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Chapter 3

Differentiation

3.8 Inverse functions and Their Derivatives

Definition 3.8.1. A function f is one-to-one on a domain D if f(x1) 6= f(x2)

whenever x1 6= x2.

Definition 3.8.2. Suppose a function f is one-to-one on a domain D with

range R. The inverse function f−1 exists and is defined by

f−1(b) = a if f(a) = b.

The domain of f−1 is R and range is D.

(f−1 ◦ f)(x) = x, x ∈ D

(f ◦ f−1)(y) = y, y ∈ R

Derivatives of inverse function

Theorem 3.8.3. Suppose f is differentiable in I. If f ′(x) is never zero, then

f−1 exists, differentiable. Furthermore for a ∈ I, f(a) = b,

(f−1)′(b) =
1

f ′(a)
.

Set y = f(x). Then the inverse function is x = f−1(y), and its derivative is

dx

dy

∣
∣
∣
∣
y=f(a)

=
1

dy/dx|x=a

, a ∈ I

3
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f(x)

f−1(x)

Figure 3.1: Slope of inverse function

f(x)

f−1(x)

Figure 3.2: Graph of inverse function is symmetric about y = x

Proof. Differentiate x = (f−1 ◦ f)(x) = f−1(f(x)) = f−1(y) w.r.t x using the

Chain rule, we have

1 = (f−1)′(f(x))f ′(x).

Setting x = a, we see 1 = (f−1)′(f(a))f ′(a). Thus

(f−1)′(b) = 1/f ′(a).

Usually, we use the notation y = f−1(x). The graph of y = f(x) and that

of y = f−1(x) are symmetric w.r.t the line y = x.

Example 3.8.4. (1) f(x) = x7 + 8x3 + 4x− 2. Find (f−1)′(−2).

(2) f(x) = sin−1 x. Find (fx)′.

sol. (1) Since f ′ = 7x6 + 24x2 + 4 ≥ 4 inverse f−1 exists. Since f(0) = −2
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we have

(f−1)′(−2) = (f−1)′(f(0)) =
1

f ′(0)
=

1

4
.

(2) y = sin−1 x, x = sin y. Hence

d

dx
sin−1 x =

dy

dx
=

1

dx/dy
=

1

(d/dy) sin y

=
1

cos y
=

1
√

1− sin2 y
=

1√
1− x2

.

3.9 Logarithmic functions

Definition 3.9.1. For x > 0, the (natural) logarithmic function is defined by

lnx =

∫ x

1

1

t
dt.

Thus by fundamental theorem,

d

dx
lnx =

1

x
. (3.1)

If u(x) is any positive differentiable function,

d

dx
lnu(x) =

1

u

du

dx
. (3.2)

Properties:

(1) ln bx = ln b+ lnx

(2) ln b
x = ln b− lnx

(3) ln 1
x = − lnx

(4) lnxr = r lnx (For rational number r).

The proof of (4) is in Example 3.9.5.
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1 2 3 4 5−1−2

1

2

3

4

−1

−2

e

lnx =
∫ x

1

1

t
dt

y = ln x

y = 1

x

y = ex

Figure 3.3: Graph of lnx and ex

Exponential function

Definition 3.9.2. Define the (natural) exponential function exp(x) := ln−1 x

as the inverse function of lnx. Thus

y = exp(x) ⇔ x = ln y.

Thus

exp(lnx) = x, (x > 0) (3.3)

ln(exp(x)) = x. (3.4)

The number e is defined as

e = exp(1) = ln−1(1) = 2.718281828 · · · . (3.5)

The function e
x

We can raise the number e to a rational power such as:

e2 = e · e, e1/2 =
√
e, ...
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For rational number x, the value ex is well defined. We see

ln ex = x ln e = x. (3.6)

Thus the rational power ex is the same as the exp(x). Thus it is natural to

define

Definition 3.9.3. For all real number x, we let

ex = exp(x) . (3.7)

The exponential function exp(x) satisfies the usual rule for exponentiation

such as ea+b = eaeb.

Exponential function a
x

Since a = eln a for any positive number a, we can define ax by

ax = elnax

= ex ln a

= e(ln a)x.

Definition 3.9.4. If a is a positive number and x is any number, we define

ax = ex ln a. (3.8)

Since ln ex = x for all real x, we have

lnxn = ln(en lnx) = n lnx, x > 0.

One can also use the definition of lnx =
∫ x
1 dt to prove it.

Example 3.9.5. [Power rule] The derivative of xn for any number n:

d

dx
xn =

d

dx
en lnx (x > 0)

= en lnx · d

dx
(n lnx)

= xn · n
x

= nxn−1.
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Derivative of ax

By definition, ax = ex lna. Thus

d

dx
ax =

d

dx
ex lna = ln aex lna = ax ln a.

d

dx
au = au ln a

du

dx

General logarithmic function loga x

y = loga x is defined as the inverse function of y = ax(a > 0, a 6= 1). Thus

loga x = y ⇔ ay = x

loga(a
x) = x, for all x, and a(loga x) = x, (x > 0)

log10 x is written as log x and called common logarithmic function

Properties

(1) Product rule: loga xy = loga x+ loga y.

(2) Quotient rule: loga
x
y = loga x− loga y.

(3) Product rule: loga
1
y = − loga y.

(4) Power rule: loga x
y = y loga x.

Inverse properties

(1) Base a: aloga x = x, loga(a
x) = x(a > 0, a 6= 1, x > 0).

(2) Base e: elnx = x, ln(ex) = x(x > 0).

Derivative of loga x

We have

loga x =
lnx

ln a
. (3.9)
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Proof.

a(loga x) = x

ln a(loga x) = lnx

loga x · ln a = lnx

loga x =
lnx

ln a
.

So
d

dx
loga x =

1

x ln a

and
d

dx
loga u =

1

u ln a

du

dx
.

Logarithmic Differentiation

Find dy/dx if y = (x2+1)1/3(x−3)1/2

x+5 .

Derivatives of Power function

We prove the following theorem which was stated earlier.

Theorem 3.9.6. For any real r, d
dxu

r = ur−1 du
dx .

Proof. Since ur = er lnu we have

d

dx
ur = rur

d lnu

dx
= urr

1

u

du

dx
= rur−1du

dx
.

Example 3.9.7. Differentiate f(x) = xx, x > 0

sol. Write f(x) = xx = ex lnx. So

f ′(x) =
d

dx
(ex lnx)

= (ex lnx)
d

dx
(x lnx)

= ex lnx(lnx+ x · 1
x
)

= xx(lnx+ 1).
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Example 3.9.8. Sketch the graph of x1/x. To do this, we first investigate the

behavior of the function as x → 0+ and x → ∞. To study the limit, we take

the logarithm:

lim
x→∞

lnx1/x = lim
x→∞

lnx

x
= 0

Hence

lim
x→∞

x1/x = exp( lim
x→∞

lnx

x
) = e0 = 1

Meanwhile

lim
x→0+

lnx1/x = lim
x→0+

lnx

x
= −∞.

Hence

lim
x→0+

x1/x = exp( lim
x→0+

lnx

x
) = e−∞ = 0.

To see the local extrema, take the derivative and find the critical point. f ′(x) =

(1 − lnx)/x2 = 0 for x = e. By checking the sign of f ′(x) near x = e, we

conclude x = e is a point of local maximum.

1 2 3 4 5 6 7 8 9 10

1

2

b

local max

Figure 3.4: Graph of y = x1/x

The number e as a limit

Theorem 3.9.9. The number e satisfies

e = lim
x→0

(1 + x)1/x.

Proof. If f(x) = lnx. Then f ′(1) = 1
x |x=1 = 1. By definition,

1 = f ′(1) = lim
x→0+

ln(1 + x)− ln 1

x
= lim

x→0+
ln[(1 + x)

1

x ] = ln[ lim
x→0+

(1 + x)
1

x ].
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Now exponentiate.

3.10 Inverse trig functions

b

b

1−1

y = sin−1 x

x

y

−
π
2

π
2

Figure 3.5: y = sin−1 x

b

b

1−1

y = cos−1 x

x

y

π
2

π

Figure 3.6: y = cos−1 x

Inverse sine

Restrict the function sinx on [−π/2, π/2]. Then sinx : [−π/2, π/2] → [−1, 1]

is one-to - one function. So the inverse exists. Define

sin−1 x : [−1, 1] −→ [−π/2, π/2].

whenever x = sin y for x ∈ [−π/2, π/2]. Graph is as in figure 3.5. sin−1 x is

sometimes written as arcsin x.

Inverse cosine

Restrict cos x to [0, π], we obtain cos−1 x as

cos−1 x : [−1, 1] −→ [0, π].

If cos x = y for any x ∈ [0, π] then cos−1 y = x is defined and figure is in 3.6

written as cos−1 x or arccos x.

Example 3.10.1. (1) sin−1(1/2) = π/6

(2) sin−1 1 = π/2
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Example 3.10.2. (1) cos−1(1/2) = π/3

(2) cos−1 0 = π/2

x

θ

1

1

x > 0

θ

x 1

1

x < 0

Figure 3.7: θ = cos−1 x

Example 3.10.3.

sin−1 x+ cos−1 x =
π

2
, cos−1 x+ cos−1(−x) = π

cos−1 x

1
x

sin−1 x

Figure 3.8: sin−1 x

Inverse of tan x

The function tan x is one to one on (−π/2, π/2), thus it has an inverse tan−1 x

tan−1 x : R −→ (−π/2, π/2)

for any x ∈ R. Thus tanx = α iff tan−1 α = x. See figure 3.9. It is written

as tan−1 x or arctan x.

tan−1 1 = π/4 tan−1 0 = 0.

Example 3.10.4. Find the derivative of tan−1 x.
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1 2 3−1−2−3

y = tan−1 x
x

y
y = π/2

y = −π/2

Figure 3.9: y = tan−1 x

From y = f(x) = tan x, we see by Theorem 3.8.3

(f−1)′(y) =
1

f ′(x)

=
1

1 + tan2 x

=
1

1 + y2
.

Thus (f−1)′(x) = 1
1+x2 .

Example 3.10.5. Find derivatives

(1) y = sin−1 x, (|x| ≤ 1).

(2) y = sec−1 x, (|x| ≥ 1).

sol. (3) Let y = sec−1 x. Then x = sec y. Taking derivative w.r.t x, we get

1 = sec y tan y(dy/dx). Thus

dy

dx
=

1

sec y tan y
.

We need to change it to expression in x.

For x > 1, tan y =
√
x2 − 1. Hence, we have

dy

dx
=

1

x
√
x2 − 1

, x > 1.

For x < −1, use (x → −x) to get

dy

dx
=

1

−x
√
x2 − 1

, x < −1.
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Hence
d

dx
sec−1 x =

1

|x|
√
x2 − 1

, |x| > 1.

Other inverse trig functions

Inverses of csc x, secx, cot x

csc−1 x : R− (−1, 1) → [−π/2, π/2] − {0}

sec−1 x : R− (−1, 1) → [0, π] − {π/2}

cot−1 x : R → (0, π). (Note that the range is different from that of tan−1 x)

1 2 3−1−2−3

y = cot−1 x

x

y
y = π

π
2

1 2 3−1−2−3

y = csc−1 x

x

y
π
2

−π
2

1 2 3−1−2−3

π

−π

A

B

y = sec−1 x

x

y

Figure 3.10:

Proposition 3.10.6. The derivatives of inverse trig. functions :
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(1)
d

dx
sin−1 x =

1√
1− x2

(2)
d

dx
cos−1 x = − 1√

1− x2

(3)
d

dx
tan−1 x =

1

1 + x2

(4)
d

dx
csc−1 x = − 1

|x|
√
x2 − 1

, |x| > 1

(5)
d

dx
sec−1 x =

1

|x|
√
x2 − 1

, |x| > 1

(6)
d

dx
cot−1 x = − 1

1 + x2
.

Proposition 3.10.7. The following relations hold.

cos−1 x = (π/2) − sin−1 x

cot−1 x = (π/2) − tan−1 x

csc−1 x = (π/2) − sec−1 x

cot−1 x = tan−1(1/x)

sec−1 x = cos−1(1/x)

csc−1 x = sin−1(1/x)

Example 3.10.8. (1) Find sin(cos−1(3/5))

(2) Simplify tan(sin−1 a)

sol. (1) Let θ = cos−1(3/5). Then cos θ = 3/5 and 0 ≤ θ ≤ π. Hence

sin θ =

√

1− 9

25
=

4

5
.

(2) Let θ = sin−1 a. Then sin θ = a and −π/2 ≤ θ ≤ π/2.

cos θ =
√

1− a2.

Hence

tan θ = sin θ/ cos θ = a/
√

1− a2. (3.10)



16 CHAPTER 3. DIFFERENTIATION

Integral of tan x, cotx, sec x and csc x

∫

tanx dx =

∫
sinx

cos x
dx

= −
∫

du

u

= − ln |u|+ C

= − ln | cos x|+ C

= ln
1

| cos x| + C

= ln | sec x|+ C.

For sec x we need special trick:

∫

secx dx =

∫

secx
(sec x+ tanx)

(sec x+ tanx)
dx

=

∫
(sec2 x+ sec x tan x)

sec x+ tanx
dx

=

∫
du

u

= ln |u|+ C

= ln | sec x+ tanx|+ C.

For csc x we do similarly. Thus we have

∫
secx dx = ln | sec x+ tanx|+ C

∫
cscx dx = − ln | csc x+ cot x|+ C.

3.11 Linearization and differential

Definition 3.11.1. Given a differentiable function f , the linear function

L(x) = f(a) + f ′(a)(x− a)

is called the linearization of f at a.

Example 3.11.2. (1) Find the linearization of cos x at π/2.
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(2) Find an approx value of
√
1.003 using the linearization of

√
1 + x at

x = 0.

(3) Find the linearization of 1
3
√
x4+1

at x = 0

(4) Find an approx value of
√
4.8

(5) Find the linearization of cos x at π/2. Ans −x+ π/2.

(6) Find the linearization of (1 + x)k. Ans 1 + kx.

Differential

Definition 3.11.3. Let y = f(x) be differentiable. We can treat dx(differential)

like an independent variable. In this point of view, the quantity dy defined by

dy := f ′(x)dx

is called the differential of f.

The geometric meaning of differential is given in Figure 3.11. We observe

∆y = f(a+ dx)− f(a), f(a+ dx) = f(a) + ∆y ≈ f(a) + dy.

We see that dy is precisely the change of the tangent line as x changes by an

amount of dx = ∆x. In other words, dy is an approximation of exact change

∆y.

Example 3.11.4. Find differential of

(1) y = x3 − sinx

(2) y = sinu(x)

(3) tan(3x)

(4) d( x
1+x ).

Estimating with differentials

Radius of a circle is enlarged from 10 to 10.1. Use dA to estimate the increase

in area. Compare with exact increase.
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dx = ∆x

f ′(a)dx
∆y

x x+∆x

Figure 3.11: Differential dy = f ′(a)dx and ∆y

A = πr2,

dA = 2πrdr = 2π(10)(0.1) = 2πm2.

Actual increase is A(10.1) −A(10) = 2π((10.1)2 − 100) = 2.01π.

Error in differential approximation

We estimate the change in y in more detail.

Theorem 3.11.5. We have

∆f = f ′(a)∆x+ ǫ∆x,

where ǫ → 0 as ∆x → 0.

Proof.

approximation error = ∆f − df

= ∆f − f ′(a)∆x

= f(a+∆x)− f(a)− f ′(a)∆x

=

(
f(a+∆x)− f(a)

∆x
− f ′(a)

)

∆x

= ǫ∆x.
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Since f is differentiable, we know ǫ :=
(
f(a+∆x)−f(a)

∆x − f ′(a)
)

approaches 0 as

∆x approaches 0. Thus

true

change

∆f =

estimated

change

f ′(a)∆x +
error
ǫ∆x

Proof of Chain rule

Assume y = f(u) is a diff’ble function of u and u = g(x) is a diff’ble function

of x. Then the composite function y = f(g(x)) is diff’ble and by theorem

there exist ǫ1, ǫ2 which approaches 0 as ∆u,∆x approaches 0 in such a way

that

∆y = f ′(u0)∆u+ ǫ2∆u

∆u = g′(x0)∆x+ ǫ1∆x.

Hence

∆y = (f ′(u0) + ǫ2)(g
′(x0) + ǫ1)∆x

∆y

∆x
= (f ′(u0) + ǫ2)(g

′(x0) + ǫ1).

Let ∆x → 0. Then we obtain the Chain rule.

Example 3.11.6. Converting mass to energy: The Newton’s law

F = m
dv

dt
= ma

is not exactly true when an object is moving at very high speed, because the

mass increases with velocity. In Einstein’s correction, the mass is

m =
m0

√

1− v2/c2
≈ m0(1 +

v2

2c2
).

So the new mass is

m ≈ m0 +
mv2

2c2
.

By multiplying c2

(m−m0)c
2 ≈ 1

2
mv2 − 1

2
m02 = ∆(KE).

Thus the change in the mass corresponds to the change in the Kinetic Energy.
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Chapter 7

Integrals and transcendental

function

In chapter 2 we introduced natural logarithmic function as the inverse of the

exponential function ex, where the number e was chosen to satisfy certain slope

condition. In this chapter, we introduce an alternative theory for exponential

and log. function.

7.1 Logarithm defined as integral

Definition 7.1.1.

lnx =

∫ x

1

1

t
dt, (x > 0)

Derivative of ln x

d

dx
lnx =

d

dx

∫ x

1

1

t
dt =

1

x
.

Hence

∫
1

t
dt = ln |x|+ C.

By substitution

∫
f ′(x)

f(x)
dx = ln |f(x)|+ C whenever f(x) 6= 0.

21
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Example 7.1.2. (1)

∫ 2

0

2x

x2 − 5
dx = ln |u|−1

−5.

(2)

∫ π/2

−π/2

4 cos θ

3 + 2 sin θ
dθ =

∫ 5

1

2

u
du.

Exponential function

Definition 7.1.3. Define the (natural) exponential function exp(x) as the

inverse function of lnx. Thus

y = exp(x) ⇔ x = ln y.

Thus

exp(lnx) = x, (x > 0) (7.1)

ln(exp(x)) = x,∀x. (7.2)

Definition 7.1.4. The number e is defined as the number satisfying

ln e = 1, or

∫ e

1

1

t
dt = 1

The number e is approximately

e = 2.718281828 · · · . (7.3)

The function e
x

We can raise the number e to a rational power such as:

e2 = e · e, e1/2 =
√
e, ...

For rational number x, the value ex is well defined. Let us consider

ln ex = x ln e = x. (7.4)

Thus the rational power ex is the same as the exp(x). Thus it is natural to

define
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Definition 7.1.5. For all real number x, we define

ex = exp(x). (7.5)

The exponential function exp(x) satisfies the usual rule for exponentiation

such as ea+b = eaeb.

Exponential function a
x

Since a = eln a for any positive number a, we can define ax by

ax = elnax

= ex ln a

= e(ln a)x.

Definition 7.1.6.

If a is a positive number and x is any number, ax = ex lna. (7.6)

Since ln en = x for all x, we have

lnxn = ln(en lnx) = n lnx, x > 0.

Example 7.1.7 (Power rule). The derivative of xn for any number n:

d

dx
xn =

d

dx
en lnx (x > 0)

= en lnx · d

dx
(n lnx)

= xn · n
x

= nxn−1.

Derivative of ax

By definition, ax = ex lna. Thus

d

dx
ax =

d

dx
ex lna = ln aex lna = ax ln a.

d

dx
au = au ln a

du

dx
.
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General logarithmic function loga x

y = loga x is defined as the inverse function of y = ax(a > 0, a 6= 1). Thus

loga x = y ⇔ ay = x

loga(a
x) = x, for all x, a(loga x) = x, (x > 0)

log10 x is written as log x and called the common logarithmic function.

Properties

(1) Product rule: loga xy = loga x+ loga y

(2) Quotient rule: loga
x
y = loga x− loga y

(3) Product rule: loga
1
y = − loga y

(4) Power rule: loga x
y = y loga x

Inverse properties

(1) Base a: aloga x = x, loga(a
x) = x(a > 0, a 6= 1, x > 0)

(2) Base e: elnx = x, ln(ex) = x(x > 0)

Derivative of loga x

loga x =
lnx

ln a
. (7.7)

Proof.

a(loga x) = x

ln a(loga x) = lnx

loga x · ln a = lnx

loga x =
lnx

ln a
.

So
d

dx
loga x =

1

x ln a

and
d

dx
loga u =

1

u ln a

du

dx
.
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Logarithmic Differentiation

Find dy/dx if y = (x2+1)1/3(x−3)1/2

x+5 .

Derivatives of Power function

We prove the following theorem which was stated earlier.

Theorem 7.1.8. For any real r, d
dxu

r = ur−1 du
dx .

Proof. Since ur = er lnu we have

d

dx
ur = rur

d lnu

dx
= urr

1

u

du

dx
= rur−1du

dx
.

Example 7.1.9. Differentiate f(x) = xx, x > 0

sol. Write f(x) = xx = ex lnx. So

f ′(x) =
d

dx
(ex lnx)

= (ex lnx)
d

dx
(x lnx)

= ex lnx(lnx+ x · 1
x
)

= xx(lnx+ 1).

The number e as a limit

Theorem 7.1.10. The number e satisfies

e = lim
x→0

(1 + x)1/x.

Proof. If f(x) = lnx. Then f ′(1) = 1
x |x=1 = 1. By definition,

1 = f ′(1) = lim
x→0+

ln(1 + x)− ln 1

x
= lim

x→0+
ln[(1 + x)

1

x ] = ln[ lim
x→0+

(1 + x)
1

x ].

Now exponentiate.
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7.2 Exponential change and separable differentiable

equations

The decay of radioactive material or money earning interests in bank account,

temperature between a cup of hot water and room air it sits, etc follows the

law of exponential change Suppose y(t) denotes some quantity which changes

according to the exponential law: The rate of change of y is proportional to

y.
dy

dt
= ky

with I.C. Then y = Aekt.

Example 7.2.1. Assume a disease is spreading ”Entero virus”, ”A.I” Let y

be the number of people infected by disease. Assume we cure people as much

as possible. Then dy/dt is proportional to y.(The more people, the more

infected, the more cured) Suppose for each year the number is reduced by

20% and 10,000 people infected today, how many years will it take to reduce

to 1, 000?

sol. y = Aekt, A = 10, 000 Since it is reduced by 0.2 each year, we see

0.8 = ek·1 → k = ln 0.8 < 0

So we have y = 10, 000e(ln 0.8)t we want 10, 000e(ln 0.8)t = 1, 000. So e(ln 0.8)t =
1
10 . ln(0.8)t = ln(0.1). t = ln(0.1)

ln(0.8) ≈ 10.32 yrs.

Example 7.2.2 (Half life of a radioactive material). y0e
−kt = 1

2y0. so t =

ln 2/k.

Example 7.2.3 (Carbon 14). It is estimated the half life of Carbon 14 is

5700 yrs. AS wooden artifact was found from an ancient site. This con-

tains carbon 14 about 10% less than the living tree. How old is the site?

k = ln 2/Half life = n2/5700. y = y0e
−kt = 0.9y0 So e−kt = 0.9 or

t = −5700 ln 0.9
ln 2 = 866 yrs.

Example 7.2.4 (Law of Cooling). IfH is the temperature of an object andHs

the surrounding temperature. Then the rate of change(cooling) is proportional
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to the temperature difference. Thus

dH

dt
= −k(H −Hs).

Solving

H −Hs = (H0 −Hs)e
−kt.

A boiled egg at 98o is put in the sink of 18o to cool down. In 5 min, the egg

was 38o. how much longer will it take to reach 20o?

sol.

H − 18 = (98− 18)e−kt, H = 18 + 80e−kt.

Set H = 38, t = 5. Then e−5k = 1/4 and

k = − ln 1/4

5
= 0.2 ln 4 ≈ 0.28.

H = 18 + 80e−(0.2 ln 4)t.

Solving t ≈ 13 min.

Separable Differential Equations

A general differential equation is given in the form

dy

dx
= f(x, y) (7.8)

with certain initial condition such as y(x0) = y0. Such equation is called

separable if f is expressed as a product of a function of x and a function of

y, i.e,
dy

dx
= g(x)H(y).

We rewrite it to
dy

dx
=

g(x)

h(y)

and ∫

h(y) dy =

∫

g(x) dx. (7.9)
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Example 7.2.5. Solve

dy

dx
= (1 + y)ex, y > −1. (7.10)

dy

dx
= (1 + y)ex

dy

1 + y
= exdx

∫
dy

1 + y
=

∫

exdx

ln(1 + y) = ex + C.

7.3 Hyperbolic function

hyperbolic function

Any f(x) can be written as even part and odd part

f(x) =
f(x) + f(−x)

2
︸ ︷︷ ︸

even part

+
f(x)− f(−x)

2
︸ ︷︷ ︸

odd part

.

Hence ex can be written as

ex =
ex + e−x

2
+

ex − e−x

2
(7.11)
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Definition 7.3.1 (hyperbolic function). 1

hyperbolic cosine coshx =
ex + e−x

2
,

hyperbolic sine sinhx =
ex − e−x

2
,

hyperbolic tangent tanhx =
sinhx

coshx
=

ex − e−x

ex + e−x
,

hyperbolic cotangent coth x =
1

tanhx
=

ex + e−x

ex − e−x
,

hyperbolic secant sech x =
1

coshx
=

2

ex + e−x
,

hyperbolic cosecant csch x =
1

sinhx
=

2

ex − e−x
.

Some identities of hyperbolic functions:

Proposition 7.3.2.

(1) sinh 2x = 2 sinhx cosh x

(2) cosh 2x = cosh2 x+ sinh2 x

(3) sinh2 x =
cosh 2x− 1

2

(4) cosh2 x =
cosh 2x+ 1

2

(5) cosh2 x− sinh2 x = 1

(6) tanh2 x = 1− sech2 x

(7) coth2 x = 1 + csch2 x

Proposition 7.3.3.

(1)
d

dx
(sinhu) = coshu

du

dx

(2)
d

dx
(cosh u) = sinhu

du

dx
1hyperbolic functions have many things in common with trig. functions. We can define

trig. functions sin x and cos x using complex numbers. We define eiθ = cos θ + i sin θ. Then
e−iθ = cos θ − i sin θ and hence

cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ − e−iθ

2i
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1−1

1

−1

x

y

0

y = coshx

y = sinhx

y = ex

2
y = e−x

2

y = − e−x

2

x

y

0

y = 1

y = −1

y = coth x

y = coth x

y = tanh x

x

y

0

y = 1

y = coshx

y = sechx
x

y

0

y = csch x

y = sinhx

Figure 7.1: hyperbolic functions

(3)
d

dx
(tanh u) = sech2 u

du

dx

(4)
d

dx
(coth u) = − csch2 u

du

dx

(5)
d

dx
(sech u) = − sech u tanhu

du

dx

(6)
d

dx
(csch u) = − csch u coth u

du

dx

Proposition 7.3.4.

(1)

∫

sinhu du = cosh u+ C

(2)

∫

cosh u du = sinhu+ C

(3)

∫

sech2 u du = tanhu+C

(4)

∫

csch2 u du = − coth u+ C
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(5)

∫

sech u tanhu du = − sech u+ C

(6)

∫

csch u coth udu = − csch u+ C

Example 7.3.5. (1) The indefinite integral of sinh2 x can be computed just

as that of sin2 x.

∫ 1

0
sinh2 x dx =

∫ 1

0

cosh 2x− 1

2
dx

=
1

2

[
sinh 2x

2
− x

]1

0

=
sinh 2

4
− 1

2
.

(2) Using the definition of sinhx

∫ ln 2

0
4ex sinhx dx =

∫ ln 2

0
4ex

ex − e−x

2
dx =

∫ ln 2

0
(2e2x − 2) dx

=
[
e2x − 2x

]ln 2

0

= 3− 2 ln 2.

Inverse hyperbolic function

The function y = sinhx is defined on (−∞,∞) having values in (−∞,∞). So

(inverse hyperbolic sine ) y = sinh−1 x is defined on (−∞, ∞).

The function y = coshx restricted to x ≥ 0 is 1-1 to [1,∞). So inverse

y = cosh−1 inverse hyperbolic cosine is defined on [1,∞).

y = sech x restricted to x ≥ 0 is one-to-one. Hence its inverse y = sech−1 x

is defined on (0, 1]. Meanwhile y = tanhx, y = coth x, y = csch x are one-

to-one on (−∞,∞). Hence their inverses y = tanh−1 x, y = coth−1 x, y =

csch−1 x are defined accordingly. The graphs are as in figure 7.2

Proposition 7.3.6. Inverse hyperbolic functions can be repre-

sented by log functions.

(1) sinh−1 x = ln
(
x+

√

x2 + 1
)
, −∞ < x < ∞

(2) cosh−1 x = ln
(
x+

√

x2 − 1
)
, x ≥ 1

(3) tanh−1 x =
1

2
ln

1 + x

1− x
, |x| < 1
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x

y

y = sinh x

y = sinh−1 x

y = x

x

y

y = cosh x

y = cosh−1 x

y = x

x

y

y = sech−1 x

y = sech x, x ≥ 0

y = x

x

y

y = csch x

y = csch−1 x

y = x

x

y
y = tanh−1 x

y = tanh x

y = x

x

y

y = coth x

y = coth−1 x

y = x

Figure 7.2: Inverse hyperbolic functions

(4) sech−1 x = ln

(
1 +

√
1− x2

x

)

, 0 < x ≤ 1

(5) csch−1 x = ln

(
1

x
+

√
1 + x2

|x|

)

, x 6= 0

(6) coth−1 x =
1

2
ln

x+ 1

x− 1
, |x| > 1.

Proof. We prove the formula for sinh−1 x.

y = sinhx =
ex − e−x

2
,

ex − e−x = 2y,

e2x − 2yex − 1 = 0,

ex = y +
√

y2 + 1. (Since y −
√

y2 + 1 is negative, we drop it.)

Hence x = ln(y +
√

y2 + 1), or y = ln(x+
√
x2 + 1) is the sinh−1 x.
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Proposition 7.3.7.

(1) sech−1 x = cosh−1 1

x

(2) csch−1 x = sinh−1 1

x

(3) coth−1 x = tanh−1 1

x

Derivatives of inverse hyperbolic functions

Proposition 7.3.8.

(1)
d(sinh−1 u)

dx
=

1√
1 + u2

du

dx

(2)
d(cosh−1 u)

dx
=

1√
u2 − 1

du

dx
, u > 1

(3)
d(tanh−1 u)

dx
=

1

1− u2
du

dx
, |u| < 1

(4)
d(coth−1 u)

dx
=

1

1− u2
du

dx
, |u| > 1

(5)
d(sech−1 u)

dx
=

−du/dx

u
√
1− u2

, 0 < u < 1

(6)
d(csch−1 u)

dx
=

−du/dx

|u|
√
1 + u2

, u 6= 0

Proposition 7.3.9.

(1)

∫
du√
1 + u2

= sinh−1 u+ C

(2)

∫
du√
u2 − 1

= cosh−1 u+ C, u > 1

(3)

∫
du

1− u2
=







tanh−1 u+ C, if |u| < 1,

coth−1 u+ C, if |u| > 1

(4)

∫
du

u
√
1− u2

= − sech−1 |u|+ C = − cosh−1

(
1

|u|

)

+C

(5)

∫
du

u
√
1 + u2

= − csch−1 |u|+ C = − sinh−1

(
1

|u|

)

+ C
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Example 7.3.10.

∫
2 dx√
3 + 4x2

=

∫
du√

a2 + u2
, u = 2x, a =

√
3

= sinh−1(
u

a
) + C

= sinh−1(
2x√
3
) + C

d2y

dx2
= a

√

1 +
(dy

dx

)2
(7.12)

7.4 Relative Rate of Growth

Definition 7.4.1. Suppose f(x), g(x) are positive for sufficiently large x.

(1) f grows faster than g as x → ∞ if

lim
x→∞

f(x)

g(x)
= ∞

(2) f(x) grows at a smaller order than g(x) as x → ∞ if

lim
x→∞

f(x)

g(x)
= 0.

In this case we write f = o(g).

(3) f grows at the same rate as g as x → ∞ if

lim
x→∞

f(x)

g(x)
= L, for some postive finite number L.

In this case we write f = O(g).

Example 7.4.2. (1) ex grows faster than x3 as x → ∞

(2) 3x grows faster than 2x as x → ∞

(3) x grows faster than lnx as x → ∞

Definition 7.4.3.

Example 7.4.4. (1) lnx = o(x) as x → ∞

(2) x2 = o(x3) as x → ∞
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(3) x+ sinx = O(x)

(4) x = o(ex)


