Chapter 4

Maxima and minima

4.1 Linearization and differential

Review of one variable function

When we study complicated functions, we can find its derivative at a point and study the tangent line instead. Thus, a tangent approximation is meaningful and call it linearization. Note that any nice curve, if enlarged, will look like a line. The linear function

$$L(x) = f(a) + f'(a)(x - a)$$

is called the **linearization** of f at a.

Differential

The geometric meaning of differential is given in Figure ??.

$$f(x) = f(a) + f'(a)(x - a) + R_1(x, a)$$

where

$$\lim_{x \to a} \frac{R_1(x,a)}{x-a} = 0.$$

Taylor Polynomial

Taylor series involves infinitely many terms and require the function to be infinitely differentiable. However, if the function is differentiable only a few times, how can we approximate it? Consider

$$y = P_1(x) := f(a) + f'(a)(x - a)$$

This is linear approximation to f(x). Similarly, we can consider

$$y = P_2(x) := f(a) + f'(a)(x - a) + \frac{1}{2}f''(a)(x - a)^2$$

which has same derivative up to second order. By the same way one can find a polynomial $P_n(x)$ of degree n which has the same derivatives at a up to n-th order. This polynomial will be a good approximation, called the **a Taylor polynomial of degree** n.

Hence the Taylor polynomial of degree k is given by

$$P_k(x) = f(a) + f'(a)(x-a) + \dots + \frac{f^{(k)}(a)}{k!}(x-a)^k.$$

4.1.1 Taylor theorem

When f is differentiable at **a**, the linear approximation of $f(\mathbf{x})$ is $f(\mathbf{a}) + \mathbf{D}f(\mathbf{a})(\mathbf{x} - \mathbf{a})$. Here the error $R_1 = |f(\mathbf{a}) - f(\mathbf{a}) - \mathbf{D}f(\mathbf{a})(\mathbf{x} - \mathbf{a})|$ satisfies

$$\lim_{\mathbf{x}\to\mathbf{a}}\frac{R_1}{\|\mathbf{x}-\mathbf{a}\|}=0.$$

What if we want higher order approximation?

Theorem 4.1.1 (Taylor theorem one variable-integral remainder). If $f : \mathbb{R} \to \mathbb{R}$ has continuous k- th partial derivatives

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \dots + \frac{f^{(k)}(a)}{k!}(x-a)^k + R_k(x,a) \quad (4.1)$$

where $R_k(x,a)/(x-a)^k \to 0$ as $x \to a$.

Proposition 4.1.2. If f is differentiable up to order k + 1, then there exists a number z between a and x such that

$$R_k(x,a) = \frac{f^{(k+1)}(z)}{(k+1)!} (x-a)^{k+1}.$$
(4.2)

Example 4.1.3. Find the Taylor polynomial of order 5 for $f(x) = \cos x$ at

 $x = \pi/2$ and estimate the remainder.

$$R_5(x,\frac{\pi}{2}) = \frac{f^{(6)}(z)}{6!}(x-\frac{\pi}{2})^6.$$

Taylor theorem in several variable -1st order

Suppose $f: X \subset \mathbb{R}^2 \to \mathbb{R}$ is class C^1 . Then the tangent plane at (a, b) is a good approx. That is

$$f(x,y) \approx p_1(x,y,$$

where

$$p_1(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b).$$

We can generalize this to a function of several variables.

Theorem 4.1.4 (Taylor theorem in several variable -1st order). If $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable at \mathbf{a} , then

$$f(\mathbf{x}) = f(\mathbf{a}) + Df(\mathbf{a}) \cdot (\mathbf{x} - \mathbf{a}) + R_1(\mathbf{x}, \mathbf{a}),$$

where $R_1(\mathbf{x}, \mathbf{a}) / \|\mathbf{x} - \mathbf{a}\| \to 0$ as $\mathbf{x} \to \mathbf{a}$.

In scalar form, we have

$$f(\mathbf{x}) = f(\mathbf{x}) + \sum_{i=1}^{n} f_{x_i}(\mathbf{a})(x_i - a_i) + R_1(\mathbf{x}, \mathbf{a}).$$

Example 4.1.5. Find the equation of tangent plane to $f(\mathbf{x}) = x_1 + 2x_1x_2 + x_3 + x_1x_4 + x_1x_2x_3^2$ at $\mathbf{x} = (1, 1, 2, 2)$.

$$f_{x_1} = 1 + 2x_2 + x_4 + x_2 x_3^2 = 9, \quad f_{x_2} = 2x_1 + x_1 x_3^2 = 4$$
$$f_{x_3} = 1 + 2x_1 x_2 x_3 = 5, \quad f_{x_4} = x_1 = 1$$

Thus

$$p_1 = 11 + 9(x_1 - 1) + 4(x_2 - 1) + 5(x_3 - 2) + (x_4 - 2).$$

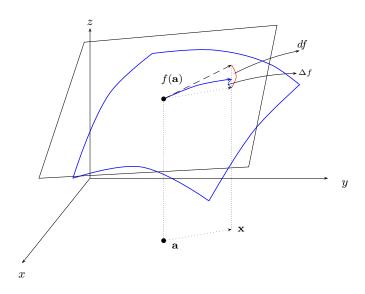


Figure 4.1: True increase Δf vs. differential $d\!f$

Differential in several variable

Definition 4.1.6. Let $f: X \subset \mathbb{R}^n \to \mathbb{R}$ be differentiable and $\mathbf{a} \in X$. The differential of f is

$$df(\mathbf{a},\mathbf{h}) = \frac{\partial f}{\partial x_1}(\mathbf{a})h_1 + \dots + \frac{\partial f}{\partial x_n}(\mathbf{a})h_n.$$

The significance of differential is that for small ${\bf h}$

$$df \approx \Delta f := f(\mathbf{a} + \mathbf{h}) - f(\mathbf{a}).$$

Here $\mathbf{h} = (h_1, \dots, h_n)$ denote small change in the variables and it is also written as $\mathbf{h} = \Delta \mathbf{x} = (\Delta x_1, \dots, \Delta x_n)$. Hence the differential is also written as

$$df = \frac{\partial f}{\partial x_1} dx_1 + \dots + \frac{\partial f}{\partial x_n} dx_n.$$

Example 4.1.7. Find the differential of $f(x, y, z) = e^{x+y} \sin(yz)$.

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy + \frac{\partial f}{\partial z}dz$$

= $e^{x+y}\sin(yz)dx + e^{x+y}(\sin(yz) + z\cos(yz))dy + e^{x+y}y\cos(yz)dz$.

Example 4.1.8. Find the Δf at (2, -1) when $f(x, y) = x - y + 2x^2 + xy^2$.

$$\begin{aligned} \Delta f &= f(2 + \Delta x, -1 + \Delta y) - f(2, -1) \\ &= (2 + \Delta x) - (-1 + \Delta y) + 2(2 + \Delta x)^2 + (2 + \Delta x)(-1 + \Delta y)^2 - (13) \\ &= 3 + \Delta x - \Delta y + 2(4 + 4\Delta x + \Delta^2 x) + (2 + \Delta x)(1 - 2\Delta y + \Delta^2 y) - 13 \\ &= 10\Delta x - 5\Delta y + 2(\Delta x)^2 - 2\Delta x\Delta y + 2(\Delta y)^2 + \Delta x(\Delta y)^2. \end{aligned}$$

On the other hand

$$df = f_x(2,-1)\Delta x + f_y(2,-1)\Delta y$$

= $(1 + 4x + y^2)_{(2,-1)}\Delta x + (-1 + 2xy)_{(2,-1)}\Delta y$
= $(1 + 8 + 1)\Delta x + (-1 - 4)\Delta y.$

Thus df coincides with Δf up to the linear factor of Δx and Δy .

Example 4.1.9. Let $f(x,y) = x + y + e^{x+y^2}$. Find Δf at $\mathbf{a} = (1,1)$. Also find df and compare.

$$\begin{aligned} \Delta f &= f(1 + \Delta x, 1 + \Delta y) - f(1, 1) \\ &= 1 + \Delta x + 1 + \Delta y + e^{1 + \Delta x + (1 + \Delta y)^2} - (1 + 1 + e^{1 + (1)^2}) \\ &= \Delta x + \Delta y + e^{2 + \Delta x + 2\Delta y + \Delta y^2} - e^2 \\ &= \Delta x + \Delta y + e^2 (e^{1 + \Delta x + 2\Delta y + \Delta y^2} - 1) \\ &= \Delta x + \Delta y + e^2 (\Delta x + 2\Delta y + \Delta y^2 + \Delta x^2 + 4\Delta y^2 + \cdots) \end{aligned}$$

On the other hand, from $f_x = 1 + e^{x+y^2}$, and $f_y = 1 + 2ye^{x+y^2}$, we get

$$df = f_x(1,1)\Delta x + f_y(1,1)\Delta y$$

= $(1+e^2)\Delta x + (1+2e^2)\Delta y$
= $\Delta x + \Delta y + e^2(\Delta x + 2\Delta y).$

Again df and Δf coincide up to linear factor of Δx and Δy .

From these examples you see computing the approximate value df is easier than computing the exact value Δf .

Example 4.1.10. A box is to be made with dimension $3 \times 4 \times 6$ inches with a possible error in measuring is the same in all direction. We would like to know

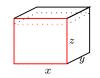


Figure 4.2: Volume of a box

how accurate we must measure the length so that the error in the volume is less than 0.1 in^3 .

Sol.

Since the exact volume is V = xyz, x = 3, y = 4, z = 6, we have

$$dV = V_x dx + V_y dy + V_z dz$$

= $yz dx + xz dy + xy dz$
since the possible error in measuring the length is $dx = dy = dz$
= $(24 + 18 + 12)dx \le 0.1$.

Hence the measurement in each dimension must be accurate within $dx \leq 0.1/54 = 0.0019$

Example 4.1.11. The volume of cylindrical can is $V(r, h) = \pi r^2 h$. Find the change of volume when the radius or the height changes.

$$dV = V_r \, dr + V_h \, dh = 2\pi r h \Delta r + \pi r^2 \Delta h.$$

Taylor theorem -second order formula

Theorem 4.1.12 (Taylor theorem 2nd order formula). Suppose $f: X \subset \mathbb{R}^n \to \mathbb{R}$ is class \mathcal{C}^2 , then

$$f(\mathbf{x}) = f(\mathbf{a}) + \sum_{i=1}^{n} h_i f_{x_i}(\mathbf{a}) + \frac{1}{2} \sum_{i,j=1}^{n} h_i h_j f_{x_i x_j}(\mathbf{a}) + R_2(\mathbf{x}, \mathbf{a}),$$

where $\mathbf{h} = \mathbf{x} - \mathbf{a}$, $h_i = x_i - a_i$ and $R_2(\mathbf{x}, \mathbf{a}) / \|\mathbf{h}\|^2 \to 0$ as $\mathbf{h} \to 0$.

Let n = 2 and try to find a quadratic polynomial p(x, y) which has same derivatives up to second order as f at a given point $\mathbf{a} = (a, b)$. Let

$$p(x,y) = Ax^2 + Bxy + Cy^2 + Dx + Ey + F$$

and we require p have the same derivatives as f up to second order:

$$p(a,b) = f(a,b)$$

$$p_x(a,b) = f_x(a,b) \quad p_y(a,b) = f_y(a,b)$$

$$p_{xx}(a,b) = f_{xx}(a,b), \quad p_{xy}(a,b) = f_{xy}(a,b), \quad p_{yy}(a,b) = f_{yy}(a,b).$$

Hence

$$p(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b) + \frac{1}{2}f_{xx}(a,b)(x-a)^2 + f_{xy}(a,b)(x-a)(y-b) + \frac{1}{2}f_{yy}(a,b)(y-b)^2.$$

In matrix form,

$$f(\mathbf{x}) = f(\mathbf{a}) + \left(\frac{\partial f}{\partial x_1}, \cdots, \frac{\partial f}{\partial x_n}\right) \begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix}$$

+ $\frac{1}{2}(h_1, \cdots, h_n) \begin{pmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \frac{\partial^2 f}{\partial x_2 \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_1} \\ \frac{\partial^2 f}{\partial x_1 \partial x_2} & \frac{\partial^2 f}{\partial x_2 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n} \\ & \cdots & & \\ \frac{\partial^2 f}{\partial x_1 \partial x_n} & \frac{\partial^2 f}{\partial x_2 \partial x_n} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n} \end{pmatrix} \begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix} + R_2(\mathbf{x}, \mathbf{a})$
= $f(\mathbf{a}) + Df(\mathbf{a})\mathbf{h} + \frac{1}{2}\mathbf{h}^T Hf(\mathbf{a})\mathbf{h} + R_2.$

(In the third term, treat Df as a column vector for consistency of derivative.) Here $Hf(\mathbf{a})$ is the Hessian defined by

$$Hf(\mathbf{a}) = \begin{pmatrix} f_{x_1x_1} & f_{x_1x_2} & \cdots & f_{x_1x_n} \\ f_{x_2x_1} & f_{x_2x_2} & \cdots & f_{x_2x_n} \\ \vdots & \vdots & \ddots & \vdots \\ f_{x_nx_1} & f_{x_nx_2} & \cdots & f_{x_nx_n} \end{pmatrix}$$

and $P_2(\mathbf{x}) = f(\mathbf{a}) + Df(\mathbf{a})\mathbf{h} + \frac{1}{2}\mathbf{h}^T Hf(\mathbf{a})\mathbf{h}$ is the second degree Taylor polynomial at \mathbf{a} .

Proof. Let $g(t) = f(\mathbf{a} + t\mathbf{h})$ and use Taylor theorem in one variable and chain rule. We have

$$g(1) = g(0) + g'(0) + \frac{g''(0)}{2!} + R_2$$

and

$$R_2 = \int_0^1 \frac{(t-1)^2}{2!} g'''(t) dt.$$

By Chain rule, we see

$$g'(t) = Df \cdot \frac{d\mathbf{x}}{dt} = \sum_{i=1}^{n} f_{x_i}(\mathbf{a} + t\mathbf{h})h_i, \quad g''(t) = \frac{d\mathbf{x}}{dt}^t D^2 f \cdot \frac{d\mathbf{x}}{dt} = \sum_{i,j=1}^{n} f_{x_i x_j}(\mathbf{a} + t\mathbf{h})h_i h_j,$$

and

$$g'''(t) = \sum_{i,j,k=1}^{n} f_{x_i x_j x_k}(\mathbf{x}_0 + t\mathbf{h})h_i h_j h_k.$$

Hence we have

$$R_2(\mathbf{x}, \mathbf{a}) = \sum_{i,j,k=1}^n \int_0^1 \frac{(1-t)^2}{2} f_{x_i x_j x_k}(\mathbf{a} + t\mathbf{h}) h_i h_j h_k \, dt.$$

and

$$f(\mathbf{x}) = f(\mathbf{a}) + \sum_{i=1}^{n} h_i f_{x_i}(\mathbf{a}) + \frac{1}{2} \sum_{i,j=1}^{n} h_i h_j f_{x_i x_j}(\mathbf{a}) + R_2(\mathbf{x}, \mathbf{a}).$$

Here the integrand of $R_2(\mathbf{x}, \mathbf{a})$ is continuous. So if $\|\mathbf{h}\|$ is small, it is less than M. So $|R_2(\mathbf{h}, \mathbf{x})| \leq M \|h\|^3$. In other words $|R_2(\mathbf{x}, \mathbf{a})|/\|h\|^2 \to 0$ as $\mathbf{h} \to 0$. \Box

Example 4.1.13. Find 2nd order Taylor approximation of $f(x, y) = e^{x+y}$ near $\mathbf{a} = (0, 0)$.

sol. Partials of f are

$$f_x(0,0) = f_y(0,0) = e^0 = 1$$

$$f_{xx}(0,0) = f_{xy}(0,0) = f_{yy}(0,0) = e^0 = 1.$$

$$f(x,y) = 1 + x + y + \frac{1}{2}(x^2 + 2xy + y^2) + R_2$$

As $(x, y) \to (0, 0), R_2/||(x, y)||^2 \to 0.$ Repeat this with $\mathbf{a} = (1, 1).$

.

Example 4.1.14. Find 2nd order Taylor approximation of $f(x, y) = \cos x e^{x+y}$ near $\mathbf{a} = (0, 0)$.

sol. Partials of f are

$$f_x = -\sin x e^{x+y} + \cos x e^{x+y}, \ f_y = \cos x e^{x+y}$$
$$f_{xx} = -2\sin x e^{x+y}, \ f_{xy} = (-\sin x + \cos x) e^{x+y}, \ f_{yy} = \cos x e^{x+y}.$$

Since f(0,0) = 1, $f_x(0,0) = 1$, $f_y(0,0) = 1$, $f_{xx}(0,0) = 0$, $f_{xy}(0,0) = 1$, $f_{yy}(0,0) = 1$, we see

$$f(x,y) = 1 + x + y + \frac{1}{2}(2xy + y^2) + R_2.$$

Using matrix form,

$$p_{2}(x,y) = f(0,0) + Df(0,0)\mathbf{h} + \frac{1}{2}\mathbf{h}^{T}Hf(0,0)\mathbf{h}$$
$$= 1 + \begin{bmatrix} 1,1 \end{bmatrix} \begin{bmatrix} h_{1} \\ h_{2} \end{bmatrix} + \frac{1}{2} \begin{bmatrix} h_{1},h_{2} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} h_{1} \\ h_{2} \end{bmatrix}.$$

Here $h_1 = x - 0, h_2 = y - 0.$

Theorem 4.1.15. (1) Remainder of Taylor's theorem 4.1.4 is given by

$$R_1(\mathbf{x}, \mathbf{a}) = \sum_{i,j=1}^n \int_0^1 (1-t) f_{x_i x_j}(\mathbf{a} + t\mathbf{h}) h_i h_j \, dt = \sum_{i,j=1}^n \frac{1}{2} f_{x_i, x_j}(\mathbf{c}) h_i h_j.$$

Here \mathbf{c} is a point between \mathbf{a} and \mathbf{x} .

(2) Remainder of Taylor's theorem 4.1.12 is

$$R_2(\mathbf{x}, \mathbf{a}) = \sum_{i,j,k=1}^n \int_0^1 \frac{(1-t)^2}{2} f_{x_i x_j x_k}(\mathbf{a} + t\mathbf{h}) h_i h_j h_k \, dt = \sum_{i,j,k=1}^n \frac{1}{3!} f_{x_i, x_j, x_k}(\mathbf{c}) h_i h_j h_k$$

Here \mathbf{c} is a point between \mathbf{a} and \mathbf{x} .

.

Proof. [MVT for integral] If h and g are continuous on [a, b] and g > 0then for some $c \in [a, b]$ the following holds

$$\int_{a}^{b} h(t)g(t) dt = h(c) \int_{a}^{b} g(t) dt$$

(1) From thm 4.1.4 we see

$$R_1(\mathbf{h}, \mathbf{x}_0) = \sum_{i,j=1}^n \int_0^1 (1-t) f_{x_i x_j}(\mathbf{x}_0 + t\mathbf{h}) h_i h_j \, dt.$$

If we set $h(t) = f_{x_i x_j}(\mathbf{x}_0 + t\mathbf{h})$ and $g(t) = (1 - t)h_i h_j$ and use MVT. Then

$$\int_0^1 (1-t) f_{x_i x_j}(\mathbf{x}_0 + t\mathbf{h}) h_i h_j dt$$
$$= f_{x_i x_j}(\mathbf{c}) \int_0^1 (1-t) h_i h_j dt$$
$$= \frac{1}{2} f_{x_i x_j}(\mathbf{c}) h_i h_j.$$

(2) similar

Second order Taylor formula gives second order approximation.

Example 4.1.16. Find the second order approx. of $f(x, y) = \sin x \sin y$. What is error if $|x| \le 0.1$, $|y| \le 0.1$.

sol. partials of f(x, y) are

$$f(0,0) = 0,$$
 $f_x(0,0) = 0,$ $f_y(0,0) = 0$

$$f_{xx}(0,0) = 0,$$
 $f_{xy}(0,0) = 1,$ $f_{yy}(0,0) = 0.$

Hence

$$f(x,y) = 0 + 0 + 0 + \frac{1}{2} \left(x^2(0) + 2xy + y^2(0) \right) + R_2.$$

So $\sin x \sin y \approx xy$ and the error is

$$\begin{aligned} |R_2| &= |\frac{1}{6} (x^3 f_{xxx} + 3x^2 y f_{xxy} + 3xy^2 f_{xyy} + y^3 f_{yyy})|_{(c_1, c_2)} \\ &\leq \frac{1}{6} \Big((0.1)^3 + 3(0.1)^1 + 3(0.1)^1 + (0.1)^1 \Big) \\ &\leq \frac{8}{6} (0.1)^3 \leq 0.00134. \end{aligned}$$

Example 4.1.17. Find second order approx. of $f(x, y) = e^x \cos y$ at (0, 0).

sol. partials of f(x, y) are

$$f(0,0) = 0, f_x(0,0) = 1, f_y(0,0) = 0$$

$$f_{xx}(0,0) = 1, f_{xy}(0,0) = 0, f_{yy}(0,0) = -1.$$

Hence

$$f(\mathbf{h}) = 1 + h_1 + \frac{1}{2} \left(h_1^2 - h_2^2 \right) + R_2,$$

where $R_2/\|\mathbf{h}\|^2 \to 0$ as $\|\mathbf{h}\| \to 0$.

Example 4.1.18. Find approx. value of $(3.98 - 1)^2/(5.97 - 3)^2$ compare with exact value.

sol. Let $f = (x-1)^2/(y-3)^2$. Desired value is close to f(4,6) = 1. partials of f(x,y) are

$$f(4,6) = 1, \qquad f_x(4,6) = \frac{2}{3}, \qquad f_y(4,6) = -\frac{2}{3},$$

$$f_{xx}(4,6) = \frac{2}{9}, \qquad f_{xy}(4,6) = -\frac{4}{9}, \qquad f_{yy}(4,6) = \frac{2}{3}.$$

Hence linear approx. is

$$1 + \frac{2}{3}(-0.02) - \frac{2}{3}(-0.03) = 1.00666$$

while quadratic approx is

$$1 + \frac{2}{3}(-0.02) - \frac{2}{3}(-0.03) + \frac{2}{9}\frac{(-0.02)^2}{2} - \frac{4}{9}(-0.02)(-0.03) + \frac{2}{3}\frac{(-0.03)^2}{2} = 1.00674.$$

A more exact value is 1.00675.(calculator value)

4.2 Extrema of real valued functions

Local Max, Min

Definition 4.2.1. We say $f: X \subset \mathbb{R}^n \to \mathbb{R}$ has **local minimum** at $\mathbf{a} \in U$ if there is a neighborhood U of \mathbf{a} such that $f(\mathbf{x}) \leq f(\mathbf{a})$ for all $\mathbf{x} \in U$. Similarly,

we say f has a **local maximum** at $\mathbf{a} \in U$ if there is a neighborhood U of \mathbf{a} such that $f(\mathbf{a}) \leq f(\mathbf{x})$ for all $\mathbf{x} \in U$.

global minimum and **global maximum** are clearly defined. A critical point which is either local max or min is called a **saddle**.

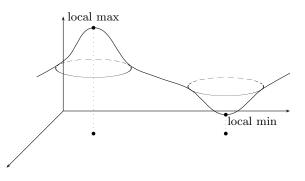


Figure 4.3: Near extreme

Theorem 4.2.2 (First derivative test for local extrema). If $f: U \subset \mathbb{R}^n \to \mathbb{R}$ is differentiable at $\mathbf{a} \in \mathbb{R}^n$ and assumes an extreme value, then $Df(\mathbf{a}) = 0$.

Proof. Suppose f has local maximum at \mathbf{a} . Then for any $\mathbf{h} \in \mathbb{R}^n$, the function $g(t) = f(\mathbf{a} + t\mathbf{h})$ has a local minimum. Hence

$$g'(0) = D_{\mathbf{h}}f(\mathbf{a}) = \nabla f(\mathbf{a}) \cdot \mathbf{h} = 0$$

Sine this holds for every \mathbf{h} , $\nabla f(\mathbf{a}) = \mathbf{0}$, i.e., \mathbf{a} is critical point of f.

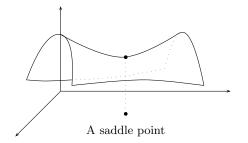


Figure 4.4: Near Saddle point

Definition 4.2.3. A point $\mathbf{a} \in \mathbb{R}^n$ is called a **critical point** if f is not differentiable or $\nabla f(\mathbf{a}) = \mathbf{0} = (0, \dots, 0)$.

Example 4.2.4. Find the (local) maximum and minimum of $f = x^2 + y^2$.

Example 4.2.5. Find the extrema of $f = x^2 - y^2$ (if any).

Sol. Df = (2x, -2y). Hence the only critical point is (0, 0). But we see it is not an extreme point.

Example 4.2.6. Find critical points of $z = x^2y + y^2x$ and investigate their behavior.

sol. From

$$z_x = 2xy + y^2 = 0, \quad z_y = 2xy + x^2 = 0$$

We obtain $x^2 = y^2$. For x = y, we get $2y^2 + y^2 = 0$ and (x, y) = (0, 0). For x = -y, we again get x = y = 0. Now for x = y, $z = 2x^3$. Not a extreme. So saddle.

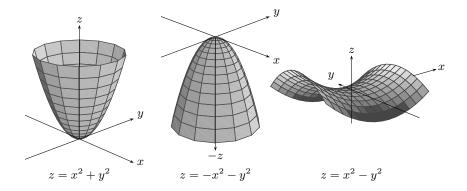


Figure 4.5: Graphs of critical points

Example 4.2.7. Find the extrema of $z = 2(x^2 + y^2)e^{-x^2 - y^2}$.

sol.

$$z_x = [4x + 2(-2x)(x^2 + y^2)]e^{-(x^2 + y^2)}$$

= $4x(1 - x^2 - y^2)e^{-(x^2 + y^2)}$
 $z_y = 4y(1 - x^2 - y^2)e^{-(x^2 + y^2)}.$

Solving these, we obtain x = y = 0 or $x^2 + y^2 = 1$. We can check the points on the crater's rim are points of local maximum.

Investigate the property of a critical point by Hessian

Example 4.2.8. Find the extrema of $f = x^2 + xy + y^2 + 2x - 2y + 5$.

Sol. First we find the critical point by setting Df(x, y) = 0.

$$f_x = 2x + y + 2 = 0$$

$$f_y = x + 2y - 2 = 0.$$

Thus (-2, 2) is the only critical point. To determine whether this point is a max or min(or neither), we do as follows: With $(\Delta x, \Delta y) = (h, k)$,

$$\Delta f = h^2 + hk + k^2.$$

We have three possibilities:

- If the quantity Δf is nonnegative for all small values of h and k, then (-2, 2) yields a local min.
- Similarly, if Δf is nonpositive for all small values of h and k, then (-2, 2) yields a local max.
- If neither holds, then it yields a saddle.

In this particular example, the point clearly yields a local min.

In general, let us look at the Δf more carefully. From Taylor formula

$$f(\mathbf{x}_0 + \mathbf{h}) = f(\mathbf{x}_0) + Df(\mathbf{x}_0) + \frac{1}{2}\mathbf{h}^T H f(\mathbf{x}_0)\mathbf{h} + R_2(\mathbf{x}_0, \mathbf{h}), \quad \frac{R_2(\mathbf{x}_0, \mathbf{h})}{\|\mathbf{h}\|^2} \to 0$$

Hence

$$\begin{aligned} \Delta f &= f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0) \\ &= Df(\mathbf{x}_0) + \frac{1}{2}\mathbf{h}^T H f(\mathbf{x}_0)\mathbf{h} + R_2(\mathbf{x}_0, \mathbf{h}) \\ &= \frac{1}{2}\mathbf{h}^T H f(\mathbf{x}_0)\mathbf{h} + o(\|\mathbf{h}\|^2) \\ &= (\frac{1}{2} - \epsilon)\mathbf{h}^T H f(\mathbf{x}_0)\mathbf{h}. \end{aligned}$$

Thus the point \mathbf{x}_0 is

- a point of local min. if $\mathbf{h}^T H f(\mathbf{x}_0) \mathbf{h} \ge 0$ for all small values of \mathbf{h}
- a point of local max. if $\mathbf{h}^T H f(\mathbf{x}_0) \mathbf{h} \leq 0$ for all small values of \mathbf{h}
- a saddle if $\mathbf{h}^T H f(\mathbf{x}_0) \mathbf{h}$ assumes both positive value and negative value.

More generally we have second derivative test:

Definition 4.2.9. A function $Q : \mathbb{R}^n \to \mathbb{R}$ of the form

$$Q(h_1, \cdots, h_n) = \sum_{i,j=1}^n b_{ij}h_ih_j = \mathbf{h}^T B \mathbf{h}$$

is called a **quadratic form**. It is symmetric, if $b_{ij} = b_{ji}$. A quadratic form(function) $Q : \mathbb{R}^n \to \mathbb{R}$ is said to be

- (1) **positive definite** if $Q(\mathbf{h}) \ge 0$, $\forall \mathbf{h} \in \mathbb{R}^n$, and $Q(\mathbf{h}) = 0$ implies $\mathbf{h} = 0$.
- (2) negative definite if $Q(\mathbf{h}) \leq 0$, $\forall \mathbf{h} \in \mathbb{R}^n$, and $Q(\mathbf{h}) = 0$ implies $\mathbf{h} = 0$.

We note that the quadratic form(function) $Q(\mathbf{h}) = \mathbf{h}^T B \mathbf{h}$ is positive definite if and only if the matrix B is positive definite.

Recall the **Hesssian** at (x_0, y_0) . The Hessian of f naturally defines a quadratic form

$$Q(\mathbf{h}) = \frac{1}{2}(h_1, \cdots, h_n) \begin{pmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \frac{\partial^2 f}{\partial x_2 \partial x_1} \cdots & \frac{\partial^2 f}{\partial x_n \partial x_1} \\ \frac{\partial^2 f}{\partial x_1 \partial x_2} & \frac{\partial^2 f}{\partial x_2 \partial x_2} \cdots & \frac{\partial^2 f}{\partial x_n \partial x_2} \\ & \ddots & \\ \frac{\partial^2 f}{\partial x_1 \partial x_n} & \frac{\partial^2 f}{\partial x_2 \partial x_n} \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n} \end{pmatrix} \begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix}$$

If \mathbf{x}_0 is a critical point, then $DF(\mathbf{x}_0) = 0$. Hence

$$f(\mathbf{x}_0 + \mathbf{h}) = f(\mathbf{x}_0) + \frac{1}{2}\mathbf{h}^T H f(\mathbf{x}_0)\mathbf{h} + R_2(\mathbf{x}_0, \mathbf{h}).$$

Thus to study the behavior of a critical point, it suffices to study the quadratic form $Q(\mathbf{h}) = \frac{1}{2}\mathbf{h}^T H f(\mathbf{x}_0)\mathbf{h}$.

Theorem 4.2.10. [Second derivative test] Suppose f is C^2 and $\mathbf{a} = (x_0, y_0)$ is a critical point of f.

- (1) If the Hessian $Hf(\mathbf{a})$ is positive definite, then f has a relative minimum at \mathbf{a} .
- (2) If $Hf(\mathbf{a})$ is negative definite, then f has a relative maximum at \mathbf{a} .
- (3) If $Hf(\mathbf{a})$ is neither positive nor negative definite, then f has a saddle point at \mathbf{a} .

Example 4.2.11. Consider $f(x, y) = x^2 + y^2$. (0,0) is the critical point. We see

$$f(x,y) = f(0,0) + (h_1^2 + h_2^2) + 0$$

Since $Q(h_1, h_2) = h_1^2 + h_2^2$ is positive definite, (0, 0) is a local min.

Lemma 4.2.12. If $B = [b_{ij}]$ is $n \times n$ real matrix and if

$$Q: \mathbb{R}^n \to \mathbb{R}, (h_1, \cdots, h_n) \mapsto \frac{1}{2} \sum b_{ij} h_i h_j$$

is positive-definite, then there is M > 0 such that for all **h**,

$$Q(\mathbf{h}) \ge M \|\mathbf{h}\|^2$$

Proof. For $||\mathbf{h}|| = 1$, set $g(\mathbf{h}) = Q(\mathbf{h})$. Then g is continuous function on a closed set, hence have a positive minimum, say M. Because Q is quadratic,

$$Q(\mathbf{h}) = Q(\frac{\mathbf{h}}{\|\mathbf{h}\|} |\mathbf{h}\|) = Q(\frac{\mathbf{h}}{\|\mathbf{h}\|}) |\mathbf{h}\|^2 = g(\frac{\mathbf{h}}{\|\mathbf{h}\|}) \|\mathbf{h}\|^2 \ge M |\mathbf{h}\|^2$$

for any $\mathbf{h} \neq 0$.

Proof of Theorem 4.2.10.

$$f(\mathbf{x}_0) - f(\mathbf{x}_0) = Q(\mathbf{x}_0)(\mathbf{h}) + R_2,$$

where $R_2/\|\mathbf{h}\|^2 \to 0$. Hence we can say $|R_2| < \epsilon \|\mathbf{h}\|^2$ for some small ϵ when $0 < \|\mathbf{h}\| < \delta$. Since $Q(\mathbf{x}_0)$ is positive definite,

$$Q(\mathbf{x}_0)(\mathbf{h}) \ge M \|\mathbf{h}\|^2, \forall \mathbf{h}.$$

Hence

$$f(\mathbf{x}_0) - f(\mathbf{x}_0) = Q(\mathbf{x}_0)(\mathbf{h}) + R_2 \ge (M - \epsilon) \|\mathbf{h}\|^2,$$

for $0 < \|\mathbf{h}\| < \delta$ and so we have a strict min at \mathbf{x}_0 .

Determinant test for Positive definiteness

Then how do we know Positive definiteness ?

Lemma 4.2.13. Let $B = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$ and $Q(\mathbf{h}) = \frac{1}{2}\mathbf{h}^T B\mathbf{h}$. Then $Q(\mathbf{h})$ is positivedefinite if and only if a > 0 and $ac - b^2 > 0$.

sol. We have

$$Q(\mathbf{h}) = \frac{1}{2}[h_1, h_2] \begin{bmatrix} a, b \\ b, c \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} = \frac{1}{2}(ah_1^2 + 2bh_1h_2 + ch_2^2)$$
$$Q(\mathbf{h}) = \frac{1}{2}a\left(h_1 + \frac{b}{a}h_2\right)^2 + \frac{1}{2}\left(c - \frac{b^2}{a}\right)h_2^2.$$

Suppose Q is positive definite. Then setting $h_2 = 0$, we see a > 0. Next setting $h_1 = 0$, we get $ac - b^2 > 0$. The converse also hold.

Similarly, we have negative definite if a < 0 and $ac - b^2 > 0$.

Theorem 4.2.14 (Second derivative test). Suppose f is C^2 on an open subset U of \mathbb{R}^2 and $f_x(x_0, y_0) = f_y(x_0, y_0) = 0$ holds, i.e., (x_0, y_0) is a critical point.) Let $D = f_{xx}(x_0, y_0) f_{yy}(x_0, y_0) - (f_{xy}(x_0, y_0))^2$. Then the following holds:

(1) f has a local min. if $f_{xx}(x_0, y_0) > 0$ and D > 0(2) f has a local max. if $f_{xx}(x_0, y_0) < 0$ and D > 0(3) f has a saddle point if D < 0(4) If D = 0 then we say f has a **degenerate** critical point.

Example 4.2.15. Classify the critical points of the following functions.

(1) $g_1(x,y) = 3x^2 + 6xy + 9y^2$

(2)
$$g_2(x,y) = -2x^2 + xy - y^2$$

(3) $g_3(x,y) = x^2 - xy + 2y^2$

sol. All the critical points are (0,0). For g_1 , we see $D = 3 \cdot 9 - 3^2 = 18 > 0$. Hence (0,0) is a local min of g_1 .

For g_2 , we have D = (-2)(-1) - 1/4 = 7/4 > 0 and a = -2 < 0, we see g_2 has local maximum at (0, 0).

For g_3 , $D = 2 \cdot 1 - 1/4 = 3/4 > 0$ and a = 1 > 0, hence g_3 has local minimum at (0, 0).

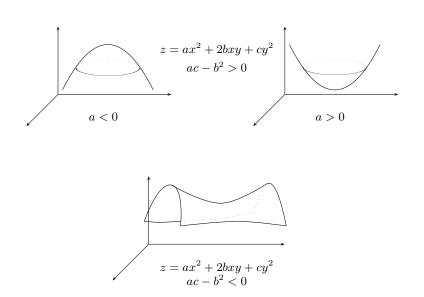


Figure 4.6: Graphs of quadratic functions

Example 4.2.16. 'Investigate' the behavior of "critical points" of the following functions:

(1) $f(x,y) = x^4 + y^4$

(2)
$$g(x,y) = x^3 + y^3$$

- (1) (0,0) is the only critical point of f and D = 0 at (0,0). This is a degenerate case. So the test fails. It is easy to check $f \ge 0$ for all (x, y) and f(0,0) = 0. So (0,0) is local minimum
- (2) Again D = 0. Hence the test fails. Instead we check the behavior of g directly. We see

 $g > 0 \quad \text{if } xy > 0$ $g < 0 \quad \text{if } xy < 0.$

Hence (0,0) is a saddle of g.

Proof of pos. definiteness when D > 0.

$$Hf = \frac{1}{2}[h_1, h_2] \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \end{bmatrix}$$

Thus we need to check definiteness of the matrix of the form $B = \begin{bmatrix} a & b \\ b & c \end{bmatrix}$.

Example 4.2.17. Let $f(x,y) = x^3 + xy^2 + x^2 + y^2 + 3z^2$. Identify critical points and determine local max or min.

Example 4.2.18. Locate relative maxima minima saddle of

$$f(x, y) = \log(x^2 + y^2 + 1).$$

sol. $\nabla f = 0$ gives (0,0) as a critical point. Second derivatives are

$$f_{xx}(0,0) = 2 = f_{yy}(0,0), \quad f_{xy}(0,0) = 0.$$

Hence $D = 2 \cdot 2 = 4 > 0$. Hence min.

Example 4.2.19. The graph of g = 1/xy is a surface S. Find the point on S closest to (0, 0).

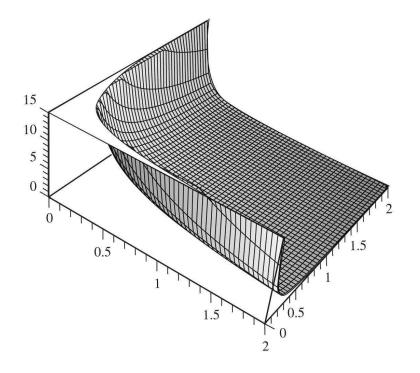
sol. Each point on the surface is (x, y, 1/xy). Hence

$$d^2 = x^2 + y^2 + \frac{1}{x^2 y^2}.$$

We find the point which minimize $f(x,y) = d^2(x,y)$ rather than d itself. Solving

$$f_x = 2x - \frac{2}{x^3y^2} = 0, \quad f_y = 2y - \frac{2}{x^2y^3} = 0,$$

we obtain $x^4y^2 = 1$ and $x^2y^4 = 1$. From the first eq. we get $y^2 = 1/x^4$. Substitute into second equation, we get $x^6 = 1$. So $x = \pm 1$ and $y = \pm 1$. Considering the geometry, one can easily see that all these four points give minimum $(d = \sqrt{3})$.(As x or y approaches ∞ , $f \to \infty$). So f has no max.



Example 4.2.20. Find the critical points of $f(x, y) = (x^2 - y^2)e^{(-x^2 - y^2)/2}$ and determine if they are local max. or min. or neither.

sol. To find the critical points, we need to solve the following system

$$f_x = [2x - x(x^2 - y^2)]e^{(-x^2 - y^2)/2} = 0$$

$$f_y = [-2y - y(x^2 - y^2)]e^{(-x^2 - y^2)/2} = 0$$

From these, we see

$$x[2 - (x^2 - y^2)] = 0, \qquad y[-2 - (x^2 - y^2)] = 0.$$

Hence

$$(x,y) = (0,0), \quad (\pm\sqrt{2},0), \quad (0,\pm\sqrt{2}).$$

On the other hand, the second derivatives are

$$f_{xx} = [2 - 5x^2 + x^2(x^2 - y^2) + y^2]e^{(-x^2 - y^2)/2},$$

$$f_{yy} = [5y^2 - 2 + y^2(x^2 - y^2) - x^2]e^{(-x^2 - y^2)/2},$$

$$f_{xy} = xy(x^2 - y^2)e^{(-x^2 - y^2)/2}.$$

Since D(0,0) = -4, the point (0,0) is a saddle. While $D(\pm\sqrt{2},0) = 16/e^2 > 0$ and $f_{xx}(\pm\sqrt{2},0) = -4/e$. So $(\pm\sqrt{2},0)$ is local min. Since $D(0,\pm\sqrt{2}) = 16/e^2 > 0$ and $f_{xx}(0,\pm\sqrt{2}) = 4/e$, $(0,\pm\sqrt{2})$ is local max. Graph is as Fig 4.7.

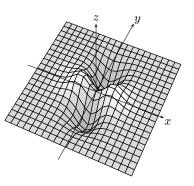


Figure 4.7: $f(x,y) = (x^2 - y^2)e^{(-x^2 - y^2)/2}$

Global maxima and Minima

Definition 4.2.21. Suppose $f : D \subset \mathbb{R}^n \to \mathbb{R}$ is real valued function. A point $\mathbf{x}_0 \in D$ is a point of **absolute maximum** if $f(\mathbf{x}_0) \geq f(\mathbf{x})$ for all $\mathbf{x} \in D$. Similarly, it is a point of **absolute minimum** if $f(\mathbf{x}_0) \leq f(\mathbf{x})$ for all $\mathbf{x} \in D$.

Strategy of finding Global maxima and Minima

- (1) Find all critical points
- (2) Compute values at critical points
- (3) Find max or min on the boundary ∂U (by parametrization)
- (4) Compare all values obtained in (2) and (3).

Example 4.2.22. Find the maximum and the minimum of $f(x, y) = x^2 + y^2 - x - y + 1$ in $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}.$

sol. First we compute the critical points of f. Since

$$f_x = 2x - 1 = 0, \quad f_y = 2y - 1 = 0,$$

the point (1/2, 1/2) is the only critical point. Since $f_{xx} = 2$, $f_{xy} = 0$, $f_{yy} = 2$, $f_{xx}f_{yy} - f_{xy}^2 = 4 > 0$, $f_{xx} = 2 > 0$, the point (1/2, 1/2) is gives minimum by second derivative test. Now check the boundary D: $x^2 + y^2 = 1$. Use parametrization $x = \cos t$, $y = \sin t$, $0 \le t \le 2\pi$.

$$g(t) = \sin^2 t + \cos^2 t - \sin t - \cos t + 1 = 2 - \sin t - \cos t$$

See $g'(t) = -\cos t + \sin t = 0$ hence $t = \pi/4, 5\pi/4$ are critical points. We have to check the end points $t = 0, 2\pi$ also. Hence the values are

$$g(0) = 1, \quad g(\pi/4) = 2 - \sqrt{2}.$$

 $g(5\pi/4) = 2 + \sqrt{2}, \quad g(2\pi) = 1.$

Comparing, we see maximum is at $t = 5\pi/4$, $(x, y) = (-\sqrt{2}/2, -\sqrt{2}/2)$ and min at $\pi/4$.

Example 4.2.23. (See the book p.254) Find the maximum and the minimum of $f(x, y) = x^2 - xy + y^2 + 1$ in T where T is a square bounded by four lines x = -1, x = 2, y = -1, y = 2.

Existence of max and min

Definition 4.2.24. A set $D \subset \mathbb{R}^n$ is **bounded** if $||\mathbf{x}|| \leq M$ for all $\mathbf{x} \in D$. It is **closed** if it contains all boundary points. (fig 4.8)

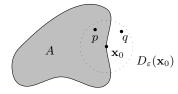


Figure 4.8: A neighborhood $D_{\epsilon}(\mathbf{x}_0)$ of a boundary point \mathbf{x}_0 contains contains both points of A and points not in A

Example 4.2.25. (1) $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$

(2)
$$D_0 = D - \{(0,0)\}$$

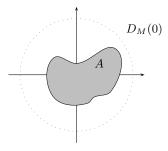


Figure 4.9: A is contained in a neighborhood $D_M(\mathbf{0})$.

(3)
$$S = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$$

Theorem 4.2.26 (Existence of maximum and minimum). If $f: D \to \mathbb{R}$ is continuous function defined on a closed bounded (it is also called compact) set $D \subset \mathbb{R}^n$. Then there exist two points \mathbf{x}_0 and $\mathbf{x}_1 \in D$ such that for all $\mathbf{x} \in D$, the following holds:

$$f(\mathbf{x}_0) \le f(\mathbf{x}) \le f(\mathbf{x}_1).$$

4.3 Constrained Extrema and Lagrange multiplier

Constrained Extrema

Suppose we are going to find a maximum of some function f(x, y, z) constrained to a closed bounded set defined by another function g(x, y, z) = c. For example, we want to design an open box of volume $4 ft^3$ which require the minimum amount of material. Let A(x, y, z) be the surface area of the box. Then we want to find

$$\min A(x, y, z) = \min\{2(xy + yz) + zx\}$$

subject to to the condition

$$V = xyz = 4.$$

This condition is called the constraint equation.

A naive way of solving this problem is to eliminate one variable from the constraint, say, we let z = 4/xy and substitute into the object function A(x, y, z) to get.

$$A(x, y, \frac{4}{xy}) = 2(xy + y\frac{4}{xy}) + x\frac{4}{xy} = 2xy + \frac{8}{x} + \frac{4}{y}$$

••••

But what if the constraint equation is not easy? We study a more systematic way.

Lagrange multiplier method

Theorem 4.3.1 (Lagrange multiplier method). Assume $f : \mathbb{R}^n \to \mathbb{R}$ and $g : \mathbb{R}^n \to \mathbb{R}$ are of \mathcal{C}^1 class. And the restriction of f to the level set $S = \{\mathbf{x} \in \mathbb{R}^n \mid g(\mathbf{x}) = c\}$ (written as $f|_S$) has a (local) maximum or minimum at $\mathbf{x}_0 \in S$ with $\nabla g(\mathbf{x}_0) \neq 0$. Then there is a scalar λ (Lagrange multiplier) such that

$$\nabla f(\mathbf{x}_0) = \lambda \nabla g(\mathbf{x}_0).$$

Before proving the theorem, we see how to solve a minimization(max) problem with a constraint.

Example 4.3.2. Let us solve the above problem by Lagrange multiplier method. Let

$$A(x, y, z) = 2(xy + yz) + zx,$$

$$g(x, y, z) = xyz - 4.$$

By the Lagrange multiplier method, we have

$$\nabla A = \lambda \nabla g \Rightarrow (2y + z, 2x + z, 2y + x) = \lambda(yz, zx, xy).$$

This gives three equations in four unknowns, x, y, z and λ . Appending the constraint equation, we have four by four system:

$$2y + z = \lambda yz$$

$$2x + 2z = \lambda zx$$

$$2y + x = \lambda xy$$

$$xyz = 4.$$

Since λ is not essential, we usually eliminate λ using any of the three equations.

Thus we get

$$\lambda = \frac{2y+z}{yz} = \frac{2x+2z}{zx} = \frac{2y+x}{xy}$$

From these we get

$$\frac{2}{z} + \frac{1}{y} = \frac{2}{z} + \frac{2}{x} = \frac{2}{x} + \frac{1}{y}.$$

Hence

 $x = 2y, \quad z = 2y$

Substituting into last eq. (2y)y(2y) = 4 hence y = y = 1, x = z = 2.

Proof. (of theorem 4.3.1.) First recall that $\nabla g(\mathbf{x}_0)$ is perpendicular to the level surface S at \mathbf{x}_0 . Hence, if $\mathbf{c}(t)$ is any curve in S, then

$$\nabla g(\mathbf{x}_0) \cdot \mathbf{c}'(0) = 0.$$

Meanwhile, f has a local extreme at \mathbf{x}_0 . Hence

$$0 = \frac{df(\mathbf{c}(t))}{dt}\Big|_{t=0} = \nabla f(\mathbf{x}_0) \cdot \mathbf{c}'(0).$$

Since the curve $\mathbf{c} \subset S$ is arbitrary, we conclude that $\nabla f(\mathbf{x}_0)$ is perpendicular to the surface S. Similarly, $\nabla g(\mathbf{x}_0)$ is also perpendicular to the surface S. Hence $\nabla f(\mathbf{x}_0)$ and $\nabla g(\mathbf{x}_0)$ are parallel(perpendicular to the same surface). Hence for some λ , $\nabla f(\mathbf{x}_0) = \lambda \nabla g(\mathbf{x}_0)$ holds.

Theorem 4.3.3. If f has maximum or minimum at a point \mathbf{x}_0 of S, then

$$\nabla f \perp S$$
.

Now a general minimization problem with a constraint is :

Find the minimum of
$$f(x, y, z)$$

subject to $g(x, y, z) = c$.

To solve it we solve system of equations with n + 1 variables

$$\nabla f(\mathbf{x}) = \lambda \nabla g(\mathbf{x}) \tag{4.3}$$

$$g(\mathbf{x}) = c. \tag{4.4}$$

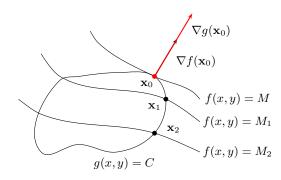


Figure 4.10: Lagrange multiplier method

 Or

$$f_{x_1}(x_1, \cdots, x_n) = \lambda g_{x_1}(x_1, \cdots, x_n)$$

$$\vdots$$

$$f_{x_n}(x_1, \cdots, x_n) = \lambda g_{x_n}(x_1, \cdots, x_n)$$

$$g(x_1, \cdots, x_n) = c.$$
(4.5)

Another interpretation of Lagrange multiplier method

Let

$$h(x_1,\cdots,x_n,\lambda) = f(x_1,\cdots,x_n) - \lambda[g(x_1,\cdots,x_n) - c].$$
(4.6)

Lagrange multiplier method says : To find extreme points of $f|_S$, we should examine the extreme points of h. To see this, we set

$$\nabla_{\mathbf{x},\lambda}h = 0. \tag{4.7}$$

Then we see this is equivalent to solving equations (4.3). Thus Lagrange multiplier method is equivalent to solving **unconstrained extremal problem** (4.6) with extra variable λ .

Example 4.3.4. Find the extrema of $f(x, y) = x^2/4 + y^2$ on the set $x^2 + y^2 = 1$.

sol. Let $g(x,y) = x^2 + y^2$. Then constraint equation is g(x,y) = 1. Setting $\nabla f = \lambda \nabla g$, we have

$$\begin{cases} \frac{x}{2} &= 2\lambda x\\ 2y &= 2\lambda y\\ x^2 + y^2 &= 1. \end{cases}$$

From the first equation we see either x = 0 or $\lambda = 1/4$. So the critical points are $(0, \pm 1)$ corresponding to $\lambda = 1$ and $(\pm 1, 0)$ corresponding to $\lambda = 1/4$.

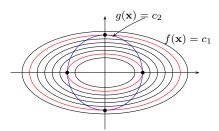


Figure 4.11: Level sets of g meets with the level set of f. Extreme occurs when two set meet tangentially

Example 4.3.5. Find max of $f(x, y) = x^2 - y^2$ on $S : x^2 + y^2 = 1$. (See figure) where the two level curves touch.

sol. Since $g(x, y) = x^2 + y^2 = 1$ and $\nabla f = (2x - 2y)$, $\nabla g = (2x, 2y)$ the equation is

$$f_x(x,y) = \lambda g_x(x,y) \iff 2x = \lambda 2x$$
$$f_y(x,y) = \lambda g_y(x,y) \iff -2y = \lambda 2y$$
$$g(x,y) = 1 \iff x^2 + y^2 = 1$$

From the first equation we get x = 0 or $\lambda = 1$. If x = 0, we see from third equation $y = \pm 1$. If $\lambda = 1$ then y = 0 and $x = \pm 1$. Now

$$f(0,1) = f(0,-1) = -1,$$

 $f(1,0) = f(-1,0) = 1.$

Hence max is 1 min is -1.

Example 4.3.6. Find max of f(x, y, z) = x + z subject to $x^2 + y^2 + z^2 = 1$.

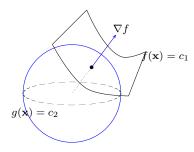


Figure 4.12: Level sets of g meets with the level set of f. Extreme occurs when two set meet tangentially

sol. Let $g(x, y, z) = x^2 + y^2 + z^2$. By the Lagrange multiplier method, we have $\nabla f = \lambda \nabla g$. Thus,

$$1 = 2x\lambda$$

$$0 = 2y\lambda$$

$$1 = 2z\lambda$$

$$1 = x^{2} + y^{2} + z^{2}.$$

From first and third equation we see $\lambda \neq 0$ and x = z. Hence from second equation y = 0.

From fourth equation we obtain $x = z = \pm 1/\sqrt{2}$. Hence $(1/\sqrt{2}, 0, 1/\sqrt{2})$ and $(-1/\sqrt{2}, 0, -1/\sqrt{2})$.

 $2/\sqrt{2}$ is max and $-2/\sqrt{2}$ is min.

Example 4.3.7. Find the maximum volume of rectangular box with fixed surface area $10m^2$.

sol. Let x, y, z be the dimension. Then volume is f(x, y, z) = xyz. But surface are is 10. Hence the condition g(x, y, z) = 2(xy + yz + zx) = 10 is the constraint.

$$yz = \lambda(y+z),$$

$$xz = \lambda(x+z),$$

$$yx = \lambda(y+x),$$

$$5 = xy + yz + zx.$$

Since x > 0, y > 0, z > 0, $y + z \neq 0$, $x + z \neq 0$. So eliminating λ we get yz/(y+z) = xz/(x+z). Hence x = y. Similarly, y = z and we see $x = y = z = \sqrt{5/3}$. i,e, $f(\sqrt{5/3}, \sqrt{5/3}, \sqrt{5/3}) = (5/3)^{3/2}$ are candidates for maximum or minimum.

Surface S: xy + yz + zx = 5 is not bounded. If function value f(x, y, z) approaches 0 as any of x or y z approaches 0 or ∞ then $(5/3)^{3/2}$ is max.

Example 4.3.8. Find max(min) of $f(x, y) = x^2 - y^2$ on $x^2 + y^2 \le 1$.

sol. Critical points of f. Since $f_x = 2x = 0$, $f_y = -2y = 0$, (0,0) is the only critical point. f(0,0) = 0. But $D = f_{xx}f_{yy} - f_{xy}^2 = -4 < 0$ hence it is a saddle. We have seen in Example 4.3.5 that f has max and min 1 and -1

Several constraint

Theorem 4.3.9. Let S be the surface determined by the following equations:

$$g_1(\mathbf{x}) = c_1,$$

...
 $g_k(\mathbf{x}) = c_k.$

If $f : \mathbb{R}^n \to \mathbb{R}$ is \mathcal{C}^1 class and has a (local) maximum or minimum on S, where $\nabla g_1(\mathbf{x}_0), \dots, \nabla g_k(\mathbf{x}_0)$ are linearly independent, then there exist scalars $\lambda_1, \dots, \lambda_k$ such that

$$\nabla f(\mathbf{x}_0) = \lambda_1 \nabla g_1(\mathbf{x}_0) + \dots + \lambda_k \nabla g_k(\mathbf{x}_0)$$

(Here k-vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ in \mathbb{R}^n are called **linearly independent** if the only way to satisfy the relation $a_1\mathbf{v}_1 + \dots + a_k\mathbf{v}_k = 0$ for some scalars a_1, \dots, a_k is $a_1 = a_2 = \dots = a_k = 0$.)

Proof. Let $S_i = {\mathbf{x} \in \mathbb{R}^n | g_i(\mathbf{x}) = c_i}$ for $i = 1, \dots, k$. Then $S = S_1 \cap \dots \cap S_k$. Hence any vector tangent to S must be tangent to all S_i 's. Let $\mathbf{x}_0 \in S$ be an extreme point of f. Then for any curve \mathbf{x} with $\mathbf{x}(t_0) = \mathbf{x}_0$ contained in S, the function

$$\mathbf{F}(t) = f(\mathbf{x}(t))$$

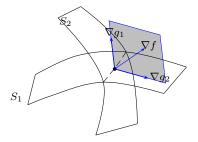


Figure 4.13: Several constraints; ∇f lies in the span of ∇g_1 and ∇g_2

assumes an extreme at t_0 . Hence

$$0 = F'(t_0) = \nabla f(\mathbf{x}_0) \cdot \mathbf{x}'(t_0)$$

Hence $\nabla f(\mathbf{x}_0)$ is perpendicular to the tangent vector $\mathbf{x}'(t_0)$. But we also have

$$\nabla g_1(\mathbf{x}_0) \cdot \mathbf{x}'(t_0) = 0,$$

$$\cdots =$$

$$\nabla g_k(\mathbf{x}_0) \cdot \mathbf{x}'(t_0) = 0,$$

we must have $\nabla f(\mathbf{x}_0)$ lie in the hyperplane spanned by $\nabla g_1(\mathbf{x}_0), \cdots, \nabla g_k(\mathbf{x}_0)$.

Example 4.3.10. Find extreme points of f = x + y + z subject to $x^2 + y^2 = 2$ and x + z = 1.

sol. Constraints are $g_1 = x^2 + y^2 - 2 = 0$ and $g_2 = x + z - 1 = 0$. Thus

$$\nabla f = \lambda_1 \nabla g_1 + \lambda_2 \nabla g_2.$$

Since

$$g_1 = x^2 + y^2 - 2$$
$$g_2 = x + z - 1$$

we obtain

$$1 = \lambda_1 \cdot 2x + \lambda_2 \cdot 1$$

$$1 = \lambda_1 \cdot 2y + \lambda_2 \cdot 0$$

$$1 = \lambda_1 \cdot 0 + \lambda_2 \cdot 1$$

$$0 = x^2 + y^2 - 2$$

$$0 = x + z - 1$$

From third equation we obtain $\lambda_2 = 1$ and so $\lambda_1 \cdot 2x = 0$ and $\lambda_1 \cdot 2y = 1$. From second, we see $\lambda_1 \neq 0$, hence x = 0. Thus $y = \pm \sqrt{2}$ and z = 1. Hence possible extrema are $(0, \pm \sqrt{2}, 1)$. $(0, \sqrt{2}, 1)$ give max $(0, -\sqrt{2}, 1)$ give min.

Example 4.3.11. Suppose the cone $z^2 = x^2 + y^2$ is sliced by the plane z = x + y + 2 to create a conic section C. Find the points nearest to the curve C from the origin.

sol. Let $f = x^2 + y^2 + z^2$ be the square of the distance. The constraints are

$$\begin{cases} g_1 = x^2 + y^2 - z^2 = 0\\ g_2 = x + y - z = -2. \end{cases}$$

 Set

$$\nabla f = \lambda_1 \nabla g_1 + \lambda_2 \nabla g_2.$$

together with the constraint equations:

$$\begin{cases} 2x = 2\lambda_1 x + \lambda_2 \\ 2y = 2\lambda_1 y + \lambda_2 \\ 2z = -2\lambda_1 z - \lambda_2 \\ x^2 + y^2 - z^2 = 0 \\ x + y - z = -2. \end{cases}$$

Eliminate λ_2 from the first two equations, we get

$$\lambda_2 = 2x - 2\lambda_1 x = 2y - 2\lambda_1 y$$

Thus

$$2(x - y)(1 - \lambda_1) = 0.$$

Example 4.3.12. Find the absolute maximum and minimum of f = xy on $x^2 + y^2 \le 1$.

sol. First find critical points.

$$\frac{\partial f}{\partial x} = y, \quad \frac{\partial f}{\partial y} = x$$

(0,0) is the only critical point. Now consider on the unit circle $g = x^2 + y^2 = 1$.

$$\nabla f = \lambda \nabla g \Rightarrow (y, x) = \lambda(2x, 2y)$$

Thus we get $y = 4\lambda^2 y$, or $\lambda = \pm 1/2$ and $y = \pm x$. So $y = \pm 1/\sqrt{2} = x$. Checking f values at these points we see f has max 1/2 and -1/2 is min. By checking second derivative, (0,0) is saddle

Example 4.3.13. Find absolute maximum and minimum of $f = \frac{1}{2}x^2 + \frac{1}{2}y^2$ on $\frac{1}{2}x^2 + y^2 \le 1$.

sol. First find critical points.

$$\frac{\partial f}{\partial x} = x, \quad \frac{\partial f}{\partial y} = y$$

(0,0) is the only critical point. Now consider on the unit circle $g = x^2 + y^2 = 1$. Use Lagrange method.(Recall one could use parametrization as before).

$$\nabla f = \lambda \nabla g \Rightarrow (x, y) = \lambda(x, 2y)$$

Thus we get

$$x = \lambda x$$
$$y = 2\lambda y$$
$$\frac{1}{2}x^2 + y^2 = 1$$

So $(0, \pm 1)$ and $(\pm \sqrt{2}, 0)$. Checking f values at these points we see f has max 1 at (0, 0).

157

4.4 Some applications

Least Square approximation

We assume we have many data points like $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$. We

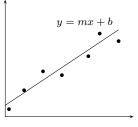


Figure 4.14: Least square fit by a line; linear regression

would like to find a simplest relation between the data; linear relation. Thus assume f(x) = mx + b and want to find m, b so that $D(m, b) := \sum_{i=1}^{n} (y_i - f(x_i))^2$ is minimized!

$$D(m,b) = \sum_{i=1}^{n} (y_i - (mx_i + b))^2 = \sum_{i=1}^{n} y_i^2 - 2\sum_{i=1}^{n} y_i(mx_i + b) + \sum_{i=1}^{n} (mx_i + b)^2.$$

Hence

$$\frac{\partial D}{\partial m} = -2\sum_{i=1}^{n} x_i y_i + 2\sum_{i=1}^{n} (mx_i + b) x_i$$
$$= -2\sum_{i=1}^{n} x_i y_i + 2m\sum_{i=1}^{n} x_i^2 + 2b\sum_{i=1}^{n} x_i = 0$$

and

$$\frac{\partial D}{\partial b} = -2\sum_{i=1}^{n} y_i + 2\sum_{i=1}^{n} (mx_i + b)$$
$$= -2\sum_{i=1}^{n} y_i + 2m\sum_{i=1}^{n} x_i + 2nb = 0.$$

Solving for m and b, we obtain

Proposition 4.4.1. The least square approximation by linear function is obtained by

$$m = \frac{n \sum_{i=1}^{n} x_{i}y_{i} - (\sum_{i=1}^{n} x_{i})(\sum_{i=1}^{n} y_{i})}{n \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}}$$

$$b = \frac{(\sum_{i=1}^{n} x_{i}^{2})(\sum_{i=1}^{n} y_{i}) - (\sum_{i=1}^{n} x_{i})(\sum_{i=1}^{n} x_{i}y_{i})}{n \sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}}.$$

Example 4.4.2. Find a linear regression of the data (1, 2), (2, 1), (3, 5), (4, 3), (5, 4).

$$D(m,b) = (2-(m+b))^2 + (1-(2m+b))^2 + (5-(3m+b))^2 + (3-(4m+b))^2 + (4-(5m+b))^2$$

= 55 - 4(m + b) + (m + b)^2 - 2(2m + b) + (2m + b)^2 - 10(3m + b)
+ (3m + b)^2 - 6(4m + b) + (4m + b)^2 - 8(5m + b) + (5m + b)^2
= 55 - 102m - 30b + 55m² + 30mb + 5b². (4.8)

$$\frac{\partial D}{\partial m} = -102 + 110m + 30b = 0$$
$$\frac{\partial D}{\partial b} = -30 + 30m + 10b = 0.$$

Hence m = 3/5, b = 6/5 and y = 3/5x + 6/5.