_1)\cdots(x-\alpha_r)} = \sum_{i=1}^r A_i \ln|x-\alpha_i| + C.$$

Example 8.4.1. Find $\int \frac{x+1}{x(x+2)} dx$.

sol. One can find the following partial fraction

$$\frac{x+1}{x(x+2)} = \frac{1}{2x} + \frac{1}{2(x+2)}$$

$$\int \frac{x+1}{x(x+2)} \, dx = \frac{1}{2} \int \left(\frac{1}{x} + \frac{1}{x+2}\right) \, dx$$
$$= \frac{1}{2} \ln|x(x+2)| + C.$$

_	-	-	

Example 8.4.2. Find $\int \frac{2x+1}{x^3-x} dx$.

sol. Since $x^3 - x = x(x-1)(x+1)$ we can set

$$\frac{2x+1}{x^3-x} = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{x+1}.$$

Solving for A, B, C we get A = -1, B = 3/2, C = -1/2. Hence

$$\int \frac{2x+1}{x^3-x} dx = \int \left(\frac{-1}{x} + \frac{3/2}{x-1} + \frac{-1/2}{x+1}\right) dx$$
$$= -\ln|x| + \frac{3}{2}\ln|x-1| - \frac{1}{2}\ln|x+1| + C.$$

Repeated linear factor

Assume the degree of p(x) is less than that of r(x). Then

$$\frac{p(x)}{(x-\alpha)^r} = \frac{A_1}{x-\alpha} + \frac{A_2}{(x-\alpha)^2} + \dots + \frac{A_r}{(x-\alpha)^r}.$$

To find the coefficients A_1, A_2, \ldots, A_r , multiply $(x - \alpha)^r$. Then

$$p(x) = A_1(x-\alpha)^{r-1} + A_2(x-\alpha)^{r-1} + \dots + A_r.$$

Now use method of undetermined coefficients to find A_i 's. Another nice way of finding A'_is by derivative will be introduced below. Once A'_is are known, we can find the integral:

$$\int \frac{p(x)}{(x-\alpha)^r} \, dx = \int \left(\frac{A_1}{x-\alpha} + \frac{A_2}{(x-\alpha)^2} + \dots + \frac{A_r}{(x-\alpha)^r} \right) \, dx$$
$$= A_1 \ln|x-\alpha| - \frac{A_2}{x-\alpha} - \dots - \frac{(r-1)A_r}{(x-\alpha)^{r-1}} + C.$$

Example 8.4.3. Find $\int \frac{x^2}{(x-2)^3} dx$.

sol. Since $x^2 = (x-2)^2 + 4(x-2) + 4$, we have

$$\frac{x^2}{(x-2)^3} = \frac{1}{x-2} + \frac{4}{(x-2)^2} + \frac{4}{(x-2)^3}.$$

Hence

$$\int \frac{x^2}{(x-2)^3} dx = \int \left(\frac{1}{x-2} + \frac{4}{(x-2)^2} + \frac{4}{(x-2)^3}\right) dx$$
$$= \ln|x-2| - \frac{4}{x-2} - \frac{8}{(x-2)^2} + C.$$

Irreducible quadratic factor

Suppose $x^2 + \beta_1 x + \gamma_1, \dots, x^2 + \beta_r x + \gamma_r$ are distinct quadratic factor without having real roots (we say irreducible quadratic factor). Suppose p(x) is polynomial of degree less than 2r. So we have

$$\frac{p(x)}{(x^2+\beta_1x+\gamma_1)\cdots(x^2+\beta_rx+\gamma_r)} = \sum_{i=1}^r \frac{B_ix+C_i}{x^2+\beta_ix+\gamma_i}$$

for some B_1, \ldots, B_r and C_1, \ldots, C_r . Hence

$$\int \frac{p(x)}{(x^2 + \beta_1 x + \gamma_1) \cdots (x^2 + \beta_r x + \gamma_r)} \, dx = \sum_{i=1}^r \int \frac{B_i x + C_i}{x^2 + \beta_i x + \gamma_i} \, dx.$$

Again we can find the coefficients by method of undetermined coefficients. Now since

$$B_{i}x + C_{i} = \frac{B_{i}}{2}(2x + \beta_{i}) + D_{i}, \ (D_{i} = C_{i} - B_{i}\beta_{i}/2)$$
$$= \frac{B_{i}}{2}(x^{2} + \beta_{i}x + \gamma_{i})' + D_{i},$$

we have

$$\int \frac{B_i x + C_i}{x^2 + \beta_i x + \gamma_i} dx = \int \left(\frac{B_i}{2} \frac{(x^2 + \beta_i x + \gamma_i)'}{x^2 + \beta_i x + \gamma_i} + \frac{D_i}{x^2 + \beta_i x + \gamma_i} \right) dx$$
$$= \frac{B_i}{2} \ln(x^2 + \beta_i x + \gamma_i) + \int \frac{D_i}{x^2 + \beta_i x + \gamma_i} dx.$$

For $D_i/(x^2 + \beta_i x + \gamma_i)$ use the formula:

$$\int \frac{du}{u^2 + a^2} = \frac{1}{a} \tan^{-1} \frac{u}{a} + C.$$

Example 8.4.4. Find $\int \frac{2x}{x^4 + x^2 + 1} dx$.

sol. Since $x^4 + x^2 + 1 = (x^2 - x + 1)(x^2 + x + 1)$, we set

$$\frac{2x}{x^4 + x^2 + 1} = \frac{B_1x + C_1}{x^2 - x + 1} + \frac{B_2x + C_2}{x^2 + x + 1}.$$

By comparing, we obtain $B_1 = B_2 = 0$, $C_1 = 1$, $C_2 = -1$. Since

$$x^{2} \pm x + 1 = (x \pm 1/2)^{2} + (\sqrt{3}/2)^{2},$$

we see

$$\int \frac{2x}{x^4 + x^2 + 1} dx$$

= $\int \left(\frac{1}{(x - 1/2)^2 + (\sqrt{3}/2)^2} - \frac{1}{(x + 1/2)^2 + (\sqrt{3}/2)^2} \right) dx$
= $\frac{2}{\sqrt{3}} \left(\tan^{-1} \frac{2x - 1}{\sqrt{3}} - \tan^{-1} \frac{2x + 1}{\sqrt{3}} \right) + C.$

Repeated irreducible quadratic factor

Suppose p(x) is polynomial of degree less than 2r, and $x^2 + \beta x + \gamma$ does not have real roots. Then we can set

$$\frac{p(x)}{(x^2 + \beta x + \gamma)^r} = \frac{B_1 x + C_1}{x^2 + \beta x + \gamma} + \frac{B_2 x + C_2}{(x^2 + \beta x + \gamma)^2} + \dots + \frac{B_r x + C_r}{(x^2 + \beta x + \gamma)^r}$$

for some $B_1, B_2, ..., B_r, C_1, C_2, ..., C_r$. Then

$$\int \frac{p(x)}{(x^2 + \beta x + \gamma)^r} dx$$

= $\int \left(\frac{B_1 x + C_1}{x^2 + \beta x + \gamma} + \frac{B_2 x + C_2}{(x^2 + \beta x + \gamma)^2} + \dots + \frac{B_r x + C_r}{(x^2 + \beta x + \gamma)^r} \right) dx.$

By the same way as before we see, with $D_i=C_i-B_i\beta/2$

$$\int \frac{B_i x + C_i}{(x^2 + \beta x + \gamma)^i} \, dx = \int \left(\frac{B_i}{2} \frac{(x^2 + \beta x + \gamma)'}{(x^2 + \beta x + \gamma)^i} + \frac{D_i}{(x^2 + \beta x + \gamma)^i} \right) \, dx$$
$$= -\frac{B_i}{2(i-1)(x^2 + \beta x + \gamma)^{i-1}} + \int \frac{D_i}{(x^2 + \beta x + \gamma)^i} \, dx.$$

For the integral of $D_i/(x^2 + \beta x + \gamma)^i$ $(i \ge 2)$, use the recurrence relation

$$\int \frac{du}{(u^2+a^2)^i} = \frac{u}{a^2(2i-2)(u^2+a^2)^{i-1}} + \frac{2i-3}{a^2(2i-2)} \int \frac{du}{(u^2+a^2)^{i-1}}.$$

Example 8.4.5. Find $\int \frac{x^4 + 2x^3 + 5x^2 + 6}{(x^2 + 2)^3} dx.$

sol.

$$\frac{x^4 + 2x^3 + 5x^2 + 6}{(x^2 + 2)^3} = \frac{A_1x + B_1}{x^2 + 2} + \frac{A_2x + B_2}{(x^2 + 2)^2} + \frac{A_3x + B_3}{(x^2 + 2)^3}.$$

Multiply $(x^2 + 2)^3$ to see

$$x^{4} + 2x^{3} + 5x^{2} + 6 = A_{1}x^{5} + B_{1}x^{4} + (4A_{1} + A_{2})x^{3} + (4B_{1} + B_{2})x^{2} + (4A_{1} + 2A_{2} + A_{3})x + 4B_{1} + 2B_{2} + B_{3}.$$

Comparing, we get $A_1 = 0$, $A_2 = 2$, $A_3 = -2$, $B_1 = 1$, $B_2 = 1$, $B_3 = 0$. Hence the integrand is

$$\frac{x^4 + 2x^3 + 5x^2 + 6}{(x^2 + 2)^3} = \frac{1}{x^2 + 2} + \frac{2x + 1}{(x^2 + 2)^2} + \frac{-4x}{(x^2 + 2)^3}.$$

Hence

$$\int \frac{x^4 + 2x^3 + 5x^2 + 6}{(x^2 + 2)^3} dx$$

= $\int \frac{dx}{x^2 + 2} + \int \frac{2x}{(x^2 + 2)^2} dx + \int \frac{1}{(x^2 + 2)^2} dx + \int \frac{-4x}{(x^2 + 2)^3} dx$
= $\frac{1}{\sqrt{2}} \tan^{-1} \frac{x}{\sqrt{2}} - \frac{1}{x^2 + 2} + \frac{x}{4(x^2 + 2)} + \frac{1}{4} \int \frac{1}{x^2 + 2} dx + \frac{1}{(x^2 + 2)^2}$
= $\frac{5}{4\sqrt{2}} \tan^{-1} \frac{x}{\sqrt{2}} + \frac{x - 4}{4(x^2 + 2)} + \frac{1}{(x^2 + 2)^2} + C.$

Heaviside cover up method for linear factors

Example 8.4.6.

$$\frac{x^2+1}{(x-1)(x-2)(x-3)} = \frac{A}{x-1} + \frac{B}{x-2} + \frac{C}{x-3}.$$

Here

$$A = \frac{(1)^2 + 1}{\underbrace{(x-1)}_{cover}(1-2)(1-3)}$$

$$B = \frac{(2)^2 + 1}{(2 - 1)(x - 2)} = \frac{5}{(1)(-1)} = -5$$
$$C = \frac{(3)^2 + 1}{(3 - 1)(3 - 2)(x - 3)} = \frac{10}{(2)(1)} = 5.$$

Example 8.4.7. Do the same with

$$\int \frac{x+4}{x(x-2)(x+5)}.$$

sol. Note

$$\frac{x+4}{x(x-2)(x+5)} = \frac{A}{x} + \frac{B}{x-2} + \frac{C}{x+5}$$

$$A = \frac{0+4}{\boxed{x}(0-2)(0+5)} = -\frac{2}{5}$$

$$B = \frac{2+4}{2\boxed{(x-2)}(2+5)} = \frac{3}{7}$$

$$C = \frac{-5+4}{(-5)(-5-2)\boxed{(x+5)}} = -\frac{1}{35}.$$

Using differentiation-repeated factors

Example 8.4.8.

$$\frac{x-1}{(x+1)^3} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{(x+1)^3}.$$

Write

$$x - 1 = A(x + 1)^{2} + B(x + 1) + C.$$

Substitute x = -1 to get C = -2. Then take derivative

$$1 = 2A(x+1) + B$$

and substitute x = -1 to get B = 1. Finally, taking derivative again, we see A = 0.

8.5 Numerical Integration

Trapezoidal Rule

$$\Delta x = h = \frac{b-a}{n}.$$

$$x_0 = a, x_1 = a + \Delta x, \ \cdots, x_{n-1} = a + (n-1)\Delta x, x_n = b.$$
With $y_{x_i} = f(x_i)$

$$\int_{a}^{b} f(x) dx \approx \frac{h}{2} (y_0 + 2y_1 + \dots + 2y_{n-1} + y_n).$$
$$|E_T| \le \frac{M(b-a)^3}{12n^2}.$$

Figure 8.3: Trapezoidal Rule

Simpson's Rule

Replace the definite integral by an integral of quadratic interpolation. Exact for poly. of degree three. Assume $y = Ax^2 + Bx + C$ is an interpolating polynomial of f in the sense that $y(x_i) = f(x_i)$ for $x_0 = -h, x_1 = 0, x_2 = h$

$$\begin{aligned} \int_{-h}^{h} f(x) \, dx &\approx \int_{-h}^{h} (Ax^2 + Bx + C) \, dx \\ &= \left. \frac{Ax^3}{3} + \frac{Bx^2}{2} + Cx \right]_{-h}^{h} \\ &= \left. \frac{2Ah^3}{3} + 2Ch = \frac{h}{3}(2Ah^2 + 6C). \end{aligned}$$

Since

$$y_0 = Ah^2 - Bh + C, \ y_1 = C, \ y_2 = Ah^2 + Bh + C$$

we see

$$A = \frac{y_0 - 2y_1 + y_2}{2h^2}, \ B = \frac{y_2 - y_0}{2h}, \ C = y_1$$

and the the integral is

$$\frac{h}{3}(y_0 - 2y_1 + y_2 + 6y_1) = \frac{h}{3}(y_0 + 4y_1 + y_2).$$

Since this formula is exact for x^3 , it is in general third order formula. When

Figure 8.4: Simpson's Rule

the general interval [a, b] is divided by an even number of intervals, we can apply it repeatedly to get

$$\int_{a}^{b} f(x) dx \approx \frac{h}{3} (y_0 + 4y_1 + 2y_2 + 4y_3 + \dots + 2y_{n-2} + 4y_{n-1} + y_n).$$
$$|E_S| \le \frac{M(b-a)^5}{180n^4}.$$

Example 8.5.1. Find an upper bound for the error in estimating $\int_0^2 5x^4 dx$ using Simpson's rule with n = 5.

sol. Let $f(x) = 5x^4$. Then $f^{(4)} = 120$. So M = 120. b - a = 2 and n = 4. The error bound is

$$|E_S| \le \frac{M(b-a)^5}{180n^4} = \frac{120(2)^5}{1804^4} = \frac{1}{12}.$$

Example 8.5.2. What is the minimum number of intervals needed to approx-

imate above example using the Simpson's rule with an error less than 10^{-4} . sol. We set

$$\frac{M(b-a)^5}{180n^4} < 10^{-4}.$$

Then

$$\frac{120(2)^5}{180n^4} < 10^{-4}$$

$$n^4 > \frac{64(10)^4}{3}$$

$$n > 10\left(\frac{64}{3}\right)^{1/4} \approx 21.5.$$

8.6 Improper Integral

Improper Integral

Example 8.6.1. Find the area surrounded by $y = 1/\sqrt{x}$, x-axis, y-axis, x = 1(fig 8.5).

Figure 8.5: Improper Integral

sol. The function $1/\sqrt{x}$ is not defined at x = 0. So one cannot define the area like

$$\int_0^1 \frac{dx}{\sqrt{x}}.$$

But we can use limit such as

$$(\text{Area}) = \lim_{\varepsilon \to 0^+} \int_{\varepsilon}^{1} \frac{dx}{\sqrt{x}}$$
$$= \lim_{\varepsilon \to 0^+} \left[2x^{1/2} \right]_{\varepsilon}^{1}$$
$$= \lim_{\varepsilon \to 0^+} \left(2 - 2\varepsilon^{1/2} \right)$$
$$= 2.$$

Computation of Improper integral

Figure 8.6: Improper integral on [a, b)

Definition 8.6.2 (Convergence of Improper integral).

(1) Suppose f(x) is integrable on all closed subinterval of [a, b) and we have either $\lim_{x \to b^-} f(x) = \pm \infty$. If the limit

$$L = \lim_{u \to b^{-}} \int_{a}^{u} f(x) \, dx \tag{8.7}$$

exists then we say the **improper integral converges** and write its limit

$$\int_a^b f(x) \, dx = \lim_{u \to b^-} \int_a^u f(x) \, dx.$$

(2) The same definition holds when $\lim_{x \to a^+} f(x) = \pm \infty$. We write

$$\int_{a}^{b} f(x) \, dx = \lim_{\ell \to a^{+}} \int_{\ell}^{b} f(x) \, dx \tag{8.8}$$

if the latter limit exists. Otherwise, we say the integral **diverges**.

(3) The discontinuity can happen at an interior point. In this case, we can still apply the above definitions.

Figure 8.7: Improper integral on (a, b]

Example 8.6.3.
$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} dx.$$

Figure 8.8:

sol. We distinguish two case: (-1, 0] and [0, 1).

$$\int_{-1}^{0} \frac{1}{\sqrt{1-x^2}} dx = \lim_{\ell \to -1^+} \int_{\ell}^{0} \frac{1}{\sqrt{1-x^2}} dx$$
$$= \lim_{\ell \to -1^+} \left[\sin^{-1} x \right]_{\ell}^{0}$$
$$= -\sin^{-1}(-1)$$
$$= \frac{\pi}{2}.$$
$$\int_{0}^{1} \frac{1}{\sqrt{1-x^2}} dx = \lim_{u \to 1^-} \int_{0}^{u} \frac{1}{\sqrt{1-x^2}} dx$$
$$= \lim_{u \to 1^-} \left[\sin^{-1} x \right]_{0}^{u}$$
$$= \sin^{-1} 1$$
$$= \frac{\pi}{2}.$$

Hence

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} \, dx = \int_{-1}^{0} \frac{1}{\sqrt{1-x^2}} \, dx + \int_{0}^{1} \frac{1}{\sqrt{1-x^2}} \, dx = \pi.$$

Example 8.6.4. $\int_0^2 \frac{dx}{(x-1)^{4/3}}$.

sol. The function $1/(x-1)^{4/3}$ is not defined at x = 1. Hence we separate

$$\int_0^2 \frac{dx}{(x-1)^{4/3}} = \int_0^1 \frac{dx}{(x-1)^{4/3}} + \int_1^2 \frac{dx}{(x-1)^{4/3}}.$$

$$\int_0^1 \frac{dx}{(x-1)^{4/3}} = \lim_{u \to 1^-} \int_0^u \frac{dx}{(x-1)^{4/3}}$$
$$= \lim_{u \to 1^-} \left[-3(x-1)^{-1/3} \right]_0^u$$
$$= \lim_{u \to 1^-} -\frac{3}{(u-1)^{1/3}} - 3$$
$$= \infty.$$

Since $\int_0^1 \frac{dx}{(x-1)^{4/3}}$ diverges the integral diverges regardless of $\int_1^2 \frac{dx}{(x-1)^{4/3}}$.

Figure 8.9:

Figure 8.10: On (0, 1]

sol.

(1) For 0

$$\int_0^1 \frac{dx}{x^p} = \lim_{\ell \to 0^+} \int_\ell^1 \frac{dx}{x^p} = \lim_{\ell \to 0^+} \left[\frac{x^{1-p}}{1-p} \right]_\ell^1 = \lim_{\ell \to 0^+} \frac{1-\ell^{1-p}}{1-p} = \frac{1}{1-p}.$$

(2) For p = 1

$$\int_0^1 \frac{dx}{x^p} = \lim_{\ell \to 0^+} \int_1^u \frac{dx}{x} = \lim_{\ell \to 0^+} [\ln x]_\ell^1 = \lim_{\ell \to 0^+} (-\ln \ell) = \infty.$$

30

(3) For p > 1

$$\int_0^1 \frac{dx}{x^p} = \lim_{\ell \to 0^+} \int_{\ell}^1 \frac{dx}{x^p} = \lim_{\ell \to 0^+} \left[\frac{x^{1-p}}{1-p} \right]_{\ell}^1 = \lim_{\ell \to 0^+} \frac{1-\ell^{1-p}}{1-p} = \infty.$$

The Case when a or b is ∞

Definition 8.6.6 (Convergence of Improper integral).

(1) Suppose f(x) is continuous on $[a, \infty)$. We set

$$\int_{a}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{a}^{b} f(x) dx$$
(8.9)

provided the limit exists.

(2) Similarly, if f(x) is continuous on $(-\infty, b]$, we set

$$\int_{-\infty}^{b} f(x) dx = \lim_{a \to -\infty} \int_{a}^{b} f(x) dx$$
(8.10)

provided the limit exists.

(3) If f(x) is continuous on $(-\infty, \infty)$ then we set

$$\int_{-\infty}^{b} f(x) dx = \lim_{a \to -\infty} \int_{a}^{b} f(x) dx$$
(8.11)

provided the limit exists. In these cases, we say the **improper integral** converges. Otherwise, we say the integral diverges.

The function $1/x^p$

The integral of $1/x^p$ on (0, 1] or $[1, \infty)$ depends on the value of p. In particular, the integral on $[1, \infty)$ is used to decide the convergence of the series $\sum 1/n^p$.

On $[1,\infty)$

Example 8.6.7. Find $\int_{1}^{\infty} \frac{dx}{x^{p}} \ (p > 0).$

sol.

Figure 8.11: Improper integral on $[1, \infty)$

(1) For 0 ,

$$\int_{1}^{\infty} \frac{dx}{x^{p}} = \lim_{u \to \infty} \int_{1}^{u} \frac{dx}{x^{p}} = \lim_{u \to \infty} \left[\frac{x^{1-p}}{1-p} \right]_{1}^{u} = \lim_{u \to \infty} \frac{u^{1-p} - 1}{1-p} = \infty.$$

(2) For p = 1

$$\int_{1}^{\infty} \frac{dx}{x^p} = \lim_{u \to \infty} \int_{1}^{u} \frac{dx}{x} = \lim_{u \to \infty} [\ln x]_{1}^{u} = \lim_{u \to \infty} \ln u = \infty.$$

(3) For p > 1

$$\int_{1}^{\infty} \frac{dx}{x^{p}} = \lim_{u \to \infty} \int_{1}^{u} \frac{dx}{x^{p}} = \lim_{u \to \infty} \left[\frac{x^{1-p}}{1-p} \right]_{1}^{u} = \lim_{u \to \infty} \frac{u^{1-p}-1}{1-p} = \frac{1}{p-1}.$$

Example 8.6.8.

$$\int_{1}^{\infty} \frac{\ln}{x^2} \, dx$$

Example 8.6.9.

$$\int_0^\infty \frac{1}{1+x^2} \, dx$$

Test for Convergence

Theorem 8.6.10 (Comparison test). Let $0 \le f(x) \le g(x)$ for all x > a. Then

(1) If
$$\int_{a}^{\infty} g(x) dx$$
 converges, then $\int_{a}^{\infty} f(x) dx$ also converges.
(2) If $\int_{a}^{\infty} f(x) dx$ diverges, then $\int_{a}^{\infty} g(x) dx$ also diverges.

Example 8.6.11. Test whether $\int_0^\infty \frac{dx}{1+x^3}$ converges or not?

sol. We see, for all $x \ge 1$, $1/(1+x^3) \le 1/x^3$ holds. By example 8.6.7 we see $\int_1^\infty 1/x^3 dx = 1/2$. Hence by Comparison test $\int_1^\infty 1/(1+x^3) dx$ converges. On the other hand, the integra $\int_0^1 1/(1+x^3) dx$ is well defined on [0,1]. Hence $\int_0^\infty 1/(1+x^3) dx$ converges and the value is $\int_0^1 1/(1+x^3) dx + \int_1^\infty 1/(1+x^3) dx$. (See Fig 8.12)

Theorem 8.6.12 (Limit Comparison Test). Assume f(x), g(x) are positive on $[a, \infty)$ and suppose

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = L > 0.$$

Then the two integra $\int_a^\infty f(x) \, dx$ and $\int_a^\infty g(x) \, dx$ both converge or both diverge.

- *Proof.* (1) Suppose $\int_{a}^{\infty} g(x) dx$ converges: Then there is N > a such that $f(x)/g(x) \leq L+1$ holds for all $x \geq N$. So we have $0 \leq f(x) \leq (L+1)g(x)$ and by Limit Comparison Test, $\int_{N}^{\infty} f(x) dx$ converge. Hence $\int_{a}^{\infty} f(x) dx$ converges to $\int_{a}^{N} f(x) dx + \int_{N}^{\infty} f(x) dx$.
 - (2) Suppose $\int_a^{\infty} g(x) dx$ diverges: There exists N > a s.t. for all $x \ge N$, $f(x)/g(x) \ge L L/2 = L/2$ holds. Hence $f(x) \ge (L/2)g(x) \ge 0$ and by Limit Comparison Test $\int_N^{\infty} f(x) dx$ diverges. So does $\int_a^{\infty} f(x) dx$.

Figure 8.12:

Example 8.6.13. Test whether $\int_0^\infty \frac{dx}{1+e^x}$ converges or not? Sol. Let $f(x) = 1/(1+e^x)$, $g(x) = 1/e^x$. Then $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{e^x}{1+e^x} = 1$

and

$$\int_0^\infty \frac{dx}{e^x} = \lim_{u \to \infty} \int_0^u \frac{dx}{e^x} = \lim_{u \to \infty} \left[-e^{-x} \right]_0^u = \lim_{u \to \infty} \left(-e^{-u} + 1 \right) = 1.$$

Hence by Limit Comparison Test, $\int_0^\infty 1/(1+e^x) dx$ converges.

Example 8.6.14. Test for convergence $\int_2^{\infty} \sqrt{\frac{x}{x^2 - 1}} \, dx$. **sol.** Set $f(x) = \sqrt{\frac{x}{x^2 - 1}}$ and $g(x) = \frac{1}{\sqrt{x}}$. Then

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \sqrt{\frac{x^2}{x^2 - 1}} = 1.$$

$$\int_{2}^{\infty} \frac{dx}{\sqrt{x}} = \lim_{u \to \infty} \left[2\sqrt{x} \right]_{2}^{u} = \lim_{u \to \infty} \left(2\sqrt{u} - 2\sqrt{2} \right) = \infty.$$

By Limit Comparison Test $\int_2^{\infty} \sqrt{\frac{x}{x^2 - 1}} dx$ converges.

Figure 8.13:

Chapter 10

Infinite Sequence and Series

10.1 Sequences

Example 10.1.1. (1)

 $1, 3, 5, 7, \ldots$

(2) *n*-th term is given by $(-1)^{n+1}1/n$:

$$1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \dots, (-1)^{n+1}\frac{1}{n}, \dots$$

(3) Certain rules

$$1, \frac{1}{2}, \frac{1}{2}, -\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \dots$$

(4) Constant sequence :

 $3, 3, 3, \ldots$

(5) Digits after decimal point of $\sqrt{2}$

$$4, 1, 4, 1, 5, 9, \ldots$$

n-th term a_n

Definition 10.1.2. A **sequence** is a function with the set of natural numbers as domain.

Sequence as graph

Example 10.1.3. (1) $a_n = (n-1)/n$.

Figure 10.1:
$$a_n = (n-1)/n$$

(2)
$$a_n = (-1)^n 1/n.$$

Figure 10.2: $a_n = (-1)^n 1/n$

(3) $a_n = \sqrt{n}$.

(4)
$$a_n = \sin(n\pi/6)$$
.

Figure 10.3: $a_n = \sin(n\pi/6)$

(5) a_n is the *n*-th digit of π after decimal point.

Among these (1), (3), (4) are functions (x - 1)/x, \sqrt{x} , $\ln x$ are restricted to N.

Subsequence

If all the terms of $\{a_n\}$ appears as some term in $\{b_n\}$ without changing orders we say $\{a_n\}$ is a **subsequence** of $\{b_n\}$.

Example 10.1.4. (1) 1, 1, 1, 1, ... is a subsequence of 1, -1, 1, -1, ...
- (2) $\{9n\}$ (n = 1, 2, 3, ...) is a subsequence of $\{3n\}$ (n = 1, 2, 3, ...).
- (3) $\{1+1/4^n\}$ (n = 1, 2, 3, ...) is a subsequence of $\{1+1/2^n\}$ (n = 1, 2, 3, ...).

Recursive relation

Some sequence are defined through recursive relation such as

$$a_1 = 1,$$

 $a_{n+1} = 2a_n + 1, \quad n = 1, 2, 3, \dots$

or

$$a_1 = 1, \ a_2 = 2,$$

 $a_{n+2} = a_{n+1} + a_n, \quad n = 1, 2, 3, \dots$

10.1.1 Convergence of a sequence

Definition 10.1.5. We say $\{a_n\}$ converges to L, if for any $\varepsilon > 0$, there exists some N s.t. for all n > N it holds that

$$|a_n - L| < \varepsilon.$$

Otherwise, we say $\{a_n\}$ is said to **diverge**. If $\{a_n\}$ converges to L, we write

$$\lim_{n \to \infty} a_n = L \quad \text{or} \quad \{a_n\} \to L.$$

L is the called the **limit** of a_n .

Example 10.1.6. Show that $\{(n-1)/n\}$ converges to 1.

sol. We can expect L = 1. For any ε , $|(n-1)/n - 1| < \varepsilon$ holds for n satisfying $|1/n| > \varepsilon$.

Example 10.1.7. Show that $\{\sqrt{n+2} - \sqrt{n}\}$ converges to 0.

sol. Let ε be given. We want to choose so that

$$|\sqrt{n+2} - \sqrt{n} - 0| = \frac{2}{\sqrt{n+2} + \sqrt{n}}$$

is less than ε for all *n* greater than certain *N*. Since

$$\frac{2}{\sqrt{n+2}+\sqrt{n}} < \frac{1}{\sqrt{n}},$$

we choose n such that

$$\frac{1}{\sqrt{n}} < \varepsilon.$$

So if N is any natural number greater than $1/\varepsilon^2$, it satisfies the goal.

Theorem 10.1.8. Suppose and subsequence b_n of a_n converges to L, then a_n also converges to L.

Theorem 10.1.9 (Uniqueness). If $\{a_n\}$ converges, it has unique limit.

Proof. Suppose $\{a_n\}$ has two limits L_1 , L_2 . Choose $\varepsilon = |L_1 - L_2|/2$ There exist N_1 s.t. for $n > N_1$ the following holds

$$|a_n - L_1| < \varepsilon.$$

Similarly, there exist N_2 s.t. for all $n > N_2$ it holds that

$$|a_n - L_2| < \varepsilon.$$

Let N be the greater one of N_1 , N_2 . Then for all n > N

$$|L_1 - L_2| = |L_1 - a_n + a_n - L_2| \le |L_1 - a_n| + |a_n - L_2|$$

$$< \varepsilon + \varepsilon = |L_1 - L_2|$$

holds. A contradiction. So $L_1 = L_2$.

Corollary 10.1.10. If $\{a_n\}$ converges, we have $\lim_{n \to \infty} (a_n - a_{n+1}) = 0$.

Remark 10.1.11. The above condition is not a sufficient for convergence. For example, the sequence $a_n = \ln(n+1)/n$ satisfies $a_{n+1} - a_n = \ln(n+1)/n \to 0$ but $\lim_{n\to\infty} a_n = \infty$.

Properties of limit

Theorem 10.1.12. Suppose $\lim_{n \to \infty} a_n = A$, $\lim_{n \to \infty} b_n = B$. Then we have

- (1) $\lim_{n \to \infty} \{a_n + b_n\} = A + B$
- $(2) \lim_{n \to \infty} \{a_n b_n\} = A B$
- (3) $\lim_{n \to \infty} \{ka_n\} = kA$
- (4) $\lim_{n \to \infty} \{a_n \cdot b_n\} = A \cdot B$
- (5) $\lim_{n \to \infty} \left\{ \frac{a_n}{b_n} \right\} = A/B, \ B \neq 0.$
 - $\lim_{n \to \infty} \frac{n^2 n}{n^2} = \lim_{n \to \infty} 1 \frac{1}{n} = 1 0 = 1.$ $\lim_{n \to \infty} \frac{2 3n^5}{n^5 + 1} = \lim_{n \to \infty} \frac{2/n^5 3}{1 + 1/n^5} = -3.$

Theorem 10.1.13 (Continuous function). Suppose the limit of a_n is L and a function f is defined on an interval containing all values of a_n and L, and continuous at L, then

$$\lim_{n \to \infty} f(a_n) = f(L)$$

Proof. Since f is continuous at L, we have for any ε there is a δ such that for all a_n with $|a_n - L| < \delta$ it holds that $|f(a_n) - f(L)| < \varepsilon$. Since a_n converges to L, there is a natural number N s.t. for n > N it holds that $|a_n - L| < \delta$. Hence $|f(a_n) - f(L)| < \varepsilon$ holds.

Example 10.1.14. (1) $\lim_{n \to \infty} \sin(n\pi/(2n+1)) = 1$ (2) $\lim_{n \to \infty} 2^{1/\sqrt{n}} = 1$

sol. (1) Since the limit of $n\pi/(2n+1)$ is $\pi/2$ and the function $\sin x$ is continuous at $\pi/2$, we have $\lim_{n\to\infty} \sin(n\pi/(2n+1)) = 1$.

(2) Since $f(x) = 2^{\sqrt{x}}$ is continuous at $x = 0^+$ we have

$$\lim_{n \to \infty} 2^{1/\sqrt{n}} = 1$$

Theorem 10.1.15. Suppose f(x) is defined for $x \ge 0$ and if $\{a_n\}$ is given by $a_n = f(n), n = 1, 2, 3, ...$ and if $\lim_{x \to \infty} f(x) = L$ then $\lim_{n \to \infty} a_n = L$.

This theorem holds when $f(x) \to +\infty$ or $f(x) \to -\infty$.

Example 10.1.16. (1) $\lim_{n \to \infty} \ln n/n = 0$

(2)
$$\lim_{n \to \infty} n(e^{1/n} - 1) = 1$$

(3) Find
$$\lim_{n \to \infty} \left(\frac{n+1}{n-1}\right)^n$$
.
sol. (1) Let $f(x) = \ln x/x$. Then

$$\lim_{n \to \infty} f(n) \lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{(\ln x)'}{x'} = \lim_{x \to \infty} \frac{1}{x} = 0.$$

$$\lim_{n\to\infty} \ln n/n = 0$$

(2) Set x = 1/n. Then it corresponds to the limit of $f(x) = (e^x - 1)/x$ as $x \to 0$. By L'Hopital's rule

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} e^x = 1.$$
$$\lim_{n \to \infty} n(e^{1/n} - 1) = 1.$$

Theorem 10.1.17 (Sanwich theorem). Suppose a_n, b_n, c_n satisfy $a_n \leq b_n \leq c_n$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$. Then $\lim_{n \to \infty} b_n = L$.

Limit used Often

Proposition 10.1.18.

(1) $\lim_{n \to \infty} \frac{\ln n}{n} = 0$ (2) $\lim_{n \to \infty} \sqrt[n]{n} = 1$ (3) $\lim_{n \to \infty} x^{1/n} = 1, \ x > 0$ (4) $\lim_{n \to \infty} x^n = 0, \ |x| < 1$ (5) $\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x, \ x \in \mathbb{R}$ (6) $\lim_{n \to \infty} \frac{x^n}{n!} = 0, \ x \in \mathbb{R}.$

Proof. (1) See Example 10.1.16.

40

- (2) Let $a_n = n^{1/n}$ and take $\ln \ln a_n = \ln n^{1/n} = \frac{\ln n}{n}$. Since this approaches 0 and e^x is continuous at $0 a_n = e^{\ln a_n} \to e^0 = 1$ by theorem 10.1.15.
- (3) Set $a_n = x^{1/n}$. Since the limit of $\ln a_n = \ln x^{1/n} = \frac{\ln x}{n}$ is 0, we see $x^{1/n} = a_n = e^{\ln a_n}$ converges to $e^0 = 1$.
- (4) Use the definition. given $\varepsilon > 0$, we must find n, s.t. for $|x| < \varepsilon^{1/n}$ $|x^n - 0| < \varepsilon$ holds. Since $\lim_{n \to \infty} \varepsilon^{1/n} = 1$ there is an N s.t $|x| < \varepsilon^{1/N}$ holds. Now if n > N we have $|x|^n < |x^N| < \varepsilon$.
- (5) Let $a_n = (1 + x/n)^n$. Then $\lim_{n \to \infty} \ln a_n = \lim_{n \to \infty} \ln (1 + x/n)^n = n \ln (1 + x/n)$ and by L'Hopital's rule we see

$$\lim_{n \to \infty} \frac{\ln(1 + x/n)}{1/n} = \lim_{n \to \infty} \frac{x}{1 + x/n} = x.$$

Hence $a_n = (1 + x/n)^n = e^{\ln a_n}$ converges to e^x .

(6) First we will show that

$$-\frac{|x|^n}{n!} \le \frac{x^n}{n!} \le \frac{|x|^n}{n!}$$

and $|x|^n/n! \to 0$. Then use Sandwich theorem. If |x| is greater than M, then |x|/M < 1 and hence $(|x|/M)^n \to 0$. If n > M

$$\frac{|x|^n}{n!} = \frac{|x|^n}{1 \cdot 2 \cdots M(M+1) \cdots n} \le \frac{|x|^n}{M! M^{n-M}} = \frac{M^M}{M!} \left(\frac{|x|}{M}\right)^n$$

holds. But $M^M/M!$ is fixed number. As $n\infty (|x|/M)^n$ approaches 0. So $|x|^n/n!$ approaches 0. Finally by Sandwich theorem 10.1.17 we get the result. $x^n/n! \to 0$.

Example 10.1.19. (1) $\lim_{n \to \infty} \left(\frac{1}{1000} \right)^{1/n} = 1.$

(2) $\lim_{n \to \infty} (10^{1000} n^2)^{1/n} = \lim_{n \to \infty} (10^{1/n})^{1000} \lim_{n \to \infty} n^{2/n} = 1 \cdot \lim_{n \to \infty} \left(n^{1/n} \right)^2 = 1.$ (3) $\lim_{n \to \infty} \left(1 - \frac{2}{n} \right)^n = e^{-2}.$ (4) $\lim_{n \to \infty} (1 + h)^{1/h} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e^{-2}.$

(4) $\lim_{h \to 0^+} (1+h)^{1/h} = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e.$

(5) $\lim_{n \to \infty} \frac{10^n}{n!} = 0.$

(6) The set of all x satisfying $\lim_{n \to \infty} \frac{|x|^n}{5^n} = 0$ is, |x/5| < 1, |x| < 5.

Example 10.1.20. $\lim_{n \to \infty} \sqrt[n]{5n+1} = 1.$

sol. Since $\ln(5n+1)^{1/n} = \ln(5n+1)/n \to 0$ above limit is $e^0 = 1$.

Example 10.1.21. Show that $\lim_{n\to\infty} \ln n/n^{\varepsilon} = 0$ for any $\varepsilon > 0$.

sol. By L'Hopital rule 3.6.5

$$\lim_{n \to \infty} \frac{\ln n}{n^{\varepsilon}} = \lim_{n \to \infty} \frac{1/n}{\varepsilon n^{\varepsilon - 1}} = \lim_{n \to \infty} \frac{1}{\varepsilon n^{\varepsilon}} = 0.$$

_
<u> </u>

Monotone Sequence

Definition 10.1.22. If a_n satisfies

$$a_1 \le a_2 \le \dots \le a_n \le \dots$$

then a_n is called an increasing sequence, nondecreasing sequence.

Definition 10.1.23. If there is a number M such that $a_n \leq M$ for all n, then this sequence is said to be **bounded from above**. Any such M is called an **upper bound**. If the smallest number exists among all upper bound, then it is called the **least upper bound**. Similarly, we say a sequence **bounded from below** if there is a number N such that $a_n \geq N$ for all n, Any such an N is called a **lower bound**. If the largest number exists among all lower bound, then it is called the **greatest lower bound**. If a sequence has both lower bound and upper bound, then we say it is **bounded**.

Example 10.1.24. $a_n = 1 - 1/2^n M = 1$ is an upper bound and any number bigger than 1 is an upper bound. The smallest such number(if exists) is **least upper bound**.

42

Theorem 10.1.25. If a nondecreasing sequence has an upper bound, it converges (to the least upper bound).

Suppose L is a least upper bound, we observe two things:

- (1) $a_n \leq L$ for all n, and
- (2) for any $\varepsilon > 0$ there is a term a_N greater than $L \varepsilon$.

Suppose there does not exist such a_N , it holds that $a_n \leq L - \varepsilon$ for all n, which is a contradiction. Thus for $n \geq N$

$$L - \varepsilon < a_n \leq L$$

 $|L - a_n| < \varepsilon$ and we see $a_n \to L$.

Figure 10.4: Nondecreasing (increasing) sequence and least upper bound L

For decreasing sequence, we can define similar concept.

Definition 10.1.26. If a_n satisfies

$$a_1 \ge a_2 \ge \dots \ge a_n \dots$$

 a_n is called a **decreasing sequence**. If $s_n \ge N$, then N is called a **lower bound**(lower bound) The largest such number is called the **greatest lower bound**.

10.2 Infinite Series

A sequence given as the sum of an infinite sequence of numbers is called **infinite series**.

Example 10.2.1. If we denote the sum of first *n*- term of $a_n = 1/2^n$ by s_n then

$$s_{1} = a_{1} = \frac{1}{2}$$

$$s_{2} = a_{1} + a_{2} = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}$$

$$s_{3} = a_{1} + a_{2} + a_{3} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = \frac{7}{8}$$

$$\vdots$$

The general term $\{s_n\}$ is

$$s_n = a_1 + a_2 + a_3 + \dots + a_n = \sum_{k=1}^n a_k.$$

We write the infinite series as $\sum_{n=1}^{\infty} a_n$ or $\sum a_n$.(whether it converges or not!)

Definition 10.2.2. a_n is called *n*-th term and $s_n = \sum_{k=1}^n a_k$ is called *n*-th **partial sum**. If the limit of $\{s_n\}$ is *L*, then we say $\sum a_n$ converges to *L* and write $\sum_{n=1}^{\infty} a_n = L$ or $a_1 + a_2 + a_3 + \cdots = L$. If s series does not converges, we say it diverges.

Example 10.2.3 (Repeating decimals). Write $0.1111\cdots$ as series.

sol. Writing $0.111 \dots = 0.1 + 0.01 + 0.001 + \dots$ we see

$$a_1 = 0.1,$$

 $a_2 = 0.01,$
 \vdots
 $a_n = (0.1)^n.$

Hence $0.111 = \sum_{k=1}^{\infty} 10^{-k}$.

F		
L		
ç		

Definition 10.2.4.

$$a + ar + ar^2 + \cdots$$

is called a **geometric series** and r is called a **ratio**.

$$s_n = a + ar + \dots + ar^{n-1}$$
$$rs_n = ar + ar^2 + \dots + ar^n.$$

$$s_n - rs_n = a - ar^n.$$

Thus $s_n = a(1 - r^n)/(1 - r)$.

Example 10.2.5 (Telescoping Series). Find the sum $\sum_{n=1}^{\infty} 1/n(n+1)$.

sol. We use the identity 1/n(n+1) = 1/n - 1/(n+1) to see

$$s_n = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right).$$

Since $s_n = 1 - 1/(n+1)$, we see $s_n \to 1$.

Divergent Series

Example 10.2.6. $\sum_{n=1}^{\infty} (n+1)/n$ diverges since *n*-th term is greater than 1. Example 10.2.7. $\sum_{n=1}^{\infty} \sin(\pi n/2)$ diverges.

sol.

$$1, 0, -1, 0, 1, \ldots$$

$$s_4 = s_8 = \dots = s_{4n} = 0$$

but

$$s_2 = s_6 = \dots = s_{4n+2} = 1.$$

So s_n oscillates between 0 and 1.

Theorem 10.2.8 (*n*-th term test). If $\sum a_n$ converges then $a_n \to 0$.

Proof. Suppose $\sum_{n=1}^{\infty} a_n$ converges then s_n and s_{n-1} must have the same limit. Since $a_n = s_n - s_{n-1}$ we see $\lim a_n = \lim s_n - \lim s_{n-1} = 0$.

Theorem 10.2.9 (*n*th term test). If $\lim a_n \neq 0$ or $\lim a_n$ does not exists, then $\sum a_n$ diverges.

Example 10.2.10. $\sum (n-1)/n$ diverges since $a_n = (n-1)/n \to 1$.

Example 10.2.11. $\sum (-1)^n \ln(\ln n)$ diverges since $\ln(\ln n) \to \infty$.

Theorem 10.2.12. Suppose $\sum a_n, \sum b_n$ converges. Then

(1) $\sum (a_n + b_n) = \sum a_n + \sum b_n$,

$$(2) \sum (a_n - b_n) = \sum a_n - \sum b_n,$$

(3)
$$\sum ka_n = k \sum a_n$$

Example 10.2.13.

(1)
$$\sum_{n=1}^{\infty} \frac{2^n - 1}{3^n} = \sum_{n=1}^{\infty} \frac{2^n}{3^n} - \sum_{n=1}^{\infty} \frac{1}{3^n} = \frac{2}{3} \frac{1}{1 - 2/3} - \frac{1}{3} \frac{1}{1 - 1/3} = \frac{3}{2}.$$

(2)
$$\sum_{n=1}^{\infty} \frac{3^n - 2^n}{6^n} = \sum_{n=1}^{\infty} \frac{3^n}{6^n} - \sum_{n=1}^{\infty} \frac{2^n}{6^n} = \sum_{n=1}^{\infty} \frac{1}{2^n} - \sum_{n=1}^{\infty} \frac{1}{3^n} = \frac{1}{2}.$$

What's wrong with the following argument?

$$1 = \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right) = \sum \frac{1}{n} - \sum \frac{1}{n+1} = \infty - \infty.$$

10.3 Integral Test

Example 10.3.1. Determine whether the following series converges or not.

$$\sum \frac{1}{n^2} = 1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2} + \dots$$

sol. Set $f(x) = 1/x^2$. Then

$$s_n = 1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2} = f(1) + f(2) + f(3) + \dots + f(n)$$

and

$$f(2) = \frac{1}{2^2} < \int_1^2 \frac{1}{x^2} dx$$

$$f(3) = \frac{1}{3^2} < \int_2^3 \frac{1}{x^2} dx$$

$$\vdots$$

$$f(n) = \frac{1}{n^2} < \int_{n-1}^n \frac{1}{x^2} dx.$$

$$s_n = f(1) + f(2) + f(3) + \dots + f(n) < 1 + \int_1^n \frac{1}{x^2} dx = 2 - \frac{1}{n}$$

Thus s_n is bounded, increasing, and hence converges.

Theorem 10.3.2 (Integral Test). Suppose f(x) is nonnegative, non-increasing for $x \ge 1$ and $a_n = f(n)$. Then the series $\sum_{n=1}^{\infty} a_n$ converges iff $\int_1^{\infty} f(x) dx$ converges.

Figure 10.5: Integral Test

Proof. Since f is decreasing and $f(n) = a_n$, we see from figure 10.5(a) $\int_n^{n+1} f(x) \, dx \le a_n$. So

$$\int_{1}^{n+1} f(x) \, dx \le a_1 + a_2 + \dots + a_n.$$

Also from figure 10.5 (b), we see $a_n \leq \int_{n-1}^n f(x) dx$, (n = 2, 3, 4, ...). Hence we have

$$a_2 + a_3 + \dots + a_n \le \int_1^n f(x) \, dx$$

and finally

$$\int_{1}^{n+1} f(x) \, dx \le a_1 + a_2 + \dots + a_n \le a_1 + \int_{1}^{n} f(x) \, dx.$$

Example 10.3.3 (*p*-series). Let p be a fixed number. Then

$$\sum_{1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \dots + \frac{1}{n^p} + \dots$$

converges when p > 1 and diverges when $p \le 1$. For p = 1 we see

$$\int_{1}^{\infty} \frac{1}{x} dx = \lim_{b \to \infty} \left[\ln b \right]_{1}^{b} = \infty.$$

So the harmonic series

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$$

diverges.

Example 10.3.4. Test the convergence of

$$\sum_{1}^{\infty} \frac{1}{1+n^2}$$

We see

$$\int_{1}^{\infty} \frac{1}{1+x^2} \, dx = \lim_{b \to \infty} [\tan^{-1} x]_{1}^{b} = \lim_{b \to \infty} [\tan^{-1} b - \tan^{-1} 1] = \frac{\pi}{4}.$$

10.3.1 Series with nonnegative terms

$$\sum \frac{1}{n^3}, \quad \sum \frac{1}{3^n+1}, \quad \sum \frac{(-1)^n}{\sqrt{n}}.$$

Example 10.3.5. Investigate $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n^2}$.

sol. Use the inequality $1/n^2 < 1/n(n-1)$ and partial fraction,

$$s_n = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$$

$$< \frac{1}{1 \cdot 1} + \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n-1)}$$

$$= 1 + \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right)$$

$$= 2 - \frac{1}{n} < 2.$$

Hence s_n is bounded above and monotonic increasing hence converges.

Example 10.3.6 (Harmonic series).

$$\sum \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$$

diverges since

$$1 + \frac{1}{2} + \underbrace{\frac{1}{3} + \frac{1}{4}}_{>2/4} + \underbrace{\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}}_{>4/8} + \underbrace{\frac{1}{9} + \frac{1}{10} + \dots + \frac{1}{16}}_{>8/16} + \dots$$

10.4 Comparison Test

Theorem 10.4.1 (The Comparison Test). Let $a_n \ge 0$.

- (a) The series $\sum a_n$ converges if $a_n \leq c_n$ for all n > N and $\sum c_n$ converges
- (b) The series $\sum a_n$ diverges $a_n \ge d_n$ for all n > N and $\sum d_n$ diverge.

Proof. In (a), the partial sum is bounded by

$$M = a_1 + a_2 + \dots + a_n + \sum_{n=N+1}^{\infty} c_n.$$

Hence if $\sum c_n$ converges, then $\sum a_n$ converges by Theorem 10.1.25. In (b), the partial sum is greater than

$$M^* = a_1 + a_2 + \dots + a_n + \sum_{n=N+1}^{\infty} d_n.$$

But the series $\sum_{n=N+1}^{\infty} d_n$ diverges. Hence so does $\sum a_n$.

Example 10.4.2. Look at the tail part of

$$3 + 600 + 5000 + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \dots + \frac{1}{n!} + \dots$$

Then $1/n! < 1/2^n$ for n = 4, 5, 6, ... and $\sum 1/2^n$ converges. Hence the series converges.

Limit Comparison Test

Example 10.4.3. Investigate the convergence of

$$\sum_{1}^{\infty} \frac{n}{2n^3 - n + 3}.$$

sol. Let

$$a_n = \frac{n}{2n^3 - n + 3} = \frac{1}{2n^2 - 1 + 3/n}$$

and use the fact that a_n behaves similar to $1/2n^2$. If $c_n = 1/2n^2$ then $\lim_{n\to\infty} a_n/c_n = 1$. Hence for any ε there is N such that if n > N for some N then the following holds:

$$1 - \varepsilon \le \frac{a_n}{c_n} \le 1 + \varepsilon$$

In other words,

$$(1-\varepsilon)c_n \le a_n \le (1+\varepsilon)c_n$$

Since $\sum_{n\geq N} c_n$ converges $\sum_{n\geq N} a_n$ converges by comparison.

Theorem 10.4.4 (Limit Comparison Test). (1) Suppose $a_n > 0$ and there is a series $\sum c_n (c_n > 0)$ which converges and if

$$\lim_{n \to \infty} \frac{a_n}{c_n} = c > 0$$

then $\sum a_n$ converges.

(2) Suppose $a_n > 0$ and there is a series $\sum d_n (d_n > 0)$ which diverges and

 $i\!f$

$$\lim_{n \to \infty} \frac{a_n}{d_n} = c > 0$$

then $\sum a_n$ diverges.

Proof. We prove part 1. Since c/2 > 0 there is an N such that for all n > N we have

$$\left|\frac{a_n}{b_n} - c\right| < \frac{c}{2}.$$

Hence

$$-\frac{c}{2} < \frac{a_n}{b_n} - c < \frac{c}{2} \text{ or } \frac{c}{2} < \frac{a_n}{b_n} < \frac{3c}{2}.$$

Hence

$$(\frac{c}{2})b_n < a_n < \frac{3c}{2}b_n.$$

Example 10.4.5. (1) $\sum_{1}^{\infty} \frac{n+1}{100n^3+n+1}$ converges since $\sum_{1}^{\infty} \frac{1}{n^2}$ converges

- (2) $\sum_{20}^{\infty} \frac{1}{3^n 1000n}$ converges since $\sum_{1}^{\infty} \frac{1}{3^n}$ converge
- (3) $\sum_{1}^{\infty} \frac{2n+1}{n^2+4n+1}$
- (4) Does $\sum_{2}^{\infty} \frac{\ln n}{n^{3/2}}$ converge ?

(5) Compare
$$\sum_{1}^{\infty} \frac{(\ln n)^{1/2}}{(n \ln n + 1)}$$
 with $\sum_{2}^{\infty} \frac{1}{n(\ln n)^{1/2}}$. Use integral test.

$$\int_{2}^{\infty} \frac{dx}{x(\ln x)^{1/2}} = \int_{\ln 2}^{\infty} \frac{du}{u^{1/2}} = \infty.$$

10.5 Ratio test and Root Tests

Example 10.5.1. It is not easy to find general term of $a_1 = 1$, $a_{n+1} = \frac{na_n}{3n+2}$. But its ratio is clearly seen.

Ratio Test

Theorem 10.5.2 (Ratio Test). Suppose $a_n > 0$ and if the limit exists.

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \rho.$$

Then exactly one of the following holds.

(1) The sum $\sum a_n$ converges if $\rho < 1$

- (2) The sum $\sum a_n$ diverges if $\rho > 1$
- (3) The test is inconclusive if $\rho = 1$.

Proof. (1) Let $\rho < 1$. Then choose any r between ρ and 1 and set $\varepsilon = r - \rho$. Then since

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \rho,$$

there exists a natural number N such that for all n > N,

$$\left|\frac{a_{n+1}}{a_n} - \rho\right| < \varepsilon$$

holds. Since $a_{n+1}/a_n < \rho + \varepsilon = r$, we see

$$a_{N+1} < ra_N$$

$$a_{N+2} < ra_{N+1} < r^2 a_N$$

$$\vdots$$

$$a_{N+m} < ra_{N+m-1} < r^m a_N.$$

We compare a_n with a series general term is $r^m a_N$. Since $\sum_{m=1}^{\infty} r^m a_N$ converges, $\sum_{n=N+1}^{\infty} a_n$ converges. (2) Suppose $\rho > 1$. Then exist an M such that for n > M, it holds that

$$\frac{a_{n+1}}{a_n} > 1.$$

Hence the series diverges:

$$a_M < a_{M+1} < a_{M+2} < \cdots$$

(3) The case $\rho = 1$. Both the series $\sum 1/n^2$ and $\sum 1/n$. But the former converges and the latter diverges.

Example 10.5.3.

(1)
$$\sum \frac{n!n!}{(2n)!}$$

(2)
$$\sum \frac{(2^n+5)}{3^n}$$

(3)
$$\sum \frac{2^n}{n!}$$

sol. (1) Ratio Test

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)!(n+1)!(2n)!}{n!n!(2n+2)(2n+1)(2n)!}$$
$$= \frac{(n+1)(n+1)}{(2n+2)(2n+1)} = \frac{n+1}{4n+2} \to \frac{1}{4}.$$
$$(2) \ \frac{a_{n+1}}{a_n} = \frac{(2^{n+1}+5)3^n}{3^{n+1}(2^n+5)} = \frac{2^{n+1}+5}{3(2^n+5)} \to \frac{2}{3} \ (3) \ \frac{a_{n+1}}{a_n} = \frac{2^{n+1}n!}{(n+1)!2^n} = \frac{2}{n+1} \to 0$$

Example 10.5.4. Find the range of x which makes the following converge.

$$1 + \frac{x^2}{2} + \frac{x^4}{4} + \frac{x^6}{6} + \cdots$$

sol. For n > 1, $a_n = x^{2n-2}/(2n-2)$

$$\frac{a_{n+1}}{a_n} = \frac{x^{2n}(2n-2)}{2nx^{2n-2}} = \frac{(2n-2)x^2}{2n} \to x^2.$$

So converges if |x| < 1 and diverges if |x| > 1. When |x| = 1 the series diverges since it behaves like

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{6} \dots = 1 + \frac{1}{2} \left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots \right).$$

Estimate error

For $\rho < 1$ If the series is approximated by its N- partial sum, then the error is

$$a_{N+1} + a_{N+2} + \cdots$$

So if N is large, for some r with $\rho < r < 1$ we have

$$\frac{a_{n+1}}{a_n} < r, \quad n \ge N.$$

Here the estimate of errors is

$$a_{N+1} + a_{N+2} + \dots \le ra_N + r^2 a_N + \dots = a_N \cdot \frac{r}{1-r}.$$

Example 10.5.5. Investigate

$$\frac{1}{3} + \frac{2}{9} + \frac{1}{27} + \frac{4}{81} + \dots + \frac{f(n)}{3^n} + \dots$$
$$f(n) = \begin{cases} n, & n \text{ even} \\ 1, & n \text{ odd.} \end{cases}$$

sol. Since $a_n = \frac{f(n)}{3^n}$ we have

$$\frac{a_{n+1}}{a_n} = \frac{f(n+1)}{3f(n)} = \begin{cases} \frac{1}{3n}, & n \text{ even} \\ \frac{n+1}{3}, & n \text{ odd.} \end{cases}$$

So we cannot use ratio test. However if we take n-th root,

$$\sqrt[n]{a_n} = \frac{\sqrt[n]{f(n)}}{3} = \begin{cases} \frac{\sqrt[n]{n}}{3}, & n \text{ even} \\ \frac{1}{3}, & n \text{ odd.} \end{cases}$$

and $\sqrt[n]{n}$ converges to 1

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \frac{1}{3}$$

we can compare this series with $(\frac{1}{3})^n$.

n-th Root Test

Theorem 10.5.6 (*n*-th Root Test). Suppose $\sqrt[n]{a_n} \to \rho$. Then

- (1) $\sum a_n$ converges if $\rho < 1$.
- (2) $\sum a_n$ diverges if $\rho > 1$.
- (3) We cannot tell anything if $\rho = 1$.

Proof. (1) Suppose $\rho < 1$. Choose r between ρ and 1 and set $\varepsilon = \rho - r > 0$. Since $\sqrt[n]{a_n}$ converges to ρ there is some N s.t. when n is greater than N, it holds that

$$\left|\sqrt[n]{a_n} - \rho\right| < \varepsilon.$$

In other words, $\sqrt[n]{a_n} < \rho + \varepsilon = r < 1$. Hence

$$a_n < (\rho + \varepsilon)^n$$

holds. So $\sum (\rho + \varepsilon)^n$ converges and by comparison test $\sum_{n=N}^{\infty} a_n$ converges.

(2) Suppose $\rho > 1$ then $\sqrt[n]{a_n} > 1$ for suff. large $n \ a_n > 1$. So diverges.

(3) The case $\rho = 1$: No conclusion can be drawn since both the series $\sum 1/n^2$ and $\sum 1/n$ have $\rho = 1$ while one converges and the other not.

Example 10.5.7. $\sum_{n=1}^{\infty} \frac{n}{2^n}$ converges since $\sqrt[n]{\frac{n}{2^n}} = \sqrt[n]{\frac{n}{2}} \to \frac{1}{2}$. Example 10.5.8. $\sum_{n=1}^{\infty} \frac{3^n}{n^n}$ converges since $\sqrt[n]{\frac{3^n}{n^n}} = \frac{3}{n} \to 0$.

10.6 Alternating Series, absolute and conditional convergence

Alternating Series

Definition 10.6.1. Suppose $a_n > 0$ for all n. A series of the form

$$a_1 - a_2 + a_3 - a_4 + \cdots$$

is called an **alternating series**.

The following are examples of alternating series.

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \cdots$$
$$1 - 2 + 3 - 4 + 5 - 6 + \cdots$$

But

$$1 - \frac{1}{2} - \frac{1}{3} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} - \frac{1}{7} + \cdots$$

is not an alternating series.

Theorem 10.6.2 (Alternating Series Test, Leibniz theorem). Suppose the following three conditions hold.

(1)
$$a_n > 0$$
.

- (2) $a_n \ge a_{n+1}$.
- (3) $a_n \to 0$.

Then $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges.

Figure 10.6: Partial sum of alternating series

Proof. The idea is to show that the sum of even number of terms form a bounded, increasing sequence so that it converges by Theorem 10.1.25. Suppose n is even (n = 2m) then the partial sum

$$s_{2m} = (a_1 - a_2) + (a_3 - a_4) + \dots + (a_{2m-1} - a_{2m})$$

is **increasing**. Hence $s_{2m+2} \ge s_{2m}$. But we also see

$$s_{2m} = a_1 - (a_2 - a_3) - (a_4 - a_5) - \dots - (a_{2m-2} - a_{2m-1}) - a_{2m}.$$

Hence s_{2m} is less than a_1 . In other words, s_{2m} is **bounded above**, hence converges. Let $L = \lim s_{2m}$ be its limit. Now suppose n is odd (n = 2m + 1). Then

$$s_{2m+1} = s_{2m} + a_{2m+1}.$$

Then since $a_{2m+1} \to 0$, $\lim s_{2m+1} = \lim (s_{2m} + a_{2m+1}) = L$.

Example 10.6.3. The series

$$\sum (-1)^{n+1} \frac{1}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

converges.

Example 10.6.4.

$$\sum (-1)^{n+1} \frac{1}{\sqrt{n}} = 1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \cdots$$

converges.

Example 10.6.5.

$$\sum (-1)^{n+1} \frac{\sqrt{n}}{\sqrt{n+1}} = \frac{1}{\sqrt{2}} - \frac{\sqrt{2}}{\sqrt{3}} + \frac{\sqrt{3}}{\sqrt{4}} - \frac{\sqrt{4}}{\sqrt{5}} + \cdots$$

diverges by n-th term test.

Example 10.6.6.

$$\frac{2}{1} - \frac{1}{1} + \frac{2}{3} - \frac{1}{3} + \frac{2}{5} - \frac{1}{5} + \dots + \frac{2}{2n-1} - \frac{1}{2n-1} + \dots$$

is alternating. But it is not monotonically decreasing. But

$$\left(\frac{2}{1} - \frac{1}{1}\right) + \left(\frac{2}{3} - \frac{1}{3}\right) + \left(\frac{2}{5} - \frac{1}{5}\right) + \cdots + \left(\frac{2}{2n-1} - \frac{1}{2n-1}\right) + \cdots = 1 + \frac{1}{3} + \frac{1}{5} + \cdots + \frac{1}{2n-1} + \cdots$$

So diverges.

Example 10.6.7. Investigate
$$\sum_{n=2}^{\infty} (-1)^n \frac{\ln n}{n+1}$$
.

sol. We let

$$f(x) = \frac{\ln x}{x+1}.$$

Then $f(n) = \ln n/(n+1)$ and $f'(x) = ((x+1)/x - \ln x)/(x+1)^2$. For sufficiently large x, $(x+1)/x - \ln x < 0$. Hence f(x) is decreasing function. For example, for $x \ge 8$, f(x) is decreasing. So $a_n = f(n)$ is decreasing for $n \ge 8$. By Leibniz theorem the series converges.

Partial Sum of Alternating Series

We look at the partial sums of an alternating series:

$$\begin{split} s_1 &= a_1, \\ s_2 &= a_1 - a_2, \text{ So } s_2 < s_1. \\ s_3 &= a_1 - a_2 + a_3 = a_1 - (a_2 - a_3), \text{ So } s_2 < s_3 < s_1. \\ s_4 &= a_1 - a_2 + a_3 - a_4 = a_1 - a_2 + (a_3 - a_4), \text{ So } s_2 < s_4 < s_3 < s_1. \end{split}$$

Thus s_{2m+1} is decreasing and s_{2m} is increasing. Let L be its sum. Then

$$\underbrace{s_{2m} < s_{2m+2} < \dots < L}_{|s_{2m}-L|} < \dots < s_{2m+1} < s_{2m-1}$$

But since

$$|s_{2m} - L| < |s_{2m} - s_{2m+1}| = a_{2m+1},$$

$$|s_{2m+1} - L| < |s_{2m+2} - s_{2m+1}| = a_{2m+2}$$

we see

$$|s_n - L| < a_{n+1}.$$

In other words, the partial sum is a good approximation to the true sum with error bound a_{n+1} . Since a_n is decreasing s_{n+1} is better approximation than s_n .

Theorem 10.6.8 (Alternating Series Estimation Theorem). Suppose $\sum (-1)^{n+1}a_n$ is an alternating series satisfying the conditions of Leibniz theorem. Then the partial sum

$$s_n = a_1 - a_2 + a_3 + \dots + (-1)^{n+1}a_n$$

is a good approximation with an error bound less than a_{n+1} .

Example 10.6.9. estimate

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n} = 1 - \frac{1}{2} + \frac{1}{4} + \dots = \frac{2}{3}$$

with first five term.

sol. The error bound is $a_6 = 1/64$. The true value up to five terms is

$$s_5 = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \frac{1}{32} = \frac{21}{32}$$

So the true error is |2/3 - 21/32| = 1/96 which is less than $a_6 = 1/64$.

Example 10.6.10. Use s_{10} or s_{100} to estimate

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \dots = \ln 2 = 0.69314\dots$$

sol. True error of

$$s_{10} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots - \frac{1}{10} = 0.64563\dots$$

is $0.0475 \dots < a_{11} = 1/11$. The true error of

$$s_{100} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots - \frac{1}{100} = 0.68881\dots$$

is $0.00433 \dots < a_{111} = 1/111$.

Absolute convergence and Conditional Convergence

Definition 10.6.11. If $\sum |a_n|$ converges then $\sum a_n$ is said to converge absolutely.

Theorem 10.6.12. If $\sum |a_n|$ converges then so does $\sum a_n$.

Proof.

$$-|a_n| \le a_n \le |a_n|$$

holds for all n. Hence

$$0 \le a_n + |a_n| \le 2|a_n|.$$

Since $\sum |a_n|$ converges and $a_n + |a_n| \ge 0$

$$\sum (a_n + |a_n|)$$

converges by comparison. Subtracting converging series, we have

$$\sum a_n = \sum (a_n + |a_n|) - \sum |a_n|$$

and so $\sum a_n$ converges.

Corollary 10.6.13. If $\sum a_n$ diverges, so does $\sum |a_n|$.

- **Example 10.6.14.** (1) $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^2} = 1 \frac{1}{4} + \frac{1}{9} + \dots +$. Its *n*-th term $a_n = \frac{(-1)^{n+1}}{n^2}$ satisfies $|a_n| = \frac{1}{n^2}$. Since $\sum \frac{1}{n^2}$ converges we see the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^2}$ converges absolutely. The series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^2}$, of course converges.
 - (2) The *n*-th term of $\sum \frac{\cos n}{n^2}$ satisfies $|a_n| = \frac{|\cos n|}{n^2} \leq \frac{1}{n^2}$. Since $\sum \frac{1}{n^2}$ converges, $\sum \frac{\cos n}{n^2}$ converges.
 - (3)

$$\sum (-1)^{n+1} \frac{1}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$

But $\sum |a_n| = \sum \frac{1}{n}$ diverges by integral test. Thus the series does not converge absolutely. Still, this series converges (by Leibniz theorem).

(4) $\sum \frac{(-1)^n}{n^p}$ converges absolutely for p > 1 but does not converges absolutely for $p \le 1$. However, the series converges for all p > 0.

Definition 10.6.15. A series which converges but does not converge not absolutely **converges conditionally**.

Rearrangement of Series for Absolutely Convergent Series

Theorem 10.6.16 (Rearrangement of Series). Suppose $\sum a_n$ converges absolutely and b_n is a rearrangement of a_n . Then $\sum b_n$ converges absolutely and and

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} b_n.$$

Here we have $b_k = a_{n(k)}$ for some 1-1 function n(k).

Example 10.6.17. We know the following converges absolutely:

$$1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} - \frac{1}{32} + \dots = \frac{2}{3}.$$

Hence rearranging it in any order we get

$$1 + \frac{1}{4} - \frac{1}{2} + \frac{1}{16} + \frac{1}{64} - \frac{1}{8} + \cdots$$

We can guarantee this series converges to $\frac{2}{3}$. We know the series

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \cdots$$

converges but not absolutely. Hence its rearrangement may not converge. In fact, even if it converges it may converge to a different value.

Consider one rearrangement:

$$\left(1-\frac{1}{2}\right)+\left(\frac{1}{3}+\frac{1}{5}-\frac{1}{4}\right)+\left(\frac{1}{7}+\frac{1}{9}-\frac{1}{6}\right)+\left(\frac{1}{11}+\frac{1}{13}-\frac{1}{8}\right)+\cdots$$

Then sum may be bigger than $\ln 2 = 0.69314\cdots$.

Product of two series

Suppose $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$ converge absolutely. Then

$$\left(\sum_{n=0}^{\infty} a_n\right) \times \left(\sum_{n=0}^{\infty} b_n\right) = (a_0 + a_1 + \dots + a_n + \dots) \times (b_0 + b_1 + \dots + b_n + \dots).$$

Finite partial sum is

$$(a_0 + a_1 + \dots + a_n) \times (b_0 + b_1 + \dots + b_n).$$

We can write it as

$$a_0b_0 + (a_0b_1 + a_1b_0) + (a_0b_2 + a_1b_1 + a_2b_0) + \cdots + (a_0b_n + a_1b_{n-1} + \cdots + a_{n-1}b_1 + a_nb_0).$$

In the limit,

$$\left(\sum_{n=0}^{\infty} a_n\right) \times \left(\sum_{n=0}^{\infty} b_n\right)$$

= $a_0b_0 + (a_0b_1 + a_1b_0) + (a_0b_2 + a_1b_1 + a_2b_0) + \cdots$
+ $\cdots (a_0b_n + a_1b_{n-1} + \cdots + a_{n-1}b_1 + a_nb_0) + \cdots$

Since it converges absolutely, it value does not change.

Theorem 10.6.18. Suppose both $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ converge absolutely. If we set $c_n = \sum_{n=0}^{k} a_k b_{n-k}$ then $\sum c_n$ converge absolutely and

$$\sum_{n=0}^{\infty} c_n = \left(\sum_{n=0}^{\infty} a_n\right) \times \left(\sum_{n=0}^{\infty} b_n\right).$$

10.7 Power Series

Definition 10.7.1. A power series about x = 0 is a series of the form

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$$

A power series about x = a is a series of the form

$$\sum_{n=0}^{\infty} a_n (x-a)^n.$$

Here a_n are the **coefficients** and x_0 is the **center**.

Example 10.7.2. (1) (Geometric series) $\sum_{n=1}^{\infty} \frac{(x-1)^n}{2^n} = \frac{1}{2^1} + \frac{(x-1)^2}{2^2} + \frac{(x-1)^3}{2^3} + \dots$

- (2) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = x \frac{x^2}{2} + \frac{x^3}{3} \cdots$
- (3) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{2n-1} = x \frac{x^3}{3} + \frac{x^5}{5} \cdots$
- (4) $\sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$
- (5) $\sum_{n=0}^{\infty} n! x^n = 1 + x + 2! x^2 + 3! x^3 + \cdots$

Theorem 10.7.3 (Convergence of Power Series). Given a power series $\sum_{n=0}^{\infty} a_n (x - x_0)^n$

- (1) Suppose it converges at a point $x_1 (\neq x_0)$. Then it converges absolutely for all points x satisfying $|x x_0| < |x_1 x_0|$.
- (2) Suppose it diverges at x_2 it. Then it diverges for all x with $|x x_0| > |x_2 x_0|$.

Proof. Suppose $\sum_{n=0}^{\infty} a_n (x_1 - x_0)^n$ converges. Then $\lim_{n \to \infty} a_n (x_1 - x_0)^n = 0$. Hence for suff. large n, it holds that $|a_n (x_1 - x_0)^n| \le 1$ and

$$|a_n(x-x_0)^n| \le |a_n(x_1-x_0)^n| \left| \frac{x-x_0}{x_1-x_0} \right|^n \le \left| \frac{x-x_0}{x_1-x_0} \right|^n.$$

Hence for all x with $|x - x_0| < |x_1 - x_0|$, the series $\sum_{n=0}^{\infty} a_n (x_1 - x_0)^n$ converges absolutely. Now suppose the series $\sum_{n=0}^{\infty} a_n (x_2 - x_0)^n$ diverges and $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ converge for some x satisfying $|x - x_0| > |x_2 - x_0|$. Then by (1) the series $\sum_{n=0}^{\infty} a_n (x_2 - x_0)^n$ must converge, which is a contradiction. Hence the series $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ must diverges for any x with $|x - x_0| > |x_2 - x_0|$.

From Theorem 10.7.3, there are three possibilities for the series $\sum_{n=0}^{\infty} a_n (x - x_0)^n$:

- (1) It converges for x_0 only;
- (2) It converges absolutely for all x;
- (3) There exists an R such that for all x with $|x x_0| < R$ it converges absolutely and diverges for all x with $|x x_0| > R$.

We see that in case (1) R = 0, and in case (2) $R = \infty$. In general, the number $R (0 \le R \le \infty)$ is called **the radius of convergence** of $\sum_{n=0}^{\infty} a_n (x - x_0)^n$.

Theorem 10.7.4. For $\sum_{n=0}^{\infty} a_n (x - x_0)^n$, the radius of convergence is given as follows:

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| \tag{10.1}$$

$$R = \lim_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}} \tag{10.2}$$

provided that either of the limit exists.

Proof. Suppose the limit in (10.1) exists. Then

$$\lim_{n \to \infty} \left| \frac{a_{n+1}(x-x_0)^{n+1}}{a_n(x-x_0)^n} \right| = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| |x-x_0| = \frac{|x-x_0|}{R}.$$

Now by ratio test (Theorem 10.5.2), the power series converges absolutely for $|x - x_0|/R < 1$ and diverges if $|x - x_0|/R > 1$. Hence R given by (10.1) is

the radius of convergence. One can show (10.2) holds if we use *n*-th root test (Theorem 10.5.6).

The set of all point for which the series converges form an interval I (called the **interval of convergence**) and I satisfies

$$(x_0 - R, x_0 + R) \subset I \subset [x_0 - R, x_0 + R].$$

Example 10.7.5. Find the interval of convergence.

(1)
$$\sum_{n=0}^{\infty} n^n x^n$$

(2)
$$\sum_{n=1}^{\infty} \frac{x^n}{n^2}$$

(3)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n}$$

(4)
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

sol. (2)

 ∞

$$R = \lim_{n \to \infty} \frac{(n+1)^2}{n^2} = 1.$$

When $x = \pm 1$, $\sum_{n=1}^{\infty} ((\pm 1)^n / n^2)$ converges absolutely. Hence I = [-1, 1]. (3)

$$R = \lim_{n \to \infty} \frac{n+1}{n} = 1.$$

For x = 1, $\sum_{n=1}^{\infty} ((-1)^{n-1}/n)$ is alternating, so conditionally converges. While $x = -1 \sum_{n=1}^{\infty} (-1/n)$ diverges. I = (-1, 1]. (4) (n+1)!

$$R = \lim_{n \to \infty} \frac{(n+1)!}{n!} = \infty.$$

Theorem 10.7.6 (Term by term differentiation). Suppose $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ converges for all $|x - x_0| < R$ for some R > 0, i.e.,

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n, \quad |x - x_0| < R.$$
 (10.3)

Then

(i) f(x) is differentiable on $(x_0 - R, x_0 + R)$ and its derivative is

$$f'(x) = \sum_{n=1}^{\infty} na_n (x - x_0)^{n-1}, \quad |x - x_0| < R.$$
 (10.4)

(ii) f(x) is integrable on $(x_0 - R, x_0 + R)$ and

$$\int f(x) \, dx = \sum_{n=0}^{\infty} a_n \frac{(x - x_0)^{n+1}}{n+1} + C, \quad |x - x_0| < R. \tag{10.5}$$

The radius convergence of (10.4) and (10.5) are also R.

Proof. Suppose

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|.$$

The radius of convergence of (10.4) is given by Theorem 10.7.4

$$\lim_{n \to \infty} \left| \frac{(n+1)a_{n+1}}{(n+2)a_{n+2}} \right| = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_{n+2}} \right| = R.$$

Similarly, the radius of convergence of (10.5) is obtained.

Corollary 10.7.7. The series in Theorem 10.7.6 is differentiable infinitely many times on $(x_0 - R, x_0 + R)$ and its k-th derivative is given by

$$f^{(k)}(x) = \sum_{n=k}^{\infty} n(n-1)\cdots(n-k+1)a_n(x-x_0)^{n-k},$$

$$|x-x_0| < R,$$
(10.6)

 $k=0,1,\ldots$

Product of two Power series

Theorem 10.7.8. Suppose both $A(x) = \sum_{n=0}^{\infty} a_n x^n$, $B(x) = \sum_{n=0}^{\infty} b_n x^n$ converge absolutely for |x| < R and

$$c_n = a_0 b_n + a_1 b_{n-1} + \dots + a_n b_0 = \sum_{n=0}^k a_k b_{n-k}.$$

Then $\sum_{n=0}^{\infty} c_n x^n$ converge absolutely for |x| < R also, and

$$\left(\sum_{n=0}^{\infty} a_n x^n\right) \times \left(\sum_{n=0}^{\infty} b_n x^n\right) = \sum_{n=0}^{\infty} c_n x^n.$$

Example 10.7.9. Use

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots = \frac{1}{1-x}, \text{ for } |x| < 1$$

to get the power series for $1/(1-x)^2$.

sol. We let $A(x) = B(x) = \sum_{n=0}^{\infty} x^n$. Then we see

$$c_n = a_0 b_n + a_1 b_{n-1} + \dots + a_n b_0 = \sum_{n=0}^k a_k b_{n-k} = n+1.$$

Hence

$$A(x)B(x) = \sum_{n=0}^{\infty} c_n x^n = \sum_{n=0}^{\infty} (n+1)x^n.$$

This series could be obtained by differentiation.

10.8 Taylor and Maclaurin Series

In the previous discussions we have seen that a power series defines a continuous function on I. How about its converse? Suppose f is differentiable *n*-times. Is it possible to express it in power series ? A power series $\sum_{n=0}^{\infty} a_n (x-a)^n$ represents a function on its interval of convergence I

$$f(x) = \sum_{n=0}^{\infty} a_n (x-a)^n, \quad x \in I.$$

We shall later show

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

= $f(a) + f'(a)(x-a) + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n + \dots$

This is called **Taylor series** of f(x) at a (If a = 0, it is also called **Maclaurin** series).

Example 10.8.1. Find Taylor series of f(x) = 1/x at a = 2.

$$f(x) = \frac{1}{x}, \quad f'(x) = -x^{-2}, \quad f''(x) = 2!x^{-3}, \cdots, \quad f^{(n)}(x) = (-1)^n n! x^{-(n+1)},$$
$$f(2) = \frac{1}{2}, \quad f'(2) = -\frac{1}{2^2}, \quad \frac{f''(x)}{2!} = \frac{1}{2^{-3}}, \cdots, \quad \frac{f^{(n)}(2)}{n!} = \frac{(-1)^n}{2^{n+1}}.$$

Taylor Polynomial

Consider

sol.

$$y = P_1(x) := f(a) + f'(x_0)(x - a).$$

This is linear approximation to f(x). Similarly we can consider

$$y = P_2(x) := f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2.$$

which has same derivative up to second order. By the same way one can find a polynomial $P_n(x)$ of degree n. It is called a Taylor polynomial of degree n Then we see

$$P_n^{(k)}(a) = f^{(k)}(a), \quad k = 0, 1, \cdots, n.$$

$$P_n(x) = f(a) + f'(x_0)(x-a) + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n.$$
(10.7)

The difference(error) is defined as

$$R_n(x) = f(x) - P_n(x)$$

and called the **remainder**

$$f(x) = P_n(x) + R_n(x)$$

is called *n*-th **Taylor formula** of f(x) at *a*.

Example 10.8.2. Find Taylor polynomial for $\cos x$.

Example 10.8.3.

$$f(x) = \begin{cases} \exp(-1/x^2), & x \neq 0\\ 0, & x = 0. \end{cases}$$

is infinitely differentiable at 0, but the Taylor series converges only at x = 0. In fact we can show that $f^{(n)}(0) = 0$, $n = 0, 1, \ldots$ So the Taylor polynomial $P_n(x) = 0$ and $R_n(x) = f(x)$. Hence $P_n(x) \neq f(x)$.

10.9 Convergence of Taylor Series, Error estimates

Theorem 10.9.1 (Taylor's Theorem with Remainder). Suppose f(x) is differentiable n + 1 times on an open interval I containing a and $P_n(x)$ is the Taylor polynomial given by (10.7). Then

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}.$$
(10.8)

Definition 10.9.2. Suppose f(x) is infinitely differentiable on I and

$$\lim_{n \to \infty} R_n(x) = 0, \quad x \in I$$

then we say the Taylor series at a **converges** to f(x) and we we write

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n, \quad x \in I.$$

Here $R_n(x) = f(x) - P_n(x)$ is the remainder.

Corollary 10.9.3. Suppose there is some M such that f(x) satisfies $|f^{(n+1)}(x)| \le M$ for all $x \in I$. Then

$$|R_n(x)| \le M \frac{|x - x_0|^{n+1}}{(n+1)!}, \quad x \in I.$$
(10.9)

Example 10.9.4. At a = 0, we have

$$e^x = 1 + x + \dots + \frac{x^n}{n!} + R_n(x).$$

Here

$$|R_n(x)| \le e^c \frac{x^{n+1}}{(n+1)!}.$$

Example 10.9.5. (1) Maclaurin series of $\sin x$, $\cos x$, e^x :

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}, \quad -\infty < x < \infty$$
$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}, \quad -\infty < x < \infty$$
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, \quad -\infty < x < \infty$$

(2) Maclaurin series of $\ln(1+x)$ on $(0,\infty)$

$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n}, \quad -1 < x \le 1$$

(3) Maclaurin series of 1/(1-x)

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, \quad -1 < x < 1$$

(4) Taylor series of \sqrt{x} is at 1.

Example 10.9.6 (Substitution). Find series for $\cos x^2$ near x = 0.

Example 10.9.7 (Multiplication). Find series for $x \sin x^2$ near x = 0.

Example 10.9.8 (Truncation Error). For what values of x can we replace $\sin x$ by $\sin x \approx x - \frac{x^3}{3!}$ with error less than 3×10^{-4} ?

$$\sin x \approx x - \frac{x^3}{3!}.$$

Since the error term is $R_3(x) = \frac{|x|^5}{5!}$, we let

$$\frac{|x|^5}{5!} \le 3 \times 10^{-4}.$$

Proof of Taylor's Formula with Remainder

With

$$P_n(x) = f(a) + f'(a)(x-a) + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

we set

$$\phi_n(x) = P_n(x) + K(x-a)^{n+1}.$$

This function has same first *n*-derivative as f at a. We can choose K so that $\phi_n(x)$ agrees with f(x). The idea is to fix x = b and choose K so that $\phi_n(b)$ agrees with f(b). So

$$f(b) = P_n(b) + K(b-a)^{n+1}$$
, or $K = \frac{f(b) - P_n(b)}{(b-a)^{n+1}}$ (10.10)

and

$$F(x) = f(x) - \phi_n(x)$$

is the error. We use Rolle's theorem. First, since F(b) = F(a) = 0, we have

$$F'(c_1) = 0$$
, for some $c_1 \in (a, b)$.

Next, because $F'(a) = F'(c_1) = 0$, we have

$$F''(c_2) = 0$$
, for some $c_2 \in (a, c_1)$.

Now repeated application of Rolle's theorem to F'', etc show there exist

$$c_{3} \quad \text{in } (a, c_{2}) \quad \text{such that } F'''(c_{3}) = 0,$$

$$c_{4} \quad \text{in } (a, c_{3}) \quad \text{such that } F^{(4)}(c_{4}) = 0,$$

$$\vdots$$

$$c_{n} \quad \text{in } (a, c_{n-1}) \quad \text{such that } F^{(n)}(c_{n}) = 0,$$

$$c_{n+1} \quad \text{in } (a, c_{n}) \quad \text{such that } F^{(n+1)}(c_{n+1}) = 0.$$

But since $F(x) = f(x) - \phi_n(x) = f(x) - P_n(x) - K(x-a)^{n+1}$, we see

$$F^{(n+1)}(c) = f^{(n+1)}(c) - 0 - (n+1)!K.$$

Hence

$$K = \frac{f^{(n+1)}(c)}{(n+1)!}, \quad c = c_{n+1}$$

 So

$$f(b) = P_n(b) + \frac{f^{(n+1)}(c)}{(n+1)!}(b-a)^{n+1}.$$
 (10.11)

Now since b is arbitrary, we can set b = x. Furthermore, if $R_n \to as$ $n \to \infty$, we obtain Taylor's theorem.

10.10 Application

Binomial Series

First assume m is a positive integer and consider the binomial expansion

$$(1+x)^m = 1 + mx + \frac{m(m+1)}{2!}x^2 + \dots + \binom{m}{k}x^k + \dots + x^m.$$

Here

$$\binom{m}{k} = \frac{m(m-1)\cdots(m-k+1)}{k!}, \quad n = 0, 1, 2, \dots$$

We now consider the Taylor series of $(1 + x)^m$. Since

$$f(x) = (1+x)^{m}$$

$$f'(x) = m(1+x)^{m-1}$$

$$f''(x) = m(m-1)(1+x)^{m-2}$$

$$\dots$$

$$f^{(k)}(x) = m(m-1)(m-2)\cdots(m-k+1)(1+x)^{m-k}$$
(10.12)

we obtain the Taylor series

$$(1+x)^m = 1 + mx + \frac{m(m+1)}{2!}x^2 + \dots + \binom{m}{k}x^k + \dots$$
 (10.13)

We can show the radius of convergence is R = 1. When *m* is an integer, the derivatives $f^{(k)}(x) = 0$ for $k \ge m$, and we obtain the usual binomial expansion as a special case.

Example 10.10.1.

$$\frac{1}{(1+x)} = 1 - x + x^2 - x^3 + \dots + (-1)^k x^k + \dots$$

$$(1+x)^{1/2} = 1 + \frac{x}{2} + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}x^2 + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{3!}x^3 + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{4!}x^4 + \cdots$$
$$= 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} - \frac{5x^4}{128} + \cdots$$
(10.14)

Substitution gives

$$\sqrt{1-x^2} = 1 - \frac{x^2}{2} - \frac{x^4}{8} + \dots, \ |x^2| < 1$$

or

$$\sqrt{1-x^3} = 1 - \frac{x^3}{2} - \frac{x^6}{8} + \dots |x^3| < 1$$

or even

$$\sqrt{1 - \frac{1}{x}} = 1 - \frac{1}{2x} - \frac{1}{8x^2} + \dots + \frac{1}{x} < 1$$

are possible.

Example 10.10.2. Find $\sqrt{1.2}$ up to two decimal point.

sol. Let $f(x) = \sqrt{1+x}$. Then $\sqrt{1.2} = f(0.2)$. Hence from equation (10.13) We see Taylor series at $x_0 = 0$ is

$$f(x) = 1 + \frac{1}{2}x + \dots + \binom{1/2}{n}x^n + R_{n+1}(x),$$
$$R_{n+1}(x) = \frac{1}{(n+1)!}f^{(n+1)}(\bar{x})x^{n+1} \quad (0 \le \bar{x} \le 0.2.)$$

For n = 1 $R_2(0.2) = (1/2)f''(\bar{x})(0.2)^2 = -0.005(1+\bar{x})^{-3/2}$ $(0 \le \bar{x} \le 0.2)$. Hence $\sqrt{1.2} \approx 1 + (1/2)(0.2) = 1.1$ and the error satisfies $|R_2(0.2)| < 0.005$.

Example 10.10.3. Find $\int \sin^2 x \, dx$ as power series.

Estimate $\int_0^1 \sin^2 x \, dx$ within error less than 0.001.

Example 10.10.4. Find Maclaurin series of $\arctan x$.
sol. Note that for |x| < 1 the arctan x has convergent power series:

$$(\arctan x)' = \frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n}.$$

Integrate it from 0 to x

$$\arctan x = \int_0^x \sum_{n=0}^\infty (-1)^n t^{2n} dt$$
$$= \sum_{n=0}^\infty \frac{(-1)^n x^{2n+1}}{2n+1}, \quad |x| < 1$$

Thus

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$

This formula can be used to compute π . For example,

$$\frac{\pi}{4} = \arctan 1 = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdot$$

The error with *n*-term is 1/(2n+1). So to get the error less than 10^{-3} , we need $2n + 1 \approx 1000$, n = 500 terms. Because of its slowness, we suggest another methods. For example, if

$$\alpha = \tan^{-1}\frac{1}{2}, \quad \beta = \tan^{-1}\frac{1}{3},$$

then

$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} = \frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{6}} = 1 = \tan \frac{\pi}{4}$$

and

$$\frac{\pi}{4} = \alpha + \beta = \tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3}.$$

Now use the Taylor series for $\tan^{-1} x$ with $x = \frac{1}{2}$ and $x = \frac{1}{3}$. This is faster.

For example

$$\tan^{-1}\frac{1}{2} = (\frac{1}{2}) - \frac{1}{3}(\frac{1}{2})^3 + \frac{1}{5}(\frac{1}{2})^5 - \frac{1}{7}(\frac{1}{2})^7 + R_8^1 = 0.463467...$$
$$\tan^{-1}\frac{1}{3} = (\frac{1}{3}) - \frac{1}{3}(\frac{1}{3})^3 + \frac{1}{5}(\frac{1}{3})^5 + R_6^2 = 0.321810..$$

Here $|R_8^1| \le \frac{1}{9}(\frac{1}{2})^9 = \frac{1}{4,500}$ and $|R_6^2| \le \frac{1}{7}(\frac{1}{3})^7 = \frac{1}{15,309}$ and

$$\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} = 0.7852777$$

Multiply by 4 we get

$$\pi \approx 3.14111...$$

which is accurate at least three decimals.

Similar idea can be used to the following problem:

Example 10.10.5. Estimate

$$\ln 2 = \ln(1+1) = 1 - \frac{1}{2} + \dots + \frac{(-1)^{n-1}}{n} + R_{n+1}(1).$$

Since

$$|R_{n+1}(1)| \le \frac{1}{n+1}$$

we need to take large n. However, we can do the following:

$$\ln 2 = \ln \frac{4}{3} \cdot \ln \frac{3}{2} = \ln(1 + \frac{1}{3}) + \ln(1 + \frac{1}{2})$$

and use Taylor series.

Example 10.10.6. Estimate $\int_0^1 \sin x^2 dx$ with error less than 0.001. **sol.** First note that

$$\sin x^2 = x^2 - \frac{x^6}{3!} + \frac{x^{10}}{5!} - \frac{x^{14}}{7!} + \cdots$$

Integrating

$$\int_0^1 \sin x^2 \, dx = \frac{1}{3} - \frac{1}{7 \cdot 3!} + \frac{1}{11 \cdot 5!} - \frac{1}{15 \cdot 7!} + \cdots$$

Since

$$\frac{1}{11 \cdot 5!} < 0.00076$$

it suffices to take two terms.

Example 10.10.7. Estimate sin(0.1) up to third digit 3.

sol. Taylor polynomial of $\sin x$ at $x_0 = 0$

$$\sin x = \sum_{k=0}^{n} \frac{1}{k!} \left(\frac{d}{dx}\right)^{k} \sin x \Big|_{x=0} x^{k} + R_{n+1}(x).$$

Since $|\sin x| \le 1$, for $|\cos x| \le 1$

$$|R_{n+1}(x)| \le \frac{|x|^{n+1}}{(n+1)!}.$$

If n = 2

$$|R_3(0.1)| \le \frac{(0.1)^3}{3!} < 10^{-3}$$

we have $\sin(0.1) \approx 0.1$ and the error is less than $\pm (1/6) \times 10^{-3}$.

Indeterminate forms

Example 10.10.8. Find

$$\lim_{x \to 1} \frac{\ln x}{x - 1}.$$

Use the Taylor series of $\ln x$ at x = 1.

Example 10.10.9. Find

$$\lim_{x \to 0} \frac{\sin x - x + (x^3/6)}{x^4}.$$

sol. $x_0 = 0$. Taylor polynomial of $\sin x \, \operatorname{at} x_0 = 0$ is

$$\sin x = x - \frac{x^3}{6} + R_5(x)$$
 and $|R_5(x)| \le \frac{|x|^5}{5!}$.

Hence

$$\left|\frac{\sin x - x + (x^3/6)}{x^4}\right| = \left|\frac{R_5(x)}{x^4}\right| \le \frac{|x|}{5!}$$

and limit is 0.

Example 10.10.10. Find

$$\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right).$$

sol.

$$\frac{1}{\sin x} - \frac{1}{x} = \frac{x - \sin x}{x \sin x}$$

$$= \frac{x - \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots\right)}{x \cdot \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots\right)}$$

$$= \frac{x^3 \left(\frac{1}{3!} - \frac{x^2}{5!} + \cdots\right)}{x^2 \left(1 - \frac{x^2}{3!} + \cdots\right)}$$

Euler's identity

$$e^{i\theta} = 1 + \frac{i\theta}{1!} + \frac{i^2\theta^2}{2!} + \frac{i^3\theta^3}{3!} + \frac{i^4\theta^4}{4!} + \cdots = \left(1 - \frac{\theta}{2!} + \frac{\theta^4}{4!} - \frac{\theta^6}{6!} + \cdots\right) + i\left(\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \cdots\right) = \cos\theta + i\sin\theta.$$