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Chapter 4

Maxima and minima

4.1 Linearization and differential

Review of one variable function

When we study complicated functions, we can find its derivative at a point and
study the tangent line instead. Thus, a tangent approximation is meaningful
and call it linearization. Note that any nice curve, if enlarged, will look like a

line. The linear function
L(z) = f(a) + f'(a)(z — a)
is called the linearization of f at a.
Differential
The geometric meaning of differential is given in Figure 77.
f(@) = f(a)+ f'(a)(z — a) + Ri(z,a)

where Ru( )
. 1\T,a
lim ———~
rT—=a T —Q

= 0.

Taylor Polynomial

Taylor series involves infinitely many terms and require the function to be
infinitely differentiable. However, if the function is differentiable only a few

times, how can we approximate it?
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Consider

y = Pi(z) = f(a) + ['(a)(x = a)

This is linear approximation to f(z). Similarly, we can consider

y = Pole) = f(a) + f(a) & — @) + 3 f"(a) (& — a)

which has same derivative up to second order. By the same way one can find
a polynomial P, (z) of degree n which has the same derivatives at a up to n-th
order. This polynomial will be a good approximation, called the a Taylor

polynomial of degree n.

Hence the Taylor polynomial of degree k is given by

f¥(a)
Kl

k

Py(z) = f(a) + fla)(z —a) + -+ (x —a)".

4.1.1 Taylor theorem

When f is differentiable at a, the linear approximation of f(x) is f(a) +
Df(a)(x —a). Here the error R; = |f(a) — f(a) — Df(a)(x — a)| satisfies
lim i

xa x —al|

0.
What if we want higher order approximation?

Theorem 4.1.1 (Taylor theorem one variable-integral remainder). If f: R —
R has continuous k- th partial derivatives

f"(a)

(k) (g
f@):f00+wax—@+_7T{$_@2P“+f (a)

k!

(z—a)*+Ry(x,a) (4.1)
where Ry (z,a)/(x —a)* = 0 as x — a.

Proposition 4.1.2. If f is differentiable up to order k + 1, then there exists

a number z between a and x such that

f(k+1)(z)

(k+m!@_aﬁﬂ' (4.2)

Ri(z,a) =

Example 4.1.3. Find the Taylor polynomial of order 5 for f(x) = cosz at
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x = 7/2 and estimate the remainder.

Taylor theorem in several variable -1st order

Suppose f: X C R? — R is class C'. Then the tangent plane at (a,b) is a
good approx. That is

f(z,y) = pi(x,y,

where

pl(a:,y) = f(a7 b) + f:c(a7 b)(x - a’) + fy(a7 b)(y - b)

We can generalize this to a function of several variables.

Theorem 4.1.4 (Taylor theorem in several variable -1st order). If f: R" — R

1s differentiable at a, then
f(x)=f(a)+ Df(a)- (x —a) + Ri(x,a),

where Ry(x,a)/||[x —al|| = 0 as x — a.

In scalar form, we have
n
Fe) = F)+D fri(@)(wi — ai) + Ri(x, ).
i=1
Example 4.1.5. Find the equation of tangent plane to f(x) = z1 + 2z122 +
T3 + X174 + :E1:E2x§ at x = (1,1,2,2).

for = 1+2$2+l’4+l’2l’§:9, fao :2:E1—|—3:13:§:4
fos =1+ 2012023 =5, fo, =21 =1

Thus
p1 =11 —|—9(3§‘1 — 1) —|-4(:E2 — 1) + 5(33‘3 — 2) + (:E4 — 2)
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Figure 4.1: True increase Af vs. differential df

Differential in several variable

Definition 4.1.6. Let f: X C R" — R be differentiable and a € X. The
differential of f is

df (a,h) = g—ai(a)hl + -4 ;—Hi(a)hn.

The significance of differential is that for small h

df = Af := f(a+h) - f(a).

Here h = (hy,--- ,h,) denote small change in the variables and it is also
written as h = Ax = (Axzy, -+ ,Ax,). Hence the differential is also written
as o7 o7

df = —d s ——dxy,.

If . T + + . T

Example 4.1.7. Find the differential of f(x,vy,2) = *T¥sin(yz).

_ 9t 0f, L 9F
df = axdx+8ydy+8zdz

— Tty sin(yz) dz + ex+y(sin(yz) + zcos(yz)) dy + €x+yy cos(yz) dz.
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Example 4.1.8. Find the Af at (2, —1) when f(z,y) = 2 — y + 222 + 2y

Af = f(2+4Az,—1+Ay)— f(2,-1)
= (2+A2) — (—1+Ay) +2(2+ Az)* + (2 + Az)(—1 + Ay)* — (13)
= 3+ Az —Ay+2(4+4Az + A%2) + (2+ Az)(1 — 2Ay + A%y) — 13
= 10Az — 5Ay + 2(Az)? — 2AzAy + 2(Ay)? + Az(Ay)?

On the other hand

df = f2(2,-1)Az+ f,(2,-1)Ay
= (I+4z+ ") _1nAz+ (=1 + 2zy) o, _1)Ay
= (1+8+1)Azx+ (—1—4)Ay.

Thus df coincides with Af up to the linear factor of Ax and Ay.

Example 4.1.9. Let f(z,y) = = +y + ¥, Find Af at a = (1,1). Also
find df and compare.

Af = F(L+Aw1+Ay) - f(1,1)
— 1+ Az 414 Ay+ ' FATHIFAYT _ (1 41 4 117
= Az+ Ay—l— e2+A:c+2Ay+Ay2 _ 62
= Az+ Ay—l— 62(61+Ax+2Ay+Ay2 _ 1)

= Az+Ay+e2(Azx+ 28y + Ay? + Az +4A2 + 1)
On the other hand, from f, = 1 + ¢*+¥*, and fy=1+ 2ye? Y’ we get

df = f.(1,1)Az+ fy(1,1)Ay
= (1+e*)Az+ (1+2e3)Ay
= Az + Ay + e*(Az + 2Ay).

Again df and Af coincide up to linear factor of Az and Ay.

From these examples you see computing the approximate value df is easier

than computing the exact value Af.

Example 4.1.10. A box is to be made with dimension 3 x 4 x 6 inches with a

possible error in measuring is the same in all direction. We would like to know
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Figure 4.2: Volume of a box

how accurate we must measure the length so that the error in the volume is
less than 0.1 in3.
Sol.

Since the exact volume is V = xyz, =z =3,y =4,z =6, we have

v = Vidx + Vydy + V.dz
= yzdr+zzdy+xydz
since the possible error in measuring the length is de = dy = dz

= (24418 4 12)dx < 0.1.

Hence the measurement in each dimension must be accurate within dz <
0.1/54 = 0.0019

Example 4.1.11. The volume of cylindrical can is V(r, h) = 7r2h. Find the
change of volume when the radius or the height changes.

dV =V, dr + V,, dh = 2rrhAr + 72 Ah.

Taylor theorem -second order formula

Theorem 4.1.12 (Taylor theorem 2nd order formula). Suppose f: X C R" —
R is class C?, then

n 1 n
fx) = f@)+ ) hife(@)+5 Y hihjfra,(a) + Ra(xa),
i=1 ij=1
where h = x — a, h; = z; — a; and Rz(x,a)/||h||> = 0 as h — 0.

Let n = 2 and try to find a quadratic polynomial p(x,y) which has same

derivatives up to second order as f at a given point a = (a,b). Let

p(z,y) = Az’ + Bay + Cy* + Da + Ey + F
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and we require p have the same derivatives as f up to second order:

p(a, b) = f(a7 b)
pl‘(a7 b) = fl‘(av b) py(a7 b) = fy(a7 b)
pxw(a7 b) = f:c:c(a7 b)? pxy(a7 b) = fl‘y(av b)? pyy(a7 b) = fyy(a7 b)

Hence

p(r.9) = F(@,) + £l b)(w — ) + 0, b)(y ~ )
b5 @B = 2 + g, D) — )y =) + 3 o)y — D

In matrix form,

B or (™
/ /
— f(a .
£ = @)+ (G )
hn,
0% f f ... _9f
0x10 0x20 O0zn0
1 G e TR (M
+ g(hl, . hn) 0r10x2  Ox20x2 O0xpn0x2 —|—R2(X, a)
2f oy . _of ) \Im
0x10x,  O0T20Tn 0TnO0xn °

= f(a)+ Df(a)h + %hTHf(a)h + Ry.

(In the third term, treat D f as a column vector for consistency of derivative.)
Here H f(a) is the Hessian defined by

fmlxl fmlmz e fmlmn
f:cnxl f:cnxg Tt f:cn:cn

and P5(x) = f(a) + Df(a)h+ $h” H f(a)h is the second degree Taylor poly-

nomial at a.

Proof. Let g(t) = f(a+th) and use Taylor theorem in one variable and chain
rule. We have

o(1) = 9(0) +9/0) + T 1,
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and

By Chain rule, we see

dx " B dx? dx
dt B t

g(t)=Df—> =3 falatth)hi, ¢'(t)=— D’frr = fou (atth)hih,
i=1

d

h,j=1

and

9"t) = > friaym (X0 + th)hihjhy.
i,j,k=1

Hence we have

=[P (1—t)?
Ry(x,a) = Z ) 5 Saizjzp (2 + th)hihshy, dt.
i,5,k=1

and

P = F(a) + D0 hife(a) + 5 D hilyfue, () + Rolx, ).
=1

ij=1

Here the integrand of Ra(x,a) is continuous. So if ||h|| is small, it is less than
M. So |Ra(h,x)| < M||h||3. In other words |R2(x,a)|/||h||> =+ 0ash — 0. O

Example 4.1.13. Find 2nd order Taylor approximation of f(z,y) = e**¥

near a = (0,0).
Partials of f are
£2(0,0) = £,(0,0) =€® =1
frz(0,0) = f1(0,0) = £,,,(0,0) = € = 1.
flz,y)=1+x+y+ %($2+2xy+y2)+R2.

As (z,y) = (0,0), Ry/||(z,y)lI* = 0.
Repeat this with a = (1, 1).

=

Example 4.1.14. Find 2nd order Taylor approximation of f(z,y) = cos ze*t¥

near a = (0,0).
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Partials of f are

fo = —sinze”™V + cosze™Y, f, = cosxe Y

fow = —2sinze™Y, fo, = (—sinz + cosz)e®tY, f,, = cosze” Y.
Since £(0,0) =1, f2(0,0) =1, f,(0,0) = 1, f22(0,0) = 0, fz,/(0,0) = 1, f,,,(0,0) =
1, we see

1
—(2zy + y*) + Ra.

f(x,y)=1+:c+y+2

Using matrix form,

po(,y) = £(0,0) + DF(0,0)h + %hTHf(O, 0)h

] 1))

=1+ [1,1]

2

Here hy =x — 0, ho =y — 0.

Theorem 4.1.15. (1) Remainder of Taylor’s theorem 4.1.4 is given by

(x,2) Z/ t) foiw, (@ + th)hih; dt = Z fxz,xj

)= 1 ,_] 1
Here ¢ is a point between a and x.

(2) Remainder of Taylor’s theorem 4.1.12 is

n

1
LT (a—l—th)hih]‘ hi dt = Z ?fxi,mj,mk (C)hlh] hy,
ik=1 igk=1""

Here ¢ is a point between a and x.

Proof. [MVT for integral] If h and g are continuous on [a,b] and g > 0
then for some c € [a,b] the following holds
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(1) From thm 4.1.4 we see

n 1
Rl(h, X()) = Z /0 (1 - t)fl‘ixj (X() + th)hihj dt.

ij=1
If we set h(t) = fu;z;(%0 + th) and g(t) = (1 — t)h;h; and use MVT. Then
1
| O, 0+ et
0
1
~fuuay(©) [ (1= b dt
0
1
:éfl’zx] (C)h,h]

(2) similar O

Second order Taylor formula gives second order approximation.

Example 4.1.16. Find the second order approx. of f(z,y) = sinzsiny.
What is error if |z| < 0.1, |y| <0.1.

partials of f(x,y) are

Hence )
flz,y) =04+040+ 3 <x2(0) + 22y + y2(0)> + Rs.

So sinzsiny = xy and the error is

1
’R2‘ = lé(ngxxx + 3x2yfxxy + 3xy2f:cyy + y3fyyy)‘(cl,02)

< (01 +30.0)" +301)" + (0.)")

IN
o 00D =

(0.1)® < 0.00134.

=

Example 4.1.17. Find second order approx. of f(z,y) = e*cosy at (0,0).
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partials of f(z,y) are

Hence )
fh)=1+m +—<h? —hg) + Ry,
2
where R2/||h\|2 — 0 as ||h]| — 0.
]

Example 4.1.18. Find approx. value of (3.98 —1)2/(5.97 — 3)? compare with
exact value.

Let f = (z—1)?/(y—3)%. Desired value is close to f(4,6) = 1. partials
of f(x,y) are

2 2
f(476):17 fx(476) :ga fy(476):_§7
2 4 2
f:c:c(476) - §7 f:cy(47 6) = _§7 fyy(4a 6) = g
Hence linear approx. is
2 2
1+ 5(_0'02) — g(—0.03) = 1.00666
while quadratic approx is
2 2 2(-0.02)% 4 2 (—0.03)2
14+—=(—0.02)—=(—0. ————(—0.02)(-0. -—— =1 4.
+3( 0.02) 3( OO3)+9 5 9( 0.02)( OO3)+3 5 0067

A more exact value is 1.00675.(calculator value)

4.2 Extrema of real valued functions

Local Max, Min

Definition 4.2.1. We say f: X C R” — R has local minimum at a € U if
there is a neighborhood U of a such that f(x) < f(a) for all x € U. Similarly,
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we say f has a local maximum at a € U if there is a neighborhood U of a
such that f(a) < f(x) for all x € U.
global minimum and global maximum are clearly defined. A critical

point which is either local max or min is called a saddle.

local max

local min
L] L[]

Figure 4.3: Near extreme

Theorem 4.2.2 (First derivative test for local extrema). If f: U C R" - R

is differentiable at a € R™ and assumes an extreme value, then D f(a) = 0.

Proof. Suppose f has local maximum at a. Then for any h € R™, the function

g(t) = f(a+ th) has a local minimum. Hence
¢ (0) = Dynf(a) = Vf(a)-h=0

Sine this holds for every h, Vf(a) =0, i.e, a is critical point of f. O

/ A saddle point

Figure 4.4: Near Saddle point
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Definition 4.2.3. A point a € R™ is called a critical point if f is not
differentiable or Vf(a) =0 = (0,...,0).

Example 4.2.4. Find the (local) maximum and minimum of f = 22 + y2.
Example 4.2.5. Find the extrema of f = x? — 42 (if any).

Sol. Df = (2z,—2y). Hence the only critical point is (0,0). But we see it

is not an extreme point.

Example 4.2.6. Find critical points of z = 2%y + y?z and investigate their

behavior.

From
zx:2$y+y2:0, zy:2:vy+:v2:0

We obtain 22 = y2. For z = y, we get 2% + 4% = 0 and (x,%) = (0,0). For
xr = —y, we again get z =y = 0. Now for z = y, z = 223. Not a extreme. So
saddle.

=

—Zz

z:x2+y2 z:—mz—yz Z=x —y2

Figure 4.5: Graphs of critical points

Example 4.2.7. Find the extrema of z = 2(22 + y2)e~ %" ~¥".

ze = [do+2(-22)(2* + y2)]e_(zz+y2)
= 4x(l—a2?— y2)e_(x2+yz)

z, = dy(l—a®— y2)e_(x2+yz).
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Solving these, we obtain z = y = 0 or 22 4+ y?> = 1. We can check the points

on the crater’s rim are points of local maximum.

=

Investigate the property of a critical point by Hessian
Example 4.2.8. Find the extrema of f = z? + 2y + y? + 22 — 2y + 5.

Sol. First we find the critical point by setting D f(z,y) = 0.

fo = 2204+y+2=0
fy = x+2y—-2=0.

Thus (—2,2) is the only critical point. To determine whether this point is a
max or min(or neither), we do as follows: With (Az, Ay) = (h, k),

Af =h?+ hk + k2.

We have three possibilities:

e If the quantity Af is nonnegative for all small values of h and k, then

(—2,2) yields a local min.

e Similarly, if A f is nonpositive for all small values of h and k, then (—2,2)

yields a local max.

e If neither holds, then it yields a saddle.

In this particular example, the point clearly yields a local min.

In general, let us look at the A f more carefully. From Taylor formula

RQ (XQ, h)

f(X() + h) — f(XO) + Df(XO) —+ %hTHf(XO)h + RZ(X07 h)7 Hh”Z

—0

Hence

Af = f(xo+h)— f(x0)
~ Df(xo) 4+ %hTH f(x0)h + Ra(xo, )

_ %hTHf(Xo)thO(Hhﬂz)

— (% —eh" Hf(xo)h.
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Thus the point xq is

e a point of local min. if h” H f(x¢)h > 0 for all small values of h

e a point of local max. if T H f(x¢)h < 0 for all small values of h

e a saddle if h” H f(xq)h assumes both positive value and negative value.
More generally we have second derivative test:

Definition 4.2.9. A function @ : R™ — R of the form
i,j=1

is called a quadratic form. It is symmetric, if b;; = bj;. A quadratic
form(function) @ : R™ — R is said to be

(1) positive definite if Q(h) > 0, Vh € R", and Q(h) = 0 implies h = 0.
(2) negative definite if Q(h) <0, Yh € R", and @Q(h) = 0 implies h = 0.

We note that the quadratic form(function) Q(h) = h” Bh is positive defi-

nite if and only if the matrix B is positive definite.

Recall the Hesssian at (xg,yo). The Hessian of f naturally defines a

quadratic form

_or of . _Pf

Ox10x1 Oxo0x1 0rn0x1
. A i

Q(h) :i(hl’ e hn) Ox10x2 Ox20x2 Oxn,0x2
2*f 2f . 0% f I,

0x10xn,  O0x20Tn OTnOTn

If x¢ is a critical point, then DF(xq) = 0. Hence

Floo +10) = Fx0) + 5h" HF(x0) + Raxo, ).

Thus to study the behavior of a critical point, it suffices to study the quadratic

form Q(h) = $hT H f(xo)h.

Theorem 4.2.10. [Second derivative test] Suppose f is C> and a = (xq,yo)

is a critical point of f.
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(1) If the Hessian H f(a) is positive definite, then f has a relative minimum
at a.
(2) If Hf(a) is negative definite, then f has a relative mazimum at a.

(8) If Hf(a) is neither positive nor negative definite, then f has a saddle

point at a.

Example 4.2.11. Consider f(z,y) = 22 +y2. (0,0) is the critical point. We
see
f(@,y) = £(0,0) + (b7 + h3) +0.

Since Q(h1, ha) = h? + h3 is positive definite, (0,0) is a local min.
Lemma 4.2.12. If B = [b;;] is n x n real matriz and if
n 1
Q 'R —>R,(h1,"' ,hn) — §wahzh]
1s positive-definite, then there is M > 0 such that for all h,
Q(h) > M|n|*.

Proof. For ||h| = 1, set g(h) = Q(h). Then g is continuous function on a

closed set, hence have a positive minimum, say M. Because @ is quadratic,

h
[l

h

h||? > M|h|?
thl)II > Mh]|

Q(h) = Q(ﬁlh\l) = Q) hl* = g(

for any h # 0. O

Proof of Theorem 4.2.10.

f(x0) — f(x0) = Q(x0)(h) + Ry,

where Ry/||h||*> — 0. Hence we can say |Ra| < €||h||? for some small ¢ when
0 < ||h|| < ¢. Since Q(xq) is positive definite,

Q(x0)(h) > M ||, vh.

Hence
f(x0) = f(x0) = Q(x0)(h) + Ry > (M — €)|||?,

for 0 < ||h|| < § and so we have a strict min at xg.
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Determinant test for Positive definiteness

Then how do we know Positive definiteness 7

Lemma 4.2.13. Let B =
c

b
] and Q(h) = $hT Bh. Then Q(h) is positive-
definite if and only if a > 0 and ac — b* > 0.

We have

1 a,b| |h 1
Q(h) = S[h1, ha [b . [h;] = 5(ah% + 2bhihg + ch3)
1 b, \* 1 B2\
Q(h) = 5@ <h1 + Eh2> t3 <C - ;) hy.

Suppose @ is positive definite. Then setting hy = 0, we see a > 0. Next
setting h; = 0, we get ac — b%> > 0. The converse also hold.

O
Similarly, we have negative definite if @ < 0 and ac — b? > 0.

Theorem 4.2.14 (Second derivative test). Suppose f is C*> on an open subset
U of R? and f.(x0,y0) = fy(z0,90) = 0 holds, i.e., (w0, o) is a critical point.)
Let D = fue(x0,40) fyy (0, y0) — (fay(0,90))?. Then the following holds:

(1) f has a local min. if fzo(x0,y0) >0 and D >0

(2) f has a local max. if fyz(x0,y0) <0 and D >0

(3) f has a saddle point if D < 0

(4) If D = 0 then we say f has a degenerate critical point.

Example 4.2.15. Classify the critical points of the following functions.
(1) g1(x,y) = 322 + 62y + 9y?
(2) g2(z,y) = —227 +ay — ¢
(3) gs(w,y) = 2? —xy + 2°

All the critical points are (0,0). For g;, we see D = 3-9—32 = 18 > 0.
Hence (0,0) is a local min of g;.
For g9, we have D = (=2)(—1) —1/4 =7/4 > 0 and a = —2 < 0, we see

g2 has local maximum at (0,0).
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For g3, D =2-1—1/4 =3/4 > 0 and a = 1 > 0, hence g3 has local

minimum at (0, 0).

z = ax? + 2bxy + ¢y’
ac—b*>0

=

z = ax? + 2bxy + cy?
ac—b> <0

Figure 4.6: Graphs of quadratic functions

Example 4.2.16. ‘Investigate’ the behavior of “critical points” of the

following functions:
1) fla,y) =a*+y*

(2) glw,y) =a® +y°

sol.

(1) (0,0) is the only critical point of f and D = 0 at (0,0). This is a
degenerate case. So the test fails. It is easy to check f > 0 for all (x,y)
and f(0,0) = 0. So (0,0) is local minimum

(2) Again D = 0. Hence the test fails. Instead we check the behavior of g
directly. We see
g>0 if zy >0
g<0 if zy<O.
Hence (0,0) is a saddle of g.
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Proof of pos. definiteness when D > 0.

1 f:c:c fxy hl
Hf ==[h,h .
f 2[ ! 2] [fym fyy] [h2]

Thus we need to check definiteness of the matrix of the form B =

a b
b c|
Example 4.2.17. Let f(z,y) = 2% + 2y + 22 + y? + 322, Identify critical

points and determine local max or min.

Example 4.2.18. Locate relative maxima minima saddle of

flz,y) =log(z® + y* +1).

sol] Vf =0 gives (0,0) as a critical point. Second derivatives are

fmw(oao) =2= fyy(0,0), fmy(0,0) =0.

Hence D =2-2 =4 > 0. Hence min.
]

Example 4.2.19. The graph of g = 1/xy is a surface S. Find the point on S
closest to (0,0).

Each point on the surface is (z,y,1/xy). Hence

1
2 _ .2 2
We find the point which minimize f(z,y) = d?(z,y) rather than d itself.
Solving

2 2
fz = 2x_x3—y2207 fyzzy_xg—ygzoa
we obtain x%y? = 1 and x?y* = 1. From the first eq. we get y> = 1/2%.
Substitute into second equation, we get 8 = 1. So z = +1 and y = +1.
Considering the geometry, one can easily see that all these four points give

minimum (d = v/3).(As z or y approaches oo, f — c0). So f has no max.

=
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Example 4.2.20. Find the critical points of f(z,y) = (22 —y?)e(~*"~¥")/2and

determine if they are local max. or min. or neither.

To find the critical points, we need to solve the following system

fo= (22— a(a® — ")) VI =0
fy=1-2y — y(a® =y 2 =,

From these, we see

Hence

(z,9)

On the other hand, the second derivatives are

faa

fyy

f:vy
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Since D(0,0) = —4, the point (0,0) is a saddle. While D(+v/2,0) = 16/¢* > 0
and fro(£v2,0) = —4/e. So (£v/2,0) is local min. Since D(0,+v?2) =
16/€? > 0 and f..(0,£v/2) = 4/e, (0,4+/2) is local max. Graph is as Fig 4.7.

=

Figure 4.7: f(z,y) = (22 — y2)e-7*~¥*)/2

Global maxima and Minima

Definition 4.2.21. Suppose f : D C R™ — R is real valued function. A point
xp € D is a point of absolute maximum if f(x¢) > f(x) for all x € D.

Similarly, it is a point of absolute minimum if f(xg) < f(x) for all x € D.

Strategy of finding Global maxima and Minima

(1) Find all critical points
(2) Compute values at critical points
(3) Find max or min on the boundary 90U (by parametrization)

(4) Compare all values obtained in (2) and (3).

Example 4.2.22. Find the maximum and the minimum of f(z,y) = x? +
v —2z—y+1in D= {(z,y) e R? | 22 +¢% < 1}.

First we compute the critical points of f. Since

fr=22x—-1=0, f,=2y—1=0,
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the point (1/2,1/2) is the only critical point. Since fr; =2, foy =0, fyy = 2,

Joafyy — foy = 4> 0, foe = 2 > 0, the point (1/2,1/2) is gives minimum

by second derivative test. Now check the boundary D: z? 4+ %> = 1. Use

parametrization x = cost, y =sint, 0 <t < 27.
g(t) =sin®t + cos?t —sint — cost + 1 = 2 —sint — cost.

See ¢'(t) = —cost+sint = 0 hence t = 7/4,57 /4 are critical points. We have

to check the end points ¢ = 0, 27 also. Hence the values are
9(0) =1, g(x/4) =2-V2.

g(5m/4) =2+ V2, g(2m) = 1.

Comparing, we see maximum is at t = 57/4, (v,y) = (—v/2/2,—v/2/2) and

min at 7/4.
=

Example 4.2.23. (See the book p.254) Find the maximum and the minimum
of f(x,y) = 2?> —xy+y?> + 1 in T where T is a square bounded by four lines
r=—-lr=2,y=—-1,y=2.

Existence of max and min

Definition 4.2.24. A set D C R" is bounded if ||x|| < M for all x € D. It
is closed if it contains all boundary points. (fig 4.8)

X0 De(x0)

Figure 4.8: A neighborhood D(xg) of a boundary point X contains contains
both points of A and points not in A

Example 4.2.25. (1) D= {(z,y) e R? |22 +y2 < 1}

(2) Do =D —{(0,0)}
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Figure 4.9: A is contained in a neighborhood Dj;(0).
(3) S={(z,y) eR?|2® +y* =1}

Theorem 4.2.26 (Existence of maximum and minimum). If f: D — R is
continuous function defined on a closed bounded (it is also called compact )
set D C R™. Then there exist two points xg and x1 € D such that for all
x € D, the following holds:

f(x0) < f(x) < f(x).

4.3 Constrained Extrema and Lagrange multiplier

Constrained Extrema

Suppose we are going to find a maximum of some function f(x,y,z) con-
strained to a closed bounded set defined by another function g(z,y,2) = c.
For example, we want to design an open box of volume 4 ft> which require the
minimum amount of material. Let A(x,y,z) be the surface area of the box.

Then we want to find
min A(z,y, z) = min{2(zy + yz) + zx}
subject to to the condition
V =zyz =4.

This condition is called the constraint equation.
A naive way of solving this problem is to eliminate one variable from

the constraint, say, we let z = 4/xy and substitute into the object function
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A(z,y,z) to get.

4 4 4 8 4
A(fc,y,@) =2(:cy+y@)+xx—y =2yt o+

But what if the constraint equation is not easy? We study a more system-

atic way.

Lagrange multiplier method

Theorem 4.3.1 (Lagrange multiplier method). Assume f: R" — R and
g: R" — R are of C' class. And the restriction of f to the level set S =
{x € R" | g(x) = ¢} (written as f|s) has a (local) mazimum or minimum at
xg € S with Vg(xg) # 0. Then there is a scalar A (Lagrange multiplier)
such that

Vf(x0) = AVg(x0).

Before proving the theorem, we see how to solve a minimization(max)

problem with a constraint.

Example 4.3.2. Let us solve the above problem by Lagrange multiplier
method. Let

Az, y,2) = 2(xy+yz)+ 2z,
9(z,y,2) = xyz—4.

By the Lagrange multiplier method, we have
VA=AVg= 2y+ 22z + 22y +z) = ANyz, zz,zy).

This gives three equations in four unknowns, x,y,z and A. Appending the

constraint equation, we have four by four system:

20+2z = Ayz

2042z = Az

20+ = Ay
ryz = 4.

Since A is not essential, we usually eliminate A using any of the three equations.
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Thus we get
)\_2y+z_2$+2z_2y+x
oy oz xmy
From these we get
2 2
- +t-=—-+-=—+-
Y x Y

Hence

=2y, z=24
Substituting into last eq. (2y)y(2y) =4 hence y=y=1,2 =2 =2.

Proof. (of theorem 4.3.1.) First recall that Vg(xo) is perpendicular to the

level surface S at x¢. Hence, if ¢(¢) is any curve in S, then
Vg(xo) - ¢'(0) = 0.

Meanwhile, f has a local extreme at xo. Hence

_ df(e(t))

0
dt t=0

= Vf(xo)-c'(0).

Since the curve ¢ C S is arbitrary, we conclude that V f(xg) is perpendicular
to the surface S. Similarly, Vg(xg) is also perpendicular to the surface S.
Hence V f(x¢) and Vg(xg) are parallel(perpendicular to the same surface).
Hence for some A, V f(x¢) = AVg(x¢) holds. O

Theorem 4.3.3. If f has mazimum or minimum at a point Xg of S, then
VfLS.

Now a general minimization problem with a constraint is :

Find the minimum of  f(z,y, 2)

subject to g(x,y,2) =c
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Vg(xo)

V f(xo0)

\ flz,y)=M

g(z,y)=C Ju) = Mz

Figure 4.10: Lagrange multiplier method

Or
fml(xl’... 7$n) — )\gxl(x17 ’xn)
(4.5)
fmn(ﬂjly"' 7$n) = )\g:vn(xlv ,IIJ‘n)
g1, ,zn) =c
Another interpretation of Lagrange multiplier method
Let
h(f]l’l, MR 7 )‘) = f(a:h tee 7‘7:n) - )\[9(1'17 e 7‘7:n) - C]. (46)

Lagrange multiplier method says : To find extreme points of f|g, we should

examine the extreme points of h. To see this, we set
Vxah =0. (4.7)

Then we see this is equivalent to solving equations (4.3). Thus Lagrange mul-
tiplier method is equivalent to solving unconstrained extremal problem
(4.6) with extra variable .

Example 4.3.4. Find the extrema of f(z,y) = 2%/4+y? on the set 22+7? = 1.

Let g(x,y) = 22 +y?. Then constraint equation is g(z,y) = 1. Setting
Vf = AVg, we have

5 = 2\x

2y =2\y

2 +y? =1
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From the first equation we see either x = 0 or A = 1/4. So the critical points

are (0,%1) corresponding to A =1 and (£1,0) corresponding to A = 1/4.

Figure 4.11: Level sets of g meets with the level set of f. Extreme occurs
when two set meet tangentially

Example 4.3.5. Find max of f(z,y) = 22 —y?> on S : 22 + y> = 1. (See

figure) where the two level curves touch.

Since g(z,y) = 2> +y> = 1 and Vf = (22 — 2y), Vg = (22,2y) the

equation is

fo(z,y) = Age(z,y) <= 22 = \2x

Jy(z,y) = Agy(z,y) = —2y = X2y
glz,y) =1<= 22 +y*> =1

From the first equation we get = 0 or A = 1. If z = 0, we see from third
equation y = +1. If A =1 then y = 0 and x = +1. Now

f(07 1) = f(07 _1) = -1,
F(1,0) = F(-1,0) = 1.

Hence max is 1 min is —1.

Example 4.3.6. Find max of f(z,y,z) = z + z subject to 2% + 3% + 22 = 1.
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Figure 4.12: Level sets of g meets with the level set of f. Extreme occurs
when two set meet tangentially

Let g(z,y,2) = 22 + y? + 22. By the Lagrange multiplier method, we
have Vf = AVg. Thus,

1 =2z
0 =2y
1=2z\

1:x2+y2+22.

From first and third equation we see A # 0 and x = z. Hence from second
equation y = 0.

From fourth equation we obtain z = z = 4+1/v/2. Hence (1/v/2,0,1/v/2)
and (—1/v/2,0,—1//2).

2/+/2 is max and —2/+/2 is min.

=

Example 4.3.7. Find the maximum volume of rectangular box with fixed

surface area 10m?2.

Let z, y, z be the dimension. Then volume is f(z,y,2) = xyz. But
surface are is 10. Hence the condition g(x,y, z) = 2(zy + yz + zx) = 10 is the

constraint.

yz = Ay +2),
xz = Nz + 2),
yr = My + ),
O =uxy+yz+ zz.
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Since x >0,y >0, 2 >0, y+2z #*0, x+ 2z # 0. So eliminating A we
get yz/(y + z) = zz/(x + z). Hence z = y. Similarly, y = z and we see

r=y=z=+/5/3. ie, f(1/5/3,/5/3,/5/3) = (5/3)%/? are candidates for
maximum or minimum.

Surface S : xy + yz + zz = 5 is not bounded. If function value f(x,y, 2)

approaches 0 as any of x or y z approaches 0 or oo then (5/ 3)3/ 2 is max.
O
Example 4.3.8. Find max(min) of f(z,y) = 22 — 3% on 22 +y% < 1.

Critical points of f. Since f, =2z =0, f, = =2y = 0, (0,0) is the

only critical point. f(0,0) =0. But D = fu5fyy — :?y = —4 < 0 hence it is a

saddle. We have seen in Example 4.3.5 that f has max and min 1 and —1

=

Several constraint

Theorem 4.3.9. Let S be the surface determined by the following equations:

g1 (X) = (1,

g(x) = k.

If f:R" — R is C' class and has a (local) mazimum or minimum on S,
where Vg1(Xg), -+, Vgr(xo) are linearly independent, then there exist scalars
A1y ..., A\ Such that

Vf(Xo) = )\1Vgl(x0) + -+ )\ngk(Xo).

(Here k-vectors vi,--- ,vi in R™ are called linearly independent if the only
way to satisfy the relation a;vy + --- + apvy = 0 for some scalars ay,--- ,ay,
isag=ag=---=a,=0.)

Proof. Let S; = {x € R"|gi(x) =¢;} fori=1,--- k. Then S=51N---NSk.
Hence any vector tangent to S must be tangent to all S;’s. Let x¢g € S be an
extreme point of f. Then for any curve x with x(#p) = x¢ contained in S, the

function
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Figure 4.13: Several constraints; V f lies in the span of Vg; and Vgo

assumes an extreme at tg. Hence
0= F'(to) = Vf(x0) - X'(to)
Hence V f(x0) is perpendicular to the tangent vector x'(t9). But we also have

Vgl(X())'X,(to) = 0,

ng(X())'X,(to) = 0,

we must have V f(x¢) lie in the hyperplane spanned by Vg (x0), - , Vgr(xo).
O

Example 4.3.10. Find extreme points of f = 2 +y+ z subject to 22 +y? = 2
and z + 2z = 1.

Constraints are g; = 22 +y?> —2=0and go =2 + 2z — 1 = 0. Thus
Vf=MVg +XVga.
Since

g=a2+y?—2
g=x+z—-1
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we obtain

= M2+ X -1
= AM-2y+X-0
A1 0+ X1
= 224 y? -2

S O = ==
Il

= r4+z—1

From third equation we obtain Ao =1 and so A\;-2x = 0 and A; -2y = 1. From
second, we see \; # 0, hence z = 0. Thus y = +v/2 and z = 1. Hence possible
extrema are (0,4+/2,1). (0,v/2,1) give max(0, —v/2,1) give min.

=

2

Example 4.3.11. Suppose the cone 22 = z? + y? is sliced by the plane z =

T + y + 2 to create a conic section C. Find the points nearest to the curve C'

from the origin.

Let f = 22 +y?+ 22 be the square of the distance. The constraints are

g =r2+y2-22=0
g2 =x+y—z2=-—2.

Set
Vf=MVg+ Vg

together with the constraint equations:

2x =212+ Ao
2y =2y + A
2z = —2)\12’ — )\2

?4+y?-22 =0

rT+y—=z = -2
Eliminate Ao from the first two equations, we get

Ao =2z — 2 \1x = 2y — 2\1y
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Thus
2@ —y)(1—A)=0.

=

Example 4.3.12. Find the absolute maximum and minimum of f = zy on

2492 < 1.
First find critical points.

of .~ of _
or ay_:E

(0,0) is the only critical point. Now consider on the unit circle g = 22 +y? = 1.
Vf=2AVg= (y,2) = A(2z,2y)

Thus we get y = 4%y, or A = £1/2 and y = +2. So y = +£1/V2 = z.
Checking f values at these points we see f has max 1/2 and —1/2 is min. By

checking second derivative, (0,0) is saddle

=

Example 4.3.13. Find absolute maximum and minimum of f = %a:z + %yz

on %3:2 +y2 <1
First find critical points.

or ., of_
oxr Z?y_y

(0,0) is the only critical point. Now consider on the unit circle g = 2% +y? = 1.

Use Lagrange method.(Recall one could use parametrization as before).

Vf=AVg= (z,y) = \x,2y)

Thus we get
T = A
y = 2y
1
24y = 1
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So (0,41) and (£+/2,0). Checking f values at these points we see f has max
1 at (0,0).

o
4.4 Some applications
Least Square approximation
We assume we have many data points like (z1,y1), (z2,92),  , (Tn, yn). We

y=mx+b

Figure 4.14: Least square fit by a line; linear regression

would like to find a simplest relation between the data; linear relation. Thus
assume f(z) = mx + b and want to find m,b so that D(m,b) := > | (y; —
f(x;))? is minimized!

n

D(m,b) :Z(y mxl—kb Zyz —2Zy, mx; + b) + Z(ma:,-+b)2.

=1 =1

Hence
g_fl _ —2§:$iyi+2i(mxi+b):n
- —an:a;,-yi—i—QmZn:x?—i-szn:xi:O
p = =
and
aa_],j _ —2§:yi+2i(mxi+b)

n n
= —22%‘ +2m2$i + 2nb = 0.
i=1 i=1
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Solving for m and b, we obtain

Proposition 4.4.1. The least square approximation by linear function is ob-

tained by

ny iz — (i ) QO vi)
ny iy g — (Ui )2
b — (i 3322)(2?:1 yi) — oty ) ol wiyi)
nyoig xt — (30, @)?

Example 4.4.2. Find a linear regression of the data (1, 2), (2, 1), (3,5), (4, 3), (5,4).

m =

D(m,b) = (2—(m+b))?+(1—(2m~+b))*+(5—(3m+b)) 2 +(3— (4m+b)) 2+ (4— (5m+b))*
=55 —4(m +b) + (m +b)? — 2(2m + b) + (2m + b)* — 10(3m + b)
+ (3m +b)? — 6(4m + b) + (4m + b)% — 8(5m + b) + (5m + b)?
= 55 — 102m — 30b + 55m? + 30mb + 5b%.  (4.8)

9D 102+ 110m + 30b=0
om
oD
S5 = 30+ 30m +106 = 0.

Hence m = 3/5, b=6/5 and y = 3/5x + 6/5.



