
124



Chapter 4

Maxima and minima

4.1 Linearization and differential

Review of one variable function

When we study complicated functions, we can find its derivative at a point and

study the tangent line instead. Thus, a tangent approximation is meaningful

and call it linearization. Note that any nice curve, if enlarged, will look like a

line. The linear function

L(x) = f(a) + f ′(a)(x− a)

is called the linearization of f at a.

Differential

The geometric meaning of differential is given in Figure ??.

f(x) = f(a) + f ′(a)(x− a) +R1(x, a)

where

lim
x→a

R1(x, a)

x− a
= 0.

Taylor Polynomial

Taylor series involves infinitely many terms and require the function to be

infinitely differentiable. However, if the function is differentiable only a few

times, how can we approximate it?
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Consider

y = P1(x) := f(a) + f ′(a)(x− a)

This is linear approximation to f(x). Similarly, we can consider

y = P2(x) := f(a) + f ′(a)(x − a) +
1

2
f ′′(a)(x− a)2

which has same derivative up to second order. By the same way one can find

a polynomial Pn(x) of degree n which has the same derivatives at a up to n-th

order. This polynomial will be a good approximation, called the a Taylor

polynomial of degree n.

Hence the Taylor polynomial of degree k is given by

Pk(x) = f(a) + f ′(a)(x− a) + · · ·+ f (k)(a)

k!
(x− a)k.

4.1.1 Taylor theorem

When f is differentiable at a, the linear approximation of f(x) is f(a) +

Df(a)(x− a). Here the error R1 = |f(a)− f(a)−Df(a)(x− a)| satisfies

lim
x→a

R1

‖x− a‖ = 0.

What if we want higher order approximation?

Theorem 4.1.1 (Taylor theorem one variable-integral remainder). If f : R →
R has continuous k- th partial derivatives

f(x) = f(a)+f ′(a)(x−a)+
f ′′(a)

2
(x−a)2+· · ·+f (k)(a)

k!
(x−a)k+Rk(x, a) (4.1)

where Rk(x, a)/(x − a)k → 0 as x → a.

Proposition 4.1.2. If f is differentiable up to order k + 1, then there exists

a number z between a and x such that

Rk(x, a) =
f (k+1)(z)

(k + 1)!
(x− a)k+1. (4.2)

Example 4.1.3. Find the Taylor polynomial of order 5 for f(x) = cos x at
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x = π/2 and estimate the remainder.

R5(x,
π

2
) =

f (6)(z)

6!
(x− π

2
)6.

Taylor theorem in several variable -1st order

Suppose f : X ⊂ R
2 → R is class C1. Then the tangent plane at (a, b) is a

good approx. That is

f(x, y) ≈ p1(x, y,

where

p1(x, y) = f(a, b) + fx(a, b)(x − a) + fy(a, b)(y − b).

We can generalize this to a function of several variables.

Theorem 4.1.4 (Taylor theorem in several variable -1st order). If f : Rn → R

is differentiable at a, then

f(x) = f(a) +Df(a) · (x− a) +R1(x,a),

where R1(x,a)/‖x − a‖ → 0 as x → a.

In scalar form, we have

f(x) = f(x) +
n
∑

i=1

fxi
(a)(xi − ai) +R1(x,a).

Example 4.1.5. Find the equation of tangent plane to f(x) = x1 + 2x1x2 +

x3 + x1x4 + x1x2x
2
3 at x = (1, 1, 2, 2).

fx1
= 1 + 2x2 + x4 + x2x

2
3 = 9, fx2

= 2x1 + x1x
2
3 = 4

fx3
= 1 + 2x1x2x3 = 5, fx4

= x1 = 1

Thus

p1 = 11 + 9(x1 − 1) + 4(x2 − 1) + 5(x3 − 2) + (x4 − 2).
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f(a)
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z

Figure 4.1: True increase ∆f vs. differential df

Differential in several variable

Definition 4.1.6. Let f : X ⊂ R
n → R be differentiable and a ∈ X. The

differential of f is

df(a,h) =
∂f

∂x1
(a)h1 + · · ·+ ∂f

∂xn
(a)hn.

The significance of differential is that for small h

df ≈ ∆f := f(a+ h)− f(a).

Here h = (h1, · · · , hn) denote small change in the variables and it is also

written as h = ∆x = (∆x1, · · · ,∆xn). Hence the differential is also written

as

df =
∂f

∂x1
dx1 + · · ·+ ∂f

∂xn
dxn.

Example 4.1.7. Find the differential of f(x, y, z) = ex+y sin(yz).

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

= ex+y sin(yz) dx+ ex+y(sin(yz) + z cos(yz)) dy + ex+yy cos(yz) dz.
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Example 4.1.8. Find the ∆f at (2,−1) when f(x, y) = x− y + 2x2 + xy2.

∆f = f(2 + ∆x,−1 + ∆y)− f(2,−1)

= (2 + ∆x)− (−1 + ∆y) + 2(2 + ∆x)2 + (2 + ∆x)(−1 + ∆y)2 − (13)

= 3 +∆x−∆y + 2(4 + 4∆x+∆2x) + (2 + ∆x)(1− 2∆y +∆2y)− 13

= 10∆x− 5∆y + 2(∆x)2 − 2∆x∆y + 2(∆y)2 +∆x(∆y)2.

On the other hand

df = fx(2,−1)∆x + fy(2,−1)∆y

= (1 + 4x+ y2)(2,−1)∆x+ (−1 + 2xy)(2,−1)∆y

= (1 + 8 + 1)∆x+ (−1− 4)∆y.

Thus df coincides with ∆f up to the linear factor of ∆x and ∆y.

Example 4.1.9. Let f(x, y) = x + y + ex+y2 . Find ∆f at a = (1, 1). Also

find df and compare.

∆f = f(1 + ∆x, 1 + ∆y)− f(1, 1)

= 1 +∆x+ 1 +∆y + e1+∆x+(1+∆y)2 − (1 + 1 + e1+(1)2)

= ∆x+∆y + e2+∆x+2∆y+∆y2 − e2

= ∆x+∆y + e2(e1+∆x+2∆y+∆y2 − 1)

= ∆x+∆y + e2(∆x+ 2∆y +∆y2 +∆x2 + 4∆y2 + · · · )

On the other hand, from fx = 1 + ex+y2 , and fy = 1 + 2yex+y2 , we get

df = fx(1, 1)∆x + fy(1, 1)∆y

= (1 + e2)∆x+ (1 + 2e2)∆y

= ∆x+∆y + e2(∆x+ 2∆y).

Again df and ∆f coincide up to linear factor of ∆x and ∆y.

From these examples you see computing the approximate value df is easier

than computing the exact value ∆f .

Example 4.1.10. A box is to be made with dimension 3×4×6 inches with a

possible error in measuring is the same in all direction. We would like to know
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x
y

z

Figure 4.2: Volume of a box

how accurate we must measure the length so that the error in the volume is

less than 0.1 in3.

Sol.

Since the exact volume is V = xyz, x = 3, y = 4, z = 6, we have

dV = Vxdx+ Vydy + Vzdz

= yz dx+ xz dy + xy dz

since the possible error in measuring the length is dx = dy = dz

= (24 + 18 + 12)dx ≤ 0.1.

Hence the measurement in each dimension must be accurate within dx ≤
0.1/54 = 0.0019

Example 4.1.11. The volume of cylindrical can is V (r, h) = πr2h. Find the

change of volume when the radius or the height changes.

dV = Vr dr + Vh dh = 2πrh∆r + πr2∆h.

Taylor theorem -second order formula

Theorem 4.1.12 (Taylor theorem 2nd order formula). Suppose f : X ⊂ R
n →

R is class C2, then

f(x) = f(a) +

n
∑

i=1

hifxi
(a) +

1

2

n
∑

i,j=1

hihjfxixj
(a) +R2(x,a),

where h = x− a, hi = xi − ai and R2(x,a)/‖h‖2 → 0 as h → 0.

Let n = 2 and try to find a quadratic polynomial p(x, y) which has same

derivatives up to second order as f at a given point a = (a, b). Let

p(x, y) = Ax2 +Bxy + Cy2 +Dx+ Ey + F
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and we require p have the same derivatives as f up to second order:

p(a, b) = f(a, b)

px(a, b) = fx(a, b) py(a, b) = fy(a, b)

pxx(a, b) = fxx(a, b), pxy(a, b) = fxy(a, b), pyy(a, b) = fyy(a, b).

Hence

p(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

+
1

2
fxx(a, b)(x − a)2 + fxy(a, b)(x − a)(y − b) +

1

2
fyy(a, b)(y − b)2.

In matrix form,

f(x) = f(a) + (
∂f

∂x1
, · · · , ∂f

∂xn
)









h1
...

hn









+
1

2
(h1, · · · , hn)













∂2f
∂x1∂x1

∂2f
∂x2∂x1

· · · ∂2f
∂xn∂x1

∂2f
∂x1∂x2

∂2f
∂x2∂x2

· · · ∂2f
∂xn∂x2

· · ·
∂2f

∂x1∂xn

∂2f
∂x2∂xn

· · · ∂2f
∂xn∂xn

.





















h1
...

hn









+R2(x,a)

= f(a) +Df(a)h+
1

2
hTHf(a)h+R2.

(In the third term, treat Df as a column vector for consistency of derivative.)

Here Hf(a) is the Hessian defined by

Hf(a) =













fx1x1
fx1x2

· · · fx1xn

fx2x1
fx2x2

· · · fx2xn

...
...

. . .
...

fxnx1
fxnx2

· · · fxnxn













and P2(x) = f(a) +Df(a)h+ 1
2h

THf(a)h is the second degree Taylor poly-

nomial at a.

Proof. Let g(t) = f(a+ th) and use Taylor theorem in one variable and chain

rule. We have

g(1) = g(0) + g′(0) +
g′′(0)

2!
+R2
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and

R2 =

∫ 1

0

(t− 1)2

2!
g′′′(t)dt.

By Chain rule, we see

g′(t) = Df ·dx
dt

=

n
∑

i=1

fxi
(a+th)hi, g′′(t) =

dx

dt

t

D2f ·dx
dt

=

n
∑

i,j=1

fxixj
(a+th)hihj ,

and

g′′′(t) =
n
∑

i,j,k=1

fxixjxk
(x0 + th)hihjhk.

Hence we have

R2(x,a) =

n
∑

i,j,k=1

∫ 1

0

(1− t)2

2
fxixjxk

(a+ th)hihjhk dt.

and

f(x) = f(a) +

n
∑

i=1

hifxi
(a) +

1

2

n
∑

i,j=1

hihjfxixj
(a) +R2(x,a).

Here the integrand of R2(x,a) is continuous. So if ‖h‖ is small, it is less than

M . So |R2(h,x)| ≤ M‖h‖3. In other words |R2(x,a)|/‖h‖2 → 0 as h → 0.

Example 4.1.13. Find 2nd order Taylor approximation of f(x, y) = ex+y

near a = (0, 0).

sol. Partials of f are

fx(0, 0) = fy(0, 0) = e0 = 1

fxx(0, 0) = fxy(0, 0) = fyy(0, 0) = e0 = 1.

f(x, y) = 1 + x+ y +
1

2
(x2 + 2xy + y2) +R2.

As (x, y) → (0, 0), R2/‖(x, y)‖2 → 0.

Repeat this with a = (1, 1).

Example 4.1.14. Find 2nd order Taylor approximation of f(x, y) = cos xex+y

near a = (0, 0).
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sol. Partials of f are

fx = − sinxex+y + cos xex+y, fy = cos xex+y

fxx = −2 sinxex+y, fxy = (− sinx+ cosx)ex+y, fyy = cos xex+y.

Since f(0, 0) = 1, fx(0, 0) = 1, fy(0, 0) = 1, fxx(0, 0) = 0, fxy(0, 0) = 1, fyy(0, 0) =

1, we see

f(x, y) = 1 + x+ y +
1

2
(2xy + y2) +R2.

Using matrix form,

p2(x, y) = f(0, 0) +Df(0, 0)h+
1

2
hTHf(0, 0)h

= 1 +
[

1, 1
]

[

h1

h2

]

+
1

2

[

h1, h2

]

[

0 1

1 1

][

h1

h2

]

.

Here h1 = x− 0, h2 = y − 0.

Theorem 4.1.15. (1) Remainder of Taylor’s theorem 4.1.4 is given by

R1(x,a) =

n
∑

i,j=1

∫ 1

0
(1− t)fxixj

(a+ th)hihj dt =

n
∑

i,j=1

1

2
fxi,xj

(c)hihj .

Here c is a point between a and x.

(2) Remainder of Taylor’s theorem 4.1.12 is

R2(x,a) =
n
∑

i,j,k=1

∫ 1

0

(1− t)2

2
fxixjxk

(a+th)hihjhk dt =
n
∑

i,j,k=1

1

3!
fxi,xj ,xk

(c)hihjhk

Here c is a point between a and x.

Proof. [MVT for integral] If h and g are continuous on [a, b] and g > 0

then for some c ∈ [a, b] the following holds

∫ b

a
h(t)g(t) dt = h(c)

∫ b

a
g(t) dt

.
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(1) From thm 4.1.4 we see

R1(h,x0) =

n
∑

i,j=1

∫ 1

0
(1− t)fxixj

(x0 + th)hihj dt.

If we set h(t) = fxixj
(x0 + th) and g(t) = (1− t)hihj and use MVT. Then

∫ 1

0
(1− t)fxixj

(x0 + th)hihj dt

=fxixj
(c)

∫ 1

0
(1− t)hihj dt

=
1

2
fxixj

(c)hihj .

(2) similar

Second order Taylor formula gives second order approximation.

Example 4.1.16. Find the second order approx. of f(x, y) = sinx sin y.

What is error if |x| ≤ 0.1, |y| ≤ 0.1.

sol. partials of f(x, y) are

f(0, 0) = 0, fx(0, 0) = 0, fy(0, 0) = 0

fxx(0, 0) = 0, fxy(0, 0) = 1, fyy(0, 0) = 0.

Hence

f(x, y) = 0 + 0 + 0 +
1

2

(

x2(0) + 2xy + y2(0)
)

+R2.

So sinx sin y ≈ xy and the error is

|R2| = |1
6
(x3fxxx + 3x2yfxxy + 3xy2fxyy + y3fyyy)|(c1,c2)

≤ 1

6

(

(0.1)3 + 3(0.1)1 + 3(0.1)1 + (0.1)1
)

≤ 8

6
(0.1)3 ≤ 0.00134.

Example 4.1.17. Find second order approx. of f(x, y) = ex cos y at (0, 0).
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sol. partials of f(x, y) are

f(0, 0) = 0, fx(0, 0) = 1, fy(0, 0) = 0

fxx(0, 0) = 1, fxy(0, 0) = 0, fyy(0, 0) = −1.

Hence

f(h) = 1 + h1 +
1

2

(

h21 − h22

)

+R2,

where R2/‖h‖2 → 0 as ‖h‖ → 0.

Example 4.1.18. Find approx. value of (3.98−1)2/(5.97−3)2 compare with

exact value.

sol. Let f = (x−1)2/(y−3)2. Desired value is close to f(4, 6) = 1. partials

of f(x, y) are

f(4, 6) = 1, fx(4, 6) =
2

3
, fy(4, 6) = −2

3
,

fxx(4, 6) =
2

9
, fxy(4, 6) = −4

9
, fyy(4, 6) =

2

3
.

Hence linear approx. is

1 +
2

3
(−0.02) − 2

3
(−0.03) = 1.00666

while quadratic approx is

1+
2

3
(−0.02)−2

3
(−0.03)+

2

9

(−0.02)2

2
−4

9
(−0.02)(−0.03)+

2

3

(−0.03)2

2
= 1.00674.

A more exact value is 1.00675.(calculator value)

4.2 Extrema of real valued functions

Local Max, Min

Definition 4.2.1. We say f : X ⊂ R
n → R has local minimum at a ∈ U if

there is a neighborhood U of a such that f(x) ≤ f(a) for all x ∈ U. Similarly,
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we say f has a local maximum at a ∈ U if there is a neighborhood U of a

such that f(a) ≤ f(x) for all x ∈ U.

global minimum and global maximum are clearly defined. A critical

point which is either local max or min is called a saddle.

local max

local min

Figure 4.3: Near extreme

Theorem 4.2.2 (First derivative test for local extrema). If f : U ⊂ R
n → R

is differentiable at a ∈ R
n and assumes an extreme value, then Df(a) = 0.

Proof. Suppose f has local maximum at a. Then for any h ∈ R
n, the function

g(t) = f(a+ th) has a local minimum. Hence

g′(0) = Dhf(a) = ∇f(a) · h = 0

Sine this holds for every h, ∇f(a) = 0, i.e, a is critical point of f .

A saddle point

Figure 4.4: Near Saddle point
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Definition 4.2.3. A point a ∈ R
n is called a critical point if f is not

differentiable or ∇f(a) = 0 = (0, . . . , 0).

Example 4.2.4. Find the (local) maximum and minimum of f = x2 + y2.

Example 4.2.5. Find the extrema of f = x2 − y2 (if any).

Sol. Df = (2x,−2y). Hence the only critical point is (0, 0). But we see it

is not an extreme point.

Example 4.2.6. Find critical points of z = x2y + y2x and investigate their

behavior.

sol. From

zx = 2xy + y2 = 0, zy = 2xy + x2 = 0

We obtain x2 = y2. For x = y, we get 2y2 + y2 = 0 and (x, y) = (0, 0). For

x = −y, we again get x = y = 0. Now for x = y, z = 2x3. Not a extreme. So

saddle.

x

y

z

x

y

−z

y
x

z

z = x2 + y2 z = −x2
− y2 z = x2

− y2

Figure 4.5: Graphs of critical points

Example 4.2.7. Find the extrema of z = 2(x2 + y2)e−x2−y2 .

sol.

zx = [4x+ 2(−2x)(x2 + y2)]e−(x2+y2)

= 4x(1 − x2 − y2)e−(x2+y2)

zy = 4y(1 − x2 − y2)e−(x2+y2).
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Solving these, we obtain x = y = 0 or x2 + y2 = 1. We can check the points

on the crater’s rim are points of local maximum.

Investigate the property of a critical point by Hessian

Example 4.2.8. Find the extrema of f = x2 + xy + y2 + 2x− 2y + 5.

Sol. First we find the critical point by setting Df(x, y) = 0.

fx = 2x+ y + 2 = 0

fy = x+ 2y − 2 = 0.

Thus (−2, 2) is the only critical point. To determine whether this point is a

max or min(or neither), we do as follows: With (∆x,∆y) = (h, k),

∆f = h2 + hk + k2.

We have three possibilities:

• If the quantity ∆f is nonnegative for all small values of h and k, then

(−2, 2) yields a local min.

• Similarly, if ∆f is nonpositive for all small values of h and k, then (−2, 2)

yields a local max.

• If neither holds, then it yields a saddle.

In this particular example, the point clearly yields a local min.

In general, let us look at the ∆f more carefully. From Taylor formula

f(x0 + h) = f(x0) +Df(x0) +
1

2
hTHf(x0)h+R2(x0,h),

R2(x0,h)

‖h‖2 → 0

Hence

∆f = f(x0 + h)− f(x0)

= Df(x0) +
1

2
hTHf(x0)h+R2(x0,h)

=
1

2
hTHf(x0)h+ o(‖h‖2)

= (
1

2
− ǫ)hTHf(x0)h.
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Thus the point x0 is

• a point of local min. if hTHf(x0)h ≥ 0 for all small values of h

• a point of local max. if hTHf(x0)h ≤ 0 for all small values of h

• a saddle if hTHf(x0)h assumes both positive value and negative value.

More generally we have second derivative test:

Definition 4.2.9. A function Q : Rn → R of the form

Q(h1, · · · , hn) =
n
∑

i,j=1

bijhihj = hTBh

is called a quadratic form. It is symmetric, if bij = bji. A quadratic

form(function) Q : Rn → R is said to be

(1) positive definite if Q(h) ≥ 0, ∀h ∈ R
n, and Q(h) = 0 implies h = 0.

(2) negative definite if Q(h) ≤ 0, ∀h ∈ R
n, and Q(h) = 0 implies h = 0.

We note that the quadratic form(function) Q(h) = hTBh is positive defi-

nite if and only if the matrix B is positive definite.

Recall the Hesssian at (x0, y0). The Hessian of f naturally defines a

quadratic form

Q(h) =
1

2
(h1, · · · , hn)













∂2f
∂x1∂x1

∂2f
∂x2∂x1

· · · ∂2f
∂xn∂x1

∂2f
∂x1∂x2

∂2f
∂x2∂x2

· · · ∂2f
∂xn∂x2

· · ·
∂2f

∂x1∂xn

∂2f
∂x2∂xn

· · · ∂2f
∂xn∂xn





















h1
...

hn









.

If x0 is a critical point, then DF (x0) = 0. Hence

f(x0 + h) = f(x0) +
1

2
hTHf(x0)h+R2(x0,h).

Thus to study the behavior of a critical point, it suffices to study the quadratic

form Q(h) = 1
2h

THf(x0)h.

Theorem 4.2.10. [Second derivative test] Suppose f is C2 and a = (x0, y0)

is a critical point of f .
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(1) If the Hessian Hf(a) is positive definite, then f has a relative minimum

at a.

(2) If Hf(a) is negative definite, then f has a relative maximum at a.

(3) If Hf(a) is neither positive nor negative definite, then f has a saddle

point at a.

Example 4.2.11. Consider f(x, y) = x2 + y2. (0, 0) is the critical point. We

see

f(x, y) = f(0, 0) + (h21 + h22) + 0.

Since Q(h1, h2) = h21 + h22 is positive definite, (0, 0) is a local min.

Lemma 4.2.12. If B = [bij] is n× n real matrix and if

Q : Rn → R, (h1, · · · , hn) 7→
1

2

∑

bijhihj

is positive-definite, then there is M > 0 such that for all h,

Q(h) ≥ M‖h‖2.

Proof. For ‖h‖ = 1, set g(h) = Q(h). Then g is continuous function on a

closed set, hence have a positive minimum, say M . Because Q is quadratic,

Q(h) = Q(
h

‖h‖|h‖) = Q(
h

‖h‖)|h‖
2 = g(

h

‖h‖ )‖h‖
2 ≥ M |h‖2

for any h 6= 0.

Proof of Theorem 4.2.10.

f(x0)− f(x0) = Q(x0)(h) +R2,

where R2/‖h‖2 → 0. Hence we can say |R2| < ǫ‖h‖2 for some small ǫ when

0 < ‖h‖ < δ. Since Q(x0) is positive definite,

Q(x0)(h) ≥ M‖h‖2,∀h.

Hence

f(x0)− f(x0) = Q(x0)(h) +R2 ≥ (M − ǫ)‖h‖2,

for 0 < ‖h‖ < δ and so we have a strict min at x0.
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Determinant test for Positive definiteness

Then how do we know Positive definiteness ?

Lemma 4.2.13. Let B =

[

a b

b c

]

and Q(h) = 1
2h

TBh. Then Q(h) is positive-

definite if and only if a > 0 and ac− b2 > 0.

sol. We have

Q(h) =
1

2
[h1, h2]

[

a, b

b, c

][

h1

h2

]

=
1

2
(ah21 + 2bh1h2 + ch22)

Q(h) =
1

2
a

(

h1 +
b

a
h2

)2

+
1

2

(

c− b2

a

)

h22.

Suppose Q is positive definite. Then setting h2 = 0, we see a > 0. Next

setting h1 = 0, we get ac− b2 > 0. The converse also hold.

Similarly, we have negative definite if a < 0 and ac− b2 > 0.

Theorem 4.2.14 (Second derivative test). Suppose f is C2 on an open subset

U of R2 and fx(x0, y0) = fy(x0, y0) = 0 holds, i.e., (x0, y0) is a critical point.)

Let D = fxx(x0, y0)fyy(x0, y0)− (fxy(x0, y0))
2. Then the following holds:

(1) f has a local min. if fxx(x0, y0) > 0 and D > 0

(2) f has a local max. if fxx(x0, y0) < 0 and D > 0

(3) f has a saddle point if D < 0

(4) If D = 0 then we say f has a degenerate critical point.

Example 4.2.15. Classify the critical points of the following functions.

(1) g1(x, y) = 3x2 + 6xy + 9y2

(2) g2(x, y) = −2x2 + xy − y2

(3) g3(x, y) = x2 − xy + 2y2

sol. All the critical points are (0, 0). For g1, we see D = 3 ·9−32 = 18 > 0.

Hence (0, 0) is a local min of g1.

For g2, we have D = (−2)(−1) − 1/4 = 7/4 > 0 and a = −2 < 0, we see

g2 has local maximum at (0, 0).
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For g3, D = 2 · 1 − 1/4 = 3/4 > 0 and a = 1 > 0, hence g3 has local

minimum at (0, 0).

a < 0 a > 0

z = ax2 + 2bxy + cy2

ac− b2 > 0

z = ax2 + 2bxy + cy2

ac− b2 < 0

Figure 4.6: Graphs of quadratic functions

Example 4.2.16. ‘Investigate’ the behavior of “critical points” of the

following functions:

(1) f(x, y) = x4 + y4

(2) g(x, y) = x3 + y3

sol.

(1) (0, 0) is the only critical point of f and D = 0 at (0, 0). This is a

degenerate case. So the test fails. It is easy to check f ≥ 0 for all (x, y)

and f(0, 0) = 0. So (0, 0) is local minimum

(2) Again D = 0. Hence the test fails. Instead we check the behavior of g

directly. We see

g > 0 if xy > 0

g < 0 if xy < 0.

Hence (0, 0) is a saddle of g.
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Proof of pos. definiteness when D > 0.

Hf =
1

2
[h1, h2]

[

fxx fxy

fyx fyy

][

h1

h2

]

.

Thus we need to check definiteness of the matrix of the form B =

[

a b

b c

]

.

Example 4.2.17. Let f(x, y) = x3 + xy2 + x2 + y2 + 3z2. Identify critical

points and determine local max or min.

Example 4.2.18. Locate relative maxima minima saddle of

f(x, y) = log(x2 + y2 + 1).

sol. ∇f = 0 gives (0, 0) as a critical point. Second derivatives are

fxx(0, 0) = 2 = fyy(0, 0), fxy(0, 0) = 0.

Hence D = 2 · 2 = 4 > 0. Hence min.

Example 4.2.19. The graph of g = 1/xy is a surface S. Find the point on S

closest to (0, 0).

sol. Each point on the surface is (x, y, 1/xy). Hence

d2 = x2 + y2 +
1

x2y2
.

We find the point which minimize f(x, y) = d2(x, y) rather than d itself.

Solving

fx = 2x− 2

x3y2
= 0, fy = 2y − 2

x2y3
= 0,

we obtain x4y2 = 1 and x2y4 = 1. From the first eq. we get y2 = 1/x4.

Substitute into second equation, we get x6 = 1. So x = ±1 and y = ±1.

Considering the geometry, one can easily see that all these four points give

minimum (d =
√
3).(As x or y approaches ∞, f → ∞). So f has no max.



144 CHAPTER 4. MAXIMA AND MINIMA

Example 4.2.20. Find the critical points of f(x, y) = (x2−y2)e(−x2
−y2)/2and

determine if they are local max. or min. or neither.

sol. To find the critical points, we need to solve the following system

fx = [2x− x(x2 − y2)]e(−x2−y2)/2 = 0

fy = [−2y − y(x2 − y2)]e(−x2−y2)/2 = 0.

From these, we see

x[2− (x2 − y2)] = 0, y[−2− (x2 − y2)] = 0.

Hence

(x, y) = (0, 0), (±
√
2, 0), (0,±

√
2).

On the other hand, the second derivatives are

fxx = [2− 5x2 + x2(x2 − y2) + y2]e(−x2
−y2)/2,

fyy = [5y2 − 2 + y2(x2 − y2)− x2]e(−x2−y2)/2,

fxy = xy(x2 − y2)e(−x2−y2)/2.
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Since D(0, 0) = −4, the point (0, 0) is a saddle. While D(±
√
2, 0) = 16/e2 > 0

and fxx(±
√
2, 0) = −4/e. So (±

√
2, 0) is local min. Since D(0,±

√
2) =

16/e2 > 0 and fxx(0,±
√
2) = 4/e, (0,±

√
2) is local max. Graph is as Fig 4.7.

x

yz

Figure 4.7: f(x, y) = (x2 − y2)e(−x2
−y2)/2

Global maxima and Minima

Definition 4.2.21. Suppose f : D ⊂ R
n → R is real valued function. A point

x0 ∈ D is a point of absolute maximum if f(x0) ≥ f(x) for all x ∈ D.

Similarly, it is a point of absolute minimum if f(x0) ≤ f(x) for all x ∈ D.

Strategy of finding Global maxima and Minima

(1) Find all critical points

(2) Compute values at critical points

(3) Find max or min on the boundary ∂U(by parametrization)

(4) Compare all values obtained in (2) and (3).

Example 4.2.22. Find the maximum and the minimum of f(x, y) = x2 +

y2 − x− y + 1 in D = {(x, y) ∈ R
2 | x2 + y2 ≤ 1}.

sol. First we compute the critical points of f . Since

fx = 2x− 1 = 0, fy = 2y − 1 = 0,
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the point (1/2, 1/2) is the only critical point. Since fxx = 2, fxy = 0, fyy = 2,

fxxfyy − f2
xy = 4 > 0, fxx = 2 > 0, the point (1/2, 1/2) is gives minimum

by second derivative test. Now check the boundary D: x2 + y2 = 1. Use

parametrization x = cos t, y = sin t, 0 ≤ t ≤ 2π.

g(t) = sin2 t+ cos2 t− sin t− cos t+ 1 = 2− sin t− cos t.

See g′(t) = − cos t+ sin t = 0 hence t = π/4, 5π/4 are critical points. We have

to check the end points t = 0, 2π also. Hence the values are

g(0) = 1, g(π/4) = 2−
√
2.

g(5π/4) = 2 +
√
2, g(2π) = 1.

Comparing, we see maximum is at t = 5π/4, (x, y) = (−
√
2/2,−

√
2/2) and

min at π/4.

Example 4.2.23. (See the book p.254) Find the maximum and the minimum

of f(x, y) = x2 − xy + y2 + 1 in T where T is a square bounded by four lines

x = −1, x = 2, y = −1, y = 2.

Existence of max and min

Definition 4.2.24. A set D ⊂ Rn is bounded if ‖x‖ ≤ M for all x ∈ D. It

is closed if it contains all boundary points. (fig 4.8)

b b

b
p q

x0A
Dε(x0)

Figure 4.8: A neighborhood Dǫ(x0) of a boundary point x0 contains contains
both points of A and points not in A

Example 4.2.25. (1) D = {(x, y) ∈ R
2 | x2 + y2 ≤ 1}

(2) D0 = D − {(0, 0)}
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A

DM (0)

Figure 4.9: A is contained in a neighborhood DM (0).

(3) S = {(x, y) ∈ R
2 | x2 + y2 = 1}

Theorem 4.2.26 (Existence of maximum and minimum). If f : D → R is

continuous function defined on a closed bounded (it is also called compact)

set D ⊂ R
n. Then there exist two points x0 and x1 ∈ D such that for all

x ∈ D, the following holds:

f(x0) ≤ f(x) ≤ f(x1).

4.3 Constrained Extrema and Lagrange multiplier

Constrained Extrema

Suppose we are going to find a maximum of some function f(x, y, z) con-

strained to a closed bounded set defined by another function g(x, y, z) = c.

For example, we want to design an open box of volume 4 ft3 which require the

minimum amount of material. Let A(x, y, z) be the surface area of the box.

Then we want to find

minA(x, y, z) = min{2(xy + yz) + zx}

subject to to the condition

V = xyz = 4.

This condition is called the constraint equation.

A naive way of solving this problem is to eliminate one variable from

the constraint, say, we let z = 4/xy and substitute into the object function
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A(x, y, z) to get.

A(x, y,
4

xy
) = 2(xy + y

4

xy
) + x

4

xy
= 2xy +

8

x
+

4

y

....

But what if the constraint equation is not easy? We study a more system-

atic way.

Lagrange multiplier method

Theorem 4.3.1 (Lagrange multiplier method). Assume f : Rn → R and

g : Rn → R are of C1 class. And the restriction of f to the level set S =

{x ∈ R
n | g(x) = c} (written as f |S) has a (local) maximum or minimum at

x0 ∈ S with ∇g(x0) 6= 0. Then there is a scalar λ (Lagrange multiplier)

such that

∇f(x0) = λ∇g(x0).

Before proving the theorem, we see how to solve a minimization(max)

problem with a constraint.

Example 4.3.2. Let us solve the above problem by Lagrange multiplier

method. Let

A(x, y, z) = 2(xy + yz) + zx,

g(x, y, z) = xyz − 4.

By the Lagrange multiplier method, we have

∇A = λ∇g ⇒ (2y + z, 2x+ z, 2y + x) = λ(yz, zx, xy).

This gives three equations in four unknowns, x, y, z and λ. Appending the

constraint equation, we have four by four system:

2y + z = λyz

2x+ 2z = λzx

2y + x = λxy

xyz = 4.

Since λ is not essential, we usually eliminate λ using any of the three equations.
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Thus we get

λ =
2y + z

yz
=

2x+ 2z

zx
=

2y + x

xy
.

From these we get
2

z
+

1

y
=

2

z
+

2

x
=

2

x
+

1

y
.

Hence

x = 2y, z = 2y

Substituting into last eq. (2y)y(2y) = 4 hence y = y = 1, x = z = 2.

Proof. (of theorem 4.3.1.) First recall that ∇g(x0) is perpendicular to the

level surface S at x0. Hence, if c(t) is any curve in S, then

∇g(x0) · c′(0) = 0.

Meanwhile, f has a local extreme at x0. Hence

0 =
df(c(t))

dt

∣

∣

∣

t=0
= ∇f(x0) · c′(0).

Since the curve c ⊂ S is arbitrary, we conclude that ∇f(x0) is perpendicular

to the surface S. Similarly, ∇g(x0) is also perpendicular to the surface S.

Hence ∇f(x0) and ∇g(x0) are parallel(perpendicular to the same surface).

Hence for some λ, ∇f(x0) = λ∇g(x0) holds.

Theorem 4.3.3. If f has maximum or minimum at a point x0 of S, then

∇f ⊥ S.

Now a general minimization problem with a constraint is :

Find the minimum of f(x, y, z)

subject to g(x, y, z) = c.

To solve it we solve system of equations with n+ 1 variables

∇f(x) = λ∇g(x) (4.3)

g(x) = c. (4.4)
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b

b

∇f(x0)

∇g(x0)

x0

x1

x2

g(x, y) = C

f(x, y) = M

f(x, y) = M1

f(x, y) = M2

Figure 4.10: Lagrange multiplier method

Or
fx1

(x1, · · · , xn) = λgx1
(x1, · · · , xn)

...

fxn(x1, · · · , xn) = λgxn(x1, · · · , xn)
g(x1, · · · , xn) = c.

(4.5)

Another interpretation of Lagrange multiplier method

Let

h(x1, · · · , xn, λ) = f(x1, · · · , xn)− λ[g(x1, · · · , xn)− c]. (4.6)

Lagrange multiplier method says : To find extreme points of f |S, we should

examine the extreme points of h. To see this, we set

∇x,λh = 0. (4.7)

Then we see this is equivalent to solving equations (4.3). Thus Lagrange mul-

tiplier method is equivalent to solving unconstrained extremal problem

(4.6) with extra variable λ.

Example 4.3.4. Find the extrema of f(x, y) = x2/4+y2 on the set x2+y2 = 1.

sol. Let g(x, y) = x2 + y2. Then constraint equation is g(x, y) = 1. Setting

∇f = λ∇g, we have


















x
2 = 2λx

2y = 2λy

x2 + y2 = 1.
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From the first equation we see either x = 0 or λ = 1/4. So the critical points

are (0,±1) corresponding to λ = 1 and (±1, 0) corresponding to λ = 1/4.

bb

g(x) = c2

b

b

f(x) = c1

Figure 4.11: Level sets of g meets with the level set of f . Extreme occurs
when two set meet tangentially

Example 4.3.5. Find max of f(x, y) = x2 − y2 on S : x2 + y2 = 1. (See

figure) where the two level curves touch.

sol. Since g(x, y) = x2 + y2 = 1 and ∇f = (2x − 2y), ∇g = (2x, 2y) the

equation is

fx(x, y) = λgx(x, y) ⇐⇒ 2x = λ2x

fy(x, y) = λgy(x, y) ⇐⇒ −2y = λ2y

g(x, y) = 1 ⇐⇒ x2 + y2 = 1

From the first equation we get x = 0 or λ = 1. If x = 0, we see from third

equation y = ±1. If λ = 1 then y = 0 and x = ±1. Now

f(0, 1) = f(0,−1) = −1,

f(1, 0) = f(−1, 0) = 1.

Hence max is 1 min is −1.

Example 4.3.6. Find max of f(x, y, z) = x+ z subject to x2 + y2 + z2 = 1.



152 CHAPTER 4. MAXIMA AND MINIMA

g(x) = c2

b

f(x) = c1

∇f

Figure 4.12: Level sets of g meets with the level set of f . Extreme occurs
when two set meet tangentially

sol. Let g(x, y, z) = x2 + y2 + z2. By the Lagrange multiplier method, we

have ∇f = λ∇g. Thus,

1 = 2xλ

0 = 2yλ

1 = 2zλ

1 = x2 + y2 + z2.

From first and third equation we see λ 6= 0 and x = z. Hence from second

equation y = 0.

From fourth equation we obtain x = z = ±1/
√
2. Hence (1/

√
2, 0, 1/

√
2)

and (−1/
√
2, 0,−1/

√
2).

2/
√
2 is max and −2/

√
2 is min.

Example 4.3.7. Find the maximum volume of rectangular box with fixed

surface area 10m2.

sol. Let x, y, z be the dimension. Then volume is f(x, y, z) = xyz. But

surface are is 10. Hence the condition g(x, y, z) = 2(xy + yz + zx) = 10 is the

constraint.

yz = λ(y + z),

xz = λ(x+ z),

yx = λ(y + x),

5 = xy + yz + zx.
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Since x > 0, y > 0, z > 0, y + z 6= 0, x + z 6= 0. So eliminating λ we

get yz/(y + z) = xz/(x + z). Hence x = y. Similarly, y = z and we see

x = y = z =
√

5/3. i,e, f(
√

5/3,
√

5/3,
√

5/3) = (5/3)3/2 are candidates for

maximum or minimum.

Surface S : xy + yz + zx = 5 is not bounded. If function value f(x, y, z)

approaches 0 as any of x or y z approaches 0 or ∞ then (5/3)3/2 is max.

Example 4.3.8. Find max(min) of f(x, y) = x2 − y2 on x2 + y2 ≤ 1.

sol. Critical points of f . Since fx = 2x = 0, fy = −2y = 0, (0, 0) is the

only critical point. f(0, 0) = 0. But D = fxxfyy − f2
xy = −4 < 0 hence it is a

saddle. We have seen in Example 4.3.5 that f has max and min 1 and −1

Several constraint

Theorem 4.3.9. Let S be the surface determined by the following equations:

g1(x) = c1,

· · ·
gk(x) = ck.

If f : Rn → R is C1 class and has a (local) maximum or minimum on S,

where ∇g1(x0), · · · ,∇gk(x0) are linearly independent, then there exist scalars

λ1, . . . , λk such that

∇f(x0) = λ1∇g1(x0) + · · ·+ λk∇gk(x0).

(Here k-vectors v1, · · · ,vk in R
n are called linearly independent if the only

way to satisfy the relation a1v1 + · · · + akvk = 0 for some scalars a1, · · · , ak
is a1 = a2 = · · · = ak = 0.)

Proof. Let Si = {x ∈ R
n|gi(x) = ci} for i = 1, · · · , k. Then S = S1 ∩ · · · ∩ Sk.

Hence any vector tangent to S must be tangent to all Si’s. Let x0 ∈ S be an

extreme point of f. Then for any curve x with x(t0) = x0 contained in S, the

function

F(t) = f(x(t))
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S1

b

∇f

S2

∇g1

∇g2

Figure 4.13: Several constraints; ∇f lies in the span of ∇g1 and ∇g2

assumes an extreme at t0. Hence

0 = F ′(t0) = ∇f(x0) · x′(t0)

Hence ∇f(x0) is perpendicular to the tangent vector x′(t0). But we also have

∇g1(x0) · x′(t0) = 0,

· · · =

∇gk(x0) · x′(t0) = 0,

we must have ∇f(x0) lie in the hyperplane spanned by ∇g1(x0), · · · ,∇gk(x0).

Example 4.3.10. Find extreme points of f = x+y+z subject to x2+y2 = 2

and x+ z = 1.

sol. Constraints are g1 = x2 + y2 − 2 = 0 and g2 = x+ z − 1 = 0. Thus

∇f = λ1∇g1 + λ2∇g2.

Since

g1 = x2 + y2 − 2

g2 = x+ z − 1
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we obtain

1 = λ1 · 2x+ λ2 · 1
1 = λ1 · 2y + λ2 · 0
1 = λ1 · 0 + λ2 · 1
0 = x2 + y2 − 2

0 = x+ z − 1

From third equation we obtain λ2 = 1 and so λ1 ·2x = 0 and λ1 ·2y = 1. From

second, we see λ1 6= 0, hence x = 0. Thus y = ±
√
2 and z = 1. Hence possible

extrema are (0,±
√
2, 1). (0,

√
2, 1) give max(0,−

√
2, 1) give min.

Example 4.3.11. Suppose the cone z2 = x2 + y2 is sliced by the plane z =

x+ y + 2 to create a conic section C. Find the points nearest to the curve C

from the origin.

sol. Let f = x2+y2+ z2 be the square of the distance. The constraints are







g1 = x2 + y2 − z2 = 0

g2 = x+ y − z = −2.

Set

∇f = λ1∇g1 + λ2∇g2.

together with the constraint equations:











































2x = 2λ1x+ λ2

2y = 2λ1y + λ2

2z = −2λ1z − λ2

x2 + y2 − z2 = 0

x+ y − z = −2.

Eliminate λ2 from the first two equations, we get

λ2 = 2x− 2λ1x = 2y − 2λ1y
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Thus

2(x− y)(1− λ1) = 0.

Example 4.3.12. Find the absolute maximum and minimum of f = xy on

x2 + y2 ≤ 1.

sol. First find critical points.

∂f

∂x
= y,

∂f

∂y
= x

(0, 0) is the only critical point. Now consider on the unit circle g = x2+y2 = 1.

∇f = λ∇g ⇒ (y, x) = λ(2x, 2y)

Thus we get y = 4λ2y, or λ = ±1/2 and y = ±x. So y = ±1/
√
2 = x.

Checking f values at these points we see f has max 1/2 and −1/2 is min. By

checking second derivative, (0, 0) is saddle

Example 4.3.13. Find absolute maximum and minimum of f = 1
2x

2 + 1
2y

2

on 1
2x

2 + y2 ≤ 1.

sol. First find critical points.

∂f

∂x
= x,

∂f

∂y
= y

(0, 0) is the only critical point. Now consider on the unit circle g = x2+y2 = 1.

Use Lagrange method.(Recall one could use parametrization as before).

∇f = λ∇g ⇒ (x, y) = λ(x, 2y)

Thus we get

x = λx

y = 2λy
1

2
x2 + y2 = 1
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So (0,±1) and (±
√
2, 0). Checking f values at these points we see f has max

1 at (0, 0).

4.4 Some applications

Least Square approximation

We assume we have many data points like (x1, y1), (x2, y2), · · · , (xn, yn). We

b

b

b
b

b

b

b

y = mx+ b

Figure 4.14: Least square fit by a line; linear regression

would like to find a simplest relation between the data; linear relation. Thus

assume f(x) = mx + b and want to find m, b so that D(m, b) :=
∑n

i=1(yi −
f(xi))

2 is minimized!

D(m, b) =

n
∑

i=1

(yi − (mxi + b))2 =

n
∑

i=1

y2i − 2

n
∑

i=1

yi(mxi + b) +

n
∑

i=1

(mxi + b)2.

Hence

∂D

∂m
= −2

n
∑

i=1

xiyi + 2
n
∑

i=1

(mxi + b)xi

= −2

n
∑

i=1

xiyi + 2m

n
∑

i=1

x2i + 2b

n
∑

i=1

xi = 0

and

∂D

∂b
= −2

n
∑

i=1

yi + 2

n
∑

i=1

(mxi + b)

= −2
n
∑

i=1

yi + 2m
n
∑

i=1

xi + 2nb = 0.
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Solving for m and b, we obtain

Proposition 4.4.1. The least square approximation by linear function is ob-

tained by

m =
n
∑n

i=1 xiyi − (
∑n

i=1 xi)(
∑n

i=1 yi)

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2

b =
(
∑n

i=1 x
2
i )(

∑n
i=1 yi)− (

∑n
i=1 xi)(

∑n
i=1 xiyi)

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2
.

Example 4.4.2. Find a linear regression of the data (1, 2), (2, 1), (3, 5), (4, 3), (5, 4).

D(m, b) = (2−(m+b))2+(1−(2m+b))2+(5−(3m+b))2+(3−(4m+b))2+(4−(5m+b))2

= 55− 4(m+ b) + (m+ b)2 − 2(2m+ b) + (2m+ b)2 − 10(3m + b)

+ (3m+ b)2 − 6(4m+ b) + (4m+ b)2 − 8(5m+ b) + (5m+ b)2

= 55− 102m − 30b+ 55m2 + 30mb+ 5b2. (4.8)

∂D

∂m
= −102 + 110m + 30b = 0

∂D

∂b
= −30 + 30m+ 10b = 0.

Hence m = 3/5, b = 6/5 and y = 3/5x + 6/5.


