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Chapter 6

Line Integrals

6.1 Scalar and Vector line Integral

Path integral = scalar line integral

Let x = (x(t), y(t), z(t)) : [a, b] → X be a C1-path parameterized by t. Assume

f : X ⊂ R
3 → R is a continuous function. Let P : a = t0 < t1 < · · · < tk = b be

the partition of [a, b] and t∗i be any point between ti−1 and ti, for i = 1, · · · , n.
Then we consider the Riemann sum of f(x(t))

k
∑

i=1

f(x(t∗i ))‖x(ti)− x(ti−1)‖

As ‖P‖ approaches 0 the sum approaches

a = t0 t1 ti−1 ti tk = b

x

x(t0)

x(t1)

b

b

x(ti−1) x(ti)

x(tk)

∆si

O

z

y

x

Figure 6.1: Riemann sum over a path
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k
∑

i=1

f(x(t∗i ))∆si

where ∆si =
∫ ti
ti−1

‖x′(t)‖dt is the length of i-th segment of the curve x(t).

Example 6.1.1. The scalar function f(x) may represent

(1) electric charge density along the wire x(t); Then the line integral is total

charge along the wire.

(2) density of the wire x(t). Then the line integral is total mass of the wire

Definition 6.1.2. If x is a C1-curve defined over I = [a, b] having values in

R
3 and f is defined over a region containing the image of x. Then f ◦ x is

real valued function defined on I. We define the path integral-scalar line

integral of x as:
∫ b

a
f(x(t))‖x′(t)‖ dt

We denote it by
∫

x
f ds or

∫

x
f(x, y, z) ds. If f = 1, then

∫

x
ds is the length

of x.

Example 6.1.3. Find path integral of f(x, y, z) = x2 + y2 + z2 over x.

x(t) = (cos t, sin t, t), t ∈ [0, 2π]

sol. Since x′(t) = (− sin t, cos t, 1), the line integral is

∫

x

f ds =

∫ 2π

0
f(x(t))‖x′(t)‖ dt

=

∫ 2π

0
(1 + t2)

√
2 dt

=
√
2
(

2π + 8π3/3
)

.

Path integral over planar Curves

If f(x, y) is a continuous function defined over a region containing the image

of a path x, then the path integral of f along x is given by

∫

x

f(x, y) ds =

∫ b

a
f(x(t), y(t))

√

x′(t)2 + y′(t)2dt
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If f = 1, it is nothing but the arc -length.

Example 6.1.4 (Tom Sawyer’s fence). Find the area of fence along a param-

eterized curve x = x(t) = (30 cos3 t, 30 sin3 t) in R
2 and height is given by

f(x, y) = 1 + 3y.

sol. x(t) = (30 cos3 t, 30 sin3 t) for t ∈ [0, π/2]. The area of one side is

∫

C
f(x, y)ds

where ds = ‖x′(t)‖dt = 90 sin t cos t dt. So

∫

C
f(x, y)ds =

∫ π/2

0

(

1 + 10 sin3 t
)

90 sin t cos t dt

= 90

∫ π/2

0
(sin t+ 10 sin4 t) cos t dt = 225.

This is half of the fence. Total area of fence(both sides) is 900 square ft. If he

can get .05 dollar per square feet, he can make 900× 0.05 = 1.80.

Example 6.1.5. Find path integral of f(x, y, z) = x2 + y2 + z2 over C.

C = {(cos t, sin t, t) : t ∈ [0, 2π]} ∪ {(1, 0, t) : t ∈ [0, 2π]}

sol. We write C as the union of C1 and C2, where

C1 = {(cos t, sin t, t) : t ∈ [0, 2π]}, C2 = {(1, 0, t) : t ∈ [0, 2π]}.

We parameterize C1 and C2 as follows:

x1 = (cos t, sin t, t), t ∈ [0, 1], x2 = (1, 0, t), t ∈ [0, 2π].
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Then

∫

C
f ds =

∫

C1

f ds+

∫

C2

f ds

=

∫

x1

f ds+

∫

x2

f ds

=

∫ 2π

0
(1 + t2)

√
2 dt+

∫ 2π

0
(1 + t2) dt

= (1 +
√
2)
(

2π + 8π3/3
)

.

Vector Line Integrals

As an example, consider the work done by a force field. Suppose a particle

moves along a curve x while acted upon by a force F. If a portion of x is a line

segment given by the vector d and F is constant force, then the work done on

the particle along d is, by definition

Work = F · d = magnitude of force × displacement in the direction of force.

If the path is a curve, we break the curve into small pieces and add the

work done on each piece then take the limit. So the work is defined by

lim
n

n−1
∑

i=0

F(x(ti)) · [x(t+∆t)− x(t)] =

∫ b

a
F(x(t)) · x′(t)dt

Here x(t+∆t)− x(t) represents the line segment. We use the notation:

∆s = x(t+∆t)− x(t)

Definition 6.1.6. Let F be a vector field on R
3 that is continuous on the

C1- path defined on a set containing the image of x : [a, b] → R
3. Define the

(vector) line integral

∫

c

F · ds =
∫ b

a
F(x(t)) · x′(t)dt.

An interpretation of (vector) line integral in terms of scalar integral is given

as follows: For x′(t) 6= 0, we see the vector T(t) = x′(t)/‖x′(t)‖ is the unit
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tangent vector. Hence

∫

x

F · ds =

∫ b

a
F(x(t)) · x′(t)dt

=

∫ b

a

[

F(x(t)) · x′(t)

‖x′(t)‖

]

‖x′(t)‖dt

=

∫ b

a
[F(x(t)) ·T(t)] ‖x′(t)‖dt

=

∫

x

(F ·T) ds.

So the (vector) line integral is the path integral(scalar line integral) of

the tangential component F · T along x. When x is a closed curve, the

integral
∫

x
F · ds is called the circulation of F along x.

Example 6.1.7. Suppose F(x, y, z) = x3i+ yj+ zk and x is a circle given by

x = 0, y2 + z2 = a2. Compute
∫

x
F · ds.

sol. We parameterize the circle

x = 0, y = a cos θ, z = a sin θ, 0 ≤ θ ≤ 2π

x′(t) = (0,−a sin θ, a cos θ)

Since F(x(θ)) · x′(θ) = 0, the work must be zero. You can verify by finding

the value.

Another notation for line integral-differential form

Suppose x(t) = (x(t), y(t), z(t)) and F = (F1, F2, F3). Since (dx, dy, dz) =

(x′(t), y′(t), z′(t))dt, we can write the line integral as

∫

x

F · ds =

∫

x

(F1, F2, F3) · (x′(t), y′(t), z′(t))dt

=

∫

x

F1dx+ F2dy + F3dz.

Example 6.1.8. Show

∫

C
x2dx+ xydy + dz =

11

15
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where x(t) = (t, t2, 1) = (x, y, z) on [0, 1].

Example 6.1.9. Compute

∫

C
cos zdx+ exdy + eydz

where c(t) = (1, t, et) on [0, 2].

Example 6.1.10. Show

∫

C
(sin zdx+ cos zdy − (xy)1/3dz) = −1

2

where x = cos3 θ, y = sin3 θ, z = θ on [0, 7π/2].

Draw the curve in R
3.

Reparametrization

Definition 6.1.11. Let x : I1 = [a1, b1] → R
3 be a C1 curve. If u : I =

[a, b] → I1 = [a1, b1] is a real valued C1 curve that is one-to-one and onto,

then the composition

y(t) = (x ◦ u)(t) : I = [a, b] → R
3

is called a reparametrization of x.

The line integral depends not only on F but also depends on the path x.

If x1, x2 are two different parametrization of the same curve, we shall see

∫

x1

F · ds = ±
∫

x2

F · ds

Theorem 6.1.12. Let x : [a1, b1] → R
3 be a curve and y : [a, b] → R

3 is given

by y = x ◦ u where u : [a, b] → [a1, b1] satisfies

u(a) = a1, u(b) = b1(Orientation preserving)

or

u(a) = b1, u(b) = a1(Orientation reversing)

Then we have
∫

y

F · ds = ±
∫

x

F · ds
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a b

y(t)

a1 b1

x(t)

C

u(t)

Figure 6.2: Reparametrization of a curve

Here we have + sign, if y is orientation preserving, and − sign, if y is orien-

tation reversing.

Proof. If u is orientation preserving then u(a) = a1, u(b) = b1. In this case,

∫

y

F(x(s)) · ds =

∫ b

a
F(x(u(t))) · x′(u(t))u′(t) dt

=

∫ u(b)

u(a)
F(x(s)) · x′(s) ds(s = u(t))

=

∫ b1

a1

F(x(s)) · x′(s) ds (6.1)

=

∫

x

F(x(s)) ds.

If y is orientation reversing, then from the third line 6.1 the integral becomes

=

∫ a1

b1

F(x(s)) · x′(s) ds

= −
∫ b1

a1

F(x(s)) · x′(s) ds

= −
∫

x

F(x(s)) ds.

Example 6.1.13. (1) Given x : [a, b] → R
n. As a typical example, consider
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xop : [a, b] → R
n defined by

xop = x(a+ b− t) : [a, b] → R
n.

xop is called opposite path. This is orientation reversing. We see

∫

xop

F · ds =
∫ b

a
F · (xop)

′(t)dt

=

∫ b

a
F · x′(b+ a− t)(−1)dt

=

∫ a

b
F · x′(u)du (u = b+ a− t)

= −
∫ b

a
F · x′(u)du

= −
∫

x

F · ds.

(2) The path p; [0, 1] → R
3 given by p(t) = x(a+ (b− a)t) is an orientation

preserving reparametrization.

The line integral is an oriented integral, in the sense that change of sign

occurs if the orientation is reversed. The path integral does not have this

property.

Theorem 6.1.14 (Path integral is independent of parametrization). If x and

y are two parametrization of a piecewise C1-curve C, and f is any real valued

continuous function, then

∫

x

f(x, y, z) ds =

∫

y

f(x, y, z) ds.

Let x(t) : [a, b] → R
n. As an example, let y defined by y(t) = x(a+ b− t).
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Then

∫

y

f ds =

∫ b

a
f(−x(t))‖(−x)′(t)‖ dt

=

∫ b

a
f(x(b+ a− t))‖x′(b+ a− t)(−1)‖ dt

=

∫ a

b
f(x(s))‖x′(s)‖(−1) ds (s = b+ a− t)

=

∫

x

f ds.

6.2 Green’s Theorem

Boundary and interior of a region

Let D be a region in R
2. We denote its boundary by ∂D and assume its

orientation is given in the counterclockwise direction, i.e, when one walks

along the boundary, the region on his left is assumed to be interior.

Green’s Theorem

O a b

y = φ1(x)

y = φ2(x)

C1

C2

x

y

O

c

d

x = ψ1(y) x = ψ2(y)

C1 C2

x

y

Figure 6.3: As type 1 region and boundary

Theorem 6.2.1. (Green’s theorem) Let D be a closed bounded, region in

R
2 with boundary C = ∂D consisting of finitely many simple closed curve with

positive orientation. (The region D is on the left side as one traverses C.)
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Suppose F(x, y) =M(x, y)i+N(x, y)j be a vector field of class C1. Then

∮

∂D
M dx+N dy =

∫∫

D

(

∂N

∂x
− ∂M

∂y

)

dxdy.

Here ∂D denotes the boundary of D and
∮

∂D means that the integral is defined

on a closed curve.(thus it is the same as
∫

∂D).

Proof. Assume D is a region of type 1 given as follows:

D = {(x, y)| a ≤ x ≤ b, φ1(x) ≤ y ≤ φ2(x)}.

We decompose the boundary of D as ∂D = C+
1 + C−

2 (fig 6.3). Using the

Fubini’s theorem, we can evaluate the double integral as an iterated integral

∫∫

D
−∂M(x, y)

∂y
dxdy =

∫ b

a

∫ φ2(x)

φ1(x)
−∂M(x, y)

∂y
dydx

=

∫ b

a
[M(x, φ1(x))−M(x, φ2(x))]dx.

On the other hand, C+
1 can be parameterized as x → (x, φ1(x)), a ≤ x ≤ b

and C+
2 can be parameterized as x→ (x, φ2(x)), a ≤ x ≤ b. Hence

∫ b

a
M(x, φi(x))dx =

∫

C+

i

M(x, y)dx, i = 1, 2.

By reversing orientations

−
∫ b

a
M(x, φ2(x))dx =

∫

C−

2

M(x, y)dx.

Hence
∫∫

D
−∂M
∂y

dydx =

∫

C+

1

Mdx+

∫

C−

2

Mdx.

Hence

∫∫

D
−∂M
∂y

dxdy =

∫

C+

1

M dx+

∫

C−

2

M dx =

∫

∂D
M dx.

Similarly if D is a region of type 2, one can show that

∫∫

D

∂N

∂x
dxdy =

∫

C+

1

Ndy +

∫

C−

2

Ndy =

∫

∂D
N dy.
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Here C1 and C2 are the curves defined by x = ψ1(y) and x = ψ2(y) for

c ≤ y ≤ d. The proof is completed.

C2

C1

x

y

O

D1
D2

D3 D4

Figure 6.4: Region is divided into four regions to apply Green’s theorem

Generalizing Green’s theorem

In fact, Green’s theorem holds for more general region. For example, Green’s

theorem can be used for a region with a hole. One cuts the region so that each

region is type 3.

Theorem 6.2.2. (Green’s theorem for general region) Let D be a region

which can be divided into a several pieces of regions where Green’s theorem

apply, and let ∂D be the boundary. Suppose M and N : D → R are C1

functions, then

∫

∂D
Mdx+Ndy =

∫∫

D

(

∂N

∂x
− ∂M

∂y

)

dxdy.

Proof. Assume D is the union of type 3 regions Di, i = 1, 2, . . . , n whose

boundary ∂D is the sum of ∂Di, i = 1, 2, . . . , n. In other words,

D =
n
∑

i=1

Di , ∂D =
n
∑

i=1

∂Di.

So
∫

∂D
Mdx+Ndy =

n
∑

i=1

∫

∂Di

Mdx+Ndy.
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and
∫∫

D

(

∂N

∂x
− ∂M

∂y

)

dxdy =
n
∑

i=1

∫∫

Di

(

∂N

∂x
− ∂M

∂y

)

dxdy.

Since each Di is type 3, we can apply theorem 6.2.1 to have

∫

∂Di

Mdx =

∫∫

Di

−∂M
∂y

dxdy

and
∫

∂Di

Ndy =

∫∫

Di

∂N

∂x
dxdy.

We add all these terms to get the result.

Example 6.2.3. Verify Green’s theorem for

M(x, y) =
−y

x2 + y2
, N(x, y) =

x

x2 + y2

on D = {(x, y)| h2 ≤ x2 + y2 ≤ 1}, 0 < h < 1.

1h

R

C1

Ch

x

y

O

Figure 6.5: Concentric region for Green’s theorem

sol. The boundary of D consists of two circles(fig 6.9)

C1 : x = cos t, y = sin t, 0 ≤ t ≤ 2π

Ch : x = h cos t, y = h sin t, 0 ≤ t ≤ 2π.

In the curve ∂D = Ch ∪ C1, C1 is oriented counterclockwise while Ch

is oriented clockwise. Since M,N are class C1 in the annuls D, we can use
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Green’s theorem. Since

∂M

∂y
=

(x2 + y2)(−1) + 2(2y)

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
=
∂N

∂x

we have
∫∫

D

(

∂N

∂x
− ∂M

∂y

)

dxdy =

∫

D
0 dxdy = 0.

On the other hand,

∫

∂D
Mdx+Ndy =

∫

C1

xdy − ydx

x2 + y2
+

∫

Ch

xdy − ydx

x2 + y2

=

∫ 2π

0
(cos2 t+ sin2 t)dt+

∫ 0

2π

h2(cos2 t+ sin2 t)

h2
dt

= 2π − 2π = 0.

Hence
∫

∂D
Mdx+Ndy = 0 =

∫∫

D

(

∂N

∂x
− ∂M

∂y

)

dxdy.

Example 6.2.4. Evaluate
∫

C
xdy−ydx
x2+y2

where C is the unit circle.

sol. Since the integrand is not continuous at (0, 0), we cannot use Green’s

theorem. But we can use the Green’s theorem on the region between two two

curves (fig 6.9) as in the previous example to see

∫

C
Mdx+Ndy = −

∫

Ch

Mdx+Ndy.

Now the integral −
∫

Ch
(Mdx + Ndy) can be computed by polar coordinate:

From

x = h cos θ, y = h sin θ,

dx = −h sin θdθ,
dy = h cos θdθ,

we see
xdy − ydx

x2 + y2
=
h2(cos2 θ + sin2 θ)

h2
dθ = dθ.
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Hence
∫

C

xdy − ydx

x2 + y2
= 2π.

Area

Theorem 6.2.5. If C is a simple closed curve bounding a region D, then the

area A is

A =
1

2

∫

∂D
xdy − ydx.

Proof. Let M(x, y) = −y,N(x, y) = x. Then

1

2

∫

∂D
xdy − ydx =

1

2

∫∫

D

(

∂x

∂x
− ∂(−y)

∂y

)

dxdy

=
1

2

∫∫

D
(1 + 1)dxdy =

∫∫

D
dxdy = A.

Example 6.2.6. Find the area of the region enclosed by x2/3 + y2/3 = a2/3.

sol. Let x = a cos3 θ, y = a sin3 θ, (0 ≤ θ ≤ 2π). Then

A =
1

2

∫

∂D
xdy − ydx

=
1

2

∫ 2π

0
[(a cos3 θ)(3a sin2 θ cos θ)− (a sin3 θ)(−3a cos2 θ sin θ)]dθ

=
3

2
a2
∫ 2π

0
(sin2 θ cos4 θ + cos2 θ sin4 θ)dθ

=
3

8
a2
∫ 2π

0
sin2 2θdθ =

3

8
πa2.

Hence area is 3πa2/8. (fig 6.6).

Vector Form using the Curl

Any vector field in R
2 can be treated as a vector field in R

3. For example,

the vector field F = P i + Qj on R
2 can be viewed as F = P i + Qj + 0k.
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b

b

b

b

b

x

y

(a, 0)(−a, 0)

(0, a)

(0,−a)

(a/2
√

2, a/2
√

2)

O

Figure 6.6: x2/3 + y2/3 = a2/3

Then we can define its curl and it can be shown that the curl is (compute!)

(∂Q/∂x− ∂P/∂y)k. Then we obtain

(curlF) · k =

[

(∂Q

∂x
− ∂P

∂y

)

k

]

· k =
(∂Q

∂x
− ∂P

∂y

)

.

Hence by Green’s theorem,

∫

∂D
F · ds =

∫

∂D
Pdx+Qdy =

∫∫

D

(∂Q

∂x
− ∂P

∂y

)

dxdy =

∫∫

D
(∇×F) ·k dxdy.

This is a vector form of Green’s theorem.

Theorem 6.2.7. (Vector form of Green’s theorem) Let D ⊂ R
2 be region

with ∂D. If F = P i+Qj is a C1-vector field on D then

∫

∂D
F · ds =

∫∫

D
(curlF) · k dxdy =

∫∫

D
(∇× F) · k dxdy.

Divergence Theorem

Theorem 6.2.8. Divergence form of Green’s theorem. If F = P i+Qj

is a C1-vector field on D then

∫

∂D
(F · n)ds =

∫∫

D
divF dxdy.

Proof. Let x(t) be a parametrization of the boundary of D. Since x′(t) =
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(x, y)

F(x, y)
x

y

z

k
∂D

D

O

b

b

b

b

b
b

Figure 6.7: vector in Green’s Theorem

n

D

Figure 6.8: n is the unit outward normal vector to ∂D

(x′(t), y′(t)) is tangent to ∂D we see n · x′(t) = 0. i.e, n is perpendicular to

the boundary. Choosing the proper sign of n, we see

n =
(y′(t),−x′(t))

‖x′(t)‖ .

Hence

∫

∂D
(F · n)ds =

∫ b

a

(

P (x, y)y′(t)−Q(x, y)x′(t)
√

[x′(t)]2 + [y′(t)]2

)

√

[x′(t)]2 + [y′(t)]2dt

=

∫ b

a
[P (x, y)y′(t)−Q(x, y)x′(t)]dt

=

∫

∂D
Pdy −Qdx.
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By Green’s theorem,

∫

∂D
(F · n)ds =

∫

∂D
Pdy −Qdx

=

∫∫

D

(

∂P

∂x
+
∂Q

∂y

)

dxdy

=

∫∫

D
divF dxdy.

6.3 Conservative vector fields

Definition 6.3.1. A line integral a vector field F is called path independent

if
∫

C1

F · ds =
∫

C2

F · ds (6.2)

for any two oriented curves C1, C2 lying in the domain of F having same end

points.

Definition 6.3.2. A region R in R
2 or R3 is called simply connected if it

consists of s single piece and every simple closed curve C in R can be contin-

uously shrunk to a point while remaining in R throughout the deformation.

R1 R2

Figure 6.9: ‘Simply connected’ region and ‘not simply connected’ region in R
2

Example 6.3.3. Let F = yi−xj and consider two paths C1 and C2 connecting

(0, 0) and (1, 1). We compare
∫

C1
F · ds and

∫

C2
F · ds. These curves may be
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parameterized as

C1 :







x = t

y = t
(0 ≤ t ≤ 1) and C2 :







x = t

y = t2
(0 ≤ t ≤ 1).

C1

C2

Figure 6.10: Two path connecting (0, 0) and (1, 1)

Theorem 6.3.4. (Conservative Field) Let F be a C1-vector field in R
3

except finite number of points. Then the following conditions are equivalent:

(1) For any oriented simple closed curve C,
∫

C F · ds = 0.

(2) For any two oriented simple curve C1, C2 having same end points,

∫

C1

F · ds =
∫

C2

F · ds.

(3) F is the gradient of some function f , i.e, F = ∇f .

(4) ∇× F = 0.

Remark 6.3.5. For R2, we need the concept of simply connected domain.

Proof. We use the sequence of implication: (i)⇒(2)⇒(3)⇒(4)⇒(1).

(1)⇒(2): Suppose we have two curves C1, C2 having same end points, we

can form a closed curve by C = C1 − C2(fig 6.11). Hence by (1)

0 =

∫

C
F · ds =

∫

C1−C2

F · ds =
∫

C1

F · ds−
∫

C2

F · ds.

(2)⇒(3): Fix a point (x0, y0, z0). Given any point (x, y, z), choose any

curve C connecting two points we define. Given F = (F1, F2, F3) define

f(x, y, z) =

∫

C
F · ds =

∫

C
F1dx+ F2dy + F3dz.
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b

b

(a) oriented simple closed curve C = C1 − C2

C = C1 − C2 b

b

(b) two oriented simple curves C1

C1

C2

Figure 6.11: Constructing oriented simple closed curve from two oriented sim-
ple curve C1, C2

Here f is well-defined, since it is defined independent of the choice of C. So

we choose C consisting of edges of rectangular pipe.

b b

b

b

b

(x0, y0, z0)
x

y

z

C1

C2

C3

C4

(x1, y1, z1)
(x1, y, z1)

(x, y, z1)

(x, y, z)

O

bc

bc

bc

bc

Path avoid points where vector field is not defined

Figure 6.12: A path from (x0, y0, z0) to (x, y, z) is C = C1 + C2 + C3 + C4

In particular, choose C = C1 + C2 + C3 + C4 (fig 6.12). Then

f(x, y, z) =

∫

C
F · ds

=

∫

C1

F · ds+
∫

C2

F · ds+
∫

C3

F · ds+
∫

C4

F · ds

=

∫

C1

F · ds+
∫ y

y1

F2(x1, t, z1)dt

+

∫ x

x1

F1(t, y, z1)dt+

∫ z

z1

F3(x, y, t)dt.

From this we see ∂f/∂z = F3. Similarly by choosing different path(i.e, choos-
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ing a path whose last path is along x-direction) we have

f(x, y, z) =

∫

C1

F · ds+
∫ y

y1

F2(x1, t, z1)dt

+

∫ z

z1

F3(x1, y, t)dt +

∫ x

x1

F1(t, y, z)dt

so ∂f/∂x = F1. Similarly, we have ∂f/∂y = F2. Thus F = ∇f .
(3)⇒(4): By theorem 5.1.2, we have ∇×∇f = 0. So curlF = ∇×F = 0.

(4)⇒(1): Let S be a surface having C as boundary. Then
∫

C
F · ds =

∫

S
curlF · dS.

Here in 2-D, this is nothing but the Green’s theorem with dS = kdxdy. Since

curlF = 0 the integral
∫

C F · ds = 0.

Line integrals of Gradient Fields

A vector field F is called a gradient vector field if F = ∇f for some real

valued function f. Thus

F =
∂f

∂x
i+

∂f

∂y
j+

∂f

∂z
k.

This f is called potential of F.

Theorem 6.3.6. Suppose f : R
3 → R is class C1 and x : [a, b] → R

3 is

smooth. Then
∫

x

∇f · ds = f(x(b))− f(x(a)).

Proof. By the chain rule, we get

(f ◦ x)′(t) = ∇f(x(t)) · x′(t).

So

∫

x

∇f · ds =
∫ b

a
∇f(x(t)) · x′(t)dt =

∫ b

a
f ′(u)du = f(x(b))− f(x(a)).

So the line integral is independent of parametrization.
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A criterion for conservative Vector Fields

Definition 6.3.7. A region R is called simply connected if it consists of

a single connected piece and if every closed curve C in R can be shrunk to a

point while remaining in R.

Theorem 6.3.8. Suppose F is a C1-vector field in a simply connected region

in R
2 or R

3. Then F = ∇f for some scalar function of C2 if and only if

∇× F = 0.

Proof. Suppose F = ∇f for some scalar function of C2. Then ∇ × F =

∇ × (∇f) = 0. Conversely, suppose ∇ × F = 0. Then
∮

C F · ds = 0 for

any closed curve C. Then by Theorem 6.3.4 the line integral of F is path

independent. Hence F = ∇f for some f.

Hence

curlF = ∇× F = 0

is equivalent to

∂Q/∂x = ∂P/∂y.

Using this we can study conservative field R
2. In R

3 vector field may have a

few points where function is undefined. But in planar case, the vector field

must be defined everywhere.

Example 6.3.9. Find the potential of the vector field if it is conservative.

F(x, y) = (2xy + cos 2y)i+ (x2 − 2x sin 2y)j.

sol.

First we check that ∇ × F = 0. Hence it is conservative. Let f be the

potential function. Then it satisfies ∇f = F, i.e.,

∂f

∂x
= 2xy + cos 2y,

∂f

∂y
= x2 − 2x sin 2y. (6.3)

Thus we proceed as follows:

(1) Integrate: f(x, y) =
∫ ∂f

∂x dx =
∫

2xy+cos 2y dx = x2y+x cos 2yxy+g(y)

(2) Set ∂f
∂y = x2 − 2x sin 2y + g′(y)
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(3) Show g(x, y) = C.

Thus we see f(x, y) = x2 − 2x sin 2y + C.

Example 6.3.10. Consider the vector field

F(x, y, z) = (
x

x2 + y2 + z2
− 6x)i+

y

x2 + y2 + z2
j+

z

x2 + y2 + z2
k.

F is class C1 except the origin. But R
3 − 0 is simply connected. Also, we

can check ∇ × F = 0. Hence F is conservative. x : [0, 1] → R
3 is given by

x(t) = (1− t, sinπt, t). Compute
∫

x
F · ds.

sol. Evaluating this integral is tricky. Instead, we choose different path(This

is allowed, since the field is conservative), or find the potential. Noting that

x(0) = (1, 0, 0) and x(1) = (0, 0, 1) we can choose a path on the unit sphere:

y(t) = (cos t, 0, sin t), 0 ≤ t ≤ π/2. This choice makes the integrand very

simple.

∫

y

F · ds =
∫ π/2

0
F · ds =

∫ π/2

0
(cos t− 6 cos t, 0, sin t) · (− sin t, 0, cos t) dt

=

∫ π/2

0
6 cos t sin t dt

= −3

2
cos 2t.

Example 6.3.11. Show that the vector field is irrotational and find its po-

tential.

F(x, y, z) = (ex sin y − yz)i+ (ex cos y − xz)j+ (z − xy)k.

sol.
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∇× F =

∣

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

ex sin y − yz ex cos y − xz z − xy

∣

∣

∣

∣

∣

∣

∣

= (
∂

∂y
(z − xy)− ∂

∂z
(ex cos y − xz))i+ (

∂

∂z
(ex sin y − yz)− ∂

∂x
(z − xy))j

+ (
∂

∂x
(ex cos y − xz)− ∂

∂y
(ex sin y − yz))k = 0.

So F is irrotational. To find a potential

∂f

∂x
= ex sin y − yz,

∂f

∂y
= ex cos y − xz,

∂f

∂z
= z − xy. (6.4)

Thus we have

(1) f(x, y, z) =
∫

(ex sin y − yz)dx = ex sin y − xyz + g(y, z)

(2) ∂f
∂y = ex cos y − xz + ∂g

∂y = ex cos y − xz. Thus g(y, z) is a function of z

only. Taking derivative w.r.t z, we have

(3) ∂f
∂z = −xy + g′(z) = z − xy. Thus g(z) = 1

2z
2 +C.

(4) f(x, y, z) = ex sin y − xyz + h(z).

Hence

f(x, y, z) = ex sin y − xyz +
1

2
z2 + C.
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