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Chapter 3

Vector valued functions

In this chapter we study two types of special functions:
(1) Continuous mapping of one variable(called a path)

(2) Mapping from a subset of R" to itself(called vector fields)

3.1 Parametrized curves

Definition 3.1.1. A path is a continuous function x : I = [a,b] — R™. Tt is
a parameterized curve. x(a) and x(b) are called the endpoints of the path.
A

A parameterized curve ¢ in R? or R? can be written as c(t) = (z(t), y(t), 2(t)).
If x(t),y(t), 2(t) are differentiable, then c is said to be differentiable. If z/(¢),
y'(t), #/(t) are continuous then we say c is C''-curve. A path may have many

parametrization.
Example 3.1.2. (1) x(t) =a+tb is a line

(2) x(t) = (cost,sint) on [0, 27] is path traveling a circle once. If the domain

is [0, 47], it travels twice.
(3) x(t) = (acost,asint,bt) defines a circular helix.

We distinguish between a path x and its range (the image set x(I)). The
image of a path is called a curve, while the path is a function describing the

curve. The velocity of the path x is the vector
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Definition 3.1.3. Let x be a differentiable path. Then the velocity v(t) =
x/(t) exists and define the speed of x to be

[v(@)ll-

Also, a(t) = v/(t) = x"(t) is called the acceleration vector.

Proposition 3.1.4. Let x be a differentiable path and assume vo = v(tg) # 0.
The tangent line to the path is given by

g(t) =Xg + (t - t())VQ. (31)

Example 3.1.5 (Throwing a ball). Assume a baseball a player throws a
ball with a speed 20 m/sec in the direction of (cos30°,sin30?). Describe
the trajectory.

The acceleration is
a(t) = X' (t) = ~gj
where g = 9.8m?/sec is the gravity constant. Hence
v(t) = —gtj+c
for some constant vector c. Integrating, we obtain

1
x(t) = —§gt2j +ct +d.

Since the initial velocity is v(0) = ¢ = 20(cos 30°,sin 30°), we have

1
x(t) = —igtzj + 10V/3i + 10V3j +d,

where d is the initial position of the ball.

Differentiation Rues
(1) £b(t) +c(t)] =b/(t) +/(¢)

(2)

% (t)e(t)] = p'(t)c(t) + p(t)c/(t) for any differentiable scalar function
p(t)
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(3) £b(t)-c(t)] =b/(t) - c(t) +b(t) - c(t)
(4) ZL[b(t) x c(t)] =b'(t) x c(t) + b(t) x '(t)

(5) Fle(a(®)] = ¢'(t)c(a(t))

Example 3.1.6. Show that if c(t) is a vector function such that [[c(t)| is

constant, then ¢/(t) is perpendicular to c(t) for all ¢.

&l

Solution:

lle(®)||? = c(t) - c(t). Derivative of constant is zero. Hence

d
0= Llelt) (1)) = /(1) elt) +e(t) (1) = 2e(t) - (1)
Thus ¢/(t) is perpendicular to c(t).
O
Example 3.1.7. A particle moves with a constant acceleration a(t) = —k.

When t = 0 is the position is (0,0, 1) and velocity is i+ j. Describe the motion
of the particle.

Let (x(t),y(t), 2(t)) represents the path traveled by the particle. Since

the acceleration is ¢”(t) = —k we see the velocity is
c'(t) = Chi+ Coj — tk + Csk.

Hence by initial condition, ¢/(t) = i+ j — tk and so c(t) = ti + tj — %k +
Const vec. The constant vector is k. Hence c(t) = ti+tj+ (1 — %)k
O
Remark 3.1.8. The image of C''-curve is not necessarily ”smooth”. it may
have sharp edges;
(1) Cycloid: c¢(t) = (t — sint,1 — cost) has cusps when it touches z-axis.
That is, when cost =1 or when t =2mn,n=1,2,3,---
(2) Hypocycloid: c(t) = (cos?t,sin®t) has cusps at four points when cost =
0,41
At all these points, we can check that ¢/(t) = 0.(Roughly speaking, tangent

vector has no direction or does not exist.)

Definition 3.1.9. A differentiable path c is said to be regular if ¢/(t) # 0 at

all t. In this case, the image curve looks smooth.



102 CHAPTER 3. VECTOR VALUED FUNCTIONS
Circular Orbits

Consider a particle of mass m moving at constant speed s in a circular path

of radius ro. We can represent its motion (in the plane) as
r(t) = (rp cos Ct,rosin Ct)

Find C'. Since speed is ||t/(t)|| = |C|ro = s, we get C' = s/rg. So the motion is

st . st
r(t) = | ro cos —, rpsin —
7o

To

described as

The quantity % is called frequency denoted by w. Thus
r(t) = (ro cos wt, rosinwt)
It’s acceleration is

2 2
a(t) =r"(t) = —% (ro coSs i—o,ro sin :—0> = —S—Zr(t) — —wzr(t).

v (1)
r(t)
a(t)

alr'(t)

Figure 3.1: acceleration and centripetal force ma,

Let us describe motion of a particle having circular motion. The centripetal
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force must equal to Gravitational force; By Newton’s Law F = ma, we have

2
s‘m GmM
2 I'( ) = - 3 I'(t)
To To
Hence
s GM
s = .
70

If T denotes the period s = 27rg/T'; then we obtain
Kepler’s Law

_ 3(277)2
—7‘0 GM .

It means that the square of the period is proportional to the cube of the radius.

T2

Example 3.1.10. Suppose a satellite is in circular motion about the earth
over the equator. What is the radius of geosynchronous orbit? (It stays fixed
over a point on equator) M = 5.98 x 10?4 kg and G = 6.67 x 10~ meter kg

-Sec.

Sol. Period must be one day: So T" = 60 x 60 x 24 = 86, 400 seconds. From
Kepler’s law,

T2GM

Ok ~ 7.54 x 10%2m3 ~ 42, 300km.

=

3.2 Arc Length

To find the length of a path, we divide the path into small pieces and ap-
proximate each piece by a line segment joining the end points; then summing
the length of individual line segments we obtain an approximate length. The
length is obtained by taking the limit. To define it precisely, we use the Rie-

mann integral.

First the sum of the line segment is
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Figure 3.2: Riemann sum of the curve length

Then by mean value theorem, there are points u; € [t;—1 — t;] such that

k
Z e/ (ui) [|(t; — ti).
i=1

This is nothing but the Riemann sum of ||c/(¢)||. As the norm of the partition
|P|| = 0, * we see the sum Zle llc’ (u;)]|(t; — ti—1) approaches

b
/ e/ (6)] dt.

Definition 3.2.1 (Arc Length). Suppose a curve C has one-to-one differen-
tiable parametrization x. Then the arc length is defined by

b b
L(x) = / I/ ()] dt = / VIO -y (02 + # (D)2t

Example 3.2.2. Find the arclength of the helix x = (acost,asint,bt), 0 <
t < 2.
Sol.
X' (t)|| = ||acosti — asintj+ bk| = /a2 + b2.

Hence

2
L(x) = / Va? + b2dt = 2/ a? + b2.

0

'For a given partition P = {to,t1,...,tn}, the norm of | P|| := maxi<i<n(ti — ti—1).
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Thus

Example 3.2.3. Find the arclength of (cost,sint,t?) 0 < ¢ < 27.

Sol.
1
VIl = V1 + 4t2 :2”t2+1

To evaluate this integral we need a table of integrals:

1
/\/:132 +a?dx = 5[:1:\/:1:2 + a2 + a*log(z + V22 + a2)] + C.

Thus

Example 3.2.4. Find the length of the cycloid
x(t) = (t —sint, 1 — cost).

Since

%' (8)|| = \/(t —sint)2 + (1 — cost)2 = /2 — 2cost

2 21— cost
L(x) = V2 —2costdt =2 Tdt
0 0
27‘(’ t
= 2/ sin — dt
0 2
21
t
= 4(—cos=
< cos 2>

Example 3.2.5. Suppose a function y = f(x) given. Then the graph is

= 8.

0

viewed as a curve parameterized by ¢t = x and x(z) = (z, f(x)). So the length

of the graph from a to b is

b
L(x) = / V14 (f(2z))%da.

Warning! A continuous path may not have finite length: Consider

(t,tsinl), t#0,

0,0), t=0.
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This function is continuous everywhere. But does not have finite length.

Arc-Length Parameter

Definition 3.2.6. Suppose x : [a,b] — R" is a C''-parametrization of a curve
C. Then the arc length of C' is defined by

b b
L(x) = / I/ (8) ] dt = / VIO 02+ @)t

Now if we treat upper limit of the integral as a variable ¢, the arclength

becomes a function arc-length function s(t):

s(t) = / I (1)) dt.

The arc-length function satisfies
ds
— =5'(t) = [x'(t)]| = speed.
dt
Assuming x'(t) # 0, we see % is always positive. Hence we can solve for s in
terms of ¢(inverse function theorem). Hence we can use s as a new variable to

represent the curve C.

Example 3.2.7. For the helix x = (acost,asint,bt), we can find a new

parametrization by s as follows:

t t
s(t):/ ||X/(T)||d7':/ JE  Rdr = V212 1,
0 0

so that
s
s=vVa2+0b2t ort=—-—.
’ va? + b?
Hence

1= (o) o () )

Example 3.2.8. In general finding a parametrization by arclength parameter
s is not a simple task. However, it has important meaning: Assume x(s) be a

parametrization by arclength parameter. Then by chain rule and property of
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arclength parameter,

Since ||x/(t)]| # 0, we have

x'(s) = .
1= (@)l

. Thus x(s) has always unit speed(x’(s) always has a unit length). Note that

the arc length parameter s depends on how the curve bends, not how fast the

curve is traced.

Definition 3.2.9. The unit tangent vector T of the path x is the normal-

ized velocity vector
x'(t)

YOI

Example 3.2.10. For the helix x = (acost,asint, bt), we have

x/(t) acosti — asintj+ bk

O VT

To measure how the curve bends we need observe the following:

T

Proposition 3.2.11. Assume x/(t) is never zero. Then
(1) % is perpendicular to T.

(2) H%—T lt=t, equals the angular rate of change of direction of T when t = tg.
ice., || lizt, = %, where 0 is the angle of the tangent line. (For example,
AB is the angle between T(ty) and T(tg + At).)

Proof. For (1), we see
T(t)-T(t) = 1.

Hence by taking the derivative,

%T(t) ~T(t) = T(t) - dT—(t)T(t) +——=-T(t) =0.

dT
Hence G L T.
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Figure 3.3: Change of angle as the point moves along curve

For part 2, we see the angular rate of change is lima;_,q+ %. For the time
being we shall assume the following. (Quite reasonable because the length of

|'T|| is always 1.)
A6

li —_— = 3.2
Ao+ JAT] (32)

Assuming (3.2) we have

lim & = im —AG IAT]

At—0+ At a At—0+ ||AT|| At
AT [|dT
=1 A?—%+ At || dt ||

This is the desired result.

To show (3.2) we proceed as follows: Use law of cosines for figure 3.3 and
the fact that [|T(¢)| = 1,

IAT|? = [Tt +A)[*+ [T = 2Tt + At T()] cos A
= 2—2cos Af.
Hence

. A6 . A6
lim —— = Ilim —————
A0—0+ [|AT| A6—0+ /2 — 2cos A

) Af
=  lim ————
A—0t 24 /sin?(A0/2)

A2

b+ S(AG/2)

From the proposition, it is natural to define
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Definition 3.2.12. The curvature of a path x is the angular rate of change

of unit tangent vector T per unit change along the path. In other words,

= Lot
ds/dt ds

Figure 3.4: Rate of change of tangent vectors are different

3.3 Vector Fields

Definition 3.3.1. Let X C R™ A vector field on X is a mapping
F: X CR"—R"

A vector field F having values in R” is represented by n-real valued func-
tions Fl,FQ, cee ,Fn.

F(x) = (F1(x), F3(x),..., F(x))

If n =3, F(P) = (F1(P), F»(P), F3(P)) is written as

F(P) = F\(P)i + Fy(P)j + F3(P)k.

Example 3.3.2. Let r = zi 4 yj + zk. The gravitational force acting on a
particle is given by

c
F(x,y,2) = Wr.

If it is acted on an object of mass m, then considering the direction into

account, the gravity is (Figure 3.5)

GmM GmM
F=-—gr="—"7mo
[l ]
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Figure 3.5: Gravitational force is represented by vectors

where M is the mass of earth and G is the gravitational constant. Here

u=r/|r[,

Gradient fields and potentials

Given real valued function f(z1,x9,...,x,) we recall the gradient field
_of of of
Vf T (8—217176—33‘2”8—%)

If a vector field F is given by
F(x) = Vf(x)
for some scalar function f, then f is called the potential function.

Example 3.3.3. A gravitational force field has potential f = M

_Gmng =Vf.
r

F—
Example 3.3.4. Heat flux vector fields is
J=—kVT,

where k is a constant for heat conduction and 7" is the temperature.

Example 3.3.5 (Coulomb’s law). The force acting on an electric charge e at
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position r due to a charge @ at the origin is

eQe
= r

:Il—“—r—3 :—VV,

where V' = eQe/r. The level sets of V are called equipotential surface or
lines. Note that the force field is orthogonal to the equipotential surfaces. We
see F = —VV | where the potential V is given by

Vo GmM '

T

Note that F points to the direction of decreasing V.

Example 3.3.6. Show the vector field V(z,y) = yi — xj is not a gradient

vector field. i.e, there is no C''-function f such that

af. OJOf
V=Vf=—"i+—"j.
/ 83:1 * oy
Suppose there is such an f. Then % = y and g—g = —x. Solving,

flx,y) =2y + g(y). Then g—g =z + ¢'(y) = —z, which is impossible.

Conservation of energy

Consider a particle of mass m moving in a force field that is a potential field.
(F=-VV)
mr” (t) = =V V (x(t)).

A basic fact about such a motion is the conservation of energy. The energy E

is defined to be the sum of kinetic energy and potential energy

B = gl ()] + V(e(t).

The principle of Conservation of energy says: E is independent of time. So

dE/dt = 0. We can prove it simply:

U = (1) (1) + (VV) ¥(1) =x' - (~VV £ TV) =0
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Escape Velocity

As an application of conservation of energy, we compute the velocity of a
rocket to escape the earth gravitational influence. The energy(kinetic energy

+potential energy) is
1 mMG
Ly = imfug T TRy

The escape velocity is obtained when this energy is zero. Thus

2MG
v, —
e RO
Now MG/R} is gravity g, thus
Ve = /29 Ry.

Flow lines

Assume we have a vector field F. Where does it come from ? Think of a water
flow (river). At each point of the river, we can think of a flow velocity at that
point. Another view is as follows: one may imagine a small particle in the

water flowing along the flow. This curve(line) is the concept of flow line.

Figure 3.6: Flow lines of a vector fields
The precise definition is the following;:

Definition 3.3.7. Given a vector field F, a path x(¢) satisfying
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is called a flow line for F. That is, F yields the velocity fields of the path

x(t). A flow line is also called as streamlines or integral curves.

Example 3.3.8. Suppose water is flowing in a pipe as in fig 3.7. Suppose it

does not depends on time. Then it is given by a vector field.

N

Figure 3.7: Water flow in a pipe

Figure 3.8: The vector field LJFI"Q describes the drain of bathtub
y

S y?

Example 3.3.9. Find the flow line of F = —yi + zj.
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Let x(t) = (x(t),y(t)) be the flow line. Then

Or one can obtain

Solving this we get the similar solution. Others may be

x(t) = (rcos(t — ty), rsin(t — tg)).

Example 3.3.10. Find the flow line of the vector field F. (Fig 3.8)

—yi + xj

5 (59) £ 0,0)

F(.Z',y) - .

Let x(t) = (z(t),y(t)) be the flow line. Then x'(t) = (2/(t),y'(t)) must be
F(x(t)). Hence

/ o _y(t)
IRVZ DT o
/(1) = ——20) (3.4)

Multiply first by z(¢) and second by y(¢). Then adding we get
' (t)a(t) +y'(t)y(t) = 0.
Integrating

2()? + y(t)? = C

2

for some constant C. Let C' = r“. This is equation for circle. So we can
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parameterize it by trig function.

x(t) = (x(t),y(t)) = (rcosf(t), rsin(t)).
Hence

2/ (t) = —rf'(t)sin () (3.5)
y'(t) = r0'(t) cos O(t) (3.6)

From (3.3) - (3.6), 2/(t) = —y/r = —siné,
—r0'(t)sin0(t) = —sin O(t).

Hence

1

4 e
0'(t) = ~
So the flow line x(t) is

x(t) = (2(t), y(t)) = (r cos ;,rsin;).

The period of x(t) is 27r.

Example 3.3.11. Show that F(z,y) = zi—yj is a gradient field and find flow

line

Suppose F is a gradient field of f(z,y) then

gi + f 5 _ xi—yj

or Oy -
Find f(z,y) such that

of _, of __

or 77 Oy

Hence f(z,y) = %(x2 —y?). The flow line is obtained by solving
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3.4 Divergence and curl and del operator

For divergence and curl operations(PROCESS), we make use of the del op-
erator defined by

.0 .0 0

It works like this: For scalar functions, it works as the gradient f:

A W WL L A
Vf_<laa:+']8y+k8z>f 5 +‘]8 +k8z

It can also act on vector functions. It is called ‘divergence’.

Divergence

Definition 3.4.1 (Divergence). If F = Fji+ Fyj+ Fsk is a vector field, then
the divergence of F is the scalar field defined by

0F, 0F, O0F;

W= "oy "o
o. 0. 0 .
= (al—I— 8_y'] + &k> <F11+F23 —|—F3k>
=V . F,
where
V—e——i—ei—k +e 9
n 1(91 28%2 "axn

is the del operator. Similarly, for n-variable functions, we define

OF; 8F1 8F2 oF,
divk = Z or;  Ox1 (93:2 Tt ox,,

Example 3.4.2. Find the divergence of F = (e*siny, e® cosy, yz2).
0 d d
divF = a—(ex siny) + = (e cosy) + = (yz%)
x

oy 0z
=e’siny + (—e"siny) + 2yz = 2yz.
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Figure 3.9: vector field (z,y) and (—z, —y)

Example 3.4.3.
F = 2%yi + 2j + zyzk.

Meaning of divergence

Suppose F represent the velocity of a gas or fluid. Then divergence represents
the rate of expansion per unit volume: If divF(P) > 0 then it is ex-
panding. If (divF(P) < 0) then it is compressing. More precisely, if V()
represent the volume of a region occupied by the fluid at time ¢, then it can
be shown that

1 d

W%V(t) ~ ~ divF(xg).

If divF = 0 everywhere, then we say the fluid is incompressible(Solenoidal).

Example 3.4.4. Draw flow lines of the following vector fields:
(@)F =2i+yj, (b)F=—2i—yj.

The divergence of the first one is positive, while that of second is negative(See
Figure 3.9).
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y Fluid particles move
from shaded region to
shaded region after a
fixed time interval.

\ \ The two areas are the

same.

P4

<
rd
~

Y W O™
LU N G NG N
AN -~ N
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e W WX rFr A A~ 7

Figure 3.10: F = zi — yj is volume preserving(incompressible)

Example 3.4.5. The vector field F' = zi — yj is divergence free. The flow

lines are as in figure 3.10.

Curl operator

We define the curl of a vector field F : X € R3 — R? using the symbol V and

cross product:

i j k
curlF =V x F = 3% 3% 38_,2
F F F3
_ (OF3  0Fy\, oF) 0F3\, oF, 0F;
_<8—y_5)1 (82 Oz )‘] (Gx Ay >k'
Example 3.4.6. Let F = zi + xyj + k. Find V x F.
i j k
VXF:% 8% %in—Oj—i—yk.
r xzy 1
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Example 3.4.7. Let F = xyi —sinzj + k. Find V x F.

i j k
_ 0 0 0
ry —sinz 1
2 9 o 9 9 90
— dy Oz i 0z 0z 3 Ox dy k
—sinz 1 zy 1 Ty sinz
= coszi—zk.

Meaning of curl

Figure 3.11: velocity v and angular velocity w has relation v =w X r.

Consider a rigid body B rotating about an axis L. (Fig 3.11 ). The
rotational motion of B can be described by a vector along axis of
rotation w. Let w the vector along z-axis s.t. w = ||w||. The vector w is
called the angular velocity vector and w is angular speed.

Assume L is z-axis @) is any point on the body B, « is distance from @
to L. Then o = ||r||siné (r points to ). Consider the tangent vector v
at Q). Since @ moves around a circle of radius « and parallel to zy-plane

(counterclockwise), we see,

VIl = wa = w||r|sin 6 = [[wl[||r||sin 6,



120 CHAPTER 3. VECTOR VALUED FUNCTIONS

Then by definition of cross product,
V=W XT.
Since w = wk, r = zi + yj + zk we see from the property of cross product,
V=w Xr=—wyl+ wj.

So curlv = 2wk = 2w. Hence for the rotation of a rigid body, the curl is
a vector field whose direction is along the axis of rotation and magnitude is
twice the angular speed.

Curl and rotational flow

V X F represents twice the angular velocity: So if it is 0, then we have irrota-

tional fluid.

Example 3.4.8. Find curl F when F(z,y,2) = (yi — 2j)/(2? + y?) in R3.

Write F(z,y, 2) = ——2—i+ ——%j + 0k. Then we see
(z,y,2) Z+4 :132+y2‘]

i j k
0 0 0

VxF=1 9z Jy 0z
Z/ —ac 0
_|_

z* + y?

_8
:£<;p +y> <;L'2j—y2>
(a2 2

2’ +y%) — (—2)(22)  (x

(@® + %) 2? +y?)?
:_3:2—112 B $2—y2 :|k
_($2+y2)2 ($2+y2)2

=0.

Gradients are curl Free

Theorem 3.4.9. For any C? function

Vx(Vf)=0.
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Proof.
i j k
VxVf = |& & &
of of 9f
or Ody 0z
L (PE O PEN, (PEPEN L (PF PP,
 \Oydz  0z0y 92026 0192 )° 0xdy Oydxr )

O

(a) F = (yi —zj)/(«® +y°) (b) F = yi — aj
Figure 3.12: Movement of small paddle in vector fields

Remark 3.4.10. Vector field F(z,y, 2) = (yi—zj)/(2? +y?)(It describes flow
in a tub) does not rotate about any point except z-axis. When small paddle
is placed in the fluid, it will follow the flow line( a circle in this case), but it
does not rotate about its own axis. Such a field is called irrotational.

But the vector field F(x,y, z) = yi—xj has nonzero rotation. (fig 3.12(b) ).

Curls are divergence free
Theorem 3.4.11. For any C? vector field F

diveurlF =V - (V xF) =0.

Example 3.4.12. Curl of earth or any planet is nonzero, except one. What

is the exception?
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Physical meaning of divergence

Let
F(z,y,2) = (F1,F2, F3) = Fii+ Fyj + F3k

be a velocity vector field of some fluid in R3.

Az AW = AzAyAz

Z Az Ay

Figure 3.13: Geometric meaning of divergence

Fig 3.13. Consider a box W with dimension Az, Ay, Az Then volume of
W is AW = AzAyAz. Consider the loss of fluid across W per unit time.
First consider fluid loss through left side of W whose area is AzAz. (Consider
F5 only). The outflux is

F(.Z', Y, Z) . (—j)AI’AZ = —FQ(.Z', Y, Z)AI’AZ.
And the influx is

F(x,y + Ay, 2) - jJAzAz = Fy(x,y + Ay, 2) AzAz.

(Fg(x, y+ Ay, z) — Fy(z,y, z))AxAz R (%—?Ay) AzAz.

Considering all the direction, the change in fluid across W per unit time is(total
flux)

oF, O0F, OF;
<8:L" + 3y + 5, >AwAyAz.

Now divide by volume AW

) . Flux across boundary oFy O0F, OF;
density of flux/time = o ~ ( B 5 + s )

Let Az, Ay, Az — 0 Then fluid density of F is divF. If F is gas, then divF

represents the rate of expansion of gas per unit time per unit volume. If
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F(z,y,z) = xi+ yj + zk, then divF = 3 and this means the gas is expanding

three times per unit time.
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