
Chapter 7

Surface integrals and Vector

Analysis

7.1 Parameterized Surfaces

Graphs are too restrictive.

See the following surface or simply a sphere or torus. Those are important

examples of figures that arise often in real life. But those figures cannot be rep-

resented as the graphs of functions. Thus we need other ways of representing

surfaces.

Figure 7.1: A surface that is not the graph of a function

Definition 7.1.1. A parameterized surface is a (one-to-one) function

X : D ⊂ R
2 → R

3 where D is a domain in R
2. The underlying surface
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S is the image X(D) of X. The function X is also called a parametrization

of S. Usually, we write

X(s, t) = (x(s, t), y(s, t), z(s, t)).

If X is differentiable or C1, then we say S is differentiable or C1-surface.

x

y

z

t

s

X(s, t)

Figure 7.2: A parametrization

Example 7.1.2. The graph of a function is a special case. If z = f(x, y)

(x, y) ∈ D then

X(s, t) = (s, t, f(s, t))

is a parametrization of the surface.

Example 7.1.3. Let D = [0, π] × [0, 2π) and

X(s, t) = (a sin s cos t, a sin s sin t, a cos t).

The parametric surface is a sphere of radius a.

How about the cylinder? We can set X(s, t) = (a cos s, a sin s, t), 0 ≤ s ≤
2π.

Example 7.1.4. Consider a parametrization of the surface.



















x = (a+ b cos t) cos s, 0 ≤ s, t ≤ 2π,

y = (a+ b cos t) sin s, a > b > 0,

z = b sin t



7.1. PARAMETERIZED SURFACES 209

Investigate it.

sol. The surface satisfies the equation

(

√

x2 + y2 − a
)2

+ z2 = b2.

Let us fix t = t0. Then it describes a circle of radius (a+ b cos t0) lying in the

plane: z = b sin t0.

Let’s fix s = s0. Then



















x = (a+ b cos t) cos s0, 0 ≤ t ≤ 2π,

y = (a+ b cos t) sin s0,

z = b sin t

⇒



















x− a cos s0 = b cos t cos s0, 0 ≤ t ≤ 2π,

y − a sin s0 = b cos t sin s0,

z = b sin t

Since

(x− a cos s0, y − a sin s0, z) = b(cos s0 cos t, sin s0 cos t, sin t)

has length b, the curve is a circle centered at (a cos s0, a sin s0, 0). This surface

is called a torus.

Coordinate Curves, Normal Vectors and Tangent Planes

Consider the mapping X : D → R
3, where we write X = (x, y, z). First look

at the case when the surface is the graph of f : D → R. Then we have

X(x, y) = (x, y, f(x, y)).

To study the surface we look at the sections: First fix y = y0 and then x = x0.

Then tangent vectors in the direction of x-axis and y-axis at X(x0, y0) =

(x0, y0, f(x0, y0)) are

Xx(x0, y0) = i+ fx(x0, y0)k, Xy(x0, y0) = j+ fy(x0, y0)k.
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Hence the tangent plane is perpendicular to the normal vector given by the

cross product

Xx(x0, y0)×Xy(x0, y0) = (i+ fx(x0, y0)k)× (j+ fy(x0, y0)k)

=

∣

∣

∣

∣

∣

∣

∣

i j k

1 0 fx(x0, y0)

0 1 fy(x0, y0)

∣

∣

∣

∣

∣

∣

∣

= −fx(x0, y0)i− fy(x0, y0)j+ k.

In general, we see two tangent vectors are

Ts =
∂X

∂s
=

∂x

∂s
i+

∂y

∂s
j+

∂z

∂s
k

∣

∣

∣

∣

(s0,t0)

Tt =
∂X

∂t
=

∂x

∂t
i+

∂y

∂t
j+

∂z

∂t
k

∣

∣

∣

∣

(s0,t0)

These are obtained by considering the cross sections t = t0 and s = s0 respec-

tively. If the normal vector

N = Ts ×Tt =
∂X

∂s
× ∂X

∂t

is nonzero, then we say the surface is smooth.

N

Tt

Ts

x

y

z

Figure 7.3: Coord. curves, Tangent vectors and normal vectors to a surface

Definition 7.1.5. When N is a normal vector to a surface, the tangent
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plane at X(s0, t0) = (x0, y0, z0) is defined by

N · (x− x0, y − y0, z − z0) = 0.

Or if N = (n1, n2, n3), then the equation of tangent plane is

n1(x− x0) + n2(y − y0) + n3(z − z0) = 0.

Example 7.1.6. Consider a surface given by

x = s cos t, y = s sin t, z = s2 + t2.

Find the tangent plane at X(1, 0).

sol. X(s, t) = (s cos t, s sin t, s2 + t2). So

Ts = (cos t, sin t, 2s), Tt = (−s sin t, s cos t, 2t).

We see Ts×Tt = (−2s2 cos t+2t sin t,−2s2 sin t− 2t cos t, s). Since X(1, 0) =

(1, 0, 1) and N = Ts ×Tt(1, 0) = (−2, 0, 1), we have

−2(x− 1) + 0(y − 0) + 1(z − 1).

Example 7.1.7 (Cone). Consider

X(s, t) = (s cos t, s sin t, s), s ≥ 0.

Is it smooth(regular) ?

sol.

Ts = (cos t, sin t, 1), Tt = (−s sin t, s cos t, 0).

Since Ts ×Tt = 0 at (0, 0, 0), it is not regular.

Example 7.1.8. Find a parametrization of the following hyperboloid of one

sheet

x2 + y2 − z2 = 1.
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sol. Since the graph is symmetric in x and y, it is natural to use polar

coordinate

x = cos θ, y = sin θ, (0 ≤ θ ≤ 2π)

to transform it to

r2 − z2 = 1.

Next we use the following parametrization

r = cosh s, z = sinh s, (−∞ < s < ∞)

to get

x = cosh s cos θ, y = cosh s sin θ, z = sinh s.

So

X(s, θ) = (x(s, θ), y(s, θ), z(s, θ))

= (cosh s cos θ, cosh s sin θ, sinh s), (−∞ < s < ∞, 0 ≤ θ ≤ 2π).

Definition 7.1.9. A piecewise smooth surface is a set which is defined as

a union of finitely many surfaces Xi : Di → R
3, i = 1, · · · ,m, where each

surface Xi is smooth.

Area of Parameterized Surface

Recall 2-D case: When : D∗ → D is a transformation in R
2, the two tangent

vectors to the boundary of D = T (D∗) at T (u, v) are

Tu∆u, Tv∆v.

These form a parallelogram approximating the region D(figure 7.4). The area

of the parallelogram is

∣

∣

∣

∣

∣

∂x
∂u∆u ∂x

∂v∆v
∂y
∂u∆u ∂y

∂v∆v

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣

∣

∣

∣

∣

∆u∆v =
∂(x, y)

∂(u, v)
∆u∆v.

‖Tu × Tv‖∆u∆v = |J |∆u∆v.
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u
∆u

v

∆v

x

y

Tv∆v

Tu∆u

T (u, v)

Figure 7.4: approximate T (D∗)

In this section, we show how to find the area of U = X(D) where X : D →
R
3 is a surface parametrization. First divide D into small rectangles. Consider

a small rectangle R = [s, s + ∆s] × [t, t + ∆t]. The image of R under X is a

portion of the surface having four corners at

X(s, t), X(s+∆s, t), X(s, t+∆t), X(s+∆s, t+∆t).

This surface can be approximated by a parallelogram whose sides are given

by(fig 7.5) Xs(s, t)∆s and Xt(s, t)∆t, where

Xs = Ts = ∂X
∂s = ∂x

∂s i+
∂y
∂s j+

∂z
∂sk

Xt = Tt = ∂X
∂t = ∂x

∂t i+
∂y
∂t j+

∂z
∂tk.

(7.1)

Hence the area of X(R) is approximated by

‖Ts ×Tt‖∆s∆t.

Hence the area of the surface is the limit of the following sum:

∑

‖Ts ×Tt‖∆s∆t.

Definition 7.1.10. We define the surface area A(S) of a parameterized sur-

face S by

A(S) =

∫∫

D
‖Ts ×Tt‖dsdt.

We let

dS = ‖Xs ×Xt‖dsdt,
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X

t

s
O

(s, t) (s+∆s, t)

(s, t+∆t) (s+∆s, t+∆t)

R

D

x

z

O

Xs∆s

Xt∆t

X(D)

Figure 7.5: Approx. area of surface by a tangent plane

and call it the surface element. Then we see from (7.1) that 1

∫∫

X

dS =

∫∫

D
‖Xs ×Xt‖dsdt

=

∫∫

D

√

[

∂(y, z)

∂(s, t)

]2

+

[

∂(z, x)

∂(s, t)

]2

+

[

∂(x, y)

∂(s, t)

]2

dsdt.

Remark 7.1.11. The area of a surface is independent of parametrization.

Example 7.1.12 (Cone). Let D be the surface of a cone given by

x = r cos θ, y = r sin θ, z = r.

sol. Either use formula above or compute directly using ‖Tr × Tθ‖drdθ.
We can show that ‖Tr ×Tθ‖ = r

√
2.

Example 7.1.13 (Helicoid-like surface). Let S be the surface given by

x = r cos θ, y = r sin θ, z = θ, (0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1).

Find its area.

sol. ‖Tr ×Tθ‖ =
√
r2 + 1. Need the table to see

π[
√
2 + log(1 +

√
2)].

1
X is assumed to be 1-1.
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Surface Area of a Graph

When a surface U is given by the graph of function z = f(x, y) on D, we see

U is parameterized by X(x, y) = (x, y, f(x, y)). Find Xx, Xy by

Xx = i+
∂f

∂x
k, Xy = j+

∂f

∂y
k.

Since

Xx ×Xy = (i+
∂f

∂x
k)× (j+

∂f

∂y
k) = −∂f

∂x
i− ∂f

∂y
j+ k,

the area is

∫∫

X

dS =

∫∫

D

(

(∂f/∂x)2 + (∂f/∂y)2 + 1
)1/2

dxdy.

The unit normal vector N(x, y, z) on U is

N(x, y, z) = −∂f

∂x
i− ∂f

∂y
j+ k.

We can find the formula using the angle between N and k. Let ϕ be the angle

between N and k. Then cosϕ satisfies

cosϕ =
N · k
‖N‖ =

1
√

(∂f/∂x)2 + (∂f/∂y)2 + 1
.

Hence

dS =

√

(∂f/∂x)2 + (∂f/∂y)2 + 1dxdy =
dxdy

cosϕ
,

and we get
∫∫

X

dS =

∫∫

D

dxdy

cosϕ
.

Example 7.1.14. Find the surface area of a unit ball.

sol. From x2 + y2 + z2 = 1, we let z = f(x, y) =
√

1− x2 − y2.

∂f

∂x
=

−x
√

1− x2 − y2
,

∂f

∂y
=

−y
√

1− x2 − y2
.
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kN

θ

Figure 7.6: Ratio between two surface

Area of the half sphere is

∫∫

X

dS =

∫∫

D

1
√

1− x2 − y2
dxdy

=

∫ 2π

0

∫ 1

0

r√
1− r2

drdθ

= 2π.

Surface of revolution

The surface area generated by revolving the graph y = f(x) ≥ 0 about x-axis

is

A = 2π

∫ b

a
y
√

1 + (f ′(x))2dx.

Example 7.1.15. Use a parametrization to express the area generated by

revolving the graph y = f(x) about x-axis. We can choose the parametrization

X(s, t) = (x, y, z) = (s, f(s) cos t, f(s) sin t).

over the region

a ≤ s ≤ b, 0 ≤ t ≤ 2π.

sol. We see

∂(y, z)

∂(s, t)
= f(s)f ′(s),

∂(z, x)

∂(s, t)
= f(s) cos t,

∂(x, y)

∂(s, t)
= −f(s) sin t.



7.2. SURFACE INTEGRALS 217

Hence the area is

∫∫

X

dS =

∫∫

D
|f(s)|

√

[

∂(y, z)

∂(s, t)

]2

+

[

∂(z, x)

∂(s, t)

]2

+

[

∂(x, y)

∂(s, t)

]2

dsdt

=

∫∫

D
f(s)

√

1 + [f ′(s)]2 dsdt

=

∫ b

a

∫ 2π

0
f(s)

√

1 + [f ′(s)]2 dsdt

= 2π

∫ b

a
f(s)

√

1 + [f ′(s)]2 ds.

This formula coincide with earlier formula.

x = s

y

z

t

y = f(x)

b

(x, y, z)

Figure 7.7: The surface of revolution of z = f(x) about x-axis, (x, y, z) =
(s, f(s) cos t, f(s) sin t)

7.2 Surface Integrals

Integrals of Scalar functions over Surface

Let X : D → R
3 be a parameterized surface S = X(D) and let f : S → R be

a real valued function defined on X. If f = 1, it represents the area:

∫∫

S
dS =

∫∫

D
‖Xs ×Xs‖dsdt.
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In general, we have

Definition 7.2.1. Let S be a surface parameterized byX(s, t) = (x(s, t), y(s, t), z(s, t)),

where (s, t) ∈ D. Then the surface integral of a scalar function f defined on

S is
∫∫

S
f dS =

∫∫

D
f(X(s, t))‖Xs ×Xt‖dsdt.

Changing it to an integral of (s, t) variables, we see

∫∫

S
f dS =

∫∫

D
f(X(s, t))‖Ts ×Tt‖ dsdt

=

∫∫

D
f(x(s, t), y(s, t), z(s, t))

√

[

∂(y, z)

∂(s, t)

]2

+

[

∂(z, x)

∂(s, t)

]2

+

[

∂(x, y)

∂(s, t)

]2

dsdt.

When a surface consists of several pieces, the the parametrization X is the

sum of X1,X2, . . . ,Xm, and in this case we define

∫∫

X

f dS =

∫∫

X1

f dS +

∫∫

X2

f dS + · · ·+
∫∫

Xm

f dS.

Surface integrals over graphs

Suppose S is the graph of a C1 function z = g(x, y). Then we parameterize it

by

x = s, y = t, z = g(s, t)

and

‖Ts ×Tt‖ =

√

1 + (
∂g

∂s
)2 + (

∂g

∂t
)2.

So the integral of f on S becomes

∫∫

S
f(x, y, z) dS =

∫∫

D
f(x, y, g(x, y))

√

1 + (
∂g

∂x
)2 + (

∂g

∂y
)2 dxdy.

Example 7.2.2. Let S be graph of z = x2 + y, where D is 0 ≤ x ≤ 1, −1 ≤
y ≤ 1. Find

∫∫

S x dS.
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sol.

∫∫

S
x dS =

∫∫

D
x

√

1 + (
∂g

∂x
)2 + (

∂g

∂y
)2 dxdy =

∫ 1

−1

∫ 1

0
x
√

1 + 4x2 + 1dxdy

=
1

8

∫ 1

−1

[
∫ 1

0
(2 + 4x2)1/2(8xdx)

]

dy =
2

3

1

8

∫ 1

−1

[

(2 + 4x2)3/2
]∣

∣

∣

1

0
dy

=
√
6−

√
2

3
.

Example 7.2.3. Evaluate
∫∫

S z2dS when S is the unit sphere.

sol. The unit sphere is described by

X(φ, θ) = (sinφ cos θ, sinφ sin θ, cosφ), (0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π).

Since

‖Tφ ×Tθ‖ = sinφ

and z2 = cos2 φ, we have

∫∫

S
z2dS =

∫∫

D
cos2 φ‖Tθ ×Tφ‖dφdθ

=

∫ 2π

0

∫ π

0
cos2 φ sinφdφdθ

=
4π

3
.

Geometric interpretation

We show

∫∫

S
f(x, y, z)dS =

∫∫

D
f(X(s, t))‖Ts ×Tt‖dsdt =

∫∫

D

f(x, y, g(x, y))

cos θ
dxdy,

where θ is the angle between normal vector and k vector. As a special case,

when the surface is a plane, we see ∆S = ∆A/ cos θ. See figures 7.6, 7.8. For

general surface, we have

cos θ =
N · k
‖N‖ =

1
√

(∂g/∂x)2 + (∂g/∂y)2 + 1
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and the same relation holds by taking the limit in the Riemann sum.

Example 7.2.4. Compute
∫∫

S xdS where S is a triangle with vertices (1, 0, 0),

(0, 1, 0) and (0, 0, 1).

Sb

k n

x

y

z

θ

A

Figure 7.8: ratio between ∆S and ∆A

sol. The angle between the normal and the k vector satisfies cos θ = n ·k =

1/
√
3. Hence

∫∫

S
xdS =

√
3

∫∫

D
xdxdy =

√
3

∫ 1

0

∫ 1−x

0
xdydx =

√
3

6
.

Example 7.2.5. Let X = (r cos θ, r sin θ, θ) be the parametrization of a

helicoid-like surface S, where 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π. Suppose S is covered

with a metal of density m which equal to twice the distance to the central axis,

i.e, m = 2
√

x2 + y2 = 2r. Find the total mass of metal covering the surface.

sol. First we can show ‖Tr ×Tθ‖ =
√
1 + r2. Hence we have

M =

∫∫

S
2rdS = 2

∫∫

D
r‖Tr ×Tθ‖drdθ

=

∫ 2π

0

∫ 1

0
2r
√

1 + r2drdθ =
4

3
π(23/2 − 1).

Surfaces Integrals of vector Fields

In this section we develop the notion of integral of a vector field over a surface.
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Recall the line integral of a vector field has a physical interpretation:

Work. Similarly, the notion of integral of a vector field over a surface can be

interpreted as a Flux.

Assume the vector field F : V → R
3 represents the velocity of a fluid and

the parametrization X : D → R
3 describes the shape of the net. Then the

surface integral
∫∫

X
F · dS is the amount of water that passes through

your net(per unit time).

We now define the surface integral
∫∫

X
F · dS:

Definition 7.2.6.

∫∫

X

F · dS =

∫∫

D
F(X(s, t)) · (Xs ×Xt) dsdt =

∫∫

D
F(X(s, t)) ·N dsdt.

Here dS is similar to the scalar surface element dS given in the definition 7.2.1,

but different in that it is a vector (pointing into the direction of the normal

vector.)

If we let n = Xs×Xt/‖Xs×Xt‖ be the unit normal vector to the surface,

then

∫∫

X

F · dS =

∫∫

D
F · Xs ×Xt

‖Xs ×Xt‖
‖Xs ×Xt‖ dsdt

=

∫∫

D
(F · n) · ‖Xs ×Xt‖dsdt

=

∫∫

S
F · n dS.

Example 7.2.7 (Spherical coordinate). Let S be the unit sphere parameter-

ized by

X(φ, θ) = (sinφ cos θ, sinφ sin θ, cosφ), (0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π).

Compute
∫∫

S r · dS, where r = xi+ yi+ zk denotes the position vector.

sol. We see

Xφ = cosφ cos θi+ cosφ sin θj− sinφk

Xθ = − sinφ sin θi+ sinφ cos θj

Xφ ×Xθ = sinφ(cos θ sinφi+ sin θ sinφj+ cosφk)
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Hence r · dS = r · (Xφ ×Xθ)dφ dθ = sinφdφdθ and

∫∫

X

r · dS =

∫ 2π

0

∫ π

0
sinφdφdθ = 4π.

Orientation

As in the case of line integral, the surface integral also has the notion of

direction. First we need to define the orientation of a surface S. It depends

on the particular parametrization.

Definition 7.2.8 (Oriented Surface). An orientable surface is a two sided

surface with one side specified as outside(or positive side). For orientable sur-

face, there are two possible normal vectors at each point, i.e, two unit normal

vectors n1 and n2, where n1 = −n2. Each of these normal vector can be

associated with an orientation. There are nonorientable surfaces.(Example:

Möbius strip)

1

2

3

4

5

67

8

9

Figure 7.9: Möbius strip

Let X : D → R
3 represent an oriented surface. If n(X) is the unit normal

to S, then

n(X) = ± Xs ×Xt

‖Xs ×Xt‖
.
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A parametrization is called orientation-preserving if

Ts ×Tt

‖Ts ×Tt‖
= +n(X).

Otherwise, it is orientation-reversing.

Example 7.2.9. The parametrization of sphere by spherical coordinate by

(ρ, φ, θ) is orientation-preserving. By changing the order of θ and φ, we can

get orientation-reversing parametrization.

clockwise

counter-clockwise
−n1

n1

n2

U

Figure 7.10: clockwise, counter-clockwise (n1 and n2 are normals the orienta-
tion points)

Example 7.2.10 (Möbius strip).











x =
(

1 + t cos s
2

)

cos s

y =
(

1 + t cos s
2

)

sin s, 0 ≤ s ≤ 2π, −1
2 ≤ t ≤ 1

2

z = t sin s
2

Let s = s0. Then











x =
(

cos s0 cos
s0
2

)

t+ cos s0

y =
(

sin s0 cos
s0
2

)

t+ sin s0, −1
2 ≤ t ≤ 1

2

z =
(

sin s0
2

)

t

Orientation of a graph

Example 7.2.11. Let S be the graph of a function z = g(x, y). Usually, we

give the orientation of such surface by taking the positive side to be the side
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away from which n points, where the unit normal is given by

n =
− ∂g

∂x i−
∂g
∂y j+ k

√

1 +
(

∂g
∂x

)2
+
(

∂g
∂y

)2
dxdy.

Independence of parametrization

Theorem 7.2.12. Let S be an oriented surface and let X1, X2 be two regular

orientation preserving parametrizations, then for any continuous vector field

F defined on S, we have

∫∫

X1

F · dS =

∫∫

X2

F · dS.

If one of them is orientation reversing, then

∫∫

X1

F · dS = −
∫∫

X2

F · dS.

For scalar f , the integral is independent of orientation: we have for any

parametrization X1,X2,

∫∫

X1

fdS =

∫∫

X2

fdS.

If a surface X consists of several pieces which is parametrized by X1, X2,

. . . , Xm, then

∫∫

X

F · dS =

∫∫

X1

F · dS+

∫∫

X2

F · dS+ · · ·+
∫∫

Xm

F · dS.

Hence we can define the sum of surfaces as

X = X1 +X2 + · · ·+Xm.

Example 7.2.13. Let S be the surface of the cylinder bounded by x2+y2 = 4,

z = 0, z = 0 with positive orientation. Evaluate
∫∫

S(x
3i+ y3j) · dS.
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Surface Integral over Graphs

Suppose S is the graph of z = g(x, y). We parameterize the surface S by

X(x, y) = (x, y, g(x, y)) and compute

Tx = i+
∂g

∂x
k, Ty = j+

∂g

∂y
k.

Hence

Tx ×Ty = −(
∂g

∂x
)i− (

∂g

∂y
)j+ k

and we proved

∫∫

S
F·dS =

∫∫

D
F·(Tx×Ty)dxdy =

∫∫

D

[

F1(−
∂g

∂x
) + F1(−

∂g

∂y
) + F3

]

dxdy.

Relation with scalar integrals

Recall the definition:

∫∫

X

F · dS =

∫∫

D
F(X(s, t)) · (Xs ×Xt) dsdt.

If we write

n = (Xs ×Xt)/‖Xs ×Xt‖, dS = (Xs ×Xt) dsdt, dS = n dS,

then we see
∫∫

X

F · dS =

∫∫

X

F · n dS.

Physical Interpretation of Surface Integrals

Consider the parallelepiped determined by three vectors F, Ts∆s and Tt∆t.

(See figure 7.11.) Its volume is

F · (Ts∆s×Tt∆t) = F · (Ts ×Tt)∆s∆t.

If F is the velocity of a fluid, the volume is the amount of fluid to flow out of

the surface per unit time. Hence

∫∫

S
F · dS
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t · dS
t

dSt

F

X(s,t)
U=X(D)

Figure 7.11: Area of shadow region and flux across S

is the net quantity of fluid to flow across the surface per unit time, i.e, the

rate of fluid flow. It is also called flux of F across S.

S

Figure 7.12: Water through a pipe and a surface S

Example 7.2.14 (Heat flow). Let T denote the temperature at a point. Then

∇T =
∂T

∂x
i+

∂T

∂y
j+

∂T

∂z
k

represents the temperature gradient and heat “flows” with the vector field

−k∇T .
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Example 7.2.15. Suppose temperature on a sphere S : x2 + y2 + z2 = 1 is

T = x2 + y2 + z2. Find the total heat flux across S if k = 1.

sol. We have F = −k∇T = −2r and the unit normal vector to S is

n = (x, y, z) = r. Hence r · n = −2. So

∫∫

S
F · dS = −2

∫∫

S
dS = −8π.

Example 7.2.16 (Gauss Law). The flux of an electric field E over a closed

surface S is the net charge Q contained in the surface. Namely,

∫∫

S
E · dS = Q.

Suppose E = En(constant multiple of the unit normal vector) then

∫∫

S
E · dS =

∫∫

S
EdS = Q = E · A(S).

So E = Q
A(S) and if S is sphere of radius R then

E =
Q

4πR2
. (7.2)

Example 7.2.17. Given a disk lying on the plane z = 12 described by

z = 12, x2 + y2 ≤ 25,

compute
∫∫

S r · dS where r = xi+ yj+ zk.

sol. We see

Tx ×Ty = i · j = k

So r · (Tx ×Ty) = z and

∫∫

S
r · dS =

∫∫

D
zdxdy = 12A(D) = 300π.
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Summary

(1) Given a parameterized surface X(s, t)

(a) Integral of a scalar function f :

∫∫

X

fdS =

∫∫

D
f(X(s, t))‖Ts ×Tt‖dsdt

(b) Scalar surface element:

dS = ‖Ts ×Tt‖dsdt

(c) Integral of a vector field:

∫∫

X

F · dS =

∫∫

D
F(X(s, t)) · (Ts ×Tt) dsdt =

∫∫

D
(F · n) dS

(d) Vector surface element:

dS = (Ts ×Tt) dsdt = n dS

(2) When the surface is given by a graph z = g(x, y)

(a) Integral of a scalar f :

∫∫

S
fdS =

∫∫

D

f(x, y, g(x, y))

cos θ
dxdy

(b) Scalar surface element:

dS =
dx dy

cos θ
=

√

(

∂g

∂x

)2

+

(

∂g

∂y

)2

+ 1 dxdy

(c) Integral of a vector field:

∫∫

S

F · dS =

∫∫

D

(

−F1
∂g

∂x
− F2

∂g

∂y
+ F3

)

dxdy

(d) Vector surface element:

dS = n dS =

(

−∂g

∂x
i− ∂g

∂y
j+ k

)

dxdy
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(3) On the sphere x2 + y2 + z2 = R2

(a) Scalar surface element:

dS = R2 sinφdφdθ

(b) Vector surface element:

dS = (xi+ yj+ zk)R sinφdφdθ = rR sinφdφdθ = nR2 sinφdφdθ

7.3 Stokes’ Theorem

In R
2, the vector form of Green’s theorem gives the relation between the line

integral of a vector field on a simple closed curve to the integral of the curl of

the vector on the domain having the curve as boundary.

Stokes’ theorem is the generalization of Green’s theorem to the surface

lying in R
3: Consider a simple closed curve lying in R

3 and a surface having

the curve as boundary: A caution: there are many surfaces having the same

curve as boundary. But as long as the vector fields are C1 in a large region

containing the curve and the surface, any surface play the same role.

Theorem 7.3.1 (Stokes’ theorem). Let S be a piecewise smooth oriented sur-

face. Suppose the boundary ∂S consists of finitely many piecewise C1 curve

with the same orientation with S. Let F be a C1-vector field defined on S.

Then
∫∫

S
(∇× F) · dS =

∫

∂S
F · ds.

Proof. First assume S is defined by C1-function z = f(x, y) on D, a region to

which Green’s theorem holds. Then it can be parameterized by











x = x

y = y

z = f(x, y),

for (x, y) in D. Recall the integral of a vector field F = F1 i+ F2 j+ F3 k over

S is defined by

∫∫

S
F · dS =

∫∫

D

[

F1

(

−∂z

∂x

)

+ F2

(

−∂z

∂y

)

+ F3

]

dxdy. (7.3)
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If F = F1i+ F2j+ F3k, then

∇× F = curlF =
(∂F3

∂y
− ∂F2

∂z

)

i+
(∂F1

∂z
− ∂F3

∂x

)

j+
(∂F2

∂x
− ∂F1

∂y

)

k

=

∣

∣

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

∣

∣

∣

∣

∣

∣

∣

∣

.

Hence by (7.3)

∫∫

S
curlF · dS =

∫∫

D

[(∂F3

∂y
− ∂F2

∂z

)

(

−∂z

∂x

)

+
(∂F1

∂z
− ∂F3

∂x

)

(

−∂z

∂y

)

+
(∂F2

∂x
− ∂F1

∂y

)]

dxdy.

On the other hand

∫

∂S
F · ds =

∫

p

F · ds =
∫

p

F1dx+ F2dy + F3dz.

Here p = F◦x is a parametrization of boundary curve ∂S obtained from a

parametrization of ∂D in positive direction. Assume ∂D has the orientation

induced by c. Then

∫

∂S
F · ds =

∫ b

a

(

F1
dx

dt
+ F2

dy

dt
+ F3

dz

dt

)

dt. (7.4)

By the chain rule
dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt
.

Substituting this into above

∫

∂S
F · ds =

∫ b

a

[(

F1 + F3
∂z

∂x

)

dx

dt
+

(

F2 + F3
∂z

∂y

)

dy

dt

]

dt

=

∫

c

(

F1 + F3
∂z

∂x

)

dx+

(

F2 + F3
∂z

∂y

)

dy (7.5)

=

∫

∂D

(

F1 + F3
∂z

∂x

)

dx+

(

F2 + F3
∂z

∂y

)

dy.
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Applying Green’s theorem to (7.5) yields

∫∫

D

[(

∂(F2 + F3
∂z
∂y )

∂x
− ∂(F1 + F3

∂z
∂x)

∂y

)]

dxdy.

Now use chain rule keeping in mind that F1, F2, F3 are functions of x, y and z,

while z is again a function of x, y. (Here ∂F2

∂x has to be interpreted carefully.

For example, we let G(x, y) = F2(x, y, f(x, y)), and ∂F2

∂x is understood as
∂G
∂x . In other words, treat x, y as independent variables, while regarding z as

dependent variable.) Thus by chain rule, above integral becomes

∫∫

D

[(

∂F2

∂x
+

∂F2

∂z

∂z

∂x
+

∂F3

∂x

∂z

∂y
+

∂F3

∂z

∂z

∂x

∂z

∂y
+ F3

∂2z

∂x∂y

)

−
(

∂F1

∂y
+

∂F1

∂z

∂z

∂y
+

∂F3

∂y

∂z

∂x
+

∂F3

∂z

∂z

∂y

∂z

∂x
+ F3

∂2z

∂x∂y

)]

dA.

Because mixed partials are equal, the last two integrals cancel each other and

we obtain

∫∫

D

[(∂F3

∂y
− ∂F2

∂z

)

(

−∂z

∂x

)

+
(∂F1

∂z
− ∂F3

∂x

)

(

−∂z

∂y

)

+
(∂F2

∂x
− ∂F1

∂y

)]

dxdy

=

∫∫

S
curlF · dS.

Example 7.3.2. Let S be smooth surface having an oriented simple closed

curve C as boundary and let F = yezi+ xezj+ xyezk. Compute
∫

C F · ds.

curlF =

∣

∣

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

yez xez xyez

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

By Stoke’s theorem,

∫

C
F · ds =

∫∫

S
curlF · dS = 0.

Example 7.3.3. Show that
∫

C F ·ds = −4π when F = (x2+y)i+(x2+2y)j+

2z3k and C : x2 + y2 = 4, z = 2.

sol. Let S be the disk D = {(x, y, z) : x2 + y2 = 4, z = 2}. If n is the unit
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normal to S, then n = k and

∇× F =

∣

∣

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

x2 + y x2 + 2y 2z3

∣

∣

∣

∣

∣

∣

∣

∣

= (0− 0)i− (0− 0)j+ (2x− 1)k = (2x− 1)k.

Hence Stokes’ theorem

∫

C
F · ds =

∫∫

S
(∇× F) · dS =

∫∫

S
(∇× F) · ndS

=

∫∫

S
(2x− 1)k · kdS =

∫ 2

−2

∫

√
4−y2

−
√

4−y2
(2x− 1)dxdy

= −2

∫ 2

−2

√

4− y2dy = −4π.

Example 7.3.4. Evaluate

∫

C
−y3dx+ x3dy − z3dz

where C is the intersection of the cylinder x2+y2 = 1 and plane x+y+z = 1.

sol. Let F = −y3i + x3j − z3k. Then above integral is
∫

C F · ds. If we

consider any reasonable surface S having C as boundary, we can use Stokes’

theorem with curlF = 3(x2 + y2)k. Let us assume S is the surface defined by

x+ y+ z = 1, x2 + y2 ≤ 1. A parametrization of S is given by (s, t, 1− s− t).

We need to compute

dS = Ts ×Tt = (i− k)× (j− k) = i+ j+ k.

Hence
∫

C
F · ds =

∫∫

S
curlF · dS =

∫∫

D
3(x2 + y2)dxdy =

3π

2
.

Here the domain D is the set {(x, y)|x2 + y2 ≤ 1}.

Example 7.3.5. A surface S is defined by z = e−(x2+y2) for z ≥ 1/e. Let
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F = (ey+z − 2y)i+ (xey+z + y)j+ ex+yk.

Evaluate
∫∫

S ∇× F · dS.

sol. We see

∇× F = (ex+y − xey+z)i+ (ey+z − ex+y)j+ 2k

and

N = 2xe−(x2+y2)i+ 2ye−(x2+y2)j+ k.

So direct computation of
∫

S ∇× F · dS seems almost impossible. Now try to

use Stoke’s theorem. First parameterize the boundary by

x = cos t, y = sin t, z = 1/e.

Then

∫

C
F · ds =

∫

C
(esin t+1/e − 2 sin t, · · · , ecos t+sin t) · (− sin t, cos t, 0) dt

This again is very difficult! Now think of another way. Think of another

surface S′ which has the same boundary as S., i.e, let S′ be the unit disk

x2 + y2 ≤ 1, z = 1/e. Then n = 1 and hence

∫∫

S
∇× ·dS =

∫∫

S
∇× ·ndS =

∫∫

S
2dS = 2π.

Curl as Circulation per Unit area

Let FT denote the tangential component of F, we have

∫∫

S
(curlF) · ndS =

∫∫

S
curlF · dS =

∫

∂S
F · ds =

∫

∂S
FTds.

Suppose V represent the velocity of a fluid. Consider a point P and unit

normal vector n. If Sρ is a disk centered at P with radius ρ perpendicular to
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n

∂Sρ

ρPSρ
b

Figure 7.13: n unit normal to Sρ

n (fig 7.13)then by Stokes’ theorem,

∫∫

Sρ

curlV · dS =

∫∫

Sρ

(curlV) · ndS =

∫

∂Sρ

V · ds.

holds. Here ∂Sρ has the orientation according to n. If A(Sρ) = πρ2 denote

the area of Sρ, curlV(Q) is an average curlV on Q , n(Q), we have by MVT

∫∫

Sρ

(curlV) · ndS = [curlV(Q) · n(Q)]A(Sρ)

for some point Q in Sρ. Hence

lim
ρ→0

1

A(Sρ)

∫

∂Sρ

V · ds = lim
ρ→0

1

A(Sρ)

∫∫

Sρ

(curlV) · ndS

= lim
ρ→0

(curlV(Q)) · n(Q)

= (curlV(P )) · n(P ).

(curlV(P )) · n(P ) = lim
ρ→0

1

A(Sρ)

∫

∂Sρ

V · ds. (7.6)

Now consider physical meaning of
∫

C V · ds (fig 7.14).

Assume V is tangent to C and
∫

C V · ds > 0 then an object on C rotates

along the direction of C. If
∫

C V · ds < 0, it rotates counter-clockwise on C.

Also, if V ⊥ C then object on C does not rotate and

∫

C
V · ds = 0.
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b

b

b

b

b

V

C
∫
C
V · ds > 0

b

b

b

b

b

V

C

∫
C
V · ds < 0

b

b

b

b

b

V

C

∫
C
V · ds = 0

Figure 7.14: Meaning of
∫

C V · ds

In general the integral of tangential component of a fluid vector fieldV
∫

C V·ds
represent the net amount of turning around C. Thus,

∫

C
V · ds

is called the circulation of V around C. (fig 7.15 ).

V

V

bb

motion of particle

C

(b)

b

b

V

V(x, y, z)

(x, y, z)

V

V

bb

C

motion of fluid

(a)

Figure 7.15: Circulation of a vector field; (a) 0 circulation (b) nonzero circu-
lation

The circulation
∫

∂Sρ
V · ds is the net velocity of a fluid around ∂Sρ, and

(curlV) · n is the circulation of V per unit area on a surface perpendicular to

n

Observe that (curlV) · n is maximized when n = curlV/||curlV||. So the

rotating effect is maximized about an axis parallel to curlV/||curlV||.

Example 7.3.6. p 541. Use physical interpretation to compute∇×F·er. Let
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er, eθ, ez associate to cylindrical coordinates as fig 7.17. Let F = Frer+Fθeθ+

Fzez. Find a formula for er component of ∇× F in cylindrical coordinate.

z

x y
r = f(θ)

Figure 7.16: cylindrical coordinate

O

b

x

y

z

z

r

θ

er

eθ

ez

Figure 7.17: unit orthogonal vectors in cylindrical coordinate er, eθ, ez

sol. The er component of ∇× F is ∇× F · er which is also

lim
|S|→0

1

|S|

∫∫

S
∇× F · er dS. (7.7)

For convenience, just take S to be a rectangular part of lateral surface of the

cylinder(See figure 7.18.) The area of S is rdθ dz. By Stokes’ theorem,

lim
|S|→0

1

|S|

∫∫

S
∇× F · er dS = lim

|S|→0

1

|S|

∫

∂S
F · ds.
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Figure 7.18: Vertical Surface-2

Thus it suffices to compute (7.7): The integral of F around the edges of S is

[Fθ(r, θ, z) − Fθ(r, θ, z + dz)]rdθ + [Fz(r, θ + dθ, z)− Fz(r, θ, z)]dz

≈ −∂Fθ

∂z
dz rdθ +

∂Fz

∂θ
dθ dz.

Divide by the area and take the limit, we get

∇× F · er = lim
|S|→0

1

|S|

∫∫

S
∇× F · er dS = lim

|S|→0

1

|S|

∫

∂S
F · ds = 1

r

∂Fz

∂θ
− ∂Fθ

∂z
.

This is the circulation at points of S per unit area.

Example 7.3.7. Let F = Frer + Fθeθ + Fzez. Find ez component of ∇× F

as follows: Consider S(fig. 7.19) which is perpendicular to the normal vector
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n = ez

θ
C1C3

C2

Figure 7.19: Surface in cylinder

ez. Thus ez = n on S and hence
∫∫

S ∇× F · ezdS equals

=

∫∫

S
∇×F · dS =

∫

∂S
F · ds

=

∫

C1−C3

Fθrdθ +

∫

−C2+C4

Frdr

= [Fθ(r + dr, θ, z) − Fθ(r, θ, z)]rdθ + [Fr(r, θ, z) − Fr(r, θ + dθ, z)]dr

≈ ∂Fθ

∂r
rdrdθ − ∂Fr

∂θ
drdθ.

Dividing by A(S) = r drdθ, we see

∇× F · ez = lim
|S|→0

1

|S|

∫∫

S
∇× F · ezdS =

∂Fθ

∂r
− 1

r

∂Fr

∂θ
.

Example 7.3.8. Find eθ component of ∇ × F referring to the figure 7.20.

Note n = −eθ on S.

−∇× F · eθA(S) ≈
∫∫

S
∇× F · dS =

∫

∂S
F · ds

=

∫

C1−C3

Fzdz +

∫

−C2+C4

Frdr

= [Fz(r + dr, θ, z) − Fz(r, θ, z)]dz + [Fr(r, θ, z) − Fr(r, θ, z + dz)]dr

≈ ∂Fz

∂r
drdz − ∂Fr

∂z
drdz.

Dividing by area drdz, we see

∇× F · eθ =
∂Fr

∂z
− ∂Fz

∂r
.



7.5. GAUSS’ THEOREM 239

eθ

z

θ

C1S

Figure 7.20: Vertical Surface

7.5 Gauss’ Theorem

The flux of a vector field F across Ω is equal to the sum of divF in Ω.

Theorem 7.5.1. [Gauss’ Divergence Theorem]

Let Ω be an elementary region in R
3 and ∂Ω consists of finitely many

oriented piecewise smooth closed surfaces. Let F be a C1 vector field on a

region containing Ω. Then

∫∫∫

Ω
divFdV =

∫∫

∂Ω
F · dS.

Proof. Suppose Ω is an elementary region of type 4 and F = P i + Qj + Rk.

Then

divF =
∂P

∂x
+

∂Q

∂y
+

∂R

∂z

and

∫∫∫

Ω
divFdV =

∫∫∫

Ω

∂P

∂x
dV +

∫∫∫

Ω

∂Q

∂y
dV +

∫∫∫

Ω

∂R

∂z
dV.
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n2

n1

S2 : z = f2(x, y)

S1 : z = f1(x, y)

z

x

y

Figure 7.21: Region of type 1

On the other hand, the surface integral is

∫∫

∂Ω
(F · n)dS =

∫∫

∂Ω
(P i+Qj+Rk) · ndS

=

∫∫

∂Ω
P i · ndS +

∫∫

∂Ω
Qj · ndS +

∫∫

∂Ω
Rk · ndS.

If we show the following

∫∫

∂Ω
P i · ndS =

∫∫∫

Ω

∂P

∂x
dV, (7.8)

∫∫

∂Ω
Qj · ndS =

∫∫∫

Ω

∂Q

∂y
dV, (7.9)

∫∫

∂Ω
Rk · ndS =

∫∫∫

Ω

∂R

∂z
dV, (7.10)

then the proof will be complete. First we shall prove (7.10). Suppose there

exist two functions z = f1(x, y), z = f2(x, y) defined on a region D in xy-plane

such that Ω = {(x, y, z)|f1(x, y) ≤ z ≤ f2(x, y), (x, y) ∈ D} (see fig 7.5). Then

∫∫∫

Ω

∂R

∂z
dV =

∫∫

D

(

∫ z=f2(x,y)

z=f1(x,y)

∂R

∂z
dz

)

dxdy (7.11)

=

∫∫

D
[R(x, y, f2(x, y)) −R(x, y, f1(x, y))]dxdy. (7.12)

The boundary of Ω consists of two surface S1, S2, where S2 is the graph of
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z = f2(x, y) and S1 is the graph of z = f1(x, y), (x, y) ∈ D. Hence

∫∫

∂Ω
Rk · ndS =

∫∫

S1

Rk · n1dS +

∫∫

S2

Rk · n2dS. (7.13)

Bottom surface S1 is given by z = f1(x, y) where the unit normal is given by

n1 =

∂f1
∂x

i+
∂f1
∂y

j− k
√

(

∂f1
∂x

)2
+
(

∂f1
∂y

)2
+ 1

.

Hence k · n1 = −1/

√

(

∂f1
∂x

)2
+
(

∂f1
∂y

)2
+ 1, and so

∫∫

S1

Rk · n1dS = −
∫∫

D
R(x, y, f1(x, y))dxdy. (7.14)

Similarly on S2, k · n2 = −1/

√

(

∂f2
∂x

)2
+
(

∂f2
∂y

)2
+ 1. Hence

∫∫

S2

Rk · n2dS =

∫∫

D
R(x, y, f2(x, y))dxdy. (7.15)

Substitute (7.14), (7.15) into (7.13). Then by (7.11), (7.12), we obtain

∫∫

∂Ω
Rk · ndS =

∫∫∫

Ω

∂R

∂z
dV.

The identities (7.8) and (7.9) can be similarly shown.

Example 7.5.2. S is the unit sphere x2+y2+z2 = 1 and F = 2xi+y2j+z2k.

Find
∫∫

S F · ndS.

sol. Let Ω be the region inside S. By Gauss theorem, it holds that

∫∫

S
F · ndS =

∫∫∫

Ω
divFdV.

Since divF = ∇ · (2xi+ y2j+ z2k) = 2(1 + y + z), the rhs is

2

∫∫∫

Ω
(1 + y + z)dV = 2

∫∫∫

Ω
1dV + 2

∫∫∫

Ω
ydV + 2

∫∫∫

Ω
zdV.



242 CHAPTER 7. SURFACE INTEGRALS AND VECTOR ANALYSIS

By symmetry, we have

∫∫∫

Ω
ydV =

∫∫∫

Ω
zdV = 0.

Hence

∫∫

S
F · ndS = 2

∫∫∫

Ω
(1 + y + z)dV = 2

∫∫∫

Ω
1dV =

8

3
π.

Generalizing Gauss’ theorem

Example 7.5.3. Show Gauss’ theorem holds for F = xi + yj + zk in Ω :

x2 + y2 + z2 ≤ a2.

sol. First compute divF = ∇ · F,

divF =
∂x

∂x
+

∂y

∂y
+

∂z

∂z
= 3.

So
∫∫∫

Ω
(divF)dV =

∫∫∫

Ω
3 dV = 3

(4

3
πa3
)

= 4πa3.

To compute the surface integral, we need to find the unit normal n on ∂Ω.

Since ∂Ω is the level set of f(x, y, z) = x2+y2+z2−a2, we see the unit normal

vector to ∂Ω is

n = ± ∇f

||∇f || = n =
2(xi+ yj+ zk)
√

4(x2 + y2 + z2)
=

xi+ yj+ zk

a
.

So when (x, y, z) ∈ ∂Ω,

F · n =
x2 + y2 + z2

a
=

a2

a
= a

and
∫∫

∂Ω
F · ndS =

∫∫

∂Ω
a dS = a(4πa2) = 4πa3.

Hence
∫∫∫

Ω
(divF)dV = 4πa3 =

∫∫

∂Ω
F · ndS.

and Gauss’ theorem holds.
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Example 7.5.4. Let Ω be the region given by x2+y2+z2 ≤ 1. Find
∫∫

∂Ω(x
2+

4y − 5z)dS by Gauss’ theorem.

sol. To use Gauss’ theorem, we need a vector field F = F1i+F2j+F3k such

that F ·n = x2+4y−5z. Since the unit normal vector is n = xi+yj+zk, one

such obvious choice is F = xi+4j−5k. Hence we have divF = 1+0+(−0) = 1.

Now by Gauss theorem

∫∫

∂Ω
(x2 + 4y − 5z)dS =

∫∫

∂Ω
(xi+ 4j− 5k) · ndS

=

∫∫

∂Ω
F · ndS =

∫∫∫

Ω
divFdV

=

∫∫∫

Ω
1 dV =

4

3
π.

Hence
∫∫

∂Ω(x
2 + 4y − 5z)dS = 4π/3.

Divergence as flux per unit Volume

As we have seen before that divF(P ) is the rate of change of total flux at P

per unite volume. Let Ωρ be a ball of radius ρ center at P . Then for some Q

in Ωρ,
∫∫

∂Ωρ

F · ndS =

∫∫∫

Ωρ

divFdV = divF(Q) ·Vol(Ωρ).

Dividing by the volume we get

divF(Q) =
1

Vol(Ωρ)

∫∫

∂Ωρ

F · ndS. (7.16)

Taking the limit, we see

lim
ρ→0

1

Vol(Ωρ)

∫∫

∂Ωρ

F · ndS = divF(P ). (7.17)

Now we can give a physical interpretation: If F is the velocity of a fluid, then

divF(P ) is the rate at which the fluid flows out per unit volume.
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bcbc

divF(P ) > 0

Fluid is draining at P (sink)

divF(P ) < 0

Fluid springs out at P (source)

Figure 7.22: Physical meaning of divergence

If divF(P ) > 0, we say P is a source and if divF(P ) < 0, it is called sink

of F(fig 7.22).

If divF = 0 then by Gauss theorem, the total flux of F through any

closed surface S is
∫

S F · dS, which is zero. Thus we call this vector field

incompressible.

n

n

O
ε

M

∂M
∂B

b

b

b

Figure 7.23: Unit outward normal vector n to M and Gauss’ Law

Example 7.5.5. Find
∫∫

S f · dS, where F = xy2i + x2yj + yk and S is the

surface of the the cylindrical region x2 + y2 = 1 bounded by the planes z = 1

and z = −1.
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sol. Let W denote the solid region given above. By divergence theorem,

∫∫∫

W
divF dV =

∫∫∫

W
(x2 + y2)dxdydz

=

∫ 1

−1

(
∫∫

x2+y2≤1
(x2 + y2)dxdy

)

dz

= 2

∫∫

x2+y2≤1
(x2 + y2)dxdy.

Now by polar coordinate,

2

∫∫

x2+y2≤1
(x2 + y2)dxdy = 2

∫ 2π

0

∫ 1

0
r3drdθ = π.

O

b

x

y

z

ρφ

θ

eφ

eθ

eρ

Figure 7.24: Standard basis vectors in spherical coordinate; eρ, eφ, eθ

Gauss’ Law

Now apply Gauss’ theorem to a region with a hole and get an important result

in physics:

Theorem 7.5.6. (Gauss’ Law) Let M be a region in R
3 and O /∈ ∂M .

Then
∫∫

∂M

r · n
r3

dS =







0 if O /∈ M ,

4π if O ∈ M.
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Here r = xi+ yj+ zk and r =
√

x2 + y2 + z2.

Proof. First suppose O /∈ M . Then r/r3 is a C1-vector field on M and ∂M .

One can easily show ∇ · (r/r3) = 0 for r 6= 0. Hence

∫∫

∂M

r · n
r3

dS =

∫∫∫

M
∇ ·
( r

r3

)

dV = 0.

Thus we have the result.

Next, if O ∈ M , r/r3 is not continuous on M . Then we remove small ball

B of radius ε near O(fig 7.23). Let W be the region M\B. Then the boundary

of W is S = ∂B ∪ ∂M , where the normal vector to B is opposite to the usual

direction. Again we see in ∇ · (r/r3) = 0 in W . Hence by Gauss theorem

∫∫

S

r · n
r3

dS =

∫∫∫

W
∇ ·
( r

r3

)

dV = 0.

Since
∫∫

S

r · n
r3

dS =

∫∫

∂M

r · n
r3

dS +

∫∫

∂B

r · n
r3

dS,

we have
∫∫

∂M

r · n
r3

dS = −
∫∫

∂B

r · n
r3

dS.

Now on ∂B(a sphere of radius ε), we know n = −r/r and r = ε. Hence

−
∫∫

∂B

r · n
r3

dS =

∫∫

∂B

ε2

ε4
dS =

1

ε2

∫∫

∂B
dS.

Since
∫∫

∂B dS = 4πε2, we have
∫∫

∂M r · n/r3dS = 4π.

Physical Interpretation of Gauss’ Law

Let

φ(x, y, z) =
Q

4πr
=

Q

4π
√

x2 + y2 + z2

be the potential to a point charge O at (0, 0, 0). Then the electric field is

E = −∇φ =
Q

4π

( r

r3

)

.

The total electric flux
∫

∂M E · dS is Q if the charge lies in M , and 0 if the

charge lies outside of M .
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Figure 7.25:

For a charge with density ρ, the field E is related by

divE = ∇ ·E = ρ.

Thus by Gauss’ theorem

∫

S
E · dS =

∫

Ω
ρdV =

∫

Ω

Q

V
dV = Q.

In other words, total flux through a closed surface equals total charge inside

the region enclosed by the surface.

Divergence in Spherical Coordinate

Using spherical coordinate, we can write F = Fρeρ + Fφeφ + Fθeθ. See figure

7.25. We use Gauss’ theorem to derive

divF =
1

ρ2
∂

∂ρ
(ρ2Fρ) +

1

ρ sinφ

∂

∂φ
(sinφFφ) +

1

ρ sinφ

∂Fθ

∂θ
.
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Example 7.5.7. We prove the case F = Fρeρ.

Since

divF = lim
|W |→0

1

|W |

∫∫∫

W
divF dV = lim

|W |→0

1

|W |

∫∫

∂W
F · n dS,

we compute the surface integral by inspection. Let W be the infinitesimal

(shaded) region

ρ0 ≤ ρ ≤ ρ0 + dρ, φ0 ≤ φ ≤ φ0 + dφ, θ0 ≤ θ ≤ θ0 + dθ

and let S be the two faces of W perpendicular to the radial direction.(other

surface do not contribute because F is perpendicular to them) The integral of

F around the edges of S is

Fρ(ρ+ dρ, φ, θ) · A(outer face) − Fρ(ρ, φ, θ) · A(inner face)

≈ Fρ(ρ+ dρ, φ, θ)(ρ+ dρ)2 sinφdφdθ − Fρ(ρ, φ, θ)(ρ)
2 sinφdφdθ

≈
[

ρ2
∂Fρ

∂ρ
dρ+ 2ρFρ(ρ+ dρ)

]

sinφdρdφdθ.

Dividing by the volume ρ2 sinφdρdφdθ, and take the limit, we get

2

ρ
Fρ +

∂Fρ

∂ρ
=

1

ρ2
∂

∂ρ
(ρ2Fρ).

Example 7.5.8. Consider the vector field F(x, y) = Fθeθ. Let P be a fixed

point in W . Also, let S1 and S2 be the two flat part of the boundary of W

determined by the plane θ = const and θ+∆θ = const. Let S = S1 ∪ S2. The

volume V (W ) ≈ ρ2 sinφdρ dφ dθ and A(S1) = A(S2) = ρ dρ dφ dθ.

∫∫∫

W
divFdV =

∫∫

∂W
F · dS( use orthogonality of surfaces to F)

∫∫

S
Fθeθ · dS =

∫∫

S2

Fθ · dS −
∫∫

S1

Fθ · dS(n = ±eθ on S)

≈ Fθ(ρ, φ, θ + dθ)A(S2)− Fθ(ρ, φ, θ)A(S1)

≈ ∂Fθ

∂θ
ρ dρ dφ dθ.

Hence

divF(P ) = lim
W→P

1

V (W )

∫∫

S
F · dS =

1

ρ sinφ

∂Fθ

∂θ
.
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z

x y

ρ∗

∆θθ

ρ∗∆θ

ρ∗ sinφ

φ

∆φ

ρ∗ sinφ∆θ

ρ∗ sin(φ+∆φ)∆θ

ρ∗∆φ

Figure 7.26: Partition in spherical coordinate, ρ∗ = ρ+ dρ

Example 7.5.9. Finally, when F = Fφeφ, let S1 and S2 be the two flat part

of the boundary of W determined by the plane φ = const and φ+∆φ = const

and S = S1 ∪ S2. Then A(S1) = ρ sinφdθ and A(S2) = ρ sin(φ+ dφ)dθ.

∫∫∫

W
divFdV =

∫∫

∂W
F · dS(use orthogonality of surfaces to F)

∫∫

S
Fφeφ · dS =

∫∫

S2

Fφ dS −
∫∫

S1

Fφ dS(n = ±eφ on S)

≈ Fφ(ρ, φ+ dφ, θ)A(S2)− Fφ (ρ, φ, θ)A(S1)

≈ Fφ(ρ, φ+ dφ, θ)ρ sin(φ+ dφ)dθ − Fφ(ρ, φ, θ)ρ sin φdθ

Finally, we have

≈ Fφ(ρ, φ+ dφ, θ)ρ sin(φ+ dφ)dθ − Fφ(ρ, φ, θ)ρ sinφdθ

≈ Fφ(φ+ dφ)ρ dθ[sin(φ+ dφ)− sinφ] + [Fφ(φ+ dφ)− Fφ(φ)]ρ sin φdθ

≈ Fφ(φ+ dφ)ρ dθ[sin(φ+ dφ)− sinφ] + [Fφ(φ+ dφ)− Fφ(φ)]ρ sin φdθ

≈ Fφ(φ+ dφ)ρ dθ cosφdφ+
∂Fφ

∂φ
dφρ sinφdθ

≈ (ρ2 sinφdρ dφ dθ)

[

cosφ

ρ sinφ
Fφ(φ) +

1

φ

∂Fφ

∂φ

]

.
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Dividing by V = ρ2 sinφdρ dφ dθ, we obtain

1

ρ sinφ

∂

∂φ
(sin φFφ(φ)).

Example 7.5.10. Compute ∇× F with F = Fρeρ + Fφeφ + Fθeθ.

sol. First compute Fρ. Let S be the inner surface in example 7.5.7:

ρ = ρ0, φ0 ≤ φ ≤ φ0 + dφ, θ0 ≤ θ ≤ θ0 + dθ.

The area of S is ρ2 sinφdφdθ. To see the eρ component, we do as follows: By

Stokes’ theorem,

1

|S|

∫∫

S
∇× F · eρ dS =

1

|S|

∫

∂S
F · ds.

The integral of F around the edges of S is

Fθ(ρ, φ+ dφ, θ)ρ sin(φ+ dφ) dθ − Fθ(ρ, φ, θ)ρ sin φdθ(horizontal)

−Fφ(ρ, φ, θ + dθ)ρ dφ+ Fφ(ρ, φ, θ)ρ dφ(vertical)

= [Fθ(ρ, φ + dφ, θ)− Fθ(ρ, φ, θ)]ρ sin(φ+ dφ) dθ + Fθ(ρ, φ, θ)[sin(φ+ dφ− sinφ]ρ dθ

−Fφ(ρ, φ, θ + dθ)ρ dφ+ Fφ(ρ, φ, θ)ρ dφ(vertical)

≈ ∂Fθ

∂φ
ρ sin(φ+ dφ) dφd θ + Fφ(ρ, φ, θ)ρ cos φdφdθ − ∂Fφ

∂θ
ρ dφ dθ.

Dividing by ρ2 sinφdφdθ and taking the limit we get

1

ρ sinφ

[

∂

∂φ
(sinφFθ)−

∂Fφ

∂θ

]

.

Hence

∇× F · eρ = lim
|S|→0

1

|S|

∫∫

S
∇× F · eρ dS = lim

|S|→0

1

|S|

∫

∂S
Fρds =

1

ρ sinφ

[

∂

∂φ
(sinφFθ)−

∂Fφ

∂θ

]

.

To compute Fφ and Fθ components, we consider the surface integral with eφ

and eθ on the surfaces perpendicular to each of them, i.e, Sφ is

ρ0 ≤ ρ ≤ ρ0 + dρ, φ = φ0, θ0 ≤ θ ≤ θ0 + dθ.
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and Sθ is

ρ0 ≤ ρ ≤ ρ0 + dρ, φ0 ≤ φ ≤ φ0 + dφ, θ = θ0.

7.6 Conservative Field and Fundamental Theorem

of Calculus

Let us summarize theorems so far.

• Fundamental Theorem of Calculus:

∫

σ
∇f · ds = f(σ(b))− f(σ(a))

• Green’s Theorem :

∫

∂D
Pdx+Qdy =

∫

D

(

∂Q

∂x
− ∂P

∂y

)

dxdy

• Divergence Theorem for Plane:

∫

∂D
(F · n)ds =

∫

D
divF dxdy

• Stokes’ Theorem:
∫∫

S
curlF · dS =

∫

∂S
F · ds

• Gauss’ Divergence Theorem:

∫∫∫

Ω
divFdV =

∫∫

∂Ω
F · dS

Look at (1):

∫

σ
∇f · ds = f(σ(b)) − f(σ(a)) = f(A)− f(B)

The line integral of a gradient is independent of path:

For example, if V = −f represents a potential energy(Gravitational, elec-

trical) the F = ∇f is a force. For f = GmM
r , the force F = −GmM

r2
r = −GmM

r2
n

is the gravitational force.
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What vectors are Gradient?

Theorem 7.6.1. (Conservative Field Let F be a C1-vector field in R
3 ex-

cept finite number of points. Then the following conditions are equivalent:

(1)

(2) For any oriented simple closed curve C,
∫

C F · ds = 0.

(3) For any two oriented simple curve C1, C2 having same end points,

∫

C1

F · ds =
∫

C2

F · ds.

(4) F is the gradient of some function f , i.e, F = ∇f .

(5) curlF = 0.

If a vector field F satisfy one of these conditions we say conservative

field.

Proof. We use the sequence of implication: (i)⇒(2)⇒(3)⇒(4)⇒(1).

(1)⇒(2): Suppose we have two curves C1, C2 having same end points, we

can form a closed curve by C = C1 − C2(fig 7.27) Hence by (1)

0 =

∫

C
F · ds =

∫

C1−C2

F · ds =
∫

C1

F · ds−
∫

C2

F · ds

b

b

(a) oriented simple closed curve C = C1 − C2

C = C1 − C2 b

b

(b) two oriented simple curves C1

C1

C2

Figure 7.27: Constructing oriented simple closed curve from two oriented sim-
ple curve C1, C2

(2)⇒(3): Fix a point (x0, y0, z0). Given any point (x, y, z), choose any

curve C connecting two points we define. Given F = (F1, F2, F3) define

f(x, y, z) =

∫

C
F · ds =

∫

C
F1dx+ F2dy + F3dz
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Here f is well-defined, since it is defined independent of the choice of C. So

we choose C consisting of edges of rectangular pipe.

b b

b

b

b

(x0, y0, z0)
x

y

z

C1

C2

C3

C4

(x1, y1, z1)
(x1, y, z1)

(x, y, z1)

(x, y, z)

O

bc

bc

bc

bc

Path avoid points where vector field is not defined

Figure 7.28: A path from (x0, y0, z0) to (x, y, z) is C = C1 + C2 + C3 + C4

In particular, choose C = C1 + C2 + C3 + C4 (fig 7.28). Then

f(x, y, z) =

∫

C
F · ds

=

∫

C1

F · ds+
∫

C2

F · ds+
∫

C3

F · ds+
∫

C4

F · ds

=

∫

C1

F · ds+
∫ y

y1

F2(x1, t, z1)dt

+

∫ x

x1

F1(t, y, z1)dt+

∫ z

z1

F3(x, y, t)dt.

From this we see ∂f/∂z = F3. Similarly by choosing different path(i.e, choos-

ing a path whose last path is along x-direction) we have

f(x, y, z) =

∫

C1

F · ds+
∫ y

y1

F2(x1, t, z1)dt

+

∫ z

z1

F3(x1, y, t)dt +

∫ x

x1

F1(t, y, z)dt

so ∂f/∂x = F1. Similarly, we have ∂f/∂y = F2. Thus F = ∇f .

(3)⇒(4): By theorem 5.1.2, we have ∇×∇f = 0. So curlF = ∇×F = 0.

(4)⇒(1): Let S be a surface having C as boundary. Then
∫

C
F · ds =

∫∫

S
curlF · dS
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Since curlF = 0 the integral
∫

C F · ds = 0.

Physical Interpretation of
∫

C
F · ds

(1)
∫

C F · ds is work done be F along C.

(2) Circulation: F ·∆s is tangential component ∆̇s. Thus
∫

C F · ds is net

tangential component of F along C.

Example 7.6.2.

F(x, y, z) = yi+ (z cos yz)j+ (y cos yz)k

Show F is irrotational and find a scalar potential.

Example 7.6.3.

F(x, y) = −yi+ xj

We see F(0, 0) = 0 but curlF = 2. So if a paddle is place at this point, it

rotates even if it stay there. Show F is irrotational and find a scalar potential.

sol.

∇× F =

∣

∣

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

y z cos yz y cos yz

∣

∣

∣

∣

∣

∣

∣

∣

= (cos yz − yz sin yz − cos yz + yz sin yz)i− (0− 0)j+ (1− 1)k = 0

So F is irrotational. To find a potential

Method 1:

f(x, y, z) = +

∫ x

0
F1(t, 0, 0)dt +

∫ y

0
F2(x, t, 0)dt +

∫ y

0
F3(x, t, 0)dt

=

∫ x

0
0dt+

∫ y

0
x dt+

∫ y

0
y cos yt dt

= 0 + xy + sin yz

One easily check that ∇f = F.
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sol.

Method 2: If such f exists, it satisfies

∂f

∂x
= y,

∂f

∂y
= x+ z cos yz,

∂f

∂z
= y cos yz. (7.18)

Thus we obtain

(1) f(x, y, z) = xy + h1(y, z)

(2) f(x, y, z) = sin yz + xy + h2(x, z)

(3) f(x, y, z) = sin yz + h3(x, y)

Substitute this into (7.18) we find

∂h1(y, z)

∂z
= y cos yz

or

h1(y, z) =

∫

y cos yz dz + g(y) = sin yz + g(y).

Substituting back to (1) (2) we see g(y) = h2(x, z). Then this must be con-

stant.

Potential function

If F satisfies curlF = ∇×F = 0 then it is given by F = ∇f for some f¿ This

f is called potential function of F.

Theorem 7.6.4. If F is a C1 vector field with divF = 0 then there is a C1

field G with F = curlG.

Example 7.6.5. By Newton’s law, the force acting to an object of mass M

at r = (x, y, z) is

F(x, y, z) = −GMr/r3

Show F is irroataitonal and find potential for it.
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sol. First show ∇× F = 0.

r× r = 0,∇
(

1

r3

)

= −3r/r5,

∇× r =

∣

∣

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

x y z

∣

∣

∣

∣

∣

∣

∣

∣

= 0,

∇× F = −GM

{

∇
( 1

r3

)

× r+
1

r3
∇× r

}

= 0.

From exercise we can show ∇(rn) = nrn−2r F = −∇φ, The function

φ(x, y, z) = −GM/r is the gravitational potential function.

Planar Case

Suppose F is a C1-vector field of the form F = P i+Qj then we have

∇× F =

(

∂Q

∂x
− ∂P

∂y

)

k

Hence

curlF = ∇× F = 0

is equivalent to

∂Q/∂x = ∂P/∂y

Using this we can study conservative field R
2. In R

3 vector field may have a

few points where function is undefined. But in planar case, the vector field

must be defined everywhere.

.

O
x

y

b b

b

(x, 0)

(x, y)

C

Figure 7.29: A path from (0, 0) to (x, y)
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Example 7.6.6. The vector field F(x, y, z) = (yi− xj)/(x2 + y2) satisfies (a)

∇× F = 0 but (b) F is not conservative.

sol. (a) We have seen ∇× F = 0 before.

(b) To show F is not conservative we need to show the line integral
∫

C F·ds
is nonzero for some closed curve C. Let C be

x = cos t, y = sin t, 0 ≤ t ≤ 2π

Then

∫

C
F · ds =

∫

C

y

x2 + y2
dx+

−x

x2 + y2
dy

=

∫ 2π

0

[

sin t

cos2 t+ sin2 t
(− sin tdt) +

− cos t

cos2 t+ sin2 t
(cos tdt)

]

= −
∫ 2π

0

sin2 t+ cos2 t

cos2 t+ sin2 t
dt = −

∫ 2π

0
dt = −2π 6= 0.

Hence F is not conservative.

Example 7.6.7. (a) If F = exyi + ex+yj then P (x, y) = exy, Q(x, y) = ex+y,

∂P/∂y = xexy, ∂Q/∂x = ex+y. So no potential exists.

(b) For F = (2x cos y)i − (x2 sin y)j we see ∂P/∂y = −2x sin y = ∂Q/∂x.

Hence F has a potential f . To find it f we see

∂f

∂x
= 2x sin y,

∂f

∂y
= −x sin y

f(x, y) = x2 cos y + h1(y)

f(x, y) = x2 cos y + h2(x).

we can set h1 = h2 = 0. So f(x, y) = x2 cos y.

Example 7.6.8. For a path σ : [1, 2] → R
2 x = et−1, y = sin(π/t) find the

line integral of F = 2x cos yi− x2 sin yj.

∫

σ
F · ds =

∫

σ
2x cos ydx− x2 sin ydy
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sol. Since σ(1) = (1, 0), σ(2) = (e, 1), ∂(2x cos y)/∂y = ∂(−x2 sin y)/∂x F

is irrotataional. Hence we can replace the path by another C1 having same

end points. Choose from (1, 0) to (e, 0). Next from (e, 0) to (e, 1). Then the

integral is

∫

σ
F · ds =

∫ e

1
2t cos 0dt+

∫ 1

0
−e2 sin tdt

= (e2 − 1) + e2(cos 1− 1)

= e2 cos 1− 1.

On the other hand f(x, y) = x2 cos y is a potential of F. Hence

∫

σ
2x cos ydx− x2 sin ydy =

∫

σ
∇f · ds

= f(σ(2)) − f(σ(1)) = e2 cos 1− 1.

The latter integral is easier.


