Contents

3 Differentiation					
	3.8	Inverse functions and Their Derivatives	3		
	3.9	Logarithmic functions	5		
	3.10	Inverse trig functions	11		
	3.11	Linearization and differential \ldots	16		
7	7 Integrals and transcendental function				
	7.1	Logarithm defined as integral	21		
	7.2	Exponential change and separable differentiable equations \ldots	26		
	7.3	Hyperbolic function	28		
	7.4	Relative Rate of Growth	34		

Chapter 3

Differentiation

3.8 Inverse functions and Their Derivatives

Definition 3.8.1. A function f is one-to-one on a domain D if $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$.

Definition 3.8.2. Suppose a function f is one-to-one on a domain D with range R. The **inverse function** f^{-1} exists and is defined by

$$f^{-1}(b) = a$$
 if $f(a) = b$.

The domain of f^{-1} is R and range is D.

$$(f^{-1} \circ f)(x) = x, \quad x \in D$$
$$(f \circ f^{-1})(y) = y, \quad y \in R$$

Derivatives of inverse function

Theorem 3.8.3. Suppose f is differentiable in I. If f'(x) is never zero, then f^{-1} exists, differentiable. Furthermore for $a \in I$, f(a) = b,

$$(f^{-1})'(b) = \frac{1}{f'(a)}.$$

Set y = f(x). Then the inverse function is $x = f^{-1}(y)$, and its derivative is

$$\left. \frac{dx}{dy} \right|_{y=f(a)} = \frac{1}{dy/dx|_{x=a}}, \quad a \in I$$

Figure 3.1: Slope of inverse function

Figure 3.2: Graph of inverse function is symmetric about y = x

Proof. Differentiate $x = (f^{-1} \circ f)(x) = f^{-1}(f(x)) = f^{-1}(y)$ w.r.t x using the Chain rule, we have

$$1 = (f^{-1})'(f(x))f'(x).$$

Setting x = a, we see $1 = (f^{-1})'(f(a))f'(a)$. Thus

$$(f^{-1})'(b) = 1/f'(a).$$

Usually, we use the notation $y = f^{-1}(x)$. The graph of y = f(x) and that of $y = f^{-1}(x)$ are symmetric w.r.t the line y = x.

Example 3.8.4. (1) $f(x) = x^7 + 8x^3 + 4x - 2$. Find $(f^{-1})'(-2)$.

(2) $f(x) = \sin^{-1} x$. Find $(f^x)'$.

sol. (1) Since
$$f' = 7x^6 + 24x^2 + 4 \ge 4$$
 inverse f^{-1} exists. Since $f(0) = -2$

we have

$$(f^{-1})'(-2) = (f^{-1})'(f(0)) = \frac{1}{f'(0)} = \frac{1}{4}.$$

(2) $y = \sin^{-1} x, x = \sin y$. Hence

$$\frac{d}{dx}\sin^{-1}x = \frac{dy}{dx} = \frac{1}{dx/dy} = \frac{1}{(d/dy)\sin y} = \frac{1}{\cos y} = \frac{1}{\sqrt{1-\sin^2 y}} = \frac{1}{\sqrt{1-x^2}}.$$

3.9 Logarithmic functions

Definition 3.9.1. For x > 0, the (natural) logarithmic function is defined by

$$\ln x = \int_1^x \frac{1}{t} \, dt.$$

Thus by fundamental theorem,

$$\frac{d}{dx}\ln x = \frac{1}{x}.$$
(3.1)

If u(x) is any positive differentiable function,

$$\frac{d}{dx}\ln u(x) = \frac{1}{u}\frac{du}{dx}.$$
(3.2)

Properties:

- (1) $\ln bx = \ln b + \ln x$
- (2) $\ln \frac{b}{x} = \ln b \ln x$
- (3) $\ln \frac{1}{x} = -\ln x$
- (4) $\ln x^r = r \ln x$ (For rational number r).

The proof of (4) is in Example 3.9.5.

Figure 3.3: Graph of $\ln x$ and e^x

Exponential function

Definition 3.9.2. Define the (natural) exponential function $exp(x) := \ln^{-1} x$ as the inverse function of $\ln x$. Thus

$$y = exp(x) \Leftrightarrow x = \ln y.$$

Thus

$$exp(\ln x) = x, (x > 0)$$
 (3.3)

$$\ln(exp(x)) = x. \tag{3.4}$$

The number e is defined as

$$e = exp(1) = \ln^{-1}(1) = 2.718281828\cdots$$
 (3.5)

The function e^x

We can raise the number e to a rational power such as:

$$e^2 = e \cdot e, \ e^{1/2} = \sqrt{e}, \dots$$

For rational number x, the value e^x is well defined. We see

$$\ln e^x = x \ln e = x. \tag{3.6}$$

Thus the rational power e^x is the same as the exp(x). Thus it is natural to define

Definition 3.9.3. For all real number x, we let

$$e^x = exp(x) (3.7)$$

The exponential function exp(x) satisfies the usual rule for exponentiation such as $e^{a+b} = e^a e^b$.

Exponential function a^x

Since $a = e^{\ln a}$ for any positive number a, we can define a^x by

$$a^{x} = e^{\ln a^{x}}$$
$$= e^{x \ln a}$$
$$= e^{(\ln a)x}$$

Definition 3.9.4. If a is a positive number and x is any number, we define

$$a^x = e^{x \ln a}.$$
(3.8)

Since $\ln e^x = x$ for all real x, we have

$$\ln x^{n} = \ln(e^{n \ln x}) = n \ln x, x > 0.$$

One can also use the definition of $\ln x = \int_1^x dt$ to prove it.

Example 3.9.5. [Power rule] The derivative of x^n for any number n:

$$\frac{d}{dx}x^n = \frac{d}{dx}e^{n\ln x} \ (x > 0)$$
$$= e^{n\ln x} \cdot \frac{d}{dx}(n\ln x)$$
$$= x^n \cdot \frac{n}{x}$$
$$= nx^{n-1}.$$

Derivative of a^x

By definition, $a^x = e^{x \ln a}$. Thus

$$\frac{d}{dx}a^{x} = \frac{d}{dx}e^{x\ln a} = \ln ae^{x\ln a} = a^{x}\ln a.$$
$$\frac{d}{dx}a^{u} = a^{u}\ln a\frac{du}{dx}$$

General logarithmic function $\log_a x$

 $y = \log_a x$ is defined as the inverse function of $y = a^x (a > 0, a \neq 1)$. Thus

$$\log_a x = y \Leftrightarrow a^y = x$$

$$\log_a(a^x) = x$$
, for all x, and $a^{(\log_a x)} = x, (x > 0)$

 $\log_{10} x$ is written as $\log x$ and called *common logarithmic function*

Properties

- (1) Product rule: $\log_a xy = \log_a x + \log_a y$.
- (2) Quotient rule: $\log_a \frac{x}{y} = \log_a x \log_a y$.
- (3) Product rule: $\log_a \frac{1}{y} = -\log_a y$.
- (4) Power rule: $\log_a x^y = y \log_a x$.

Inverse properties

- (1) Base *a*: $a^{\log_a x} = x$, $\log_a(a^x) = x(a > 0, a \neq 1, x > 0)$.
- (2) Base *e*: $e^{\ln x} = x$, $\ln(e^x) = x(x > 0)$.

Derivative of $\log_a x$

We have

$$\log_a x = \frac{\ln x}{\ln a}.\tag{3.9}$$

Proof.

$$a^{(\log_a x)} = x$$
$$\ln a^{(\log_a x)} = \ln x$$
$$\log_a x \cdot \ln a = \ln x$$
$$\log_a x = \frac{\ln x}{\ln a}$$

 \mathbf{So}

$$\frac{d}{dx}\log_a x = \frac{1}{x\ln a}$$

and

$$\frac{d}{dx}\log_a u = \frac{1}{u\ln a}\frac{du}{dx}.$$

Logarithmic Differentiation

Find dy/dx if $y = \frac{(x^2+1)^{1/3}(x-3)^{1/2}}{x+5}$.

Derivatives of Power function

We prove the following theorem which was stated earlier.

Theorem 3.9.6. For any real r, $\frac{d}{dx}u^r = u^{r-1}\frac{du}{dx}$.

Proof. Since $u^r = e^{r \ln u}$ we have

$$\frac{d}{dx}u^r = ru^r \frac{d\ln u}{dx} = ur^r \frac{1}{u} \frac{du}{dx} = ru^{r-1} \frac{du}{dx}$$

Example 3.9.7. Differentiate $f(x) = x^x, x > 0$

sol. Write $f(x) = x^x = e^{x \ln x}$. So

$$f'(x) = \frac{d}{dx}(e^{x \ln x})$$
$$= (e^{x \ln x})\frac{d}{dx}(x \ln x)$$
$$= e^{x \ln x}(\ln x + x \cdot \frac{1}{x})$$
$$= x^{x}(\ln x + 1).$$

9

Example 3.9.8. Sketch the graph of $x^{1/x}$. To do this, we first investigate the behavior of the function as $x \to 0^+$ and $x \to \infty$. To study the limit, we take the logarithm:

$$\lim_{x \to \infty} \ln x^{1/x} = \lim_{x \to \infty} \frac{\ln x}{x} = 0$$

Hence

$$\lim_{x \to \infty} x^{1/x} = \exp(\lim_{x \to \infty} \frac{\ln x}{x}) = e^0 = 1$$

Meanwhile

$$\lim_{x \to 0^+} \ln x^{1/x} = \lim_{x \to 0^+} \frac{\ln x}{x} = -\infty.$$

Hence

$$\lim_{x \to 0^+} x^{1/x} = \exp(\lim_{x \to 0^+} \frac{\ln x}{x}) = e^{-\infty} = 0.$$

To see the local extrema, take the derivative and find the critical point. $f'(x) = (1 - \ln x)/x^2 = 0$ for x = e. By checking the sign of f'(x) near x = e, we conclude x = e is a point of local maximum.

Figure 3.4: Graph of $y = x^{1/x}$

The number e as a limit

Theorem 3.9.9. The number e satisfies

$$e = \lim_{x \to 0} (1+x)^{1/x}.$$

Proof. If $f(x) = \ln x$. Then $f'(1) = \frac{1}{x}|_{x=1} = 1$. By definition,

$$1 = f'(1) = \lim_{x \to 0^+} \frac{\ln(1+x) - \ln 1}{x} = \lim_{x \to 0^+} \ln[(1+x)^{\frac{1}{x}}] = \ln[\lim_{x \to 0^+} (1+x)^{\frac{1}{x}}].$$

Now exponentiate.

Inverse trig functions 3.10

Figure 3.5: $y = \sin^{-1} x$

Figure 3.6: $y = \cos^{-1} x$

x

Inverse sine

Restrict the function $\sin x$ on $[-\pi/2, \pi/2]$. Then $\sin x \colon [-\pi/2, \pi/2] \to [-1, 1]$ is one-to - one function. So the inverse exists. Define

$$\sin^{-1} x \colon [-1,1] \longrightarrow [-\pi/2,\pi/2].$$

whenever $x = \sin y$ for $x \in [-\pi/2, \pi/2]$. Graph is as in figure 3.5. $\sin^{-1} x$ is sometimes written as $\arcsin x$.

Inverse cosine

Restrict $\cos x$ to $[0, \pi]$, we obtain $\cos^{-1} x$ as

$$\cos^{-1} x \colon [-1,1] \longrightarrow [0,\pi].$$

If $\cos x = y$ for any $x \in [0, \pi]$ then $\cos^{-1} y = x$ is defined and figure is in 3.6 written as $\cos^{-1} x$ or $\arccos x$.

Example 3.10.1. (1) $\sin^{-1}(1/2) = \pi/6$

(2) $\sin^{-1} 1 = \pi/2$

Example 3.10.2. (1) $\cos^{-1}(1/2) = \pi/3$

(2) $\cos^{-1} 0 = \pi/2$

Figure 3.7: $\theta = \cos^{-1} x$

Example 3.10.3.

$$\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}, \quad \cos^{-1}x + \cos^{-1}(-x) = \pi$$

Figure 3.8: $\sin^{-1} x$

Inverse of $\tan x$

The function $\tan x$ is one to one on $(-\pi/2, \pi/2)$, thus it has an inverse $\tan^{-1} x$

$$\tan^{-1} x \colon \mathbb{R} \longrightarrow (-\pi/2, \pi/2)$$

for any $x \in \mathbb{R}$. Thus $\tan x = \alpha$ iff $\tan^{-1} \alpha = x$. See figure 3.9. It is written as $\tan^{-1} x$ or $\arctan x$.

 $\tan^{-1} 1 = \pi/4 \, \tan^{-1} 0 = 0.$

Example 3.10.4. Find the derivative of $\tan^{-1} x$.

Figure 3.9: $y = \tan^{-1} x$

From $y = f(x) = \tan x$, we see by Theorem 3.8.3

$$(f^{-1})'(y) = \frac{1}{f'(x)}$$

= $\frac{1}{1 + \tan^2 x}$
= $\frac{1}{1 + y^2}$.

Thus $(f^{-1})'(x) = \frac{1}{1+x^2}$.

Example 3.10.5. Find derivatives

(1) $y = \sin^{-1} x$, $(|x| \le 1)$. (2) $y = \sec^{-1} x$, $(|x| \ge 1)$.

sol. (3) Let $y = \sec^{-1} x$. Then $x = \sec y$. Taking derivative w.r.t x, we get $1 = \sec y \tan y (dy/dx)$. Thus

$$\frac{dy}{dx} = \frac{1}{\sec y \tan y}.$$

We need to change it to expression in x.

For x > 1, $\tan y = \sqrt{x^2 - 1}$. Hence, we have

$$\frac{dy}{dx} = \frac{1}{x\sqrt{x^2 - 1}}, \quad x > 1.$$

For x < -1, use $(x \to -x)$ to get

$$\frac{dy}{dx} = \frac{1}{-x\sqrt{x^2-1}}, \quad x < -1.$$

Hence

$$\frac{d}{dx}\sec^{-1}x = \frac{1}{|x|\sqrt{x^2 - 1}}, \quad |x| > 1.$$

Other inverse trig functions

Inverses of $\csc x$, $\sec x$, $\cot x$

 $\csc^{-1} x : \mathbb{R} - (-1, 1) \to [-\pi/2, \pi/2] - \{0\}$ $\sec^{-1} x : \mathbb{R} - (-1, 1) \to [0, \pi] - \{\pi/2\}$

 $\cot^{-1}x:\mathbb{R}\to (0,\pi).$ (Note that the range is different from that of $\tan^{-1}x)$

Figure 3.10:

Proposition 3.10.6. The derivatives of inverse trig. functions :

(1)
$$\frac{d}{dx} \sin^{-1} x = \frac{1}{\sqrt{1 - x^2}}$$

(2) $\frac{d}{dx} \cos^{-1} x = -\frac{1}{\sqrt{1 - x^2}}$
(3) $\frac{d}{dx} \tan^{-1} x = \frac{1}{1 + x^2}$
(4) $\frac{d}{dx} \csc^{-1} x = -\frac{1}{|x|\sqrt{x^2 - 1}}, |x| > 1$
(5) $\frac{d}{dx} \sec^{-1} x = \frac{1}{|x|\sqrt{x^2 - 1}}, |x| > 1$
(6) $\frac{d}{dx} \cot^{-1} x = -\frac{1}{1 + x^2}.$

Proposition 3.10.7. The following relations hold.

$\cos^{-1}x$	=	$(\pi/2) - \sin^{-1}x$
$\cot^{-1} x$	=	$(\pi/2) - \tan^{-1} x$
$\csc^{-1} x$	=	$(\pi/2) - \sec^{-1} x$
$\cot^{-1} x$	=	$\tan^{-1}(1/x)$
$\sec^{-1} x$	=	$\cos^{-1}(1/x)$
$\csc^{-1} x$	=	$\sin^{-1}(1/x)$

Example 3.10.8. (1) Find $\sin(\cos^{-1}(3/5))$

(2) Simplify $\tan(\sin^{-1} a)$

sol. (1) Let $\theta = \cos^{-1}(3/5)$. Then $\cos \theta = 3/5$ and $0 \le \theta \le \pi$. Hence

$$\sin\theta = \sqrt{1 - \frac{9}{25}} = \frac{4}{5}.$$

(2) Let $\theta = \sin^{-1} a$. Then $\sin \theta = a$ and $-\pi/2 \le \theta \le \pi/2$.

$$\cos\theta = \sqrt{1 - a^2}.$$

Hence

$$\tan \theta = \sin \theta / \cos \theta = a / \sqrt{1 - a^2}. \tag{3.10}$$

Integral of $\tan x$, $\cot x$, $\sec x$ and $\csc x$

$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx$$
$$= -\int \frac{du}{u}$$
$$= -\ln|u| + C$$
$$= -\ln|\cos x| + C$$
$$= \ln \frac{1}{|\cos x|} + C$$
$$= \ln|\sec x| + C.$$

For $\sec x$ we need special trick:

$$\int \sec x \, dx = \int \sec x \frac{(\sec x + \tan x)}{(\sec x + \tan x)} \, dx$$
$$= \int \frac{(\sec^2 x + \sec x \tan x)}{\sec x + \tan x} \, dx$$
$$= \int \frac{du}{u}$$
$$= \ln |u| + C$$
$$= \ln |\sec x + \tan x| + C.$$

For $\csc x$ we do similarly. Thus we have

$$\int \sec x \, dx = \ln |\sec x + \tan x| + C$$
$$\int \csc x \, dx = -\ln |\csc x + \cot x| + C.$$

3.11 Linearization and differential

Definition 3.11.1. Given a differentiable function f, the linear function

$$L(x) = f(a) + f'(a)(x - a)$$

is called the **linearization** of f at a.

Example 3.11.2. (1) Find the linearization of $\cos x$ at $\pi/2$.

- (2) Find an approx value of $\sqrt{1.003}$ using the linearization of $\sqrt{1+x}$ at x = 0.
- (3) Find the linearization of $\frac{1}{\sqrt[3]{x^4+1}}$ at x = 0
- (4) Find an approx value of $\sqrt{4.8}$
- (5) Find the linearization of $\cos x$ at $\pi/2$. Ans $-x + \pi/2$.
- (6) Find the linearization of $(1+x)^k$. Ans 1+kx.

Differential

Definition 3.11.3. Let y = f(x) be differentiable. We can treat dx (differential) like an independent variable. In this point of view, the quantity dy defined by

$$dy := f'(x)dx$$

is called the **differential** of f.

The geometric meaning of differential is given in Figure 3.11. We observe

$$\Delta y = f(a + dx) - f(a), \quad f(a + dx) = f(a) + \Delta y \approx f(a) + dy.$$

We see that dy is precisely the change of the tangent line as x changes by an amount of $dx = \Delta x$. In other words, dy is an approximation of exact change Δy .

Example 3.11.4. Find differential of

- (1) $y = x^3 \sin x$
- (2) $y = \sin u(x)$
- (3) $\tan(3x)$
- (4) $d(\frac{x}{1+x})$.

Estimating with differentials

Radius of a circle is enlarged from 10 to 10.1. Use dA to estimate the increase in area. Compare with exact increase.

Figure 3.11: Differential dy = f'(a)dx and Δy

$$A = \pi r^2,$$

$$dA = 2\pi r dr = 2\pi (10)(0.1) = 2\pi m^2.$$

Actual increase is $A(10.1) - A(10) = 2\pi((10.1)^2 - 100) = 2.01\pi$.

Error in differential approximation

We estimate the change in y in more detail.

Theorem 3.11.5. We have

$$\Delta f = f'(a)\Delta x + \epsilon \Delta x,$$

where $\epsilon \to 0$ as $\Delta x \to 0$.

Proof.

approximation error
$$= \Delta f - df$$
$$= \Delta f - f'(a)\Delta x$$
$$= f(a + \Delta x) - f(a) - f'(a)\Delta x$$
$$= \left(\frac{f(a + \Delta x) - f(a)}{\Delta x} - f'(a)\right)\Delta x$$
$$= \epsilon \Delta x.$$

Since f is differentiable, we know $\epsilon := \left(\frac{f(a+\Delta x)-f(a)}{\Delta x} - f'(a)\right)$ approaches 0 as Δx approaches 0. Thus

$$\Delta f \stackrel{\text{change}}{=} \stackrel{\text{estimated}}{f'(a)\Delta x} + \epsilon \Delta x$$

Proof of Chain rule

Assume y = f(u) is a diff'ble function of u and u = g(x) is a diff'ble function of x. Then the composite function y = f(g(x)) is diff'ble and by theorem there exist ϵ_1, ϵ_2 which approaches 0 as $\Delta u, \Delta x$ approaches 0 in such a way that

$$\Delta y = f'(u_0)\Delta u + \epsilon_2 \Delta u$$

$$\Delta u = g'(x_0)\Delta x + \epsilon_1 \Delta x.$$

Hence

$$\Delta y = (f'(u_0) + \epsilon_2)(g'(x_0) + \epsilon_1)\Delta x$$
$$\frac{\Delta y}{\Delta x} = (f'(u_0) + \epsilon_2)(g'(x_0) + \epsilon_1).$$

Let $\Delta x \to 0$. Then we obtain the Chain rule.

Example 3.11.6. Converting mass to energy: The Newton's law

$$F = m\frac{dv}{dt} = ma$$

is not exactly true when an object is moving at very high speed, because the mass increases with velocity. In Einstein's correction, the mass is

$$m = \frac{m_0}{\sqrt{1 - v^2/c^2}} \approx m_0(1 + \frac{v^2}{2c^2}).$$

So the new mass is

$$m \approx m_0 + \frac{mv^2}{2c^2}$$

By multiplying c^2

$$(m - m_0)c^2 \approx \frac{1}{2}mv^2 - \frac{1}{2}m0^2 = \Delta(KE).$$

Thus the change in the mass corresponds to the change in the Kinetic Energy.

Chapter 7

Integrals and transcendental function

In chapter 2 we introduced natural logarithmic function as the inverse of the exponential function e^x , where the number e was chosen to satisfy certain slope condition. In this chapter, we introduce an alternative theory for exponential and log. function.

7.1 Logarithm defined as integral

Definition 7.1.1.

$$\ln x = \int_{1}^{x} \frac{1}{t} dt, \ (x > 0)$$

Derivative of $\ln x$

$$\frac{d}{dx}\ln x = \frac{d}{dx}\int_1^x \frac{1}{t}\,dt = \frac{1}{x}$$

Hence

$$\int \frac{1}{t} dt = \ln|x| + C.$$

By substitution

$$\int \frac{f'(x)}{f(x)} dx = \ln |f(x)| + C \text{ whenever } f(x) \neq 0.$$

Example 7.1.2. (1)
$$\int_{0}^{2} \frac{2x}{x^{2}-5} dx = \ln |u|_{-5}^{-1}$$
.
(2) $\int_{-\pi/2}^{\pi/2} \frac{4\cos\theta}{3+2\sin\theta} d\theta = \int_{1}^{5} \frac{2}{u} du$.

Exponential function

Definition 7.1.3. Define the (natural) exponential function exp(x) as the inverse function of $\ln x$. Thus

$$y = exp(x) \Leftrightarrow x = \ln y.$$

Thus

$$exp(\ln x) = x, \ (x > 0)$$
 (7.1)

$$\ln(exp(x)) = x, \forall x. \tag{7.2}$$

Definition 7.1.4. The number e is defined as the number satisfying

$$\ln e = 1$$
, or $\int_{1}^{e} \frac{1}{t} dt = 1$

The number e is approximately

$$e = 2.718281828\cdots.$$
(7.3)

The function e^x

We can raise the number e to a rational power such as:

$$e^2 = e \cdot e, \ e^{1/2} = \sqrt{e}, \dots$$

For rational number x, the value e^x is well defined. Let us consider

$$\ln e^x = x \ln e = x. \tag{7.4}$$

Thus the rational power e^x is the same as the exp(x). Thus it is natural to define

Definition 7.1.5. For all real number x, we define

$$e^x = exp(x). \tag{7.5}$$

The exponential function exp(x) satisfies the usual rule for exponentiation such as $e^{a+b} = e^a e^b$.

Exponential function a^x

Since $a = e^{\ln a}$ for any positive number a, we can define a^x by

$$a^{x} = e^{\ln a^{x}}$$
$$= e^{x \ln a}$$
$$= e^{(\ln a)x}.$$

Definition 7.1.6.

If a is a positive number and x is any number, $a^x = e^{x \ln a}$. (7.6)

Since $\ln e^n = x$ for all x, we have

$$\ln x^{n} = \ln(e^{n\ln x}) = n\ln x, \ x > 0.$$

Example 7.1.7 (Power rule). The derivative of x^n for any number n:

$$\frac{d}{dx}x^n = \frac{d}{dx}e^{n\ln x} \ (x > 0)$$
$$= e^{n\ln x} \cdot \frac{d}{dx}(n\ln x)$$
$$= x^n \cdot \frac{n}{x}$$
$$= nx^{n-1}.$$

Derivative of a^x

By definition, $a^x = e^{x \ln a}$. Thus

$$\frac{d}{dx}a^{x} = \frac{d}{dx}e^{x\ln a} = \ln ae^{x\ln a} = a^{x}\ln a.$$
$$\frac{d}{dx}a^{u} = a^{u}\ln a\frac{du}{dx}.$$

General logarithmic function $\log_a x$

 $y = \log_a x$ is defined as the inverse function of $y = a^x (a > 0, a \neq 1)$. Thus

$$\log_a x = y \Leftrightarrow a^y = x$$

$$\log_a(a^x) = x$$
, for all $x, a^{(\log_a x)} = x, (x > 0)$

 $\log_{10} x$ is written as $\log x$ and called the *common logarithmic function*.

Properties

- (1) Product rule: $\log_a xy = \log_a x + \log_a y$
- (2) Quotient rule: $\log_a \frac{x}{y} = \log_a x \log_a y$
- (3) Product rule: $\log_a \frac{1}{y} = -\log_a y$
- (4) Power rule: $\log_a x^y = y \log_a x$

Inverse properties

- (1) Base a: $a^{\log_a x} = x$, $\log_a(a^x) = x(a > 0, a \neq 1, x > 0)$
- (2) Base e: $e^{\ln x} = x$, $\ln(e^x) = x(x > 0)$

Derivative of $\log_a x$

$$\log_a x = \frac{\ln x}{\ln a}.\tag{7.7}$$

Proof.

$$a^{(\log_a x)} = x$$
$$\ln a^{(\log_a x)} = \ln x$$
$$\log_a x \cdot \ln a = \ln x$$
$$\log_a x = \frac{\ln x}{\ln a}.$$

 \mathbf{So}

$$\frac{d}{dx}\log_a x = \frac{1}{x\ln a}$$
$$\frac{d}{dx}\log_a u = \frac{1}{u\ln a}\frac{du}{dx}.$$

and

Logarithmic Differentiation

Find
$$dy/dx$$
 if $y = \frac{(x^2+1)^{1/3}(x-3)^{1/2}}{x+5}$

Derivatives of Power function

We prove the following theorem which was stated earlier.

Theorem 7.1.8. For any real r, $\frac{d}{dx}u^r = u^{r-1}\frac{du}{dx}$.

Proof. Since $u^r = e^{r \ln u}$ we have

$$\frac{d}{dx}u^r = ru^r \frac{d\ln u}{dx} = ur^r \frac{1}{u} \frac{du}{dx} = ru^{r-1} \frac{du}{dx}$$

Example 7.1.9. Differentiate $f(x) = x^x, x > 0$

sol. Write $f(x) = x^x = e^{x \ln x}$. So

$$f'(x) = \frac{d}{dx}(e^{x \ln x})$$
$$= (e^{x \ln x})\frac{d}{dx}(x \ln x)$$
$$= e^{x \ln x}(\ln x + x \cdot \frac{1}{x})$$
$$= x^{x}(\ln x + 1).$$

_		
-	_	-

The number e as a limit

Theorem 7.1.10. The number *e* satisfies

$$e = \lim_{x \to 0} (1+x)^{1/x}.$$

Proof. If $f(x) = \ln x$. Then $f'(1) = \frac{1}{x}|_{x=1} = 1$. By definition,

$$1 = f'(1) = \lim_{x \to 0^+} \frac{\ln(1+x) - \ln 1}{x} = \lim_{x \to 0^+} \ln[(1+x)^{\frac{1}{x}}] = \ln[\lim_{x \to 0^+} (1+x)^{\frac{1}{x}}].$$

Now exponentiate.

7.2 Exponential change and separable differentiable equations

The decay of radioactive material or money earning interests in bank account, temperature between a cup of hot water and room air it sits, etc follows the law of *exponential change* Suppose y(t) denotes some quantity which changes according to the exponential law: The rate of change of y is proportional to y.

$$\frac{dy}{dt} = ky$$

with I.C. Then $y = Ae^{kt}$.

Example 7.2.1. Assume a disease is spreading "Entero virus", "A.I" Let y be the number of people infected by disease. Assume we cure people as much as possible. Then dy/dt is proportional to y.(The more people, the more infected, the more cured) Suppose for each year the number is reduced by 20% and 10,000 people infected today, how many years will it take to reduce to 1,000?

sol. $y = Ae^{kt}$, A = 10,000 Since it is reduced by 0.2 each year, we see

$$0.8 = e^{k \cdot 1} \to k = \ln 0.8 < 0$$

So we have $y = 10,000e^{(\ln 0.8)t}$ we want $10,000e^{(\ln 0.8)t} = 1,000$. So $e^{(\ln 0.8)t} = \frac{1}{10}$. $\ln(0.8)t = \ln(0.1)$. $t = \frac{\ln(0.1)}{\ln(0.8)} \approx 10.32$ yrs.

Example 7.2.2 (Half life of a radioactive material). $y_0 e^{-kt} = \frac{1}{2}y_0$. so $t = \ln 2/k$.

Example 7.2.3 (Carbon 14). It is estimated the half life of Carbon 14 is 5700 yrs. AS wooden artifact was found from an ancient site. This contains carbon 14 about 10% less than the living tree. How old is the site? $k = \ln 2/Half$ life = n2/5700. $y = y_0e^{-kt} = 0.9y_0$ So $e^{-kt} = 0.9$ or $t = -5700\frac{\ln 0.9}{\ln 2} = 866$ yrs.

Example 7.2.4 (Law of Cooling). If H is the temperature of an object and H_s the surrounding temperature. Then the rate of change(cooling) is proportional

to the temperature difference. Thus

$$\frac{dH}{dt} = -k(H - H_s).$$

Solving

$$H - H_s = (H_0 - H_s)e^{-kt}.$$

A boiled egg at 98° is put in the sink of 18° to cool down. In 5 min, the egg was 38° . how much longer will it take to reach 20° ?

sol.

$$H - 18 = (98 - 18)e^{-kt}, \quad H = 18 + 80e^{-kt}.$$

Set H = 38, t = 5. Then $e^{-5k} = 1/4$ and

$$k = -\frac{\ln 1/4}{5} = 0.2 \ln 4 \approx 0.28.$$
$$H = 18 + 80e^{-(0.2 \ln 4)t}.$$

Solving $t \approx 13$ min.

Separable Differential Equations

A general differential equation is given in the form

$$\frac{dy}{dx} = f(x, y) \tag{7.8}$$

with certain initial condition such as $y(x_0) = y_0$. Such equation is called **separable** if f is expressed as a product of a function of x and a function of y, i.e,

$$\frac{dy}{dx} = g(x)H(y).$$

We rewrite it to

$$\frac{dy}{dx} = \frac{g(x)}{h(y)}$$

and

$$\int h(y) \, dy = \int g(x) \, dx. \tag{7.9}$$

Example 7.2.5. Solve

$$\frac{dy}{dx} = (1+y)e^x, \ y > -1.$$
(7.10)

$$\frac{dy}{dx} = (1+y)e^x$$
$$\frac{dy}{1+y} = e^x dx$$
$$\int \frac{dy}{1+y} = \int e^x dx$$
$$\ln(1+y) = e^x + C.$$

7.3 Hyperbolic function

hyperbolic function

Any f(x) can be written as even part and odd part

$$f(x) = \underbrace{\frac{f(x) + f(-x)}{2}}_{\text{even part}} + \underbrace{\frac{f(x) - f(-x)}{2}}_{\text{odd part}}.$$

Hence e^x can be written as

$$e^{x} = \frac{e^{x} + e^{-x}}{2} + \frac{e^{x} - e^{-x}}{2}$$
(7.11)

Definition 7.3.1 (hyperbolic function).¹

hyperbolic cosine $\cosh x = \frac{e^x + e^{-x}}{2}$, hyperbolic sine $\sinh x = \frac{e^x - e^{-x}}{2}$, hyperbolic tangent $\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$, hyperbolic cotangent $\coth x = \frac{1}{\tanh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}}$, hyperbolic secant $\operatorname{sech} x = \frac{1}{\cosh x} = \frac{2}{e^x + e^{-x}}$, hyperbolic cosecant $\operatorname{csch} x = \frac{1}{\sinh x} = \frac{2}{e^x - e^{-x}}$.

Some identities of hyperbolic functions:

Proposition 7.3.2.

(1) $\sinh 2x = 2 \sinh x \cosh x$

(2)
$$\cosh 2x = \cosh^2 x + \sinh^2 x$$

 $\cosh 2x = 1$

(3)
$$\sinh^2 x = \frac{\cosh 2x - 1}{2}$$

(4) $\cosh^2 x = \frac{\cosh 2x + 1}{2}$

(5)
$$\cosh^2 x - \sinh^2 x = 1$$

- (6) $\tanh^2 x = 1 \operatorname{sech}^2 x$
- (7) $\operatorname{coth}^2 x = 1 + \operatorname{csch}^2 x$

Proposition 7.3.3.

(1)
$$\frac{d}{dx}(\sinh u) = \cosh u \frac{du}{dx}$$

(2) $\frac{d}{dx}(\cosh u) = \sinh u \frac{du}{dx}$

¹hyperbolic functions have many things in common with trig. functions. We can define trig. functions $\sin x$ and $\cos x$ using complex numbers. We define $e^{i\theta} = \cos \theta + i \sin \theta$. Then $e^{-i\theta} = \cos \theta - i \sin \theta$ and hence

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}, \quad \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

Figure 7.1: hyperbolic functions

(3) $\frac{d}{dx}(\tanh u) = \operatorname{sech}^2 u \frac{du}{dx}$ (4) $\frac{d}{dx}(\coth u) = -\operatorname{csch}^2 u \frac{du}{dx}$ (5) $\frac{d}{dx}(\operatorname{sech} u) = -\operatorname{sech} u \tanh u \frac{du}{dx}$ (6) $\frac{d}{dx}(\operatorname{csch} u) = -\operatorname{csch} u \coth u \frac{du}{dx}$

Proposition 7.3.4.

(1)
$$\int \sinh u \, du = \cosh u + C$$

(2)
$$\int \cosh u \, du = \sinh u + C$$

(3)
$$\int \operatorname{sech}^2 u \, du = \tanh u + C$$

(4)
$$\int \operatorname{csch}^2 u \, du = -\coth u + C$$

(5)
$$\int \operatorname{sech} u \tanh u \, du = -\operatorname{sech} u + C$$

(6) $\int \operatorname{csch} u \coth u \, du = -\operatorname{csch} u + C$

Example 7.3.5. (1) The indefinite integral of $\sinh^2 x$ can be computed just as that of $\sin^2 x$.

$$\int_0^1 \sinh^2 x \, dx = \int_0^1 \frac{\cosh 2x - 1}{2} \, dx$$
$$= \frac{1}{2} \left[\frac{\sinh 2x}{2} - x \right]_0^1$$
$$= \frac{\sinh 2}{4} - \frac{1}{2}.$$

(2) Using the definition of $\sinh x$

$$\int_0^{\ln 2} 4e^x \sinh x \, dx = \int_0^{\ln 2} 4e^x \frac{e^x - e^{-x}}{2} \, dx = \int_0^{\ln 2} (2e^{2x} - 2) \, dx$$
$$= \left[e^{2x} - 2x\right]_0^{\ln 2}$$
$$= 3 - 2\ln 2.$$

Inverse hyperbolic function

The function $y = \sinh x$ is defined on $(-\infty, \infty)$ having values in $(-\infty, \infty)$. So (inverse hyperbolic sine) $y = \sinh^{-1} x$ is defined on $(-\infty, \infty)$.

The function $y = \cosh x$ restricted to $x \ge 0$ is 1-1 to $[1, \infty)$. So inverse $y = \cosh^{-1}$ inverse hyperbolic cosine is defined on $[1, \infty)$.

 $y = \operatorname{sech} x$ restricted to $x \ge 0$ is one-to-one. Hence its inverse $y = \operatorname{sech}^{-1} x$ is defined on (0, 1]. Meanwhile $y = \tanh x$, $y = \coth x$, $y = \operatorname{csch} x$ are one-to-one on $(-\infty, \infty)$. Hence their inverses $y = \tanh^{-1} x$, $y = \operatorname{coth}^{-1} x$, $y = \operatorname{csch}^{-1} x$ are defined accordingly. The graphs are as in figure 7.2

Proposition 7.3.6. Inverse hyperbolic functions can be represented by log functions.

- (1) $\sinh^{-1} x = \ln(x + \sqrt{x^2 + 1}), \quad -\infty < x < \infty$
- (2) $\cosh^{-1} x = \ln(x + \sqrt{x^2 1}), \quad x \ge 1$
- (3) $\tanh^{-1} x = \frac{1}{2} \ln \frac{1+x}{1-x}, \quad |x| < 1$

Figure 7.2: Inverse hyperbolic functions

(4)
$$\operatorname{sech}^{-1} x = \ln\left(\frac{1+\sqrt{1-x^2}}{x}\right), \quad 0 < x \le 1$$

(5) $\operatorname{csch}^{-1} x = \ln\left(\frac{1}{x} + \frac{\sqrt{1+x^2}}{|x|}\right), \quad x \ne 0$
(6) $\operatorname{coth}^{-1} x = \frac{1}{2}\ln\frac{x+1}{x-1}, \quad |x| > 1.$

Proof. We prove the formula for $\sinh^{-1} x$.

$$y = \sinh x = \frac{e^x - e^{-x}}{2},$$
$$e^x - e^{-x} = 2y,$$
$$e^{2x} - 2ye^x - 1 = 0,$$
$$e^x = y + \sqrt{y^2 + 1}.$$
 (Since $y - \sqrt{y^2 + 1}$ is negative, we drop it.)

Hence $x = \ln(y + \sqrt{y^2 + 1})$, or $y = \ln(x + \sqrt{x^2 + 1})$ is the sinh⁻¹ x.

Proposition 7.3.7.

(1)
$$\operatorname{sech}^{-1} x = \cosh^{-1} \frac{1}{x}$$

(2) $\operatorname{csch}^{-1} x = \sinh^{-1} \frac{1}{x}$
(3) $\operatorname{coth}^{-1} x = \tanh^{-1} \frac{1}{x}$

Derivatives of inverse hyperbolic functions

Proposition 7.3.8.

$$(1) \ \frac{d(\sinh^{-1}u)}{dx} = \frac{1}{\sqrt{1+u^2}} \frac{du}{dx}$$

$$(2) \ \frac{d(\cosh^{-1}u)}{dx} = \frac{1}{\sqrt{u^2-1}} \frac{du}{dx}, \quad u > 1$$

$$(3) \ \frac{d(\tanh^{-1}u)}{dx} = \frac{1}{1-u^2} \frac{du}{dx}, \quad |u| < 1$$

$$(4) \ \frac{d(\coth^{-1}u)}{dx} = \frac{1}{1-u^2} \frac{du}{dx}, \quad |u| > 1$$

$$(5) \ \frac{d(\operatorname{sech}^{-1}u)}{dx} = \frac{-du/dx}{u\sqrt{1-u^2}}, \quad 0 < u < 1$$

(6)
$$\frac{d(\operatorname{csch}^{-1} u)}{dx} = \frac{-du/dx}{|u|\sqrt{1+u^2}}, \quad u \neq 0$$

Proposition 7.3.9.

$$(1) \int \frac{du}{\sqrt{1+u^2}} = \sinh^{-1} u + C$$

$$(2) \int \frac{du}{\sqrt{u^2 - 1}} = \cosh^{-1} u + C, \quad u > 1$$

$$(3) \int \frac{du}{1 - u^2} = \begin{cases} \tanh^{-1} u + C, & \text{if } |u| < 1, \\ \coth^{-1} u + C, & \text{if } |u| > 1 \end{cases}$$

$$(4) \int \frac{du}{u\sqrt{1 - u^2}} = -\operatorname{sech}^{-1} |u| + C = -\cosh^{-1}\left(\frac{1}{|u|}\right) + C$$

$$(5) \int \frac{du}{u\sqrt{1 + u^2}} = -\operatorname{csch}^{-1} |u| + C = -\sinh^{-1}\left(\frac{1}{|u|}\right) + C$$

Example 7.3.10.

$$\int \frac{2 \, dx}{\sqrt{3 + 4x^2}} = \int \frac{du}{\sqrt{a^2 + u^2}}, u = 2x, a = \sqrt{3}$$
$$= \sinh^{-1}(\frac{u}{a}) + C$$
$$= \sinh^{-1}(\frac{2x}{\sqrt{3}}) + C$$
$$\frac{d^2 y}{dx^2} = a\sqrt{1 + (\frac{dy}{dx})^2}$$
(7.12)

7.4 Relative Rate of Growth

Definition 7.4.1. Suppose f(x), g(x) are positive for sufficiently large x.

(1) f grows faster than g as $x \to \infty$ if

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \infty$$

(2) f(x) grows at a smaller order than g(x) as $x \to \infty$ if

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0.$$

In this case we write f = o(g).

(3) f grows at the same rate as g as $x \to \infty$ if

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = L$$
, for some postive finite number L.

In this case we write f = O(g).

Example 7.4.2. (1) e^x grows faster than x^3 as $x \to \infty$

- (2) 3^x grows faster than 2^x as $x \to \infty$
- (3) x grows faster than $\ln x$ as $x \to \infty$

Definition 7.4.3.

Example 7.4.4. (1) $\ln x = o(x)$ as $x \to \infty$

(2) $x^2 = o(x^3)$ as $x \to \infty$

$$(3) \quad x + \sin x = O(x)$$

(4)
$$x = o(e^x)$$