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Chapter 3

Vector valued functions

In this chapter we study two types of special functions:

(1) Continuous mapping of one variable(called a path)

(2) Mapping from a subset of Rn to itself(called vector fields)

3.1 Parametrized curves

Definition 3.1.1. A path is a continuous function x : I = [a, b] → R
n. It is

a parameterized curve. x(a) and x(b) are called the endpoints of the path.

A

A parameterized curve c in R
2 or R3 can be written as c(t) = (x(t), y(t), z(t)).

If x(t), y(t), z(t) are differentiable, then c is said to be differentiable. If x′(t),

y′(t), z′(t) are continuous then we say c is C1-curve. A path may have many

parametrization.

Example 3.1.2. (1) x(t) = a+ tb is a line

(2) x(t) = (cos t, sin t) on [0, 2π] is path traveling a circle once. If the domain

is [0, 4π], it travels twice.

(3) x(t) = (a cos t, a sin t, bt) defines a circular helix.

We distinguish between a path x and its range (the image set x(I)). The

image of a path is called a curve, while the path is a function describing the

curve. The velocity of the path x is the vector

v(t) = x′(t).
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100 CHAPTER 3. VECTOR VALUED FUNCTIONS

Definition 3.1.3. Let x be a differentiable path. Then the velocity v(t) =

x′(t) exists and define the speed of x to be

‖v(t)‖.

Also, a(t) = v′(t) = x′′(t) is called the acceleration vector.

Proposition 3.1.4. Let x be a differentiable path and assume v0 = v(t0) 6= 0.

The tangent line to the path is given by

ℓ(t) = x0 + (t− t0)v0. (3.1)

Example 3.1.5 (Throwing a ball). Assume a baseball a player throws a

ball with a speed 20 m/sec in the direction of (cos 30o, sin 30o). Describe

the trajectory.

sol. The acceleration is

a(t) = x′′(t) = −gj

where g = 9.8m2/sec is the gravity constant. Hence

v(t) = −gtj+ c

for some constant vector c. Integrating, we obtain

x(t) = −1

2
gt2j+ ct+ d.

Since the initial velocity is v(0) = c = 20(cos 30o, sin 30o), we have

x(t) = −1

2
gt2j+ 10

√
3i+ 10

√
3j+ d,

where d is the initial position of the ball.

Differentiation Rues

(1) d
dt
[b(t) + c(t)] = b′(t) + c′(t)

(2) d
dt
[p(t)c(t)] = p′(t)c(t) + p(t)c′(t) for any differentiable scalar function

p(t)
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(3) d
dt
[b(t) · c(t)] = b′(t) · c(t) + b(t) · c′(t)

(4) d
dt
[b(t)× c(t)] = b′(t)× c(t) + b(t)× c′(t)

(5) d
dt
[c(q(t))] = q′(t)c′(q(t))

Example 3.1.6. Show that if c(t) is a vector function such that ‖c(t)‖ is

constant, then c′(t) is perpendicular to c(t) for all t.

Solution:

‖c(t)‖2 = c(t) · c(t). Derivative of constant is zero. Hence

0 =
d

dt
[c(t) · c(t)] = c′(t) · c(t) + c(t) · c′(t) = 2c(t) · c′(t)

Thus c′(t) is perpendicular to c(t).

Example 3.1.7. A particle moves with a constant acceleration a(t) = −k.

When t = 0 is the position is (0, 0, 1) and velocity is i+ j. Describe the motion

of the particle.

sol. Let (x(t), y(t), z(t)) represents the path traveled by the particle. Since

the acceleration is c′′(t) = −k we see the velocity is

c′(t) = C1i+ C2j− tk+ C3k.

Hence by initial condition, c′(t) = i + j − tk and so c(t) = ti + tj − t2

2 k +

Const vec. The constant vector is k. Hence c(t) = ti+ tj+ (1− t2

2 )k.

Remark 3.1.8. The image of C1-curve is not necessarily ”smooth”. it may

have sharp edges;

(1) Cycloid: c(t) = (t − sin t, 1 − cos t) has cusps when it touches x-axis.

That is, when cos t = 1 or when t = 2πn, n = 1, 2, 3, · · ·

(2) Hypocycloid: c(t) = (cos3 t, sin3 t) has cusps at four points when cos t =

0,±1

At all these points, we can check that c′(t) = 0.(Roughly speaking, tangent

vector has no direction or does not exist.)

Definition 3.1.9. A differentiable path c is said to be regular if c′(t) 6= 0 at

all t. In this case, the image curve looks smooth.
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Circular Orbits

Consider a particle of mass m moving at constant speed s in a circular path

of radius r0. We can represent its motion (in the plane) as

r(t) = (r0 cosCt, r0 sinCt)

Find C. Since speed is ‖r′(t)‖ = |C|r0 = s, we get C = s/r0. So the motion is

described as

r(t) =

(

r0 cos
st

r0
, r0 sin

st

r0

)

The quantity s
r0

is called frequency denoted by ω. Thus

r(t) = (r0 cosωt, r0 sinωt)

It’s acceleration is

a(t) = r′′(t) = −
2st

r0

(

r0 cos
st

r0
, r0 sin

st

r0

)

= −s2t

r20
r(t) = −ω2r(t).

b r(t)

r′(t)

a(t)

a ⊥ r′(t)

Figure 3.1: acceleration and centripetal force ma,

Let us describe motion of a particle having circular motion. The centripetal
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force must equal to Gravitational force; By Newton’s Law F = ma, we have

−s2m

r20
r(t) = −GmM

r30
r(t).

Hence

s2 =
GM

r0
.

If T denotes the period s = 2πr0/T ; then we obtain

Kepler’s Law

T 2 = r30
(2π)2

GM
.

It means that the square of the period is proportional to the cube of the radius.

Example 3.1.10. Suppose a satellite is in circular motion about the earth

over the equator. What is the radius of geosynchronous orbit? (It stays fixed

over a point on equator) M = 5.98 × 1024 kg and G = 6.67 × 10−11 meter kg

-sec.

Sol. Period must be one day: So T = 60×60×24 = 86, 400 seconds. From

Kepler’s law,

r30 =
T 2GM

(2π)2
≈ 7.54× 1022m3 ≈ 42, 300km.

3.2 Arc Length

To find the length of a path, we divide the path into small pieces and ap-

proximate each piece by a line segment joining the end points; then summing

the length of individual line segments we obtain an approximate length. The

length is obtained by taking the limit. To define it precisely, we use the Rie-

mann integral.

First the sum of the line segment is

k
∑

i=1

∆si =
k

∑

i=1

‖c(ti)− c(ti−1)‖.
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a = t0 t1 ti−1 ti tk = b

c

c(t0)

c(t1)

b

b

c(ti−1) c(ti)

c(tk)

‖c(ti)−c(ti−1)‖

O

z

y

x

Figure 3.2: Riemann sum of the curve length

Then by mean value theorem, there are points ui ∈ [ti−1 − ti] such that

k
∑

i=1

‖c′(ui)‖(ti − ti−1).

This is nothing but the Riemann sum of ‖c′(t)‖. As the norm of the partition

‖P‖ → 0, 1 we see the sum
∑k

i=1 ‖c′(ui)‖(ti − ti−1) approaches

∫ b

a

‖c′(t)‖ dt.

Definition 3.2.1 (Arc Length). Suppose a curve C has one-to-one differen-

tiable parametrization x. Then the arc length is defined by

L(x) =

∫ b

a

‖x′(t)‖ dt =
∫ b

a

√

x′(t)2 + y′(t)2 + z′(t)2dt.

Example 3.2.2. Find the arclength of the helix x = (a cos t, a sin t, bt), 0 ≤
t ≤ 2π.

Sol.

‖x′(t)‖ = ‖a cos ti− a sin tj+ bk‖ =
√

a2 + b2.

Hence

L(x) =

∫ 2π

0

√

a2 + b2dt = 2π
√

a2 + b2.

1For a given partition P = {t0, t1, . . . , tn}, the norm of ‖P‖ := max1≤i<n(ti − ti−1).
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Thus

L(c) = · · ·

Example 3.2.3. Find the arclength of (cos t, sin t, t2) 0 ≤ t ≤ 2π.

Sol.

‖v‖ =
√

1 + 4t2 = 2

√

t2 +
1

4
.

To evaluate this integral we need a table of integrals:

∫

√

x2 + a2 dx =
1

2
[x
√

x2 + a2 + a2 log(x+
√

x2 + a2)] + C.

Thus

L(x) = · · · .

Example 3.2.4. Find the length of the cycloid

x(t) = (t− sin t, 1− cos t).

Since

‖x′(t)‖ =
√

(t− sin t)2 + (1− cos t)2 =
√
2− 2 cos t

L(x) =

∫ 2π

0

√
2− 2 cos tdt = 2

∫ 2π

0

√

1− cos t

2
dt

= 2

∫ 2π

0
sin

t

2
dt

= 4

(

− cos
t

2

)∣

∣

∣

∣

2π

0

= 8.

Example 3.2.5. Suppose a function y = f(x) given. Then the graph is

viewed as a curve parameterized by t = x and x(x) = (x, f(x)). So the length

of the graph from a to b is

L(x) =

∫ b

a

√

1 + (f ′(x))2dx.

Warning! A continuous path may not have finite length: Consider







(t, t sin 1
t
), t 6= 0,

(0, 0), t = 0.
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This function is continuous everywhere. But does not have finite length.

Arc-Length Parameter

Definition 3.2.6. Suppose x : [a, b] → R
n is a C1-parametrization of a curve

C. Then the arc length of C is defined by

L(x) =

∫ b

a

‖x′(t)‖ dt =
∫ b

a

√

x′(t)2 + y′(t)2 + z′(t)2dt.

Now if we treat upper limit of the integral as a variable t, the arclength

becomes a function arc-length function s(t):

s(t) =

∫ t

a

‖x′(t)‖ dt.

The arc-length function satisfies

ds

dt
= s′(t) = ‖x′(t)‖ = speed.

Assuming x′(t) 6= 0, we see ds
dt

is always positive. Hence we can solve for s in

terms of t(inverse function theorem). Hence we can use s as a new variable to

represent the curve C.

Example 3.2.7. For the helix x = (a cos t, a sin t, bt), we can find a new

parametrization by s as follows:

s(t) =

∫ t

0
‖x′(τ)‖ dτ =

∫ t

0

√

a2 + b2dτ =
√

a2 + b2 t,

so that

s =
√

a2 + b2 t, or t =
s√

a2 + b2
.

Hence

x(s) =

(

a cos

(

s√
a2 + b2

)

, a sin

(

s√
a2 + b2

)

,
bs√

a2 + b2

)

.

Example 3.2.8. In general finding a parametrization by arclength parameter

s is not a simple task. However, it has important meaning: Assume x(s) be a

parametrization by arclength parameter. Then by chain rule and property of
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arclength parameter,

x′(t) = x′(s)
ds

dt

= x′(s)‖x′(t)‖.

Since ‖x′(t)‖ 6= 0, we have

x′(s) =
x′(t)

‖x′(t)‖ .

. Thus x(s) has always unit speed(x′(s) always has a unit length). Note that

the arc length parameter s depends on how the curve bends, not how fast the

curve is traced.

Definition 3.2.9. The unit tangent vector T of the path x is the normal-

ized velocity vector

T ==
x′(t)

‖x′(t)‖ .

Example 3.2.10. For the helix x = (a cos t, a sin t, bt), we have

T =
x′(t)

‖x′(t)‖ =
a cos ti− a sin tj+ bk√

a2 + b2
.

To measure how the curve bends we need observe the following:

Proposition 3.2.11. Assume x′(t) is never zero. Then

(1) dT
dt

is perpendicular to T.

(2) ‖dT
dt
‖t=t0 equals the angular rate of change of direction of T when t = t0.

i.e., ‖dT
dt
‖t=t0 = dθ

dt
, where θ is the angle of the tangent line.(For example,

∆θ is the angle between T(t0) and T(t0 +∆t).)

Proof. For (1), we see

T(t) ·T(t) = 1.

Hence by taking the derivative,

d

dt
T(t) ·T(t) = T(t) · dT(t)

dt
T(t) +

dT(t)

dt
·T(t) = 0.

Hence dT
dt

⊥ T.
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b

b

∆θ

T(t0)

T(t0 +∆t)=
=

∆T

Figure 3.3: Change of angle as the point moves along curve

For part 2, we see the angular rate of change is lim∆t→0+
∆θ
∆t

. For the time

being we shall assume the following. (Quite reasonable because the length of

‖T‖ is always 1.)

lim
∆t→0+

∆θ

‖∆T‖ = 1. (3.2)

Assuming (3.2) we have

lim
∆t→0+

∆θ

∆t
= lim

∆t→0+

∆θ

‖∆T‖
‖∆T‖
∆t

= 1 · lim
∆t→0+

‖∆T‖
∆t

=

∥

∥

∥

∥

dT

dt

∥

∥

∥

∥

.

This is the desired result.

To show (3.2) we proceed as follows: Use law of cosines for figure 3.3 and

the fact that ‖T(t)‖ ≡ 1,

‖∆T‖2 = ‖T(t+∆t)‖2 + ‖T(t)‖2 − 2‖T(t+∆t)‖‖T(t)‖ cos ∆θ

= 2− 2 cos∆θ.

Hence

lim
∆θ→0+

∆θ

‖∆T‖ = lim
∆θ→0+

∆θ√
2− 2 cos∆θ

= lim
∆θ→0+

∆θ

2
√

sin2(∆θ/2)

= lim
∆θ→0+

∆θ/2

sin(∆θ/2)
= 1.

From the proposition, it is natural to define
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Definition 3.2.12. The curvature of a path x is the angular rate of change

of unit tangent vector T per unit change along the path. In other words,

κ(t) =
‖dT/dt‖
ds/dt

=

∥

∥

∥

∥

dT

ds

∥

∥

∥

∥

.

Figure 3.4: Rate of change of tangent vectors are different

3.3 Vector Fields

Definition 3.3.1. Let X ⊂ R
n. A vector field on X is a mapping

F : X ⊂ R
n → R

n.

A vector field F having values in R
n is represented by n-real valued func-

tions F1, F2, . . . , Fn.

F(x) = (F1(x), F2(x), . . . , Fn(x))

If n = 3, F(P ) = (F1(P ), F2(P ), F3(P )) is written as

F(P ) = F1(P )i+ F2(P )j+ F3(P )k.

Example 3.3.2. Let r = xi + yj + zk. The gravitational force acting on a

particle is given by

F(x, y, z) =
c

‖r‖3 r.

If it is acted on an object of mass m, then considering the direction into

account, the gravity is (Figure 3.5)

F = −GmM

‖r‖3 r = −GmM

‖r‖2 u,
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b

b

r

M

m
F

Earth

object

Figure 3.5: Gravitational force is represented by vectors

where M is the mass of earth and G is the gravitational constant. Here

u = r/‖r‖.

Gradient fields and potentials

Given real valued function f(x1, x2, . . . , xn) we recall the gradient field

∇f := (
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn
).

If a vector field F is given by

F(x) = ∇f(x)

for some scalar function f , then f is called the potential function.

Example 3.3.3. A gravitational force field has potential f = GmM
r

.

F = −GmM

r3
r = ∇f.

Example 3.3.4. Heat flux vector fields is

J = −k∇T,

where k is a constant for heat conduction and T is the temperature.

Example 3.3.5 (Coulomb’s law). The force acting on an electric charge e at
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position r due to a charge Q at the origin is

F =
ǫQe

r3
r = −∇V,

where V = ǫQe/r. The level sets of V are called equipotential surface or

lines. Note that the force field is orthogonal to the equipotential surfaces. We

see F = −∇V , where the potential V is given by

V = −GmM

r
.

Note that F points to the direction of decreasing V .

Example 3.3.6. Show the vector field V(x, y) = yi − xj is not a gradient

vector field. i.e, there is no C1-function f such that

V = ∇f =
∂f

∂x
i+

∂f

∂y
j.

sol. Suppose there is such an f . Then ∂f
∂x

= y and ∂f
∂y

= −x. Solving,

f(x, y) = xy + g(y). Then ∂f
∂y

= x+ g′(y) = −x, which is impossible.

Conservation of energy

Consider a particle of mass m moving in a force field that is a potential field.

(F = −∇V )

mr′′(t) = −∇V (r(t)).

A basic fact about such a motion is the conservation of energy. The energy E

is defined to be the sum of kinetic energy and potential energy

E =
1

2
m‖r′(t)‖2 + V (r(t)).

The principle of Conservation of energy says: E is independent of time. So

dE/dt = 0. We can prove it simply:

dE

dt
= mr′(t) · r′′(t) + (∇V ) · r′(t) = r′ · (−∇V +∇V ) = 0.
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Escape Velocity

As an application of conservation of energy, we compute the velocity of a

rocket to escape the earth gravitational influence. The energy(kinetic energy

+potential energy) is

E0 =
1

2
mv2e −

mMG

R0
.

The escape velocity is obtained when this energy is zero. Thus

ve =

√

2MG

R0
.

Now MG/R2
0 is gravity g, thus

ve =
√

2gR0.

Flow lines

Assume we have a vector field F. Where does it come from ? Think of a water

flow (river). At each point of the river, we can think of a flow velocity at that

point. Another view is as follows: one may imagine a small particle in the

water flowing along the flow. This curve(line) is the concept of flow line.

x(t)F

Figure 3.6: Flow lines of a vector fields

The precise definition is the following:

Definition 3.3.7. Given a vector field F, a path x(t) satisfying

x′(t) = F(x(t))
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is called a flow line for F. That is, F yields the velocity fields of the path

x(t). A flow line is also called as streamlines or integral curves.

Example 3.3.8. Suppose water is flowing in a pipe as in fig 3.7. Suppose it

does not depends on time. Then it is given by a vector field.

Figure 3.7: Water flow in a pipe

x

y

O

Figure 3.8: The vector field −yi+xj√
x2+y2

describes the drain of bathtub

Example 3.3.9. Find the flow line of F = −yi+ xj.
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sol. Let x(t) = (x(t), y(t)) be the flow line. Then

x′(t) = −y(t)

y′(t) = x(t).

From this, one can easily verify x(t) = (a cos t, a sin t) satisfies

x′(t) = F(x(t)).

Or one can obtain

x′′(t) = −x(t).

Solving this we get the similar solution. Others may be

x(t) = (r cos(t− t0), r sin(t− t0)).

Example 3.3.10. Find the flow line of the vector field F. (Fig 3.8)

F(x, y) =
−yi+ xj
√

x2 + y2
, (x, y) 6= (0, 0).

Let x(t) = (x(t), y(t)) be the flow line. Then x′(t) = (x′(t), y′(t)) must be

F(x(t)). Hence

x′(t) =
−y(t)

√

x(t)2 + y(t)2
(3.3)

y′(t) =
x(t)

√

x(t)2 + y(t)2
. (3.4)

Multiply first by x(t) and second by y(t). Then adding we get

x′(t)x(t) + y′(t)y(t) = 0.

Integrating

x(t)2 + y(t)2 = C

for some constant C. Let C = r2. This is equation for circle. So we can
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parameterize it by trig function.

x(t) = (x(t), y(t)) = (r cos θ(t), r sin θ(t)).

Hence

x′(t) = −rθ′(t) sin θ(t) (3.5)

y′(t) = rθ′(t) cos θ(t) (3.6)

From (3.3) - (3.6), x′(t) = −y/r = − sin θ,

−rθ′(t) sin θ(t) = − sin θ(t).

Hence

θ′(t) =
1

r
.

So the flow line x(t) is

x(t) = (x(t), y(t)) = (r cos
t

r
, r sin

t

r
).

The period of x(t) is 2πr.

Example 3.3.11. Show that F(x, y) = xi−yj is a gradient field and find flow

line

sol. Suppose F is a gradient field of f(x, y) then

∂f

∂x
i+

∂f

∂y
j = xi− yj.

Find f(x, y) such that
∂f

∂x
= x,

∂f

∂y
= −y.

Hence f(x, y) = 1
2(x

2 − y2). The flow line is obtained by solving

x′(t) = x(t), y′(t) = y(t).
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3.4 Divergence and curl and del operator

For divergence and curl operations(PROCESS), we make use of the del op-

erator defined by

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
(3.7)

It works like this: For scalar functions, it works as the gradient f :

∇f =

(

i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)

f = i
∂f

∂x
+ j

∂f

∂y
+ k

∂f

∂z
.

It can also act on vector functions. It is called ‘divergence’.

Divergence

Definition 3.4.1 (Divergence). If F = F1i+F2j+F3k is a vector field, then

the divergence of F is the scalar field defined by

divF =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z

=
( ∂

∂x
i+

∂

∂y
j+

∂

∂z
k
)

·
(

F1i+ F2j+ F3k
)

= ∇ · F,

where

∇ = e1
∂

∂x1
+ e2

∂

∂x2
+ · · ·+ en

∂

∂xn

is the del operator. Similarly, for n-variable functions, we define

divF =
n
∑

i=1

∂Fi

∂xi
=

∂F1

∂x1
+

∂F2

∂x2
+ · · · + ∂Fn

∂xn
.

Example 3.4.2. Find the divergence of F = (ex sin y, ex cos y, yz2).

sol.

divF =
∂

∂x
(ex sin y) +

∂

∂y
(ex cos y) +

∂

∂z
(yz2)

= ex sin y + (−ex sin y) + 2yz = 2yz.
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Figure 3.9: vector field (x, y) and (−x,−y)

Example 3.4.3.

F = x2yi+ zj+ xyzk.

Meaning of divergence

Suppose F represent the velocity of a gas or fluid. Then divergence represents

the rate of expansion per unit volume: If divF(P ) > 0 then it is ex-

panding. If ( divF(P ) < 0) then it is compressing. More precisely, if V (t)

represent the volume of a region occupied by the fluid at time t, then it can

be shown that
1

V (0)

d

dt
V (t)

∣

∣

∣

∣

t=0

≈ divF(x0).

If divF ≡ 0 everywhere, then we say the fluid is incompressible(Solenoidal).

Example 3.4.4. Draw flow lines of the following vector fields:

(a)F = xi+ yj, (b)F = −xi− yj.

The divergence of the first one is positive, while that of second is negative(See

Figure 3.9).
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Figure 3.10: F = xi− yj is volume preserving(incompressible)

Example 3.4.5. The vector field F = xi − yj is divergence free. The flow

lines are as in figure 3.10.

Curl operator

We define the curl of a vector field F : X ⊂ R
3 → R

3 using the symbol ∇ and

cross product:

curlF ≡ ∇×F =

∣

∣

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

∣

∣

∣

∣

∣

∣

∣

∣

=
(∂F3

∂y
− ∂F2

∂z

)

i+
(∂F1

∂z
− ∂F3

∂x

)

j+
(∂F2

∂x
− ∂F1

∂y

)

k.

Example 3.4.6. Let F = xi+ xyj+ k. Find ∇× F.

∇× F =

∣

∣

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

x xy 1

∣

∣

∣

∣

∣

∣

∣

∣

= 0i− 0j+ yk.
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Example 3.4.7. Let F = xyi− sin zj+ k. Find ∇× F.

∇× F =

∣

∣

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

xy − sin z 1

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∂
∂y

∂
∂z

− sin z 1

∣

∣

∣

∣

∣

i−
∣

∣

∣

∣

∣

∂
∂z

∂
∂z

xy 1

∣

∣

∣

∣

∣

j+

∣

∣

∣

∣

∣

∂
∂x

∂
∂y

xy sin z

∣

∣

∣

∣

∣

k

= cos zi− xk.

Meaning of curl

b

b

b

O y

x

L

z

α Q

B

w

r

v
θ

Figure 3.11: velocity v and angular velocity w has relation v = w × r.

Consider a rigid body B rotating about an axis L. (Fig 3.11 ). The

rotational motion of B can be described by a vector along axis of

rotation w. Let w the vector along z-axis s.t. ω = ||w||. The vector w is

called the angular velocity vector and ω is angular speed.

Assume L is z-axis Q is any point on the body B, α is distance from Q

to L. Then α = ||r|| sin θ (r points to Q). Consider the tangent vector v

at Q. Since Q moves around a circle of radius α and parallel to xy-plane

(counterclockwise), we see,

||v|| = ωα = ω||r|| sin θ = ||w||||r|| sin θ,
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Then by definition of cross product,

v = w × r.

Since w = ωk, r = xi+ yj+ zk we see from the property of cross product,

v = w × r = −ωyi+ ωxj.

So curlv = 2ωk = 2w. Hence for the rotation of a rigid body, the curl is

a vector field whose direction is along the axis of rotation and magnitude is

twice the angular speed.

Curl and rotational flow

∇×F represents twice the angular velocity: So if it is 0, then we have irrota-

tional fluid.

Example 3.4.8. Find curlF when F(x, y, z) = (yi− xj)/(x2 + y2) in R
3.

sol. Write F(x, y, z) =
y

x2 + y2
i+ −x

x2 + y2
j+ 0k. Then we see

∇× F =

∣

∣

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

y
x2 + y2

−x
x2 + y2

0

∣

∣

∣

∣

∣

∣

∣

∣

=

[

∂

∂x

( −x

x2 + y2

)

− ∂

∂y

( y

x2 + y2

)

]

k

=

[−(x2 + y2)− (−x)(2x)

(x2 + y2)2
− (x2 + y2)− (y)(2y)

(x2 + y2)2

]

k

=

[

x2 − y2

(x2 + y2)2
− x2 − y2

(x2 + y2)2

]

k

= 0.

Gradients are curl Free

Theorem 3.4.9. For any C2 function

∇× (∇f) = 0.
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Proof.

∇×∇f =

∣

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

∂f
∂x

∂f
∂y

∂f
∂z

∣

∣

∣

∣

∣

∣

∣

=

(

∂2f

∂y∂z
− ∂2f

∂z∂y

)

i+

(

∂2f

∂z∂zx
− ∂2f

∂x∂z

)

j+

(

∂2f

∂x∂y
− ∂2f

∂y∂x

)

k.

b

(a) F = (yi− xj)/(x2 + y2)

b

(b) F = yi− xj

Figure 3.12: Movement of small paddle in vector fields

Remark 3.4.10. Vector field F(x, y, z) = (yi−xj)/(x2+y2)(It describes flow

in a tub) does not rotate about any point except z-axis. When small paddle

is placed in the fluid, it will follow the flow line( a circle in this case), but it

does not rotate about its own axis. Such a field is called irrotational.

But the vector field F(x, y, z) = yi−xj has nonzero rotation. (fig 3.12(b) ).

Curls are divergence free

Theorem 3.4.11. For any C2 vector field F

div curlF = ∇ · (∇× F) = 0.

Example 3.4.12. Curl of earth or any planet is nonzero, except one. What

is the exception?
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Physical meaning of divergence

Let

F(x, y, z) = (F1, F2, F3) = F1i+ F2j+ F3k

be a velocity vector field of some fluid in R
3.

O

x

y

z

∆W = ∆x∆y∆z

bc

bc

∆x ∆y

∆z

(x, y, z)

Figure 3.13: Geometric meaning of divergence

Fig 3.13. Consider a box W with dimension ∆x,∆y,∆z Then volume of

W is ∆W = ∆x∆y∆z. Consider the loss of fluid across W per unit time.

First consider fluid loss through left side of W whose area is ∆x∆z. (Consider

F2 only). The outflux is

F(x, y, z) · (−j)∆x∆z = −F2(x, y, z)∆x∆z.

And the influx is

F(x, y +∆y, z) · j∆x∆z = F2(x, y +∆y, z)∆x∆z.

(

F2(x, y +∆y, z)− F2(x, y, z)
)

∆x∆z ≈
(∂F2

∂y
∆y

)

∆x∆z.

Considering all the direction, the change in fluid acrossW per unit time is(total

flux)
(∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z

)

∆x∆y∆z.

Now divide by volume ∆W

density of flux/time =
Flux across boundary

vol
≈

(∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z

)

.

Let ∆x,∆y,∆z → 0 Then fluid density of F is divF. If F is gas, then divF

represents the rate of expansion of gas per unit time per unit volume. If
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F(x, y, z) = xi+ yj+ zk, then divF = 3 and this means the gas is expanding

three times per unit time.
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