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Chapter 5

Double and Triple integrals

In this chapter we study the double integral and triple integral. First, we

define how to compute volumes of a solid by two methods: One by Carvalieri

principle and the other by double integral. Then we show the relation

between them. In fact, one can interpret the Carvalieri principle as an iterated

integral and show this equals the double integral.

The triple integral can be treated similarly.

5.1 Computing Volumes

For the convenience of presentation we assume the domain of a function on a

rectangle R given by

R = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}.

We also denote it by [a, b]× [c, d] and call it Cartesian product of [a, b], [c, d]

If f is nonnegative, then the region under the graph of z = f(x, y) defines a

solid.

Cavalieri’s Principle and iterated integral

See Fig 5.1. Let A(x) be the volume of cross section of a solid by a plane

perpendicular to the axis, then the volume is

V =

∫ b

a
A(x) dx. (5.1)
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A(x)
x

a b

∆x

x

y

z

A(x)

Figure 5.1: Cavalieri Principle, V =
∫ b
a A(x) dx

This is Cavalieri’s Principle. To understand it, let us divide the interval

[a, b] by n subintervals a = x0 < x1 < · · · < xn = b, ∆xi = xi − xi−1. Then

A(x)∆xi is the approximate volume of each slice.(Fig 5.1 ) Now the Riemann

sum

R(A,n) =

n
∑

i=1

A(xi)∆x

is the approx volume of the whole solid. If n→ ∞, the limit becomes (5.1).

Reduction to iterated integrals

Consider the volume of a solid under f over R = [a, b] ×[c, d] as in figure

5.2. The cross section along x = x0 is the set given by {(x0, y, z)|0 ≤ z ≤
f(x0, y), (c ≤ y ≤ d)}. The area of cross section is

A(x0) =

∫ d

c
f(x0, y) dy.
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Hence by Cavalieri principle, the volume is

∫ b

a
A(x) dx =

∫ b

a

[∫ d

c
f(x, y) dy

]

dx.

The expression on the right hand side is called an iterated integral. On the

other hand, if we cut it by the plane y = y0, then the volume becomes

∫ b

a
A(y) dy =

∫ d

c

[∫ b

a
f(x, y) dx

]

dy.

Since these two values are equal,

∫ b

a

[
∫ d

c
f(x, y) dy

]

dx =

∫ d

c

[
∫ b

a
f(x, y) dx

]

dy.

This is called Fubini’s theorem.

x

y

z

y = y0

x = x0

Figure 5.2: Fubini’s theorem by Cavalieri Principle

Example 5.1.1. Evaluate

∫∫

R
(x2 + y2) dxdy, R = [−1, 1]× [0, 1].

sol.
∫ 1

0

[∫ 1

−1
(x2 + y2)dx

]

dy =
4

3
.

Now change the order to see the integrals are the same.
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Example 5.1.2. Evaluate

∫∫

S
cos x sin y dxdy, S = [0,

π

2
]× [0,

π

2
]

sol.

∫∫

S
cos x sin y dxdy =

∫ π/2

0

[

∫ π/2

0
cos x sin y dx

]

dy

=

∫ π/2

0
sin y

[

∫ π/2

0
cos x dx

]

dy =

∫ π/2

0
sin y dy = 1

Now change the order.

5.2 Double integral

Double Integral of a nonnegative function as a volume

When f(x, y) is a nonnegative function over R, then the double integral of f

is the volume of the region above R and under the graph of f . But the double

integral of more general function (say continuous, or piecewise continuous) f

can be similarly defined.

Definition 5.2.1. Assume R = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}. Then we

Subdivide two intervals [a, b], [c, d] into n -intervals

a = x0 < x1 < · · · < xn = b, c = y0 < y1 < · · · < yn = d.

We call the subrectangles Rij = [xi−1, xi]× [yj−1, yj ] a partition of R and let

∆xi = xi − xi−1, ∆yj = yj − yj−1.

Definition 5.2.2. Given any function f defined on R, and for any point cij

in Rij consider the sum

S = R(f) =

n
∑

i,j=1

f(cij)∆Aij , (5.2)

where ∆Aij = ∆xi∆yj is the area of Rij . It is called Riemann sum of f
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corresponding to the partition. Here ‖R‖ = maxi,j{∆xi,∆yj} is called the

norm of the partition.

Definition 5.2.3 (Double integral). If the sum S converge to the same limit

regardless of the points cij and regardless of the partition, then f is called

integrable over R and we write its limit by

∫∫

R
f(x, y) dA = lim

‖R‖→0

n
∑

i,j=1

f(cij)∆xi∆yj.

These are also written as
∫

R f dA or
∫∫

R f(x, y) dxdy.

(a, d) (b, d)

(a, c) (b.c)

∆xi

∆yj

Figure 5.3: A partition of a rectangle

Now we define the integral of more general functions.

Integrability of bounded function

Definition 5.2.4. f is called bounded if there is M such that −M ≤
f(x, y) ≤M holds for all (x, y) in R.

Theorem 5.2.5. If f is continuous function on a closed set R, then
∫∫

R f dA

exists.

Theorem 5.2.6. If f is bounded on R and the set of points where f is dis-

continuous lies on a finite union of graphs of continuous functions, then f is

integrable over R.

This result is useful to define the integral over general region.

Properties of integral

Theorem 5.2.7. Let f , g be integrable over R, R1, R2. Then we have



158 CHAPTER 5. DOUBLE AND TRIPLE INTEGRALS

x y

z

z = 4− x2

Figure 5.4: z = 4− x2, 0 ≤ x ≤ 1, 0 ≤ y ≤ 2

(1)

∫∫

R
cf(x, y) dxdy = c

∫∫

R
f(x, y) dxdy, ( c is constant).

(2)

∫∫

R
(f(x, y) + g(x, y)) dxdy

=

∫∫

R
f(x, y) dxdy +

∫∫

R
g(x, y) dxdy.

(3) If f(x, y) ≥ 0,

∫∫

R
f(x, y) dxdy ≥ 0.

(4) If f(x, y) ≥ g(x, y),

∫∫

R
f(x, y) dxdy ≥

∫∫

R
g(x, y) dxdy.

(5) If R1 and R2 do not meet, then for R = R1 ∪R2

∫∫

R
f(x, y) dxdy =

∫∫

R1

f(x, y) dxdy +

∫∫

R2

f(x, y) dxdy.

(6)

∣

∣

∣

∣

∫∫

R
fdA

∣

∣

∣

∣

≤
∫∫

R
|f |dA.

Theorem 5.2.8 (Fubini Theorem 1). Let f be continuous on R = [a, b]×[c, d].

Then f satisfies

∫ b

a

[∫ d

c
f(x, y) dy

]

dx =

∫ d

c

[∫ b

a
f(x, y) dx

]

dy =

∫∫

R
f(x, y) dA. (5.3)

This result holds when f is discontinuous on the graph of continuous functions.

Sketch of proof first.

Let a = x0 < x1 < · · · < xn = b, c = y0 < y1 < · · · < yn = d be the

regular partition of [a, b] and [c, d]. Riemann sum for iterated integral in this
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case is

n
∑

i,j=1

f(cij)∆x∆y =

n
∑

i=1





n
∑

j=1

f(cij)∆y



∆x =

n
∑

j=1

(

n
∑

i=1

f(cij)∆x

)

∆y.

This can be proved as follows: Let [aij ] be n× n array of numbers. Then

n
∑

i,j=1

aij =
n
∑

i=1





n
∑

j=1

aij



 =
n
∑

j=1

(

n
∑

i=1

aij

)

This idea will be used.

Proof. We will first prove that

∫ b

a

[∫ d

c
f(x, y) dy

]

dx =

∫

R
f(x, y) dA.

Let

F (x) =

∫ d

c
f(x, y) dy.

Then

F (x) =

n
∑

j=1

∫ yj

yj−1

f(x, y) dy.

Then by mean value theorem for integrals(with fixed x), there exists some

Yj(x) in [yj−1, yj] such that

∫ yj

yj−1

f(x, y) dy = f(x, Yj(x))∆y.

Thus

F (x) =
n
∑

j=1

f(x, Yj(x))∆y.

By one variable integration theory, it holds that, for any choice of pi ∈ [xi−1, xi]

∫ b

a
F (x) dx = lim

n→∞

n
∑

i=1

F (pi)∆x.
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Let cij = (pi, Yk(pi)). Then

F (pi) =

n
∑

j=1

f(pi, Yj(pi))∆y =

n
∑

j=1

f(cij)∆y

holds. Hence

∫ b

a

[
∫ d

c
f(x, y) dy

]

dx =

∫ b

a
F (x) dx

= lim
n→∞

n
∑

i=1

F (pi)∆x

= lim
n→∞

n
∑

i=1

n
∑

j=1

f(cij)∆y∆x

=

∫∫

R
f(x, y) dA.

By the same reasoning, we can show

∫ d

c

[∫ b

a
f(x, y) dx

]

dy =

∫∫

R
f(x, y) dA.

Example 5.2.9. Find the volume of the region 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

0 ≤ z ≤ 2− x− y.

sol. First fix x. Then the area of cross section with a plane perpendicular

to x-axis is

A(x) =

∫ 1

0
(2− x− y) dy.

So the volume is

V =

∫ 1

0
A(x) dx =

∫ x=1

x=0

∫ y=1

y=0
(2− x− y) dydx

=

∫ 1

0

[

2y − xy − y2

2

]1

0

dx

=

∫ 1

0

(

3

2
− x

)

dx =

[

3x

2
− x2

2

]1

0

= 1.



5.2. DOUBLE INTEGRAL 161

Change the order: You can fix y. Then the area of cross section with a

plane perpendicular to y-axis is

A(y) =

∫ 1

0
(2− x− y) dx.

Hence the volume is

V =

∫ 1

0
A(y) dy =

∫ y=1

y=0

∫ x=1

x=0
(2− x− y) dxdy

=

∫ 1

0

[

2x− x2

2
− xy

]1

0

dy

=

∫ 1

0

(

3

2
− y

)

dy =

[

3y

2
− y2

2

]1

0

= 1.

Example 5.2.10. Compute
∫∫

R(x
2 + y)dA, where A = [0, 1] × [0, 1].

sol.

∫∫

R
(x2+y)dA =

∫ 1

0

∫ 1

0
(x2+y)dxdy =

∫ 1

0
[

∫ 1

0
(x2+y)dx]dy =

∫ 1

0
(
1

3
+y)dy =

5

6
.

Example 5.2.11. Find
∫∫

R f(x, y) dxdy. Here the function f = y(x3 − 12x)

takes both positive and negative values and R is given by −2 ≤ x ≤ 1,

0 ≤ y ≤ 1.

sol.

∫∫

R
y(x3 − 12x)dxdy =

∫ 1

0

[∫ 1

−2
y(x3 − 12x)dx

]

dy =
57

4

∫ 1

0
ydy =

57

8
.

Double integral over general regions

So far we have defined double integral over a rectangle. How can we define

double integral on general domains? We begin with classifying the regions.

Definition 5.2.12. Elementary regions
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x

y

a x b

y = φ1(x)

y = φ2(x)

(a) region of type 1

x

y

x = ψ2(y)

x = ψ1(y)

c

y

d

(b) region of type 2

Figure 5.5: region of type 1, region of type 2

There are three kind of elementary regions: Let y = φ1(x), y = φ2(x) be

two continuous functions satisfying φ1(x) ≤ φ2(x) for x ∈ [a, b]. Then the

region

D = {(x, y) | a ≤ x ≤ b, φ1(x) ≤ y ≤ φ2(x)}

is called region of type 1.

Now change the role of x, y as in figure 5.5 (b). If x = ψ1(y), x = ψ2(y),

satisfies ψ1(y) ≤ ψ2(y) for y ∈ [c, d], then the region determined by

D = {(x, y) | c ≤ y ≤ d, ψ1(y) ≤ x ≤ ψ2(y)}

is called region of type 2. The region that is both Type 1 and Type 2 is

called region of type 3. These are called elementary regions.

x

y

c

y0

d

a x0 b

Figure 5.6: Region of type 3



5.2. DOUBLE INTEGRAL 163

Integrals over elementary regions(by extension to 0)

Now we are ready to define the integral of f defined on an elementary region.

The idea is to extend the function to a rectangular domain. Given a continuous

function f on D where D is an elementary region

D = {(x, y) | φ1(x) ≤ y ≤ φ2(x), a ≤ x ≤ b},

we consider a rectangle which contains D and extend f to R outside D by

zero:

f ext(x, y) =







f(x, y), (x, y) ∈ D
0, (x, y) ∈ R \D.

Then f ext has discontinuities on the graphs of y = φ1(x), y = φ2(x), a ≤ x ≤ b.

Hence it is integrable by Theorem 5.2.6. Now we can define the integral of f

over R.

Definition 5.2.13. The integral of f is defined as

∫∫

D
f(x, y) dA :=

∫∫

R
f ext(x, y) dA.

R
f = 0D

x

y

z

fext = f(x, y)

Figure 5.7: Extension of a function

From this definition we have an important result useful in the computation

of double integral.

Theorem 5.2.14 (Reduction of a double integral to iterated integral). Let f

be a continuous on an elementary region D ⊂ R.
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(1) If D is a domain of type 1, i.e, D = {(x, y) : φ1(x) ≤ y ≤ φ2(x), a ≤
x ≤ b} for some continuous functions φ1, φ2, then f is integrable on D

and
∫∫

D
f(x, y) dA =

∫ b

a

[

∫ φ2(x)

φ1(x)
f(x, y) dy

]

dx.

(2) Similarly if D is a domain of type 2, i.e, D = {(x, y) : ψ1(y) ≤ x ≤
ψ2(y), c ≤ y ≤ d} for some continuous functions ψ1, ψ2, then

∫∫

D
f(x, y) dA =

∫ d

c

[

∫ ψ2(y)

ψ1(y)
f(x, y) dx

]

dy.

Proof. By Fubini theorem, we have

∫∫

D
f(x, y) dA =

∫∫

D
f ext(x, y) dA (5.4)

=

∫ b

a

∫ d

c
f ext(x, y) dydx (5.5)

=

∫ d

c

∫ b

a
f ext(x, y) dxdy. (5.6)

For type 1 region, we see

∫ d

c
f ext(x, y) dy =

∫ φ2(x)

φ1(x)
f(x, y) dy.

Hence by (5.5) we obtain (1). For type 2 region, we see

∫ b

a
f ext(x, y) dx =

∫ ψ2(y)

ψ1(y)
f(x, y) dx.

Hence by (5.5) we obtain (2).

Example 5.2.15. Find the following integral when D : 0 ≤ x ≤ 1, x ≤ y ≤ 1

∫∫

D
(x+ y2) dxdy
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1

y = x

Figure 5.8: Region 0 ≤ x ≤ 1, x ≤ y ≤ 1

sol. Use Fubini’s theorem

∫ 1

0

∫ 1

x
(x+ y2) dydx =

∫ 1

0

[

xy +
y3

3

]1

x

dx

=

∫ 1

0

(

x+
1

3
− x2 − x3

3

)

dx

=

[

x2

2
+
x

3
− x3

3
− x4

12

]1

0

=
5

12

Example 5.2.16. Find
∫∫

D x
2y dA whereD is given by 0 ≤ x, 0 ≤ y ≤ 4−x2,

3x2 ≤ y.

sol. Two curve meet at (1, 3) hence

∫ 1

0

∫ 4−x2

3x2
x2y dydx =

∫ 1

0

(

x2y2

2

)∣

∣

∣

∣

4−x2

y=3x2
dx

=

∫ 1

0

(

x2

2
((4− x2)2 − (3x2)2)

)

dx

=
1

2

∫ 1

0
x2(16− 8x2 + x4 − 9x4) dx =

136

105
.

Example 5.2.17. Find
∫∫

D(x
3y+cosx) dA where D is given by 0 ≤ x ≤ π/2,

0 ≤ y ≤ x.
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b (1, 3)

4

2

y = 4− x2

y = 3x2

Figure 5.9: Domain of integration of example 5.2.16

sol.

∫∫

D
(x3y + cos x) dA

=

∫ π/2

0

∫ x

0
(x3y + cos x)dy dx

=

∫ π/2

0

[

x3y2

2
+ y cos x

]x

y=0

dx =

∫ π/2

0

(

x5

2
+ x cos x

)

dx

=
π6

768
+
π

2
− 1.

Example 5.2.18. Find volume of tetrahedron bounded by the planes y =

0, x = 0, y − x+ z = 1.

sol. We let z = f(x, y) = 1− y + x. Then the volume of tetrahedra is the

volume under the graph of f . Hence

∫∫

D
(1− y + x)dA =

∫ 0

−1

∫ 1+x

0
(1− y + x)dydx

=

∫ 0

−1

[

(1 + x)y − y2

2

]1+x

y=0

dx =
1

6
.

Example 5.2.19. Let D be given by D = {(x, y)|0 ≤ x ≤ ln 2, 0 ≤ y ≤
ex − 1}. Express the double integral

∫∫

D
f(x, y) dA
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in two iterated integrals.

sol. See figure 5.10. To view it as a region of type 1, the points of intersection

is y = 0, y = ex − 1(0 ≤ x ≤ ln 2). Hence

∫ ln 2

0

∫ ex−1

0
f(x, y) dydx

As a y-simple region, the points of intersection is x = ln(y + 1), x =

ln 2(0 ≤ y ≤ 2) So the integral is

∫ 1

0

∫ ln 2

ln(y+1)
f(x, y) dxdy

Example 5.2.20. Given domain D (fig. 5.11) by

4− 2x ≤ y ≤ 4− x2, 0 ≤ x ≤ 2

Find
∫∫

D
(1 + x) dA

sol. This region is of third kind.

x

y

1

ln 2

Figure 5.10: 0 ≤ y ≤ ex − 1, 0 ≤ x ≤ ln 2
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y

y = 4− 2x

y = 4− x2

2
x

4

Figure 5.11: 4− 2x ≤ y ≤ 4− x2

∫ 2

0

∫ 4−x2

4−2x
(1 + x) dydx =

∫ 2

0
[(1 + x)y]y=4−x2

y=4−2x dx

=

∫ 2

0
(−x3 + x2 + 2x) dx

=

[

−x
4

4
+
x3

3
+ x2

]2

0

=
8

3
.

On the other hand, as a function of y x = (4− y)/2, x =
√
4− y. So

∫ 4

0

∫

√
4−y

(4−y)/2
(1 + x) dxdy =

∫ 4

0

[

x+
x2

2

]x=
√
4−y

x=(4−y)/2
dy

=

∫ 4

0

(

√

4− y − (4− y)2

8

)

dy

=

[

−2

3
(4− y)3/2 +

(4− y)3

24

]4

0

=
2

3
43/2 − 43

24
=

8

3
.

Example 5.2.21 (Breaking into several pieces).

∫

D
f dA =

∫

D1

f dA+

∫

D2

f dA+

∫

D3

f dA+

∫

D4

f dA.

See Figure 5.12
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D1

D4

Figure 5.12: Region can be divided

5.3 Change order of integration

Suppose D is of type 3. Then it is given by two ways:

φ1(x) ≤ y ≤ φ2(x), a ≤ x ≤ b

and

ψ1(y) ≤ x ≤ ψ2(y), c ≤ y ≤ d.

Thus by Theorem 5.2.14

∫∫

D
f(x, y)dA =

∫ b

a

∫ φ2(x)

φ1(x)
f(x, y)dydx =

∫ d

c

∫ ψ2(y)

ψ1(y)
f(x, y) dxdy.

Example 5.3.1. Compute by change of order of integration

∫ a

0

∫ (a2−x2)1/2

0
(a2 − y2)1/2 dydx.

sol.

∫ a

0

∫ (a2−x2)1/2

0
(a2 − y2)1/2 dydx =

∫ a

0

∫ (a2−y2)1/2

0
(a2 − y2)1/2 dxdy

=

∫ a

0
[x(a2 − y2)1/2]

(a2−y2)1/2
0 (a2 − y2)1/2 dy

=

∫ a

0
(a2 − y2) dy =

2a3

3
.
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y

π

y = x

x

Figure 5.13: 0 ≤ x ≤ π, x ≤ y ≤ π

There are cases when the given integral is almost impossible to find, but if we

change the order the integral can be found.

Example 5.3.2. Find
∫ π

0

∫ π

x

sin y

y
dydx.

sol. It is not easy to find the integral as the given form. But if we change

the order of integration (fig 5.13)

∫ π

0

∫ π

x

sin y

y
dydx =

∫ π

0

∫ y

0

sin y

y
dxdy

=

∫ π

0

[

sin y

y
x

]x=y

x=0

dy

=

∫ π

0
sin y dy = [− cos y]π0 = 2.

Example 5.3.3. Find
∫ 1

0

∫ 1

y

ex − 1

x
dx dy.

Example 5.3.4. Find
∫ 2

0

∫ 4

x2
y cos(x2) dx dy.
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x
b b

b

y

y = log x

1 2

Figure 5.14: order of integration

sol. It is very difficult to find
∫ 4
y2 cos(x

2) dx. However, if we change the

order of integration to have

∫ 2

0

∫ 4

y2
cos(x2) dx dy =

∫ 4

0

∫

√
x

0
y cos(x2) dy dx

=

∫ 4

0

y2

2
cos(x2)

∣

∣

∣

∣

√
x

0

dx

=

∫ 4

0

x

2
cos(x2) dx

=
1

4

∫ 16

0
cos u du =

1

4
sin 16.

5.3.1 Mean value inequality

Theorem 5.3.5. Suppose f : D → R is continuous on an elementary region

D and m = minD f(x, y) ≤ f(x, y) ≤M = maxD f(x, y). Then we have

mA(D) ≤
∫∫

D
f dA ≤MA(D). (5.7)

Example 5.3.6. Estimate

∫

D

1
√

1 + x6 + y7
dxdy

where D is the unit square. Then we can easily see the following holds.

1√
3
≤ 1
√

1 + x6 + y7
≤ 1.

Theorem 5.3.7. If f is continuous over D then there is a point (x0, y0) such
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that

f(x0, y0) =
1

A(D)

∫∫

D
f.

Proof. Divide (??) by A(D) to get

m ≤ 1

A(D)

∫∫

D
f dA ≤M.

Since f assume the values m,M and f is continuous, (by intermediate value

theorem) there is a point (x0, y0) such that

f(x0, y0) =
1

A(D)

∫∫

D
f

which is precisely the conclusion.

5.4 Triple integrals

Assume f(x, y, z) is defined on a box B = [a, b]× [c, d]× [p, q].

x y

z

Figure 5.15: partition of box

Definition 5.4.1. Assume R = [a, b] × [c, d] × [p, q] be a box. Then we

subdivide intervals [a, b], [c, d] and [p, q] into n -intervals

a = x0 < x1 < · · · < xn = b,

c = y0 < y1 < · · · < yn = d,

p = z0 < y1 < · · · < zn = q,

and call the resulting subboxes Bjk = [xi−1, xi] × [yj−1, yj] × [zk−1, zk] a

partition of R.
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Definition 5.4.2. We let

∆xi = xi − xi−1, ∆yj = yj − yj−1 and ∆zk = zk − zk−1.

We partition the box into small n3- boxes as in Fig 5.15, and denote the volume

of each subbox as ∆Vijk (i, j, k = 1, . . . , n) and let ‖P‖ = maxi,j,k{∆xi,∆yj,∆zk}.
Then the Riemann sum becomes

R(f, n) = Sn =
n
∑

i,j,k=1

f(cijk)∆Vijk.

Here cijk is any point in the subbox Bijk.

Definition 5.4.3. If limn Sn = S exists independently of the choice of cijk,

then we say f is integrable in B and call S the triple integral and we write

∫∫∫

D
fdV,

∫∫∫

D
f(x, y, z)dV, or

∫∫∫

D
f(x, y, z)dxdydz.

Reduction to iterated integral

Theorem 5.4.4 (Fubini’s theorem). Suppose f is continuous on D = [a, b]×
[c, d]× [p, q]. Then the triple integral

∫∫∫

D f(x, y, z)dxdydz equals with any of

the following integrals.

∫ q

p

∫ d

c

∫ b

a
f(x, y, z) dxdydz,

∫ q

p

∫ b

a

∫ d

c
f(x, y, z) dydxdz

∫ b

a

∫ d

c

∫ q

p
f(x, y, z) dzdydx, etc.

Example 5.4.5. B = [0, 1] × [−1
2 , 0]× [0, 13 ].

∫∫∫

B
(x+ 2y + 3z)2dxdydz =

1

12
.

Change the order and compute again to see the value does not change.

Example 5.4.6.
∫

B
ex+y+zdV,

where B is the unit cube at origin.
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Elementary regions

Definition 5.4.7. A region D is elementary regions if the points lie be-

tween graph of continuous functions of two variables, and the domain of these

functions is elementary. If f is continuous on D, then we extend f on a box

E containing D

f ext(x, y, z) =







f(x, y, z), (x, y, z) ∈ D

0, (x, y, z) ∈ E \D

and define
∫

D
fdV =

∫

E
f extdV.

Suppose R is an elementary region in xy-plane and there are continuous

functions γ1(x, y), γ2(x, y) such that

D = {(x, y, z) | γ1(x, y) ≤ z ≤ γ2(x, y), (x, y) ∈ R}. (5.8)

Then this is called an elementary region of type 1.

y =
φ
1 (x)

y =
φ
2 (x)

z =
λ
1 (x, y)

z =
λ
2 (x, y)

z

x
y

b

a

Figure 5.16: elementary region of type 1

If roles of x, z are interchanged, i.e,

D = {(x, y, z) | γ1(y, z) ≤ x ≤ γ2(y, z), (y, z) ∈ R} (5.9)

for some elementary region R in (y, z)-plane, then it is called an elementary

region of type 2.

Similarly, we can define an elementary region of type 3 and an ele-
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mentary region of type 4.

Example 5.4.8. Describe the unit ball as an elementary region.

sol. The domain of defining function is described by

−
√

1− x2 ≤ y ≤
√

1− x2, −1 ≤ x ≤ 1

while the functions are

−
√

1− x2 − y2 ≤ z ≤
√

1− x2 − y2, on unit disk.

x = λ
2(y, z)

x = λ
1(y, z)

z = φ
2(y)

z = φ
1

z

x y

c

d

Figure 5.17: elementary region of 2

Integrals over elementary regions

Suppose D is defined by

D = {(x, y, z) | γ1(x, y) ≤ z ≤ γ2(x, y), (x, y) ∈ R},

where R is a type 1 region in xy-plane

R = {(x, y) | φ1(x) ≤ y ≤ φ2(x), a ≤ x ≤ b}.
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Then the integral is given by

∫∫∫

D
f dV =

∫

R

∫

f(x, y, z) dzdA

=

∫ b

a

∫ φ2(x)

φ1(x)

∫ γ2(x,y)

γ1(x,y)
f(x, y, z) dzdydx.

Example 5.4.9. Find the volume of radius 1.

z =
√

1− x2
− y2

z = −

√

1− x2
− y2

z

y

x

Figure 5.18: x2 + y2 + z2 = 1

sol. Unit ball is described by x2 + y2 + z2 ≤ 1. The volume is (fig 5.18)

∫

D
1 dV, D = {(x, y, z) | x2 + y2 + z2 ≤ 1}

Here we can take R = {(x, y) | x2 + y2 ≤ 1} and D = {−
√

1− x2 − y2 ≤ z ≤
√

1− x2 − y2, (x, y) ∈ R}. Hence

∫

R

∫

dzdydx =

∫

R

∫ z=
√

1−x2−y2

z=−
√

1−x2−y2
1 dzdydx

= 2

∫

R

√

1− x2 − y2 dydx

= 2

∫ 1

−1

∫

√
1−x2

−
√
1−x2

√

1− x2 − y2 dydx.

Let
√
1− x2 = a. The inner integral is area of semi circle or radius a

2

∫

√
1−x2

−
√
1−x2

√

1− x2 − y2 dy = 2

∫ a

−a

√

a2 − y2dy = a2π = (1− x2)π.
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Hence

2

∫ 1

−1

∫

√
1−x2

−
√
1−x2

√

1− x2 − y2 dydx =

∫ 1

−1
(1− x2)π dx

=

[

(x− x3

3
)π

]1

−1

= 2(1− 1

3
)π =

4

3
π.

Other type of elementary regions can be described similarly. If a region can

be described in all three ways we call these regions symmetric elementary

regions.

Example 5.4.10. Let D be the region bounded by x + y + z = 1, x = 0,

y = 0, z = 0. Find

∫∫∫

D
(1 + 2z)dxdydz.

x+ y + z = 1

x+ y = 1

z

x

y

Figure 5.19: x+ y + z = 1

sol. Let R = {(x, y) | 0 ≤ y ≤ 1− x, 0 ≤ x ≤ 1}. Then D is described by

D = {(x, y, z) | 0 ≤ z ≤ 1− x− y, (x, y) ∈ R}
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and integrate along z direction.

∫∫∫

D
(1 + 2z) dxdydz =

∫∫

R

[

z + z2
]1−x−y
0

dxdy

=

∫ 1

0

∫ y=1−x

y=0
(1− x− y + (1− x− y)2) dydx

=

∫ 1

0

[

−(1− x− y)2

2
− (1− x− y)3

3

]y=1−x

y=0

dx

=

∫ 1

0

(

(1− x)2

2
+

(1− x)3

3

)

dx =
1

4
.

Example 5.4.11. Let W be bounded by x = 0, y = 0, z = 2 and the surface

z = x2 + y2 where x ≥ 0, y ≥ 0. Find
∫∫∫

W x dxdydz.

sol. Method1. We describe the region by type 1.

0 ≤ x ≤
√
2, 0 ≤ y ≤

√

2− x2, x2 + y2 ≤ z ≤ 2.

∫∫∫

W
x dxdydz =

∫

√
2

0

[

∫

√
2−x2

0
(

∫ 2

x2+y2
x dz)dy

]

dx

=
8
√
2

15
.

Method2. We describe the region by type 2: Solving for x, i.e, 0 ≤ x ≤
(z − y2)1/2, (y, z) ∈ R where R is given by the relation

0 ≤ z ≤ 2, 0 ≤ y ≤ z1/2.

Then

∫∫∫

W
x dxdydz =

∫∫

R

(

∫ (z−y2)1/2

0
xdx

)

dydz

=
8
√
2

15
.
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x
y

z

x2 + y2 = 1

x2 + z2 = 1

Figure 5.20: common region of two cylinders

Example 5.4.12. Evaluate

∫ 1

0

∫ x

0

∫ 2

x2+y2
dzdydx.

Sketch region first.

sol. Sketch

Example 5.4.13. Find the common region of two cylinders (figure 5.20) x2+

y2 ≤ 1, x2 + z2 ≤ 1 (z ≥ 0).

sol.

∫∫

x2+y2≤1

∫

√
1−x2

0
dzdxdy =

∫ 1

−1

∫

√
1−x2

−
√
1−x2

√

1− x2dydx

= 2

∫ 1

−1
(1− x2)dx

= 2

[

x− x3

3

]1

−1

= 4(1− 1

3
) =

8

3
.

Example 5.4.14. Find the region bounded by two parabolids z = x2 + y2

and z = 2− 3x2 − y2.(figure 5.21)
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sol. The intersection is the curve x2 + y2 = 2− 3x2 − y2, i.e, 2x2 + y2 = 1.

If we let R = {(x, y) : 2x2 + y2 ≤ 1} this region is 1st kind on R. Hence

∫∫∫

D
dxdydz =

∫∫

2x2+y2≤1
(2− 3x2 − y2)− (x2 + y2) dxdy

=

∫∫

2x2+y2≤1
(2− 4x2 − 2y2) dxdy.

Now use polar coordinate x = r/
√
2 cos θ, y = r/ sin θ. Then dxdy = r/

√
2drdθ.

Hence

1√
2

∫ 2π

0

∫

r≤1
(2− 2r2)r drdθ

=
1√
2

∫ 2π

0

[

r2 − 2r4

4

]1

0

dθ =
π√
2
.

√

21
x

y

z

z = x2 + y2

z = 2− 3x2
− y2

Figure 5.21: z = x2 + y2, z = 2− 3x2 − y2

5.5 Change of variables

We recall one variable case: If x : [a, b] → [c, d] is C1 function and f : [c, d] → R

is integrable, then the integral of f on [c, d] can be moved to an integral over
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[a, b] by
∫ d

c
f(x)dx =

∫ b

a
f(x(t))x′(t)dt. (5.10)

Here the change in the integrand is just the linear scaling factor x′(t) and the

change in the domain is again linear scaling to [a, b]. But for functions with

two or more variables, the situation is not so simple, because the shape of

domain change nontrivially. For example a simple domain like rectangle can

be very complicated after mapping.

Coordinate transformations

Let D∗ be a region in R
2. Suppose T is C1-map D∗ → R

2. We denote the

image by D = T (D∗).(Fig 5.22)

T (D∗) = {(x, y) | (x, y) = T (u, v), (x∗, y∗) ∈ D∗}.

D∗

u

v

D

x

y

T

Figure 5.22: The transformation T maps D∗ to D

Example 5.5.1. Let D∗ be the rectangle D∗ = [0, 1] × [0, 1] in (u, v) plane.

Find the image of D∗ under T = T (u, v) = (2u+ 1, 3v − 1).

Example 5.5.2. Let T be defined by T (u, v) = ((u + v)/2, (u − v)/2) and

D∗ = [−1, 1] × [−1, 1]. Determine the image T (D∗).

sol. Let D = T (D∗)(see fig 5.24). Consider the effect of T on the line

c1(t) = (t, 1), −1 ≤ t ≤ 1.

T (c(t)) = ((t+ 1)/2, (t − 1)/2), −1 ≤ t ≤ 1.

The image is the line segment y = x− 1, −1 ≤ x ≤ 1.
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D∗

u

v

1 2 3

1

2

x

y

D

T

Figure 5.23: Simple Map

1−1

1

−1

T (c2)

T (c4)

T (c3)

T (c1)

u
1

c2

−1

c4

−1c3

1c1
T (u, v)

Figure 5.24: Effect of linear transform

Similarly, try to see the image of

c2(t) = (1, t), −1 ≤ t ≤ 1,

c3(t) = (t,−1), −1 ≤ t ≤ 1,

c4(t) = (−1, t), −1 ≤ t ≤ 1.

The image is obtained by rotating and reducing by a factor of
√
2. To see

indeed this is the case, we consider the image of the red line

c(t) = (α, t)− 1 ≤ t ≤ 1.

The image is

T (c(t)) = ((α + 1)/2, (α − 1)/2), −1 ≤ t ≤ 1.

Hence the image satisfies x+y = α. This is the red line passing through inside
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the diamond shape.

Remark 5.5.3. Let T (u, v) = (x, y) = ((u+ v)/2, (u − v)/2). Then we have

x = (u+ v)/2, y = (u− v)/2.

Hence the map T : R2 → R
2 in Example 5.5.2 can be represented by a matrix

A =
1

2

[

1 1

1 −1

]

T (u, v) :=

[

x

y

]

= A

[

u

v

]

.

As for the area change, we have

Theorem 5.5.4. Let A be a 2 × 2 matrix with non zero determinant. Let T

be a linear transformation given by T (x) = Ax. Then T maps a parallelogram

D∗ onto the parallelogram D = T (D∗) and

Area of D = |detA| · (Area of D∗).

Remark 5.5.5. (1) There is a similar statement about linear map from R
3

to R
3.

Example 5.5.6. Let T be ((x+y)/2, (x−y)/2) and let D be the square whose

vertices are (1, 0), (0, 1), (−1, 0), (0,−1). Find a D∗ such that D = T (D∗).

sol. Since T is linear T (x) = Ax where A is 2×2 matrix whose determinant

is nonzero. T−1 is also a linear transform. Hence by Theorem 5.5.4, D∗ must

be a parallelogram. So, to find D∗, it suffices to find the inverse image of

vertices. It turns out that

D∗ = [−1, 1] × [−1, 1].

Now

A(D) = (
√
2)2 = 2, |detA| = 1

2
, A(D∗) = 4, .

This idea can be generalized to non-linear mappings.
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Change of variable in the definite integrals

Given two regionsD andD∗, a differentiable mapping T onD∗ with imageD =

T (D∗), we would like to express the integral
∫∫

D f(x, y)dxdy as an integral

over D∗ of the composite function f ◦T . Suppose we have a differentiable map

T (u, v) = (x(u, v), y(u, v)) for (u, v) ∈ D∗.

As a special case, consider the case when f = 1. Then, in general

∫∫

D
dxdy = A(D) = |detA| ·A(D∗) 6= A(D∗) =

∫∫

D∗

dudv.

Example 5.5.7. Let D∗ be the rectangle D∗ = [0, 1]× [0, π/3] in (r, θ) plane.

Find the image of D∗ under T = T (r, θ) = (r cos θ, r sin θ).

r

θ

1

π/3

D∗

x
1

y

π/3
D

T (r, θ)

Figure 5.25: Map by Polar coordinate

sol. Let T (r, θ) = (x, y). Then x2 + y2 = r2, 0 ≤ r ≤ 1. Thus D is a

circular sector 0 ≤ r ≤ 1, 0 ≤ θ ≤ π/3. Figure 5.25.

One-to-one map

Definition 5.5.8. Amap is called one to one onD∗, if for (u, v) and (u′, v′) ∈
D∗, T (u, v) = T (u′, v′) implies (u, v) = (u′, v′).

Example 5.5.9. Show the polar coordinate map T = T (r, θ) = (r cos θ, r sin θ)

is not one-to-one. But the linear map in example 5.5.2 is one-to-one.

Onto map

Definition 5.5.10. A map T is called onto D, if for every point (x, y) ∈ D

there exists at least a point (u, v) ∈ D such that T (u, v) = (x, y).
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y

x

D

θ2

a b

θ1

(r, θ) = T−1(x, y)

r

θ

D∗

a b

θ1

θ2

Figure 5.26: Inverse image of a polar rectangle

Thus if T is onto then we can solve the equation T (u, v) = (x, y). If, in

addition, T is one-to-one, the solution is unique.

Example 5.5.11. A linear transform from R
n to R

n given by a matrix A is

one to one and onto if det A 6= 0.

Example 5.5.12. Let D be the region in the first quadrant lying between

concentric circles r = a, r = b and θ1 ≤ θ ≤ θ2. Let

T (r, θ) = (r cos θ, r sin θ)

be the polar coordinate map. Find a region D∗ in (r, θ) coordinate plane such

that D = T (D∗).

sol. In D, we see

a2 ≤ r2 ≤ b2, θ1 ≤ θ ≤ θ2.

Hence

D∗ = [a, b]× [θ1, θ2].

Jacobian Determinant-measures change of area

We first see how the area of a region changes under a linear map. (Theorem

5.5.4.) First let us see an example. Let D∗ = [0, 1] × [0, 1], and construct a

map T that maps D∗ onto D. Consider the vector c1 := a2−a1, c2 := a4−a1,

and set

T (u, v) = c1u+ c2v + c1.
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u

v

1

1

D∗

a3

a4

a2

a1

D

x

y

T (u, v)

Figure 5.27: The image of a rectangle under a linear transform T

Then we can check T (u, 0) maps the line segment {0 ≤ u ≤ 1, v = 0} to the

side a1a2. Similarly, T (0, v) maps the line segment {0 ≤ v ≤ 1, u = 0} to the

side a1a4. Hence we conclude T is the desired map. Now we see

Tu = a2 − a1

Tv = a4 − a1.

The area of the parallelogram D is ‖(a2 − a1) × (a4 − a1)‖.(viewed as three

dimensional vectors) But this is nothing but the absolute value of the deter-

minant of the derivative of T (at (0, 0)). Thus

Area(D) = |J |,

where

J =
∂(x, y)

∂(u, v)
:= det

[

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]

= |DT |.

J is called the Jacobian. Hence we see the rectangle of dimensions ∆u, ∆v

along u, v direction is mapped to a parallelogram with area |J |∆u∆v.

Change of variable

Above idea of computing area ofD = T (D∗) can used when T is a differentiable

(nonlinear) mapping from a subset of R2 to R
2 by using the linear(tangent

plane) approximation of T . Let D∗ = [u0, u0 +∆u]× [v0, v0 +∆v] and D be

the image of D∗ under T . Consider

T (u, v) =

[

x

y

]

=

[

x(u0, v0) +
∂x
∂u(u0, v0)∆u+ ∂x

∂v (u0, v0)∆v + h.o.t

y(u0, v0) +
∂y
∂u(u0, v0)∆u+ ∂y

∂v (u0, v0)∆v + h.o.t

]

(5.11)
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In vector form, we have

T

[

u

v

]

= X = X0 +DT

[

∆u

∆v

]

+ h.o.t

and replace the map T by its linear part DT .

Geometric meaning of DT

Let

Tu := DT (u, v)

[

1

0

]

=

[

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

][

1

0

]

=

[

∂x
∂u
∂y
∂u

]

and

Tv := DT (u, v)

[

0

1

]

=

[

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

][

0

1

]

=

[

∂x
∂v
∂y
∂v

]

.

First we note that the two curves T (·, v) and T (u, ·) describes the boundary
of D = T (D∗) at T (u, v). Fix a v. Then Tu is a tangent vector to the curve

T (u, v)(as a function of u). Similarly for each fixed u, T (u, v) represents a

curve with v a parameter. Hence Tv us a tangent vector to the curve T (u, v).

Now the tangent vectors

Tu∆u, Tv∆v

form a parallelogram approximating the region D(figure 5.28). Hence the area

of the parallelogram is

∣

∣

∣

∣

∣

∂x
∂u∆u

∂x
∂v∆v

∂y
∂u∆u

∂y
∂v∆v

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣

∣

∣

∣

∣

∆u∆v =
∂(x, y)

∂(u, v)
∆u∆v.

‖Tu × Tv‖∆u∆v = |J |∆u∆v.

Hence we obtain

Theorem 5.5.13. If T is D∗ → D ⊂ R
2, C1-map which is one to one, onto

function, then the area of D is

∫∫

D
dxdy =

∫∫

D∗

|J | dudv. (5.12)
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u
∆u

v

∆v

x

y

Tv∆v

Tu∆u

T (u, v)

Figure 5.28: approximate T (D∗)

If f is a continuous function on D, the integral of f is given by

∫∫

D
f(x, y) dxdy =

∫∫

D∗

f(x(u, v), y(u, v))

∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

dudv. (5.13)

Remark 5.5.14. Since |det DT | = ‖Tu × Tv‖, equation (5.12) becomes

∫∫

D
dxdy =

∫∫

D∗

‖Tu × Tv‖dudv. (5.14)

As a special case, we may consider a polar coordinate. The shaded region

of D∗ = ∆r ×∆θ is mapped by T to a part of circular sector between r and

r + ∆r, θ to θ + ∆θ. The area of this sector is r∆r∆θ. So the area under

polar coordinate change is

∫∫

T (D∗)
dxdy =

∫∫

D
r drdθ.

Example 5.5.15. Change the integral
∫∫

f(x, y) dxdy to polar coordinate.

sol. Since x = r cos θ, y = r sin θ, we can let T (r, θ) = (r cos θ, r sin θ).

Then Jacobian is

∣

∣

∣

∣

∣

∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

cos θ −r sin θ
sin θ r cos θ

∣

∣

∣

∣

∣

= r.

Hence
∫∫

f(x, y) dxdy =

∫∫

f(r cos θ, r sin θ) rdrdθ.
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r

θ

T

D∗

x

y

D

Figure 5.29: approximate T (D∗)

θ

ra b

π
3

π
6

D∗

y

xa b

D

π

6

π

3

Figure 5.30: polar Coordinate

Example 5.5.16. D is between two concentric circles: x2+y2 = 4, x2+y2 =

1(x, y ≥ 0). Find the integral

∫∫

D

√

x2 + y2 + 1 dxdy.

Here D is the quater disk 0 ≤ y ≤
√
4− x2.

sol. Use polar coordinate. The domain is

D∗ = {(r, θ)|0 ≤ r ≤ 2, 0 ≤ θ ≤ π/2}.



190 CHAPTER 5. DOUBLE AND TRIPLE INTEGRALS

∫∫

D

√

x2 + y2 + 1 dxdy =

∫∫

D∗

√

r2 + 1r drdθ

=

∫ π/2

0

∫ 2

1
2
√

r2 + 1(2r)drdθ

=

∫ π/2

0

1

3
(r2 + 1)3/2|21dθ

=

∫ π/2

0

1

3
(53/2 − 23/2)dθ =

π

6
(53/2 − 23/2).

Example 5.5.17. D is the region between two concentric circles in the first

quadrant: 1 ≤ x2 + y2 ≤ 4, (x, y ≥ 0). Find the integral

∫∫

D
log(x2 + y2)dxdy.

sol. Use polar coordinate. Since the boundary of the region are described by

r = 1, 2, 0 ≤ θ ≤ π/2, we let D∗ = [1, 2]× [0, π/2] and T (r, θ) = (r cos θ, sin θ).

Then T (D∗) = D and

∫∫

D
log(x2 + y2)dxdy =

∫∫

D∗

(log r2)rdrdθ

=

∫ 2

1

∫ π/2

0
2r log rdθdr

=

∫ 2

1
πr log rdr

= π

[

r2

2
log r − r2

4

]2

1

= π(2 log 2− 3

4
).

Example 5.5.18. D∗ = {(u, v) : 1 ≤ u2 + v2 ≤ 4} and T is given by

T (u, v) =

(

u

u2 + v2
,− v

u2 + v2

)

.

Find the area of D = T (D∗).
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sol. First compute Tu, Tv

Tu =

( −u2 + v2

(u2 + v2)2
,

2uv

(u2 + v2)2

)

,

Tv =

( −2uv

(u2 + v2)2
,
−u2 + v2

(u2 + v2)2

)

.

So

|J | = ‖Tu × Tv‖ =
1

(u2 + v2)2
.

Hence area is

∫∫

T (D∗)
dxdy =

∫∫

D∗

|J | dudv

=

∫∫

D∗

dudv

(u2 + v2)2

=

∫ 2π

0

∫ 2

1

1

r3
drdθ

=
3π

4
.

The circle of radius r in D∗ is u2 + v2 = r2. Hence the image satisfies

x2 + y2 =

(

u

u2 + v2

)2

+

( −v
u2 + v2

)2

=
1

u2 + v2
=

1

r2
.

It is circle of radius 1/r If u = αv, α > 0 represent a line through origin, the

image is x = −αy.

Example 5.5.19 (The Gaussian integral). Show that

∫ ∞

−∞
e−x

2

dx =
√
π.

To compute this, let us first observe

(∫ ∞

−∞
e−x

2

dx

)2

=

∫ ∞

−∞
e−x

2

dx

∫ ∞

−∞
e−y

2

dy

=

∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2)dxdy

= lim
a→∞

∫∫

Da

e−(x2+y2)dxdy.
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u = αv

u

v

1 2

T (u, v)

x = −αy

x

y

1

2
1

Figure 5.31: T (u, v) = (u/(u2 + v2),−v/(u2 + v2))

Thus it is necessary to compute

∫∫

Da

e−(x2+y2)dxdy.

By

∫∫

Da

e−(x2+y2)dxdy =

∫ 2π

0

∫ a

0
e−r

2

r drdθ =

∫ 2π

0

(

−1

2
e−r

2

)∣

∣

∣

∣

a

0

= −1

2

∫ 2π

0
(e−a

2 − 1)dθ = π(1− e−a
2

).

Let a→ ∞. Then we obtain the result.

Change of Variables in Triple Integrals

Definition 5.5.20. Let T : R3 → R
3 be given by

T (u, v, w) = (x(u, v, w), y(u, v, w), z(u, v, w)).

The the determinant of the derivative DT is called Jacobian and denoted

by J .

J =
∂(x, y, z)

∂(u, v, w)
= det







∂x
∂u ,

∂x
∂v ,

∂x
∂w

∂y
∂u ,

∂y
∂v ,

∂y
∂w

∂z
∂u ,

∂z
∂v ,

∂z
∂w






.

The absolute value of this determinant is equal to the volume of paral-
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lelepiped determ’d by the following vectors

Tu =
∂x

∂u
i+

∂y

∂u
j+

∂z

∂u
k

Tv =
∂x

∂v
i++

∂y

∂v
j+

∂z

∂v
k

Tw =
∂x

∂w
i+

∂y

∂w
j+

∂z

∂w
k.

which is the absolute value of the triple product

|(Tu ×Tv) ·Tw| = |J |.

Caution: Three vectors Tu,Tv,Tw are column vectors of DT , i.e.,

J =
∂(x, y, z)

∂(u, v, w)
= det

[

Tu Tv Tw

]

.

D∗

T

D
Tu

Tw Tv

Figure 5.32: Deformed box and parallelepiped generated by tangent vectors.

Theorem 5.5.21. If T is a C1- map from D∗ onto D in R
3 and f : D ⊂

R
3 → R is continuous, then

∫∫∫

D
dxdydz =

∫∫∫

D∗

|J | dudvdw, (5.15)

∫∫∫

D
f(x, y, z) dxdydz =

∫∫∫

D∗

f(T (u, v, w))|J | dudvdw, (5.16)

where

J =
∂(x, y, z)

∂(u, v, w)
.
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Cylindrical Coordinate

Let

x = r cos θ, y = r sin θ, z = z.

Then Jacobian is (compute)

J =
∂(x, y, z)

∂(r, θ, z)
= r.

So

∫∫∫

D
f(x, y, z) dxdydz =

∫∫∫

D∗

f(r cos θ, r sin θ, z)r drdθdz. (5.17)

Spherical coordinate

sol. Spherical coordinate is given by

x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ.

The Jacobian of the mapping (ρ, φ, θ) → (x, y, z) is

∂(x, y, z)

∂(ρ, φ, θ)
=

∣

∣

∣

∣

∣

∣

∣

∂x
∂ρ

∂x
∂φ

∂x
∂θ

∂y
∂ρ

∂y
∂φ

∂y
∂θ

∂z
∂ρ

∂z
∂φ

∂z
∂θ

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

sinφ cos θ ρ cosφ cos θ −ρ sinφ sin θ
sinφ sin θ ρ cosφ sin θ ρ sinφ cos θ

cosφ −ρ sinφ 0

∣

∣

∣

∣

∣

∣

∣

= cosφ

∣

∣

∣

∣

∣

ρ cosφ cos θ −ρ sinφ sin θ
ρ cosφ sin θ ρ sinφ cos θ

∣

∣

∣

∣

∣

+ ρ sinφ

∣

∣

∣

∣

∣

sinφ cos θ −ρ sinφ sin θ
sinφ sin θ ρ sinφ cos θ

∣

∣

∣

∣

∣

= ρ2 sinφ(cos2 φ+ sin2 φ) = ρ2 sinφ.

Hence

∫∫∫

D
f(x, y, z) dxdydz =

∫∫∫

D∗

F (ρ, φ, θ)ρ2 sinφdρ dφ dθ.

Here F (ρ, φ, θ) means f(x(ρ, φ, θ), y(ρ, φ, θ), z(ρ, φ, θ)). This agrees with ear-
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lier formula derived by geometric insight(below).

Spherical Coordinate-Geometric Derivation

Note that the surface given by (figure 5.33, 5.34)

ρ = c1 is a sphere, (5.18)

φ = c3 is a cone, (5.19)

θ = c2 is a vertical plane. (5.20)

z

x y

ρ

∆θθ

ρ∆θ

ρ sinφ

φ

∆φ

ρ sinφ∆θ

ρ∆φ

Figure 5.33: Partition in spherical coordinate

Consider the small region bounded by the following conditions:

ρ0 ≤ ρ ≤ ρ0 +∆ρ, θ0 ≤ θ ≤ θ0 +∆θ, φ0 ≤ φ ≤ φ0 +∆φ.

The region is the intersection of the region between two spheres of radius

ρ, ρ+∆ρ, two cones φ = φ0, φ = φ0+∆φ and two planes θ = θ0, θ = θ0+∆θ.

First let us find the area of the region bounded by θ0 ≤ θ ≤ θ0 + ∆θ,

φ0 ≤ φ ≤ φ0 + ∆φ on the sphere ρ. The distance from a point on the

surface to the z-axis is ρ sinφ. And when ∆ρ, ∆θ are small, this region can
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∆ρ

ρ sinφ∆θ

ρ∆φ

Figure 5.34: A piece

be approximated by rectangle whose area is (base is ρ sinφ∆θ, height is ρ∆φ)

ρ2 sinφ∆φ∆θ.

Now consider a solid with some thickness ∆ρ. Then the volume is

ρ2 sinφ∆ρ∆φ∆θ.

Hence the volume of D is

∫∫∫

D
dV =

∫ ∫ ∫

ρ2 sinφdρ dφ dθ (5.21)

and if a continuous function f is given, the integral is defined as

∫∫∫

D
fdV =

∫ ∫ ∫

f(ρ, φ, θ)ρ2 sinφdρ dφ dθ. (5.22)

Example 5.5.22. The region D is given by

x2

a2
+
y2

b2
+
z2

c2
≤ 1.

Find
∫∫∫

D
|xyz|dxdydz.

sol. Let T (u, v, w) = (au, bv, cw). Then T maps the unit ball D∗ =

{(u, v, w) | u2+ v2+w2 ≤ 1} to D one-to-one, onto fashion. Since J(T ) = abc
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we have

∫∫∫

D
|xyz|dxdydz =

∫∫∫

D∗

(abc)2|uvw| du dv dw

= 8

∫∫∫

D∗

+

(abc)2uvw du dv dw.

Here D∗
+ denotes the region among D∗ u ≥ 0, v ≥ 0, w ≥ 0. Now use spherical

coordinate,

8

∫∫∫

D∗

+

(abc)2uvw du dv dw

= 8(abc)2
∫ π/2

0

∫ π/2

0

∫ 1

0
ρ5 sin3 φ cos φ sin θ cos θ dρ dφ dθ

= 8(abc)2
∫ π/2

0

∫ π/2

0

[

ρ6

6

]1

0

sin3 φ cosφ sin θ cos θ dφ dθ

=
4

3
(abc)2

∫ π/2

0

[

sin4 φ

4

]π/2

0

sin θ cos θ dθ

=
1

3
(abc)2

∫ π/2

0
sin θ cos θdθ

=
1

3
(abc)2

[

sin2 θ

2

]π/2

0

=
1

6
(abc)2.

Example 5.5.23. Compute

∫∫∫

W
exp(x2 + y2 + z2)3/2dV

where W is unit ball.

sol. By spherical coordinate,

∫∫∫

W
exp(x2 + y2 + z2)3/2dV =

∫∫∫

W ∗

ρ2eρ
3

sinφdθ dφ dρ.
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Changing it to an iterated integral, we have

∫ 1

0

∫ π

0

∫ 2π

0
ρ2eρ

3

sinφdθ dφ dρ

= 2π

∫ 1

0

∫ π

0
ρ2eρ

3

sinφdφdρ

= 4π

∫ 1

0

∫ π

0
ρ2eρ

3

dρ =
4

3
π(e− 1).

5.6 Application

Average

In R
n(n = 1, 2, 3), the average of a function f defined on I( D or W )is defined

as

fav =

∫ b
a f(x)dx
∫ b
a dx

=

∫ b
a f(x)dx

length of [a, b]
, (5.23)

fav =

∫∫

D f(x, y)dxdy
∫∫

D dA
=

∫∫

D f(x, y)dxdy

area of D
, (5.24)

fav =

∫∫∫

W f(x)dx
∫∫∫

W dV
=

∫∫∫

W f(x)dx

volume of W
. (5.25)

Example 5.6.1. Find average of f(x, y) = x sin2(xy) over D = [0, π]× [0, π].

Example 5.6.2. The temperature at points in the cube is proportional to the

square of distance from the origin.

(1) Find average temperature

(2) At which point is the temperature equal to the average temperature?

sol. T = c(x2 + y2 + z2). So [T ]av =
1
8

∫∫∫

W TdV = c.
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x1 x2 x3 x4 x5 x6

m1
m2

m3 m4 m5
m6

Figure 5.35: Moment

Center of Mass-discrete mass

If masses m1, · · · ,mn are placed at points x1, · · · , xn on x-axis, the center of

mass is defined to be

x̄ =

∑n
i=1mixi
∑n

i=1mi
.

The center of mass is a point where the total moment w.r.t that point is zero.

i.e,
∑n

i=1mi(xi − x̄) = 0.

Moment in 2D

In 2 D, there are two kind of moments, i.e, Moment w.r.t x-axis, and the

moment w.r.t y-axis.

Let ∆mi be the masses whose distance from the axis of our interest is xi.

Then the moment is
∑

xi∆mi.

In the limit,
∫∫

xdm.

Definition 5.6.3. Given n- masses m1, · · · ,mn lying at points

(x1, y1), (x2, y2), · · · , (xn, yn) in R
2,

The center of mass is the point (x̄, ȳ), where

x̄ =

∑n
i=1mixi
∑n

i=1mi
and ȳ =

∑n
i=1miyi
∑n

i=1mi
.
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Center of Mass-continuous mass

When material is placed continuously on an axis, density is δ(x), the mass on

[x, x+∆x] is δ(x)∆x and moment is

∫

xδ(x) dx

We choose a point x̄ so that the moment w.r.t x̄ is zero.

∫

(x− x̄)δ(x) dx = 0 ⇒ x̄ =

∫

xδ(x) dx
∫

δ(x) dx
.

For 2-D, we have

Definition 5.6.4 (Moment, center of mass). Let δ(x, y) be the density of

some material we are interested in. The mass of this material occupying the

place [x, x+∆x]× [y, y +∆y] is

The mass is M =

∫∫

δ(x, y)dxdy

The moment w.r.t x-axis is Mx =

∫∫

R
yδ(x, y) dxdy

The moment w.r.t y-axis is My =

∫∫

R
xδ(x, y) dxdy.

The center of mass is defined as

x̄ =
Mȳ

M
=

∫∫

R xδ(x, y) dxdy
∫∫

R δ(x, y) dxdy
,

ȳ =
Mx̄

M
=

∫∫

R yδ(x, y) dxdy
∫∫

R δ(x, y) dxdy
.

The center of mass is defined so that it satisfies

Mx̄ =

∫∫

R
(x− x̄)δ(x, y) dxdy = 0,

Mȳ =

∫∫

R
(x− ȳ)δ(x, y) dxdy = 0.

Example 5.6.5. A solid body occupies the region between y = x, y = x2.

The density is given by δ(x, y) = x. Find the mass and Mx.
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x

y

O

b

x̃x̄

ȳ (x̄, ȳ) b(x̃, ỹ)

Center of mass

∆m = ρf(x̃)∆x

Figure 5.36: Vertical strip of mass ∆m

sol. Mass is

M =

∫ 1

0

∫ x

x2
x dydx =

∫ 1

0
x [y]y=x

y=x2
dx

=

∫ 1

0
(x2 − x3)dx =

[

x3

3
− x4

4

]1

0

=
1

12

and Mx is

Mx =

∫ 1

0

∫ x

x2
yxdydx =

∫ 1

0
x

[

y2

2

]y=x

y=x2
dx

=

∫ 1

0

x

2
(x2 − x4)dx =

[

x4

8
− x6

12

]1

0

=
1

24
.

When the density δ = 1, the center of mass is also called the centroid.

Example 5.6.6. Find the centroid of the region bounded by y = x, y = x2.

sol.

M =

∫ 1

0

∫ x

x2
1dydx =

∫ 1

0
[y]xx2 dx =

∫ 1

0
(x− x2)dx =

1

6
,

Mx =

∫ 1

0

∫ x

x2
ydydx =

∫ 1

0

[

y2

2

]x

x2
dx =

∫ 1

0
(
x2

2
− x4

2
)dx =

1

15
,

My =

∫ 1

0

∫ x

x2
xdydx =

∫ 1

0
x [y]xx2 dx =

∫ 1

0
(x2 − x3)dx =

1

12
.

Hence

x̄ =
1/12

1/6
=

1

2
, ȳ =

1/15

1/6
=

2

5
.
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