Chapter 1

The geometry of Euclidean Space

We consider the basic operations on vectors in 3 and 3 dim. space: vector addition, scalar multiplication, dot product and cross product. In section 1.6 we generalize these notions to n dim'l space.

1.1 Vectors in 2, 3 dim space

Definition 1.1.1. A vector in $\mathbf{R}^{n}, n=2,3$ is an ordered pair(triple) of real numbers, such as

$$
\left(a_{1}, a_{2}\right), \text { or }\left(a_{1}, a_{2}, a_{3}\right) .
$$

a_{1}, a_{2} are called x coordinate, y coordinate or x component, y component of $\left(a_{1}, a_{2}\right)$. The point $(0,0)$ is called the origin and denoted by O.
$\mathbf{a}=\left(a_{1}, a_{2}\right)$ or $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ will be standard notation for vectors. A point P is represented by ordered pairs of real numbers $\left(a_{1}, a_{3}\right)$ called Cartesian coordinate) of P.
(1) The set of all real numbers is denoted by \mathbb{R}.
(2) The set of all ordered pairs of real numbers (x, y) is denoted by \mathbb{R}^{2}.
(3) The set of all ordered triples of real numbers (x, y, z) is denoted by \mathbb{R}^{3}.

Vectors are identified with points in the plane or space.

$$
\mathbb{R}^{2}=\left\{\left(a_{1}, a_{2}\right) \mid a_{1} \in \mathbb{R}, a_{2} \in \mathbb{R}\right\}
$$

Figure 1.1: Coordinate plane
The planes in \mathbb{R}^{3} determined by $z=0$, (resp. $x=0$ and $y=0$) are called

Figure 1.2: quadrant
$x y$-plane, (resp. $y z$-plane, $z x$-plane) These planes divides the space into eight parts: Each of them is called octant. If every component is positive, it is called the first octant.

Example 1.1.2. (1) The $x z$-plane is the set of all points with $y=0$.

$$
\{(x, y) \mid y=0\}
$$

(2) Similarly, the $x y$-plane is determined by $z=0$.

$$
\{(x, y, z) \mid z=0\}
$$

(3) x-axis is determined by

$$
\left\{\begin{array}{l}
y=0 \\
z=0
\end{array}\right.
$$

or

$$
\{(x, y, z) \mid y=0, z=0\}
$$

Vector addition and scalar multiplication-algebraic view

The operation of addition can be extended to \mathbb{R}^{3}. Given two triples, $\mathbf{a}=$ $\left(a_{1}, a_{2}, a_{3}\right), \mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$, we define

$$
\mathbf{a}+\mathbf{b}=\left(a_{1}, a_{2}, a_{3}\right)+\left(b_{1}, b_{2}, b_{3}\right)=\left(a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right)=\mathbf{b}+\mathbf{a}
$$

to be the sum of (a_{1}, a_{2}, a_{3}) and (b_{1}, b_{2}, b_{3}). The vector $\mathbf{0}=(0,0,0)$ is the zero element. The vector $-\left(a_{1}, a_{2}, a_{3}\right)=\left(-a_{1},-a_{2},-a_{3}\right)$ is called the additive inverse or negative of (a_{1}, a_{2}, a_{3}).

Commutative law and associate law for additions:
(i) $(x, y, z)+(u, v, w)=(u, v, w)+(x, y, z) \quad$ (commutative law)
(ii) $((x, y, z)+(u, v, w))+(l, m, n)$
$=(x, y, z)+((u, v, w)+(l, m, n)) \quad$ (associate law)
The difference is defined as

$$
\left(a_{1}, a_{2}, a_{3}\right)-\left(b_{1}, b_{2}, b_{3}\right)=\left(a_{1}-b_{1}, a_{2}-b_{2}, a_{3}-b_{3}\right) .
$$

Example 1.1.3.

$$
\begin{aligned}
(6,0,2)+(-10,3,2) & =(-4,3,4) \\
(3,0,3)-(5,0,-2) & =(-2,0,5) \\
(0,0,0)+(1,3,2) & =(1,3,2)
\end{aligned}
$$

For any real α, and $\left(a_{1}, a_{2}, a_{3}\right)$ in \mathbb{R}^{3}, scalar multiple $\alpha\left(a_{1}, a_{2}, a_{3}\right)$ is defined as

$$
\alpha\left(a_{1}, a_{2}, a_{3}\right)=\left(\alpha a_{1}, \alpha a_{2}, \alpha a_{3}\right)
$$

Additions and scalar multiplication has the following properties:
(i) $(\alpha \beta)(x, y, z)=\alpha(\beta(x, y, z)) \quad$ (associate law)
(ii) $(\alpha+\beta)(x, y, z)=\alpha(x, y, z)+\beta(x, y, z) \quad$ (distributive law)
(iii) $\alpha((x, y, z)+(u, v, w))=\alpha(x, y, z)+\alpha(u, v, w) \quad$ (distributive law)
(iv) $\alpha(0,0,0)=(0,0,0)$
(v) $0(x, y, z)=(0,0,0)$
(vi) $1(x, y, z)=(x, y, z)$
(property of 0)
(property of 0)
(property of 1)

Example 1.1.4.

$$
\begin{aligned}
3(6,-3,2) & =(18,-9,6) \\
1(3,5,-2) & =(3,5,-2) \\
0(1,3,2) & =(0,0,0) \\
(-2)(-2,1,3) & =(4,-2,-6)
\end{aligned}
$$

$$
\begin{aligned}
(x, y)+(u, v) & =(x+u, y+v) \\
\alpha(x, y) & =(\alpha x, \alpha y)
\end{aligned}
$$

Example 1.1.5. Show
(1) $(\alpha+\beta)(x, y)=\alpha(x, y)+\beta(x, y)$
(2) $\alpha((x, y)+(u, v))=\alpha(x, y)+\alpha(u, v)$
sol. (1) LHS is

$$
\begin{aligned}
(\alpha+\beta)(x, y) & =((\alpha+\beta) x,(\alpha+\beta) y) \\
& =(\alpha x+\beta x, \alpha y+\beta y) \\
& =(\alpha x, \alpha y)+(\beta x, \beta y) \\
& =\alpha(x, y)+\beta(x, y)
\end{aligned}
$$

(2) LHS is

$$
\begin{aligned}
\alpha((x, y)+(u, v)) & =\alpha(x+u, y+v) \\
& =(\alpha(x+u), \alpha(y+v)) \\
& =(\alpha x+\alpha u, \alpha y+\alpha v) \\
& =(\alpha x, \alpha y)+(\alpha u, \alpha v) \\
& =\alpha(x, y)+\alpha(u, v)
\end{aligned}
$$

Figure 1.3: point $P\left(a_{1}, a_{2}, a_{3}\right)$

Vectors-Geometric view

We associate a vector a with a point $\left(a_{1}, a_{2}, a_{3}\right)$ in the space. Thus, we can visualize it with a position vector $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$. One can also interpret a vector as directed line segment having an initial point (Usually the initial point is at the origin), i.e, a line segment with specified magnitude and direction, and initial point at the origin. Vectors are usually denoted by boldface such as a or \vec{a}.

The elements in \mathbb{R}^{3} are not only ordered triple of numbers, but are also regarded as vectors. We call a_{1}, a_{2} and a_{3} the components of \mathbf{a}. The triple $(0,0,0)$ is called (zero vector) denoted by $\mathbf{0}$ or $\overrightarrow{0}$.

Two vectors $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$ are equal if $a_{1}=b_{1}, a_{2}=b_{2}$ and $a_{3}=b_{3}$. Geometrically, this means they have the same direction and magnitude.

Geomteric representation of vectors

See Figure 1.4. The directed line segment $P Q$ from P to Q is denoted by $\overrightarrow{P Q} . P$ and Q are called tail and head respectively. The vector with tail at origin is called position vector. If we move the vector in parallel, we regard it as the same vector. In other words, a vector is determined by direction and magnitude. Referring the parallelogram $A B D C$ in Figure 1.4, we see $\overrightarrow{A B}=\overrightarrow{C D}$ and $\overrightarrow{A C}=\overrightarrow{B D}$.

See figure 1.5 (1). If two vectors \mathbf{u}, \mathbf{v} have same tail P, we define the sum of \mathbf{u} and \mathbf{v} as the vector $\mathbf{u}+\mathbf{v}$ having position at the opposite vertex of the parallelogram.

Figure 1.4: vector

Figure 1.5: sum of two vectors

Figure 1.6: \mathbf{v} and $-\mathbf{v}$

Figure 1.7: scalar multiple of \mathbf{v}
(i) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
(ii) $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
(commutative law)
(associate law)
Scalar multiple of a vector. For real s and vector $\mathbf{v}, s \mathbf{v}$ is the vector having magnitude $|s|$, having same direction as \mathbf{v} when $s>0$, opposite direction when $s<0 . s$ is called scalar $s \mathbf{v}$ is the scalar multiple of \mathbf{v} (Fig 1.11). The following hold:
(iii) $(s t) \mathbf{u}=s(t \mathbf{u})$
(iv) $(s+t) \mathbf{u}=s \mathbf{u}+t \mathbf{u}$
$(\mathbf{v}) ~ s(\mathbf{u}+\mathbf{v})=s \mathbf{u}+s \mathbf{v}$
(vi) $s 0=0$
(vii) $0 \mathbf{u}=\mathbf{0}$
(viii) $1 \mathbf{u}=\mathbf{u}$ (associative law)
(distributive law)
(distributive law)
(0-vector)

Example 1.1.6. Show that $(-s) \mathbf{v}=-(s \mathbf{v})$ for any scalar s and vector \mathbf{v}.
Example 1.1.7 (3D).

$$
\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)
$$

a_{1}, a_{2}, a_{3} are called x-component, y-component, z-component of a. As in figure 1.8 when $A=\left(a_{1}, a_{2}, a_{3}\right)$ shift the line segment $O A$ by b_{1} along x axis, by b_{2} along y-axis, b_{3} along z-axis is denoted by $B P$. Then the coordinate of B is $\left(b_{1}, b_{2}, b_{3}\right), P$ is $\left(a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right)$ and $O B P A$ is parallelogram. Hence

$$
\overrightarrow{O A}+\overrightarrow{O B}=\overrightarrow{O P}
$$

In vector notation, we have

$$
\left(a_{1}, a_{2}, a_{3}\right)+\left(b_{1}, b_{2}, b_{3}\right)=\left(a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right)
$$

Figure 1.8: Addition

Figure 1.9: standard basis vector
similarly

$$
\alpha\left(a_{1}, a_{2}, a_{3}\right)=\left(\alpha a_{1}, \alpha a_{2},, \alpha a_{3}\right)
$$

Standard basis vectors

Definition 1.1.8. The following vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are called (standard basis vector) of \mathbb{R}^{3} (Figure 1.13).

$$
\mathbf{i}=(1,0,0), \mathbf{j}=(0,1,0), \mathbf{k}=(0,0,1)
$$

Remark 1.1.9. (1) For a given $\mathbf{v}=\left(a_{1}, a_{2}, a_{3}\right)$

$$
\left(a_{1}, a_{2}, a_{3}\right)=a_{1}(1,0,0)+a_{2}(0,1,0)+a_{3}(0,0,1)
$$

we write $\mathbf{v}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$

Example 1.1.10. Write the following using standard basis vectors.
(1) $\mathbf{v}=(-1 / 2,3,5)$
(2) Express $3 \mathbf{a}-2 \mathbf{b}$ when $\mathbf{a}=(3,5,0), \mathbf{b}=(-4,1,1)$
(3) For two points $P(1,4,3), Q(4,1,2)$, express $\overrightarrow{P Q}$
(4) For three points $A(0,-1,4), B(2,4,1), C(3,0,2)$, express

$$
\frac{1}{2} \overrightarrow{O A}+\frac{1}{3} \overrightarrow{O B}+\frac{1}{6} \overrightarrow{O C}
$$

sol. (1) $\mathbf{v}=(-1 / 2) \mathbf{i}+3 \mathbf{j}+5 \mathbf{k}$
(2) $3 \mathbf{a}-2 \mathbf{b}=3(3 \mathbf{i}+5 \mathbf{j})-2(-4 \mathbf{i}+\mathbf{j}+\mathbf{k})$

$$
=(9+8) \mathbf{i}+(15-2) \mathbf{j}+(-2) \mathbf{k}=17 \mathbf{i}+13 \mathbf{j}-2 \mathbf{k}
$$

(3) $\overrightarrow{P Q}=(4-1) \mathbf{i}+(1-4) \mathbf{j}+(2-3) \mathbf{k}=3 \mathbf{i}-3 \mathbf{j}-\mathbf{k}$
(4) $(1 / 2) \overrightarrow{O A}+(1 / 3) \overrightarrow{O B}+(1 / 6) \overrightarrow{O C}$
$=(1 / 2)(-\mathbf{j}+4 \mathbf{k})+(1 / 3)(2 \mathbf{i}+4 \mathbf{j}+\mathbf{k})+(1 / 6)(3 \mathbf{i}+2 \mathbf{k})$
$=(7 / 6) \mathbf{i}+(5 / 6) \mathbf{j}+(8 / 3) \mathbf{k}$

1.2 More about vectors

Parametric equation of lines(Point-Direction form)

Figure 1.10: A line is determined by a point and a vector

$$
\ell(t)=\overrightarrow{O P}_{0}+t \overrightarrow{P_{0} P}=\mathbf{b}+t \mathbf{a}
$$

The equation of the line ℓ through the tip of $O \vec{P}_{0}$ and pointing in the direction of $\overrightarrow{P_{0} P}$ is $\ell(t)=\mathbf{b}+t \mathbf{a}$ where t takes all real values. In coordinate form, we have

$$
\begin{aligned}
& x=x_{1}+a t, \\
& y=y_{1}+b t, \\
& z=z_{1}+c t,
\end{aligned}
$$

where $\mathbf{b}=\left(x_{1}, y_{1}, z_{1}\right)$ and $\mathbf{a}=(a, b, c)$.
Example 1.2.1. (1) Find equation of line through $(2,1,5)$ in the direction of $4 \mathbf{i}-2 \mathbf{j}+5 \mathbf{k}$.
(2) In what direction, the the line $x=3 t-2, y=t-1, z=7 t+4$ points?
sol. (1) $\mathbf{v}=(2,1,5)+t(4,-2,5)$
(2) $(3,1,7)=3 \mathbf{i}+\mathbf{j}+7 \mathbf{k}$.

Example 1.2.2. Does the two lines $(x, y, z)=(t,-6 t+1,2 t-8)$ and $(3 t+$ $1,2 t, 0)$ intersect ?
sol. If two line intersect, we must have

$$
\left(t_{1},-6 t_{1}, 2 t_{1}-8\right)=\left(3 t_{2}+1,2 t_{2}, 0\right)
$$

for some numbers t_{1}, t_{2}. (Note: we have used two different parameters t_{1} and t_{2}). But since the system of equation

$$
\begin{aligned}
t_{1} & =3 t_{2}+1 \\
-6 t_{1} & =2 t_{2} \\
2 t_{1}-8 & =0
\end{aligned}
$$

has no solution, the lines do not meet.

Two point form

We describe the equation of line through two points \mathbf{a}, \mathbf{b}.

The direction is given by $\mathbf{v}=\mathbf{b}-\mathbf{a}$. So by point -direction form

$$
\ell(t)=\mathbf{a}+t(\mathbf{b}-\mathbf{a}) .
$$

If $P=\left(x_{1}, y_{1}, z_{1}\right)$ is the tip of a and $Q=\left(x_{2}, y_{2}, z_{2}\right)$ is the tip of \mathbf{b}, then $\mathbf{v}=\left(x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right)$. Writing it componentwise, we see

$$
\begin{aligned}
x & =x_{1}+\left(x_{2}-x_{1}\right) t \\
y & =y_{1}+\left(y_{2}-y_{1}\right) t \\
z & =z_{1}+\left(z_{2}-z_{1}\right) t
\end{aligned}
$$

Solving these for t, we see

$$
t=\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}
$$

This is another equation of line.

Example 1.2.3. Find eq. of a line through $(2,1,-3)$ and $(6,-1,-5)$.

Example 1.2.4. Find eq. of line segment between $(1,1,-3)$ and $(2,-1,0)$
sol. $0 \leq t \leq 1$

Figure 1.27 The result of the wheel in Figure 1.26 rolling through a central angle of t.

Figure $1.28 \overrightarrow{A P}$ with its tail at the origin.

The last two equations of (9) yield

$$
t_{2}=5 t_{1}+6=-2 t_{1}-1 \quad \Rightarrow \quad t_{1}=-1 .
$$

Using $t_{1}=-1$ in the second equation of (9), we find that $t_{2}=1$. Note that the values $t_{1}=-1$ and $t_{2}=1$ also satisfy the first equation of (9); therefore, we have solved the system. Setting $t=-1$ in the set of parametric equations for the first line gives the desired intersection point, namely, $(0,1,2)$.

Parametric Equations in General

Vector geometry makes it relatively easy to find parametric equations for a variety of curves. We provide two examples.

EXAMPLE 7 If a wheel rolls along a flat surface without slipping, a point on the rim of the wheel traces a curve called a cycloid, as shown in Figure 1.26.

Figure 1.26 The graph of a cycloid.
Suppose that the wheel has radius a and that coordinates in \mathbf{R}^{2} are chosen so that the point of interest on the wheel is initially at the origin. After the wheel has rolled through a central angle of t radians, the situation is as shown in Figure 1.27. We seek the vector $\overrightarrow{O P}$, the position vector of P, in terms of the parameter t. Evidently, $\overrightarrow{O P}=\overrightarrow{O A}+\overrightarrow{A P}$, where the point A is the center of the wheel. The vector $\overrightarrow{O A}$ is not difficult to determine. Its \mathbf{j}-component must be a, since the center of the wheel does not vary vertically. Its i-component must equal the distance the wheel has rolled; if t is measured in radians, then this distance is $a t$, the length of the arc of the circle having central angle t. Hence, $\overrightarrow{O A}=a t \mathbf{i}+a \mathbf{j}$.

The value of vector methods becomes apparent when we determine $\overrightarrow{A P}$. Parallel translate the picture so that $\overrightarrow{A P}$ has its tail at the origin, as in Figure 1.28. From the parametric equations of a circle of radius a,

$$
\overrightarrow{A P}=a \cos \left(\frac{3 \pi}{2}-t\right) \mathbf{i}+a \sin \left(\frac{3 \pi}{2}-t\right) \mathbf{j}=-a \sin t \mathbf{i}-a \cos t \mathbf{j}
$$

from the addition formulas for sine and cosine. We conclude that

$$
\begin{aligned}
\overrightarrow{O P}=\overrightarrow{O A}+\overrightarrow{A P} & =(a t \mathbf{i}+a \mathbf{j})+(-a \sin t \mathbf{i}-a \cos t \mathbf{j}) \\
& =a(t-\sin t) \mathbf{i}+a(1-\cos t) \mathbf{j}
\end{aligned}
$$

so the parametric equations are

$$
\left\{\begin{array}{l}
x=a(t-\sin t) \\
y=a(1-\cos t)
\end{array}\right.
$$

EXAMPLE 8 If you unwind adhesive tape from a nonrotating circular tape dispenser so that the unwound tape is held taut and tangent to the dispenser roll, then the end of the tape traces a curve called the involute of the circle. Let's find the parametric equations for this curve, assuming that the dispensing roll has constant radius a and is centered at the origin. (As more and more tape is unwound, the radius of the roll will, of course, decrease. We'll assume that little enough tape is unwound so that the radius of the roll remains constant.)

Considering Figure 1.29 , we see that the position vector $\overrightarrow{O P}$ of the desired point P is the vector sum $\overrightarrow{O B}+\overrightarrow{B P}$. To determine $\overrightarrow{O B}$ and $\overrightarrow{B P}$, we use the angle θ between the positive x-axis and $\overrightarrow{O B}$ as our parameter. Since B is a point on the circle,

$$
\overrightarrow{O B}=a \cos \theta \mathbf{i}+a \sin \theta \mathbf{j}
$$

Figure 1.29 Unwinding tape, as in Example 8. The point P describes a curve known as the involute of the circle.

To find the vector $\overrightarrow{B P}$, parallel translate it so that its tail is at the origin. Figure 1.30 shows that $\overrightarrow{B P}$'s length must be $a \theta$, the amount of unwound tape, and its direction must be such that it makes an angle of $\theta-\pi / 2$ with the positive x-axis. From our experience with circular geometry and, perhaps, polar coordinates, we see that $\overrightarrow{B P}$ is described by

$$
\overrightarrow{B P}=a \theta \cos \left(\theta-\frac{\pi}{2}\right) \mathbf{i}+a \theta \sin \left(\theta-\frac{\pi}{2}\right) \mathbf{j}=a \theta \sin \theta \mathbf{i}-a \theta \cos \theta \mathbf{j}
$$

Hence,

$$
\overrightarrow{O P}=\overrightarrow{O B}+\overrightarrow{B P}=a(\cos \theta+\theta \sin \theta) \mathbf{i}+a(\sin \theta-\theta \cos \theta) \mathbf{j}
$$

So

$$
\left\{\begin{array}{l}
x=a(\cos \theta+\theta \sin \theta) \\
y=a(\sin \theta-\theta \cos \theta)
\end{array}\right.
$$

are the parametric equations of the involute, whose graph is pictured in Figure 1.31.

Figure 1.11: Cycloid

Assume a circle of radius a is rolling on the x-axis. Let P be a point on the circle located at the origin in the beginning. As the circle rolls, P starts to move from the origin. (Fig 1.11) The trajectory of P is called a cycloid. If circle rotates by t radian, then $P=(x, y)$ is given by

$$
\begin{equation*}
x=a t+a \cos \theta, \quad y=a+a \sin \theta . \tag{1.1}
\end{equation*}
$$

Since $\theta=\frac{3 \pi}{2}-t, \cos \theta=-\sin t, \sin \theta=-\cos t$, we have

$$
x=a(t-\sin t), \quad y=a(1-\cos t) .
$$

1.3 Inner product, length, distance

Dot product-Inner product

Definition 1.3.1. Given two vectors $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$ and $\mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}$ we define

$$
a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

to be the dot product or (inner product) of \mathbf{a} and \mathbf{b} and write $\mathbf{a} \cdot \mathbf{b}$.
Example 1.3.2. Let $\mathbf{a}=2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}, \mathbf{b}=\mathbf{i}+2 \mathbf{j}-\mathbf{k}$. Find
(1) $\mathbf{a} \cdot \mathbf{a}$
(2) $\mathbf{a} \cdot \mathbf{b}$
(3) $\mathbf{a} \cdot(\mathbf{a}-3 \mathbf{b})$
(4) $(3 \mathbf{a}+2 \mathbf{b}) \cdot(\mathbf{a}-\mathbf{b})$
sol. (1) $\mathbf{a} \cdot \mathbf{a}=4+9+1=14$
(2) $\mathbf{a} \cdot \mathbf{b}=2-6-1=-5$
(3) $\mathbf{a} \cdot(\mathbf{a}-3 \mathbf{b})=(2 \mathbf{i}-3 \mathbf{j}+\mathbf{k}) \cdot(-\mathbf{i}-9 \mathbf{j}+4 \mathbf{k})$

$$
=-2+27+4=29
$$

(4) $(3 \mathbf{a}+2 \mathbf{b}) \cdot(\mathbf{a}-\mathbf{b})=(8 \mathbf{i}-5 \mathbf{j}+\mathbf{k}) \cdot(\mathbf{i}-5 \mathbf{j}+2 \mathbf{k})$

$$
=8+25+2=35
$$

Proposition 1.3.3 (Properties of Inner Product). For vectors a, b, cand scalar α, the following hold:
(1) $\mathbf{a} \cdot \mathbf{a} \geq 0$ (equality holds only when $\mathbf{a}=\mathbf{0}$)
(2) $\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a}$
(3) $(\mathbf{a}+\mathbf{b}) \cdot \mathbf{c}=\mathbf{a} \cdot \mathbf{c}+\mathbf{b} \cdot \mathbf{c}$
(4) $(\alpha \mathbf{a}) \cdot \mathbf{b}=\alpha(\mathbf{a} \cdot \mathbf{b})$
(5) $\|\mathbf{a}\|=\sqrt{\mathbf{a} \cdot \mathbf{a}}$

Proof. These can be proved easily.
Example 1.3.4. For a, b, c Show the following.
(1) $(\mathbf{a}-\mathbf{b}) \cdot \mathbf{c}=\mathbf{a} \cdot \mathbf{c}-\mathbf{b} \cdot \mathbf{c}$
(2) $\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c}$
(3) $\mathbf{a} \cdot(\mathbf{b}-\mathbf{c})=\mathbf{a} \cdot \mathbf{b}-\mathbf{a} \cdot \mathbf{c}$
(4) $\mathbf{a} \cdot \mathbf{b}=\frac{1}{2}\left(\|\mathbf{a}\|^{2}+\|\mathbf{b}\|^{2}-\|\mathbf{a}-\mathbf{b}\|^{2}\right)$
sol. We see
(1) $(\mathbf{a}-\mathbf{b}) \cdot \mathbf{c}=(\mathbf{a}+(-1) \mathbf{b})) \cdot \mathbf{c}=\mathbf{a} \cdot \mathbf{c}+((-1) \mathbf{b}) \cdot \mathbf{w}$ $=\mathbf{a} \cdot \mathbf{c}+(-1) \mathbf{b} \cdot \mathbf{c}=\mathbf{a} \cdot \mathbf{c}-\mathbf{b} \cdot \mathbf{c}$
(2) $\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=(\mathbf{b}+\mathbf{c}) \cdot \mathbf{a}=\mathbf{b} \cdot \mathbf{a}+\mathbf{c} \cdot \mathbf{a}=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c}$
(3) $\mathbf{a} \cdot(\mathbf{b}-\mathbf{c})=(\mathbf{b}-\mathbf{c}) \cdot \mathbf{a}=\mathbf{b} \cdot \mathbf{a}-\mathbf{c} \cdot \mathbf{a}=\mathbf{a} \cdot \mathbf{b}-\mathbf{a} \cdot \mathbf{c}$
(4) $\|\mathbf{a}-\mathbf{b}\|^{2}=(\mathbf{a}-\mathbf{b}) \cdot(\mathbf{a}-\mathbf{b})=\mathbf{a} \cdot(\mathbf{a}-\mathbf{b})-\mathbf{b} \cdot(\mathbf{a}-\mathbf{b})$

$$
=\mathbf{a} \cdot \mathbf{a}-\mathbf{a} \cdot \mathbf{b}-\mathbf{b} \cdot \mathbf{a}+\mathbf{b} \cdot \mathbf{b}=\|\mathbf{a}\|^{2}-2 \mathbf{a} \cdot \mathbf{b}+\|\mathbf{b}\|^{2}
$$

Figure 1.12: Angle between two vectors

Length of vectors

The length, norm of a vector $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ is

$$
\sqrt{\left(a_{1}-0\right)^{2}+\left(a_{2}-0\right)^{2}+\left(a_{3}-0\right)^{2}}=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}
$$

denoted by $\|\mathbf{a}\|$. Also we note that

$$
\|\mathbf{a}\|=(\mathbf{a} \cdot \mathbf{a})^{1 / 2}
$$

Example 1.3.5. Find the lengths of the following vectors.
(1) $\mathbf{a}=(3,2,1)$
(2) $3 \mathbf{i}-4 \mathbf{j}+\mathbf{k}$
(3) $\overrightarrow{A B}$ when $A(2,-1 / 3,-1), B(8 / 3,0,1)$.
sol. (1) $\|\mathbf{a}\|=\sqrt{9+4+1}=\sqrt{14}$
(2) $\|3 \mathbf{i}-4 \mathbf{j}+\mathbf{k}\|=\sqrt{9+16+1}=\sqrt{26}$
(3) $\|\overrightarrow{A B}\|=\sqrt{(8 / 3-2)^{2}+(0-(-1 / 3))^{2}+(1-(-1))^{2}}$
$=\sqrt{4 / 9+1 / 9+4}=\sqrt{41} / 3$

Definition 1.3.6. A vector with norm 1 is called a unit vector. Any nonzero vector a can be made into a unit vector by setting $\mathbf{a} /\|\mathbf{a}\|$. This process is called a normalization.

Example 1.3.7. Normalize the followings.
(1) $\mathbf{i}+\mathbf{j}+\mathbf{k}$
(2) $3 \mathbf{i}+4 \mathbf{k}$
(3) $a \mathbf{i}-\mathbf{j}+c \mathbf{k}$
sol. (1) $(1 / \sqrt{3}) \mathbf{i}+(1 / \sqrt{3}) \mathbf{j}+(1 / \sqrt{3}) \mathbf{k}$
(2) $(3 / 5) \mathbf{i}+(4 / 5) \mathbf{k}$
(3) $\left(a / \sqrt{1+a^{2}+c^{2}}\right) \mathbf{i}-\left(1 / \sqrt{1+a^{2}+c^{2}}\right) \mathbf{j}+\left(c / \sqrt{1+a^{2}+c^{2}}\right) \mathbf{k}$

Angle between two vectors

Proposition 1.3.8. Let \mathbf{a}, \mathbf{b} be two nonzero vectors in \mathbb{R}^{2} or \mathbb{R}^{3} and let θ be the angle between them. Then

$$
\mathbf{a} \cdot \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta .
$$

Hence

$$
\theta=\cos ^{-1} \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|\|\mathbf{b}\|}
$$

Proof. Let $\mathbf{a}=\overrightarrow{A B}, \mathbf{b}=\overrightarrow{A C}$. Then $\mathbf{a}-\mathbf{b}=\overrightarrow{C B}$. Let $\angle C A B=\theta$. Then by

Figure 1.13: law of cosine
the law of cosine (figure 1.13) we have

$$
\|\mathbf{b}-\mathbf{a}\|^{2}=\|\mathbf{a}\|^{2}+\|\mathbf{b}\|^{2}-2\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta .
$$

The left hand side is

$$
\begin{aligned}
\|\mathbf{a}-\mathbf{b}\|^{2} & =(\mathbf{a}-\mathbf{b}) \cdot(\mathbf{a}-\mathbf{b}) \\
& =\mathbf{a} \cdot \mathbf{a}-\mathbf{a} \cdot \mathbf{b}-\mathbf{b} \cdot \mathbf{a}+\mathbf{b} \cdot \mathbf{b} \\
& =\|\mathbf{a}\|^{2}-2 \mathbf{a} \cdot \mathbf{b}+\|\mathbf{b}\|^{2} .
\end{aligned}
$$

Hence we obtain

$$
\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta=\mathbf{a} \cdot \mathbf{b} .
$$

Corollary 1.3.9. Two nonzero vector \mathbf{a} and \mathbf{b} are perpendicular, orthogonal if and only if $\mathbf{a} \cdot \mathbf{b}=0$.

Example 1.3.10. Find the angle between $\mathbf{i}+\mathbf{j}+2 \mathbf{k}$ and $-\mathbf{i}+2 \mathbf{j}+\mathbf{k}$.
sol. By proposition 1.2.10,

$$
\frac{(\mathbf{i}+\mathbf{j}+2 \mathbf{k}) \cdot(-\mathbf{i}+2 \mathbf{j}+\mathbf{k})}{\|\mathbf{i}+\mathbf{j}+2 \mathbf{k}\|\|-\mathbf{i}+2 \mathbf{j}+\mathbf{k}\|}=\frac{-1+2+2}{\sqrt{1+1+4} \sqrt{1+4+1}}=\frac{3}{6}=\frac{1}{2}
$$

Hence the angle is $\cos ^{-1}(1 / 2)=\pi / 3$.

Corollary 1.3.11. Given two points $A\left(a_{1}, a_{2}, a_{3}\right), B\left(b_{1}, b_{2}, b_{3}\right)$, the area of the triangle $O A B$ is

$$
\frac{1}{2} \sqrt{\left(a_{2} b_{3}-a_{3} b_{2}\right)^{2}+\left(a_{3} b_{1}-a_{1} b_{3}\right)^{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}}
$$

Proof. Let $\overrightarrow{O A}=\mathbf{a}, \overrightarrow{O B}=\mathbf{b}, \angle B O A=\theta$. Then the area of $\triangle O A B$ is

$$
\begin{aligned}
& \frac{1}{2}|O A||O B| \sin \theta \\
= & \frac{1}{2}\|\mathbf{a}\|\|\mathbf{b}\| \sqrt{1-\cos ^{2} \theta} \\
= & \frac{1}{2} \sqrt{\|\mathbf{a}\|^{2}\|\mathbf{b}\|^{2}-(\mathbf{a} \cdot \mathbf{b})^{2}} \\
= & \frac{1}{2} \sqrt{\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)-\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)^{2}} \\
= & \frac{1}{2} \sqrt{\left(a_{2} b_{3}-a_{3} b_{2}\right)^{2}+\left(a_{3} b_{1}-a_{1} b_{3}\right)^{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2}}
\end{aligned}
$$

Example 1.3.12. Find the area of the triangle with vertices $A(a, 0,0), B(0, b, 0), C(0,0, c)$.
sol. Shift(translate) A to the origin, then the points B, C are moved to the points $(-a, b, 0)$ and $(-a, 0, c)$. Hence

$$
\frac{1}{2} \sqrt{(b c-0)^{2}+(0+a c)^{2}+(0+a b)^{2}}=\frac{1}{2} \sqrt{b^{2} c^{2}+c^{2} a^{2}+a^{2} b^{2}}
$$

Theorem 1.3.13 (Cauchy-Schwarz inequality). For any two vectors a, b

$$
|\mathbf{a} \cdot \mathbf{b}| \leq\|\mathbf{a}\|\|\mathbf{b}\|
$$

holds, and the equality holds iff \mathbf{a} and \mathbf{b} are parallel.
Proof. We may assume a, \mathbf{b} are nonzero. Let θ be the angle between \mathbf{a} and b. Then by prop 1.3.8

$$
|\mathbf{a} \cdot \mathbf{b}|=\|\mathbf{a}\|\|\mathbf{b}\||\cos \theta| \leq\|\mathbf{a}\|\|\mathbf{b}\|
$$

holds. Since $\|\mathbf{a}\|\|\mathbf{b}\| \neq 0$, if equality holds $|\cos \theta|=1$ i.e, $\theta=0$ or π. Hence \mathbf{a} and \mathbf{b} are parallel.

Remark 1.3.14. The Cauchy-Schwarz inequality reads, componentwise, as

$$
(a x+b y+c z)^{2} \leq\left(a^{2}+b^{2}+c^{2}\right)\left(x^{2}+y^{2}+z^{2}\right)
$$

Example 1.3.15. Show Cauchy-Schwarz inequality for $\mathbf{i}+3 \mathbf{j}+2 \mathbf{k},-\mathbf{i}+\mathbf{j}$.
sol. Since the inner product and lengths are

$$
\begin{aligned}
& (\mathbf{i}+3 \mathbf{j}+2 \mathbf{k}) \cdot(-\mathbf{i}+\mathbf{j})=-1+3=2, \\
& \|\mathbf{i}+3 \mathbf{j}+2 \mathbf{k}\|\|-\mathbf{i}+\mathbf{j}\|=\sqrt{1+9+4} \sqrt{1+1}=\sqrt{28}=2 \sqrt{7}
\end{aligned}
$$

we have

$$
|(\mathbf{i}+3 \mathbf{j}+2 \mathbf{k}) \cdot(-\mathbf{i}+\mathbf{j})| \leq\|\mathbf{i}+3 \mathbf{j}+2 \mathbf{k}\|\|-\mathbf{i}+\mathbf{j}\|
$$

Theorem 1.3.16 (Triangle inequality). For any two vector a, \mathbf{b} it holds that

$$
\|\mathbf{a}+\mathbf{b}\| \leq\|\mathbf{a}\|+\|\mathbf{b}\|
$$

and equality holds when \mathbf{a}, \mathbf{b} are parallel and having same direction.
Proof.

$$
\|\mathbf{a}+\mathbf{b}\|^{2}=(\mathbf{a}+\mathbf{b}) \cdot(\mathbf{a}+\mathbf{b})=\|\mathbf{a}\|^{2}+2 \mathbf{a} \cdot \mathbf{b}+\|\mathbf{b}\|^{2}
$$

By C-S

$$
\|\mathbf{a}+\mathbf{b}\|^{2} \leq\|\mathbf{a}\|^{2}+2\|\mathbf{a}\|\|\mathbf{b}\|+\|\mathbf{b}\|^{2}=(\|\mathbf{a}\|+\|\mathbf{b}\|)^{2}
$$

Figure 1.14: \mathbf{i}_{θ} and \mathbf{j}_{θ}

Equality holds iff

$$
\mathbf{a} \cdot \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\|
$$

i.e, the angle is 0 .

Example 1.3.17. Show triangle inequality for $-\mathbf{i}+\mathbf{j}$ and $\mathbf{i}+3 \mathbf{j}+2 \mathbf{k}$.
sol. Sum and difference is

$$
\begin{aligned}
\|(\mathbf{i}+3 \mathbf{j}+2 \mathbf{k})+(-\mathbf{i}+\mathbf{j})\| & =\|4 \mathbf{j}+2 \mathbf{k}\|=\sqrt{16+4} \\
& =2 \sqrt{5}=4.4721 \ldots \\
\|\mathbf{i}+3 \mathbf{j}+2 \mathbf{k}\|+\|-\mathbf{i}+\mathbf{j}\| & =\sqrt{1+9+4}+\sqrt{1+1} \\
& =\sqrt{14}+\sqrt{2}=5.1558 \ldots
\end{aligned}
$$

Hence

$$
\|(\mathbf{i}+3 \mathbf{j}+2 \mathbf{k})+(-\mathbf{i}+\mathbf{j})\| \leq\|\mathbf{i}+3 \mathbf{j}+2 \mathbf{k}\|+\|-\mathbf{i}+\mathbf{j}\|
$$

Definition 1.3.18. If two vectors \mathbf{a}, \mathbf{b} satisfy $\mathbf{a} \cdot \mathbf{b}=0$ then we say they are orthogonal(perpendicular).

Example 1.3.19. for any real θ two vectors are $\mathbf{i}_{\theta}=(\cos \theta) \mathbf{i}+(\sin \theta) \mathbf{j}, \mathbf{j}_{\theta}=$ $-(\sin \theta) \mathbf{i}+(\cos \theta) \mathbf{j}$ orthogonal.

Example 1.3.20. Find a unit vector orthogonal to $2 \mathbf{i}-\mathbf{j}+3 \mathbf{k}$ and $\mathbf{i}+2 \mathbf{j}+9 \mathbf{k}$. sol. Let $a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ be the desired vector. Then a, b, c are determined by

$$
\begin{aligned}
2 a-b+3 c & =0 \text { orthogonality } \\
a+2 b+9 c & =0 \text { orthogonality } \\
a^{2}+b^{2}+c^{2} & =1 \text { unicity }
\end{aligned}
$$

Hence the desired vector is

$$
\pm \frac{1}{\sqrt{19}}(3 \mathbf{i}+3 \mathbf{j}-\mathbf{k})
$$

Orthogonal projection

Given two nonzero vectors \mathbf{a} and \mathbf{b}, we may define the orthogonal projection of \mathbf{b} onto \mathbf{a} to be the vector \mathbf{p} given in the figure 1.15. Since \mathbf{p} is a scalar multiple of \mathbf{a}, there is a constant c such that $\mathbf{p}=c \mathbf{a}$. We let

$$
\mathbf{b}=c \mathbf{a}+\mathbf{q}
$$

where \mathbf{q} is a vector orthogonal to \mathbf{a}. Taking inner product with \mathbf{a}, we have

$$
\mathbf{a} \cdot \mathbf{b}=c \mathbf{a} \cdot \mathbf{a} .
$$

Hence we obtain $c=(\mathbf{a} \cdot \mathbf{b}) /(\mathbf{a} \cdot \mathbf{a})$. Thus the orthogonal projection is

$$
\mathrm{p}=\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|^{2}} \mathbf{a}
$$

Figure 1.15: Projection of \mathbf{b} onto \mathbf{a}
The length of \mathbf{p} is

$$
\|\mathbf{p}\|=\frac{|\mathbf{a} \cdot \mathbf{b}|}{\|\mathbf{a}\|^{2}}\|\mathbf{a}\|=\frac{|\mathbf{a} \cdot \mathbf{b}|}{\|\mathbf{a}\|}=\|\mathbf{b}\| \cos \theta
$$

This agrees with the geometric interpretation.

Definition 1.3.21. For nonzero vector \mathbf{b} and any vector \mathbf{a}, we define

$$
\operatorname{proj}_{\mathbf{a}} \mathbf{b}=\mathbf{p}=\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|^{2}} \mathbf{a}
$$

We call it orthogonal projection of bonto a.

Example 1.3.22. $\mathbf{a}=3 \mathbf{i}+2 \mathbf{j}-\mathbf{k}, \mathbf{b}=\mathbf{i}+\mathbf{j}+2 \mathbf{k}$. Find orthogonal projection of \mathbf{b} onto \mathbf{a}.
sol. The orthogonal projection is

$$
\begin{aligned}
\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|^{2}} \mathbf{a} & =\frac{3 \cdot 1+2 \cdot 1+(-1) \cdot 2}{9+4+1}(3 \mathbf{i}+2 \mathbf{j}-\mathbf{k}) \\
& =\frac{9}{14} \mathbf{i}+\frac{6}{14} \mathbf{j}-\frac{3}{14} \mathbf{k}
\end{aligned}
$$

Theorem 1.3.23. For any two nonzero \mathbf{u} and \mathbf{v}, we can write \mathbf{v} as the sum of two orthogonal vectors $\mathbf{a}+\mathbf{b}$, where \mathbf{a} is the projection of \mathbf{v} onto \mathbf{u} and \mathbf{b} is orthogonal to \mathbf{u}. This decomposition is unique.

Proof. Denote by \mathbf{a} the projection of \mathbf{v} onto \mathbf{u} and let $\mathbf{b}=\mathbf{v}-\mathbf{a}$. Then

$$
\begin{aligned}
\mathbf{a} & =\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|^{2}} \mathbf{u} \\
\mathbf{b} & =\mathbf{v}-\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|^{2}} \mathbf{u}
\end{aligned}
$$

We can check \mathbf{b} is orthogonal to \mathbf{u} :

$$
\begin{aligned}
\mathbf{u} \cdot \mathbf{b} & =\mathbf{u} \cdot\left(\mathbf{v}-\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|^{2}} \mathbf{u}\right) \\
& =\mathbf{u} \cdot \mathbf{v}-\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|^{2}} \mathbf{u} \cdot \mathbf{u} \\
& =\mathbf{u} \cdot \mathbf{v}-\mathbf{u} \cdot \mathbf{v}=0
\end{aligned}
$$

This is an orthogonal decomposition. To see the uniqueness, assume there is real number α s.t. $\mathbf{v}=\alpha \mathbf{u}+\mathbf{c}$, with $\mathbf{u} \cdot \mathbf{c}=0$. Then

$$
\mathbf{u} \cdot \mathbf{v}=\mathbf{u} \cdot(\alpha \mathbf{u}+\mathbf{c})=\alpha \mathbf{u} \cdot \mathbf{u}+\mathbf{u} \cdot \mathbf{c}=\alpha\|\mathbf{u}\|^{2}
$$

we see

$$
\begin{gathered}
\alpha \mathbf{u}=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|^{2}} \mathbf{u}=\mathbf{a} \\
\mathbf{c}=\mathbf{v}-\alpha \mathbf{u}=\mathbf{v}-\mathbf{a}=\mathbf{b} .
\end{gathered}
$$

Thus the decomposition of \mathbf{v} along \mathbf{u} and its orthogonal component is unique.

Definition 1.3.24. The vector \mathbf{a} is called the component parallel to \mathbf{u} and \mathbf{b} is the component orthogonal to \mathbf{u}.(orthogonal complement).

Example 1.3.25. Find the orthogonal decomposition of $\mathbf{v}=3 \mathbf{i}+5 \mathbf{j}+\mathbf{k}$ w.r.t. $\mathbf{u}=\mathbf{i}+2 \mathbf{j}-\mathbf{k}$.
sol. Let \mathbf{a} be the projection of \mathbf{v} onto \mathbf{u} and $\mathbf{b}=\mathbf{v}-\mathbf{a}$. Then

$$
\begin{aligned}
\mathbf{a} & =\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|^{2}} \mathbf{u} \\
& =\frac{1 \cdot 3+2 \cdot 5+(-1) \cdot 1}{1+4+1}(\mathbf{i}+2 \mathbf{j}-\mathbf{k}) \\
& =2 \mathbf{i}+4 \mathbf{j}-2 \mathbf{k} \\
\mathbf{b} & =(3 \mathbf{i}+5 \mathbf{j}+\mathbf{k})-(2 \mathbf{i}+4 \mathbf{j}-2 \mathbf{k}) \\
& =\mathbf{i}+\mathbf{j}+3 \mathbf{k}
\end{aligned}
$$

Here \mathbf{a} is parallel to \mathbf{u}, \mathbf{b} is orthogonal to \mathbf{u} and $\mathbf{v}=\mathbf{a}+\mathbf{b}$.

Triangle inequality

Theorem 1.3.26. For any vectors \mathbf{a}, \mathbf{b}, we have

$$
\|\mathbf{a}+\mathbf{b}\| \leq\|\mathbf{a}\|+\|\mathbf{b}\| .
$$

Use C-S.

Physical applications

Displacement : If an object has moved from P to Q, then $\overrightarrow{P Q}$ is the displacement.

Example 1.3.27. A ship is running on the sea at the speed of 20 km to north. but the current is flowing at the speed of 20 km to the east, then in one hr, the displacement of the ship is $(20 \sqrt{2}, 20 \sqrt{2})$.

1.4 Matrices and Cross product

Cross product

Definition 1.4.1. Let \mathbf{a}, \mathbf{b} be two vectors in $\mathbb{R}^{3}\left(\right.$ not $\left.\mathbb{R}^{2}\right)$. The cross product of \mathbf{a}, \mathbf{b}, denoted by $\mathbf{a} \times \mathbf{b}$ is the vector whose length and direction are given as follows:
(1) The length is the area of the parallelogram spanned by \mathbf{a} and \mathbf{b}.(zero if \mathbf{a}, \mathbf{b} are parallel). Alternatively,

$$
\|\mathbf{a} \times \mathbf{b}\|=\|\mathbf{a}\|\|\mathbf{b}\| \sin \theta
$$

where θ is the angle between \mathbf{a} and \mathbf{b}.
(2) The direction of $\mathbf{a} \times \mathbf{b}$ is perpendicular to \mathbf{a} and \mathbf{b}, and the triple ($\mathbf{a}, \mathbf{b}, \mathbf{a} \times$ b) form a right-handed set of vectors.

Algebraic rules:
(1) $\mathbf{a} \times \mathbf{b}=0$, if \mathbf{a}, \mathbf{b} are parallel or one of them is zero.
(2) $\mathbf{a} \times \mathbf{b}=-(\mathbf{b} \times \mathbf{a})$
(3) $\mathbf{a} \times(\mathbf{b}+\mathbf{c})=\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c}$
(4) $(\mathbf{a}+\mathbf{b}) \times \mathbf{c}=\mathbf{a} \times \mathbf{c}+\mathbf{b} \times \mathbf{c}$
(5) $(\alpha \mathbf{a}) \times \mathbf{b}=\alpha(\mathbf{a} \times \mathbf{b})$ for scalar α.

Multiplication rules:
(1) $\mathbf{i} \times \mathbf{j}=\mathbf{k}, \quad \mathbf{j} \times \mathbf{k}=\mathbf{i}, \quad \mathbf{k} \times \mathbf{i}=\mathbf{j}$.
(2) $\mathbf{u} \times \mathbf{v}=-(\mathbf{v} \times \mathbf{u})$
(3) $\mathbf{i} \times \mathbf{i}=\mathbf{j} \times \mathbf{j}=\mathbf{k} \times \mathbf{k}=0$

Note that

$$
\mathbf{a} \times(\mathbf{b} \times \mathbf{c}) \neq(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} .
$$

For example

$$
\mathbf{i} \times(\mathbf{i} \times \mathbf{j})=\mathbf{i} \times \mathbf{k}=-\mathbf{j} \neq(\mathbf{i} \times \mathbf{i}) \times \mathbf{j}=0 .
$$

2×2 matrix
The array of numbers $a_{11}, a_{12}, a_{21}, a_{22}$ in the form

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

is called 2×2 matrix and

$$
\left[\begin{array}{ll}
a_{11} & a_{12}
\end{array}\right], \quad\left[\begin{array}{l}
a_{12} \\
a_{22}
\end{array}\right]
$$

are the first row and second column. The real number $a_{11} a_{22}-a_{12} a_{21}$ is determinant and denoted by

$$
\operatorname{det}(A)=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|
$$

Example 1.4.2. Find determinant of 2×2 matrices.

$$
\left|\begin{array}{ll}
3 & 4 \\
2 & 1
\end{array}\right|=3-8=-5, \quad\left|\begin{array}{cc}
0 & 3 \\
-1 & 1
\end{array}\right|=0-(-3)=3, \quad\left|\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right|=1-(-4)=5
$$

Proposition 1.4.3. The area of parallelogram determined by the two vectors $a \mathbf{i}+b \mathbf{j}$ and $c \mathbf{i}+d \mathbf{j}$ is $|a d-b c|$. This is the absolute value of the determinant of the matrix determined by two two vectors:

$$
\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Proof. Let $\mathbf{u}=a \mathbf{i}+b \mathbf{j}, \mathbf{v}=c \mathbf{i}+d \mathbf{j}$ and θ be the angle between them. Then the area of the parallelogram is

$$
\begin{aligned}
\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta & =\|\mathbf{u}\|\|\mathbf{v}\| \sqrt{1-\cos ^{2} \theta} \\
& =\sqrt{\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}-(\mathbf{u} \cdot \mathbf{v})^{2}} \\
& =\sqrt{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)-(a c+b d)^{2}} \\
& =\sqrt{a^{2} d^{2}+b^{2} c^{2}-2 a b c d} \\
& =|a d-b c|
\end{aligned}
$$

3×3 matrix

A typical 3×3 matrix is given by

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] .
$$

Here

$$
\left[\begin{array}{lll}
a_{31} & a_{32} & a_{33}
\end{array}\right], \quad\left[\begin{array}{l}
a_{12} \\
a_{22} \\
a_{32}
\end{array}\right]
$$

are third row and second column. The determinant is defined as

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \tag{1.2}\\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
$$

Example 1.4.4.

$$
\begin{aligned}
& \left|\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right|=1\left|\begin{array}{ll}
5 & 6 \\
8 & 9
\end{array}\right|-2\left|\begin{array}{ll}
4 & 6 \\
7 & 9
\end{array}\right|+3\left|\begin{array}{ll}
4 & 5 \\
7 & 8
\end{array}\right|=-3+12-9=0 \\
& \left|\begin{array}{ccc}
1 & 1 & 1 \\
2 & 4 & 8 \\
3 & 9 & 27
\end{array}\right|=1\left|\begin{array}{cc}
4 & 8 \\
9 & 27
\end{array}\right|-1\left|\begin{array}{cc}
2 & 8 \\
3 & 27
\end{array}\right|+1\left|\begin{array}{ll}
2 & 4 \\
3 & 9
\end{array}\right|=36-30+6=12
\end{aligned}
$$

Definition 1.4.5. If we exchange rows and columns of the following matrices

$$
\left[\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right], \quad\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

to get

$$
\left[\begin{array}{cc}
a_{11} & a_{21} \\
a_{12} & a_{22}
\end{array}\right], \quad\left[\begin{array}{lll}
a_{11} & a_{21} & a_{31} \\
a_{12} & a_{22} & a_{32} \\
a_{13} & a_{23} & a_{33}
\end{array}\right]
$$

then resulting matrices are called the transpose.

Properties of determinant-skip for the time being

Theorem 1.4.6. (1) Determinant of transposed matrix is the same the Determinant of original matrix.
(2) If we exchange any two rows(columns), then determinant changes signs.
(3) $|\operatorname{det}(\alpha A)|=\alpha^{n}|\operatorname{det}(A)|$
(4) Adding a scalar multiple of row (column) to another row (column) does not change determinant.

Proof. (1) For 2×2

$$
\left|\begin{array}{ll}
a_{11} & a_{21} \\
a_{12} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{21} a_{12}=a_{11} a_{22}-a_{12} a_{21}=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|
$$

For 3×3

$$
\begin{aligned}
& \left|\begin{array}{lll}
a_{11} & a_{21} & a_{31} \\
a_{12} & a_{22} & a_{32} \\
a_{13} & a_{23} & a_{33}
\end{array}\right|=a_{11}\left|\begin{array}{ll}
a_{22} & a_{32} \\
a_{23} & a_{33}
\end{array}\right|-a_{21}\left|\begin{array}{ll}
a_{12} & a_{32} \\
a_{13} & a_{33}
\end{array}\right|+a_{31}\left|\begin{array}{ll}
a_{12} & a_{22} \\
a_{13} & a_{23}
\end{array}\right| \\
& =a_{11}\left(a_{22} a_{33}-a_{32} a_{23}\right)-a_{21}\left(a_{12} a_{33}-a_{32} a_{13}\right) \\
& +a_{31}\left(a_{12} a_{23}-a_{22} a_{13}\right) \\
& =a_{11}\left(a_{22} a_{33}-a_{32} a_{23}\right)-a_{21} a_{12} a_{33}+a_{21} a_{32} a_{13} \\
& +a_{31} a_{12} a_{23}-a_{31} a_{22} a_{13} \\
& =a_{11}\left(a_{22} a_{33}-a_{23} a_{32}\right)-a_{12} a_{21} a_{33}+a_{12} a_{23} a_{31} \\
& +a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31} \\
& =a_{11}\left(a_{22} a_{33}-a_{23} a_{32}\right)-a_{12}\left(a_{21} a_{33}-a_{23} a_{31}\right) \\
& +a_{13}\left(a_{21} a_{32}-a_{22} a_{31}\right) \\
& =a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| \\
& =\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|
\end{aligned}
$$

(4) 2×2 case is easy.

For 3×3, we see by expanding w.r.t. first row

$$
\begin{aligned}
& \left|\begin{array}{ccc}
a_{11}+t a_{21} & a_{12}+t a_{22} & a_{13}+t a_{23} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \\
& \quad=\left(a_{11}+t a_{21}\right)\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right| \\
& +\left(a_{12}+t a_{22}\right)\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right| \\
& \\
& +\left(a_{13}+t a_{23}\right)\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| \\
& \quad+t\left(a_{21}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{22}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{23}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|\right) \\
& =\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|+t\left|\begin{array}{lll}
a_{21} & a_{22} & a_{23} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|
\end{aligned}
$$

Exchange second and third rows, do not change the value. By (2) there must be a sign change. Hence it is 0 .

$$
\left|\begin{array}{ccc}
a_{11}+t a_{21} & a_{12}+t a_{22} & a_{13}+t a_{23} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=\left|\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|
$$

Hence (4) holds.

The RHS of 1.2 is expansion w.r.t first row. By theorem 1.4.6, (1), (2), we can expand w.r.t. any row or column, except we multiply $(-1)^{i+j}$. So if we expand w.r.t 2 nd row

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=-a_{21}\left|\begin{array}{cc}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\right|+a_{22}\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{31} & a_{33}
\end{array}\right|-a_{23}\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{31} & a_{32}
\end{array}\right|
$$

If we expand w.r.t 3 rd column

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|-a_{23}\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{31} & a_{32}
\end{array}\right|+a_{33}\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|
$$

Corollary 1.4.7. (1) Determinant of a matrix one of whose row is zero is zero.
(2) If any two rows (columns) are equal, the determinant is zero.

Example 1.4.8. The followings are expanded w.r.t 2nd, 3rd row.

$$
\begin{aligned}
& \left|\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right|=-2\left|\begin{array}{ll}
4 & 6 \\
7 & 9
\end{array}\right|+5\left|\begin{array}{ll}
1 & 3 \\
7 & 9
\end{array}\right|-8\left|\begin{array}{ll}
1 & 3 \\
4 & 6
\end{array}\right|=12-60+48=0 \\
& \left|\begin{array}{lll}
1 & 2 & 3 \\
4 & 0 & 6 \\
0 & 8 & 0
\end{array}\right|=0\left|\begin{array}{ll}
2 & 3 \\
0 & 6
\end{array}\right|-8\left|\begin{array}{ll}
1 & 3 \\
4 & 6
\end{array}\right|+0\left|\begin{array}{ll}
1 & 2 \\
4 & 0
\end{array}\right|=0+48+0=48
\end{aligned}
$$

Cross product-using determinant

In the previous section, we have defined the cross product using geometry, but did not show how to compute it. Now we can give a formula for the cross product using the determinant:
Definition 1.4.9 (Alternative definition). For $\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}$ and $\mathbf{b}=$ $b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}$, the cross product $\mathbf{a} \times \mathbf{b}$ is defined by

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ll}
a_{2} & a_{3} \tag{1.3}\\
b_{2} & b_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \mathbf{k} .
$$

Using the definition of determinant (1.2) symbolically, we have

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

Example 1.4.10. $\mathbf{i} \times \mathbf{i}=\mathbf{0}, \quad \mathbf{j} \times \mathbf{j}=\mathbf{0}, \quad \mathbf{k} \times \mathbf{k}=\mathbf{0}$.
Example 1.4.11. Compute $(2 \mathbf{i}-\mathbf{j}+3 \mathbf{k}) \times(\mathbf{i}+\mathbf{j}+2 \mathbf{k})$.
sol. By the definition of cross product, we see

$$
(2 \mathbf{i}-\mathbf{j}+3 \mathbf{k}) \times(\mathbf{i}+\mathbf{j}+2 \mathbf{k})=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & -1 & 3 \\
1 & 1 & 2
\end{array}\right|=-5 \mathbf{i}-\mathbf{j}+3 \mathbf{k}
$$

Triple product

Let

$$
\mathbf{a}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}, \mathbf{b}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}, \mathbf{c}=c_{1} \mathbf{i}+c_{2} \mathbf{j}+c_{3} \mathbf{k} .
$$

To see the relation with the geometric definition of the cross product, we consider the dot product between $(\mathbf{a} \times \mathbf{b})$ and \mathbf{c}. It is dot product $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$, called the triple product $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$ of three vectors, \mathbf{a}, \mathbf{b} and \mathbf{c}. We see

$$
\begin{aligned}
(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} & =\left(\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \mathbf{k}\right) \cdot\left(c_{1} \mathbf{i}+c_{2} \mathbf{j}+c_{3} \mathbf{k}\right) \\
& =\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| c_{1}-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| c_{2}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| c_{3} \\
& =\left|\begin{array}{lll}
c_{1} & c_{2} & c_{3} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
\end{aligned}
$$

1) A geometric meaning follows: If \mathbf{c} is a vector in the plane spanned by \mathbf{a}, \mathbf{b}, then the third row in the determinant is a linear combination of the first and second row, and hence $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}=0$. In other words, the vector $\mathbf{a} \times \mathbf{b}$ is orthogonal to any vector in the plane spanned by \mathbf{a} and \mathbf{b}.
2) We compute length of $\mathbf{a} \times \mathbf{b}$.

$$
\begin{aligned}
\|\mathbf{a} \times \mathbf{b}\|^{2} & =\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right|^{2}+\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right|^{2}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|^{2} \\
& =\left(a_{2} b_{3}-a_{2} b_{2}\right)^{2}+\left(a_{1} b_{3}-b_{1} a_{3}\right)^{2}+\left(a_{1} b_{2}-b_{1} a_{2}\right)^{2} \\
& =\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)-\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)^{2}
\end{aligned}
$$

Hence

$$
\|\mathbf{a} \times \mathbf{b}\|^{2}=\|\mathbf{a}\|^{2}\|\mathbf{b}\|^{2}-(\mathbf{a} \cdot \mathbf{b})^{2}=\|\mathbf{a}\|^{2}\|\mathbf{b}\|^{2}\left(1-\cos ^{2} \theta\right)=\|\mathbf{a}\|^{2}\|\mathbf{b}\|^{2} \sin ^{2} \theta
$$

So we conclude that $\mathbf{a} \times \mathbf{b}$ is a vector perpendicular to the plane \mathcal{P} spanned by \mathbf{a} and \mathbf{b} with length $\|\mathbf{a}\|\|\mathbf{b}\||\sin \theta|$. Hence we obtain

Theorem 1.4.12 (Alternative cross Product). For a, b, c, it holds that
(1) $\|\mathbf{a} \times \mathbf{b}\|=\|\mathbf{a}\|\|\mathbf{b}\| \sin \theta$, the area of the parallelogram spanned by \mathbf{a} and b.
(2) $\mathbf{a} \times \mathbf{b}$ is perpendicular to \mathbf{a} and \mathbf{b}, and the triple $(\mathbf{a}, \mathbf{b}, \mathbf{a} \times \mathbf{b})$ form a right-handed rule.
(3) $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$ is the volume of parallelepiped formed by three vectors \mathbf{a}, \mathbf{b}
and c.(See below)
Hence this alternative definition is the same as geometric definition of cross product given earlier.

Component formula using determinant

$$
\begin{aligned}
& \left(a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}\right) \times\left(b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}\right)=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| \\
& \quad=\left(a_{2} b_{3}-a_{3} b_{2}\right) \mathbf{i}-\left(a_{1} b_{3}-a_{3} b_{1}\right) \mathbf{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \mathbf{k}
\end{aligned}
$$

Algebraic rules:
(1) $\mathbf{a} \times \mathbf{b}=0$, iff \mathbf{a}, \mathbf{b} are parallel or zero.
(2) $\mathbf{a} \times \mathbf{b}=-(\mathbf{b} \times \mathbf{a})$
(3) $\mathbf{a} \times(\mathbf{b}+\mathbf{c})=\mathbf{a} \times \mathbf{b}+\mathbf{a} \times \mathbf{c}$
(4) $(\mathbf{a}+\mathbf{b}) \times \mathbf{c}=\mathbf{a} \times \mathbf{c}+\mathbf{b} \times \mathbf{c}$
(5) $(\alpha \mathbf{a}) \times \mathbf{b}=\alpha(\mathbf{a} \times \mathbf{b})$.

Multiplication rules:
(1) $\mathbf{i} \times \mathbf{j}=\mathbf{k}, \quad \mathbf{j} \times \mathbf{k}=\mathbf{i}, \quad \mathbf{k} \times \mathbf{i}=\mathbf{j}$.
(2) $\mathbf{u} \times \mathbf{v}=-(\mathbf{v} \times \mathbf{u})$
(3) $\mathbf{i} \times \mathbf{i}=\mathbf{j} \times \mathbf{j}=\mathbf{k} \times \mathbf{k}=0$

Example 1.4.13. Find $(\mathbf{i}+\mathbf{j}) \times(\mathbf{j}-2 \mathbf{k})$.
sol. $(\mathbf{i}+\mathbf{j}) \times(\mathbf{j}-2 \mathbf{k})=\mathbf{i} \times j-2 \mathbf{i} \times k+\mathbf{j} \times j-2 \mathbf{j} \times k=-2 \mathbf{i}+2 \mathbf{j}+\mathbf{k}$.

Theorem 1.4.14 (Cross product II).
(1) $\|\mathbf{u} \times \mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}-(\mathbf{u} \cdot \mathbf{v})^{2}$. In particular, $\mathbf{u} \times \mathbf{u}=\mathbf{0}$.
(2) If is θ the angle between \mathbf{u} and $\mathbf{v},\|\mathbf{u} \times \mathbf{v}\|=\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta$. Hence nec. and suff. condition for \mathbf{u} and \mathbf{v} are parallel is $\mathbf{u} \times \mathbf{v}=\mathbf{0}$.
(3) $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})$
(4) $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u}=(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{v}=0$, i.e, $\mathbf{u} \times \mathbf{v}$ is orthogonal to \mathbf{u} and \mathbf{v}.

Proof. Let $\mathbf{u}=a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}, \mathbf{v}=b_{1} \mathbf{i}+b_{2} \mathbf{j}+b_{3} \mathbf{k}, \mathbf{w}=c_{1} \mathbf{i}+c_{2} \mathbf{j}+c_{3} \mathbf{k}$.
(1) $\|\mathbf{u} \times \mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}-(\mathbf{u} \cdot \mathbf{v})^{2}$ was shown before.

So $\mathbf{u} \times \mathbf{u}=\mathbf{0}$.
(2) Since $\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta$, we have by (1)

$$
\begin{aligned}
\|\mathbf{u} \times \mathbf{v}\| & =\sqrt{\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}-(\mathbf{u} \cdot \mathbf{v})^{2}} \\
& =\|\mathbf{u}\|\|\mathbf{v}\| \sqrt{1-\cos ^{2} \theta} \\
& =\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta
\end{aligned}
$$

$$
\begin{aligned}
(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w} & =\left(\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \mathbf{k}\right) \cdot\left(c_{1} \mathbf{i}+c_{2} \mathbf{j}+c_{3} \mathbf{k}\right) \\
& =\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| c_{1}-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| c_{2}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| c_{3} \\
& =\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
\end{aligned}
$$

Now exapnding w.r.t first row

$$
\begin{aligned}
& =a_{1}\left|\begin{array}{ll}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{ll}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{ll}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right| \\
& =\left(a_{1} \mathbf{i}+a_{2} \mathbf{j}+a_{3} \mathbf{k}\right) \cdot\left(\left|\begin{array}{ll}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right| \mathbf{k}\right) \\
& =\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})
\end{aligned}
$$

Figure 1.16: right handed rule
(4) Using (3) and corollary 1.4.7, we see

$$
\begin{aligned}
& (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u}=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
a_{1} & a_{2} & a_{3}
\end{array}\right|=0 \\
& (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{v}=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=0
\end{aligned}
$$

Geometric Meaning of Cross Product

Geometry of Determinant

2×2 matrix: If $\mathbf{a}=\left(a_{1}, a_{2}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}\right)$ then

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & 0 \\
b_{1} & b_{2} & 0
\end{array}\right|=\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \mathbf{k}
$$

$\|\mathbf{a} \times \mathbf{b}\|$ is the absolute value of the determinant and is the area of parallelogram determined by two vectors.

$$
\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|=a_{1} b_{2}-a_{2} b_{1} .
$$

Example 1.4.15. Find the area of triangle with vertices at $(1,1),(0,2)$ and $(3,2)$. Sol. Two sides are $(0,2)-(1,1)=(-1,1)$ and $(3,2)-(1,1)=(2,1)$. Thus $\frac{1}{2}\left|\begin{array}{cc}-1 & 1 \\ 2 & 1\end{array}\right|=-\frac{3}{2}$.

Proposition 1.4.16. The volume of parallelepiped with sides $\mathbf{a}, \mathbf{b}, \mathbf{c}$ is give by the absolute value of triple product $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$ which is the determinant

$$
|(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}|=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right| .
$$

Proof. Consider a parallelogram with two sides \mathbf{a}, \mathbf{b} as bottom of the parallelepiped. Then the height is length of the orthogonal projection of \mathbf{c} onto $\mathbf{a} \times \mathbf{b}$ which is $\left\|\frac{(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}}{\|\mathbf{a} \times \mathbf{b}\|^{2}} \mathbf{a} \times \mathbf{b}\right\|$. Hence the volume is

$$
\text { Area }(\text { bottom }) \times \text { height }=\|\mathbf{a} \times \mathbf{b}\|\left\|\frac{(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}}{\|\mathbf{a} \times \mathbf{b}\|^{2}} \mathbf{a} \times \mathbf{b}\right\|=|(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}|
$$

Example 1.4.17. Three points $A(1,2,3), B(0,1,2), C(0,3,2)$ are given. Find the volume of hexahedron having three vectors $O A, O B, O C$ as sides.
sol. By proposition 1.4.16, we have

$$
\left|\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 3 & 2
\end{array}\right|=1\left|\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right|-0\left|\begin{array}{ll}
2 & 3 \\
3 & 2
\end{array}\right|+0\left|\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right|=-4
$$

Torque

Imagine we are trying to fasten a bolt with a wrench. If one apply the force \mathbf{F} as the figure, we see the amount force acting to the action of bolt is $\|\mathbf{r}\|\|\mathbf{F}\| \sin \theta$.

Figure 1.17: Turning a hexagonal bolt with a wrench with force \mathbf{F}. Torque vector is $\mathbf{r} \times \mathbf{F}$.

Then

$$
\text { Amount of Torque }=\|\mathbf{r}\|\|\mathbf{F}\| \sin \theta=\|\mathbf{r} \times \mathbf{F}\|
$$

Also, the direction of the vector $\mathbf{r} \times \mathbf{F}$ is the same direction as the bolt moves. Hence it is natural to define $\mathbf{r} \times \mathbf{F}$ to be the torque vector.

Rotation of a rigid body

Figure 1.18: velocity \mathbf{v} and angular velocity $\boldsymbol{\omega}$ has relation $\mathbf{v}=\boldsymbol{\omega} \times \mathbf{r}$.

Consider a rigid body B rotating about an axis L. (See fig 1.18). The rotational motion of B can be described by a vector along axis of rotation $\boldsymbol{\omega}$. Let $\boldsymbol{\omega}$ the vector along z-axis s.t. $\omega=\|\boldsymbol{\omega}\|$. The vector $\boldsymbol{\omega}$ is called the angular velocity vector and ω is angular speed. $\omega=\|\boldsymbol{\omega}\|$

Assume L is z-axis Q is any point on the body B, α is distance from Q to L. Then $\alpha=\|\mathbf{r}\| \sin \theta$ (r points to Q). Consider the tangent vector \mathbf{v} at Q. Since Q moves around a circle of radius α perpendicular to $\boldsymbol{\omega}$ (parallel to $x y$-plane, counterclockwise), we see,

$$
\begin{aligned}
\Delta \mathbf{r} & \approx(\text { radius of circle })(\text { angle swept by } Q) \\
& =\|\mathbf{r}\| \sin \theta(\Delta \phi)
\end{aligned}
$$

Thus

$$
\left\|\frac{\Delta \mathbf{r}}{\Delta t}\right\| \approx\|\mathbf{r}\| \sin \theta \frac{\Delta \phi}{\Delta t} .
$$

As $\Delta t \rightarrow 0$, we obtain the (line) velocity and angular velocity by

$$
\mathbf{v}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \mathbf{r}}{\Delta t}, \quad \omega=\lim _{\Delta t \rightarrow 0} \frac{\Delta \phi}{\Delta t}
$$

Hence

$$
\begin{equation*}
\|\mathbf{v}\|=\omega \alpha=\omega\|\mathbf{r}\| \sin \theta=\|\boldsymbol{\omega}\|\|\mathbf{r}\| \sin \theta \tag{1.4}
\end{equation*}
$$

Then by definition of cross product,

$$
\begin{equation*}
\mathbf{v}=\boldsymbol{\omega} \times \mathbf{r} \tag{1.5}
\end{equation*}
$$

1.5 Equations of Planes

Let \mathcal{P} be a plane and $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ a point on that plane, and suppose that $\mathbf{n}=A \mathbf{i}+B \mathbf{j}+C \mathbf{k}$ is a normal vector. Let $P=(x, y, z)$ be any point in \mathbb{R}^{3}. Then P lies in the plane iff the vector $\overrightarrow{P_{0} P}=\left(x-x_{0}, y-y_{0}, z-z_{0}\right)$ is perpendicular to \mathbf{n}, that is, $\overrightarrow{P_{0} P} \cdot \mathbf{n}=0$. In other words,

$$
(A \mathbf{i}+B \mathbf{j}+C \mathbf{k}) \cdot\left[\left(x-x_{0}\right) \mathbf{i}+\left(y-y_{0}\right) \mathbf{j}+\left(z-z_{0}\right) \mathbf{k}\right]=0 .
$$

Figure 1.19: A plane is det'd by a point and normal vector
Proposition 1.5.1. Equation of plane through $\left(x_{0}, y_{0}, z_{0}\right)$ that has normal vector \mathbf{n} is

$$
A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0
$$

or

$$
A x+B y+C z-D=0
$$

where $D=-\left(A x_{0}+B y_{0}+C z_{0}\right)$.

Example 1.5.2. Find the equation of plane through the points $A(-3,0,-1)$, $B(-2,3,2), C(1,1,3)$.
sol. Draw some graph describing the normal vector.
Find a vector \mathbf{n} orthogonal to plane.

$$
\begin{aligned}
\mathbf{n} & =\overrightarrow{A B} \times \overrightarrow{A C} \\
& =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-2-(-3) & 3-0 & 2-(-1) \\
1-(-3) & 1-0 & 3-(-1)
\end{array}\right| \\
& =\left|\begin{array}{cc}
3 & 3 \\
1 & 4
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
1 & 3 \\
4 & 4
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
1 & 3 \\
4 & 1
\end{array}\right| \mathbf{k} \\
& =9 \mathbf{i}+8 \mathbf{j}-11 \mathbf{k}
\end{aligned}
$$

By proposition 1.5.1, the equation is

$$
9(x+3)+8(y-0)-11(z+1)=0
$$

or $9 x+8 y-11 z+16=0$.

Distance from a point to plane

Figure 1.20: Distance from a point to plane

Proposition 1.5.3. The distance from $P\left(x_{1}, y_{1}, z_{1}\right)$ to the plane $A x+B y+$ $C z+D=0$ is

$$
\frac{\left|A x_{1}+B y_{1}+C z_{1}+D\right|}{\sqrt{A^{2}+B^{2}+C^{2}}}
$$

Proof. Let \mathbf{n} be a normal vector to the plane. If $Q\left(x_{0}, y_{0}, z_{0}\right)$ lies in the plane, the distance from P to the plane is the orthogonal projection of $\overrightarrow{P Q}$ along \mathbf{n}. Note that from $A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0$, we see $\mathbf{n} / / A \mathbf{i}+B \mathbf{j}+C \mathbf{k}$. Hence length of the orthogonal projection of $\overrightarrow{P Q}$ along \mathbf{n} is

$$
\begin{aligned}
\left\|\frac{\mathbf{n} \cdot \overrightarrow{P Q}}{\|\mathbf{n}\|^{2}} \mathbf{n}\right\| & =\frac{|\mathbf{n} \cdot \overrightarrow{P Q}|}{\|\mathbf{n}\|} \\
& =\frac{\left|A\left(x_{0}-x_{1}\right)+B\left(y_{0}-y_{1}\right)+C\left(z_{0}-z_{1}\right)\right|}{\sqrt{A^{2}+B^{2}+C^{2}}} \\
& =\frac{\left|A x_{0}+B y_{0}+C z_{0}-A x_{1}-B y_{1}-C z_{1}\right|}{\sqrt{A^{2}+B^{2}+C^{2}}} \\
& =\frac{\left|-D-A x_{1}-B y_{1}-C z_{1}\right|}{\sqrt{A^{2}+B^{2}+C^{2}}}=\frac{\left|A x_{1}+B y_{1}+C z_{1}+D\right|}{\sqrt{A^{2}+B^{2}+C^{2}}}
\end{aligned}
$$

Example 1.5.4. Find the distance from $(3,4,-2)$ to the plane $2 x-y+z-4=$ 0 .
sol. Using above proposition, distance is

$$
\frac{|2 \cdot 3-1 \cdot 4+1 \cdot(-2)-4|}{\sqrt{4+1+1}}=\frac{|-4|}{\sqrt{6}}=\frac{2 \sqrt{6}}{3}
$$

Example 1.5.5. Find a unit vector perpendicular to the plane $4 x-3 y+z-4=$ 0 and express it as a cross product of two unit orthogonal vectors lying in the plane.
sol. Let \mathcal{S} the given plane. By proposition 1.5 .1 we see $4 \mathbf{i}-3 \mathbf{j}+\mathbf{k}$ is orthogonal to \mathcal{S}. Hence

$$
\mathbf{n}= \pm \frac{4 \mathbf{i}-3 \mathbf{j}+\mathbf{k}}{\sqrt{4^{2}+(-3)^{2}+1^{2}}}= \pm \frac{1}{\sqrt{26}}(4 \mathbf{i}-3 \mathbf{j}+\mathbf{k})
$$

Now in order to express this as a cross product of two vectors lying in the plane, we need to choose three points $(1,0,0),(0,0,4),(2,1,-1)$ in \mathcal{S}. Then
we obtain two vectors

$$
\begin{aligned}
& \mathbf{u}=(1,0,0)-(2,1,-1)=-\mathbf{i}-\mathbf{j}+\mathbf{k} \\
& \mathbf{v}=(0,0,4)-(2,1,-1)=-2 \mathbf{i}-\mathbf{j}+5 \mathbf{k}
\end{aligned}
$$

which are parallel to the plane \mathcal{S}. Let us orthogonalize them.Let a be the orthogonal projection of \mathbf{v} onto \mathbf{u}. Then let $\mathbf{b}=\mathbf{v}-\mathbf{a}$.

$$
\begin{aligned}
\mathbf{a} & =\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|^{2}} \mathbf{u}=\frac{8}{3}(-\mathbf{i}-\mathbf{j}+\mathbf{k}) \\
\mathbf{b} & =\mathbf{v}-\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|^{2}} \mathbf{u}=(-2 \mathbf{i}-\mathbf{j}+5 \mathbf{k})-\frac{8}{3}(-\mathbf{i}-\mathbf{j}+\mathbf{k}) \\
& =\frac{1}{3}(2 \mathbf{i}+5 \mathbf{j}+7 \mathbf{k})
\end{aligned}
$$

Now normalize them.

$$
\mathbf{a}_{1}=\frac{\mathbf{a}}{\|\mathbf{a}\|}=\frac{1}{\sqrt{3}}(-\mathbf{i}-\mathbf{j}+\mathbf{k}), \quad \mathbf{b}_{1}=\frac{\mathbf{b}}{\|\mathbf{b}\|}=\frac{1}{\sqrt{78}}(2 \mathbf{i}+5 \mathbf{j}+7 \mathbf{k})
$$

We can check that

$$
\begin{aligned}
\mathbf{a}_{1} \cdot \mathbf{b}_{1} & =\frac{(-1) \cdot 2+(-1) \cdot 5+1 \cdot 7}{\sqrt{3} \cdot \sqrt{78}}=0 \\
\mathbf{a}_{1} \times \mathbf{b}_{1} & =\frac{1}{3 \sqrt{26}}\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-1 & -1 & 1 \\
2 & 5 & 7
\end{array}\right| \\
& =\frac{1}{3 \sqrt{26}}\left(\left|\begin{array}{rr}
-1 & 1 \\
5 & 7
\end{array}\right| \mathbf{i}-\left|\begin{array}{rr}
-1 & 1 \\
2 & 7
\end{array}\right| \mathbf{j}+\left|\begin{array}{rr}
-1 & -1 \\
2 & 5
\end{array}\right| \mathbf{k}\right) \\
& =-\frac{1}{\sqrt{26}}(4 \mathbf{i}-3 \mathbf{j}+\mathbf{k})
\end{aligned}
$$

Parametric equation of a plane

Proposition 1.5.6. A parametric equation for a plane the through the point $P_{0}=\left(c_{1}, c_{2}, c_{3}\right)$ and parallel to \mathbf{a} and \mathbf{b} is given by

$$
\mathbf{x}(s, t)=s \mathbf{a}+t \mathbf{b}+\mathbf{c} .
$$

Figure 1.21: A plane is det'd by a point and two vectors

Distance between a point and a line

Example 1.5.7. Find the distance from the point $P_{0}(2,1,3)$ to the line $\ell(t)=$ $t(-1,1,-2)+(2,3,-2)$.

Figure 1.22: Distance from a point to a line
sol. Choose any point B on the line and find an orthogonal decomposition of $\overrightarrow{B P}_{0}$ onto the direction vector $\mathbf{a}=(-1,1,-2)$ of the line. Then the length of the orthogonal complement is the distance. Choose $B=(2,3,-2)$. Then

$$
\begin{aligned}
\overrightarrow{B P}_{0}:=\mathbf{b} & =(2,1,3)-(2,3,-2) \\
& =(0,-2,5)
\end{aligned}
$$

Hence the orthogonal projection onto \mathbf{a} is

$$
\begin{aligned}
\mathbf{p a}_{\mathbf{a}} \mathbf{b} & =\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|^{2}} \mathbf{a} \\
& =(2,-2,4) .
\end{aligned}
$$

Thus the distance is

$$
\left\|\mathbf{b}-\mathbf{p}_{\mathbf{a}} \mathbf{b}\right\|=\|(0,-2,5)-(2,-2,4)\|=\sqrt{5} .
$$

Distance between two parallel planes

To find the distance between two parallel planes, we need to compute the length of the common normal vector. Choose one point from each planes, say P_{i} from the plane $\Pi_{i}(i=1,2)$. Then find the projection of $\overrightarrow{P_{1} P_{1}}$ onto the common normal vector.

Distance between two skewed lines

Two lines are said to be skewed if they are neither intersecting nor parallel. It follows they must lie in parallel planes and the distance between the lines is equal to the distance between the planes. Let us describe how to find the distance between them.

Figure 1.23: Distance between two lines

Assume we have two parallel planes Π_{1} and Π_{2} containing each lines. They share a common normal vector \mathbf{n}. This vector is obtained by the cross product of two vectors lying in the planes. Let \mathbf{a}_{1} and \mathbf{a}_{2} are two direction vectors and let B_{1}, B_{2} are any two points on the lines. Then we compute the projection of $\overrightarrow{B_{1} B_{2}}$ onto \mathbf{n}. Its length is the desired distance.

Example 1.5.8. Find the distance between the two lines

$$
\ell_{1}(t)=(0,5,-1)+t(2,1,3), \text { and } \ell_{2}(t)=(-1,2,0)+t(1,-1,0) .
$$

Choose $B_{1}=(2,6,2)$ and $B_{2}=(0,1,0)$. Let $\mathbf{b}=(2,6,2)-(0,1,0)=$
$(2,5,2)$. While

$$
\mathbf{n}=(2,1,3) \times(1,-1,0)=(3,3,-3) .
$$

Normalizing, we let $\mathbf{n}=(1,1,-1) / \sqrt{3}$. Now the projection of \mathbf{b} onto \mathbf{n} is

$$
\operatorname{proj}_{\mathbf{n}} \mathbf{b}=(\mathbf{b} \cdot \mathbf{n}) \mathbf{n}=\frac{(2+5-2)}{\sqrt{3}} \frac{(1,1,-1)}{\sqrt{3}}=\frac{5}{3}(1,1,-1)
$$

Hence the distance is

$$
\left\|\frac{5}{3}(1,1,-1)\right\|=\frac{5}{\sqrt{3}} .
$$

$1.6 \quad n$-dim Euclidean space

Vectors in n-dim space

The set of all points with n-coordinates

$$
\mathbb{R}^{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{1}, a_{2}, \ldots, a_{n} \text { real }\right\}
$$

is called n-dimensional Euclidean space. Addition and scalar multiplication can be defined as

$$
\begin{aligned}
\left(a_{1}, a_{2}, \ldots, a_{n}\right)+\left(b_{1}, b_{2}, \ldots, b_{n}\right) & =\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right) \\
s\left(a_{1}, a_{2}, \ldots, a_{n}\right) & =\left(s a_{1}, s a_{2}, \ldots, s a_{n}\right)
\end{aligned}
$$

The identity $(0,0, \ldots, 0)$ in \mathbb{R}^{n} is the zero element. The inverse of $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is $\left(-a_{1},-a_{2}, \ldots,-a_{n}\right)$, or $-\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. For two points $P\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $Q\left(b_{1}, b_{2}, \ldots, b_{n}\right)$, the set

$$
\overline{P Q}=\left\{(1-t)\left(a_{1}, a_{2}, \ldots, a_{n}\right)+t\left(b_{1}, b_{2}, \ldots, b_{n}\right) \mid 0 \leq t \leq 1\right\}
$$

is called the line segment $P Q$ and

$$
\sqrt{\left(a_{1}-b_{1}\right)^{2}+\left(a_{2}-b_{2}\right)^{2}+\cdots+\left(a_{n}-b_{n}\right)^{2}}
$$

is length $P Q$. Also the set

$$
\overleftrightarrow{P Q}=\left\{(1-t)\left(a_{1}, a_{2}, \ldots, a_{n}\right)+t\left(b_{1}, b_{2}, \ldots, b_{n}\right) \mid-\infty<t<\infty\right\}
$$

is line $P Q$.

For three points $P\left(a_{1}, \ldots, a_{n}\right) Q\left(b_{1}, \ldots, b_{n}\right), R\left(c_{1}, \ldots, c_{n}\right)$ not on the same line, the set
$\left\{r\left(a_{1}, \ldots, a_{n}\right)+s\left(b_{1}, \ldots, b_{n}\right)+t\left(c_{1}, \ldots, c_{n}\right) \mid-\infty<r, s, t<\infty, r+s+t=1\right\}$
is called the plane determined by P, Q, R.

Standard basis vector

We let

$$
\begin{aligned}
\mathbf{e}_{1} & =(1,0,0, \ldots, 0) \\
\mathbf{e}_{2} & =(0,1,0, \ldots, 0) \\
\mathbf{e}_{3} & =(0,0,1, \ldots, 0) \\
& \vdots \\
\mathbf{e}_{n} & =(0,0,0, \ldots, 1)
\end{aligned}
$$

Then any vector in \mathbb{R}^{n} can be written as a scalar combination of $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$:

$$
\left(a_{1}, a_{2}, \ldots, a_{n}\right)=a_{1} \mathbf{e}_{1}+a_{2} \mathbf{e}_{2}+\cdots+a_{n} \mathbf{e}_{n}
$$

The vectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ are the standard basis vectors of \mathbb{R}^{n}. Clearly, we have

$$
\mathbf{e}_{i} \cdot \mathbf{e}_{j}= \begin{cases}0 & (i \neq j) \\ 1 & (i=j)\end{cases}
$$

1

Theorem 1.6.1. We have the following:
(i) $(\alpha \mathbf{x}+\beta \mathbf{y}) \cdot \mathbf{z}=\alpha \mathbf{x} \cdot \mathbf{z}+\beta \mathbf{y} \cdot \mathbf{z} \quad$ (associate law)
(ii) $\mathbf{x} \cdot \mathbf{y}=\mathbf{y} \cdot \mathbf{x}$ (commutative law)
(iii) $\mathrm{x} \cdot \mathrm{x} \geq 0$
(iv) $\mathrm{x} \cdot \mathrm{x}=0$ iff $\mathrm{x}=0$

Example 1.6.2. Let $\mathbf{u}=3 \mathbf{e}_{1}-4 \mathbf{e}_{2}+2 \mathbf{e}_{4}, \mathbf{v}=\mathbf{e}_{1}+2 \mathbf{e}_{2}+2 \mathbf{e}_{3}-3 \mathbf{e}_{4}$ be in \mathbb{R}^{4}. Express $2 \mathbf{u}-7 \mathbf{v}$ using standard basis vector.

[^0]

Figure 1.24: angle between two vectors
sol. Using standard basis vector, $2 \mathbf{u}-7 \mathbf{v}$ is

$$
\begin{aligned}
2 \mathbf{u}-7 \mathbf{v} & =2\left(3 \mathbf{e}_{1}-4 \mathbf{e}_{2}+2 \mathbf{e}_{4}\right)-7\left(\mathbf{e}_{1}+2 \mathbf{e}_{2}+2 \mathbf{e}_{3}-3 \mathbf{e}_{4}\right) \\
& =\left(6 \mathbf{e}_{1}-8 \mathbf{e}_{2}+4 \mathbf{e}_{4}\right)+\left(-7 \mathbf{e}_{1}-14 \mathbf{e}_{2}-14 \mathbf{e}_{3}+21 \mathbf{e}_{4}\right) \\
& =(6-7) \mathbf{e}_{1}+(-8-14) \mathbf{e}_{2}+(0-14) \mathbf{e}_{3}+(4+21) \mathbf{e}_{4} \\
& =-\mathbf{e}_{1}-22 \mathbf{e}_{2}-14 \mathbf{e}_{3}+25 \mathbf{e}_{4}
\end{aligned}
$$

For two vector $\mathbf{u}=a_{1} \mathbf{e}_{1}+a_{2} \mathbf{e}_{2}+\cdots+a_{n} \mathbf{e}_{n}, \mathbf{v}=b_{1} \mathbf{e}_{1}+b_{2} \mathbf{e}_{2}+\cdots+b_{n} \mathbf{e}_{n}$, their inner product is defined as

$$
\mathbf{u} \cdot \mathbf{v}=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}=\sum_{i=1}^{n} a_{i} b_{i}
$$

This satisfies proposition 1.3.3. The length of a vector \mathbf{u} is defined as

$$
\|\mathbf{u}\|=\left(a_{1}^{2}+\cdots+a_{n}^{2}\right)^{1 / 2}=\sqrt{\mathbf{u} \cdot \mathbf{u}}
$$

and the distance between two vectors \mathbf{u} and \mathbf{v} is defined as $\|\mathbf{u}-\mathbf{v}\|$.
One can even define the angle between \mathbf{u} and \mathbf{v} by

$$
\theta=\cos ^{-1} \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}=\cos ^{-1} \frac{a_{1} b_{1}+\cdots+a_{n} b_{n}}{\left(a_{1}^{2}+\cdots+a_{n}^{2}\right)^{1 / 2}\left(b_{1}^{2}+\cdots+b_{n}^{2}\right)^{1 / 2}}
$$

Example 1.6.3. Find the inner product of $\mathbf{u}=\mathbf{e}_{1}-2 \mathbf{e}_{2}+3 \mathbf{e}_{3}+2 \mathbf{e}_{4}, \mathbf{v}=$ $2 \mathbf{e}_{1}+\mathbf{e}_{2}-3 \mathbf{e}_{3}-\mathbf{e}_{4}$.
sol.

$$
\mathbf{u} \cdot \mathbf{v}=2-2-9-2=-11
$$

Example 1.6.4. Find the angle between $\mathbf{u}=\mathbf{e}_{1}-\mathbf{e}_{2}+\mathbf{e}_{4}, \mathbf{v}=-\mathbf{e}_{2}-\mathbf{e}_{3}+2 \mathbf{e}_{4}$.
sol. The angle between \mathbf{u} and \mathbf{v} is

$$
\cos ^{-1} \frac{0+1+0+2}{\sqrt{(1+1+0+1)(0+1+1+4)}}=\cos ^{-1} \frac{1}{\sqrt{2}}=\frac{\pi}{4}
$$

Theorem 1.6.5 (Cauchy-Schwarz inequality). For any two vectors a, b in n-dim space the following holds. Equality holds iff \mathbf{a} and \mathbf{b} are parallel.

$$
|\mathbf{a} \cdot \mathbf{b}| \leq\|\mathbf{a}\|\|\mathbf{b}\|
$$

Proof. For $n>3$ our early proof is unclear. Thus we prove this again. We may assume none of the vectors are zero. Recall the orthogonal decomposition of \mathbf{b} onto \mathbf{a}, i.e, we write

$$
\mathbf{b}=k \mathbf{a}+\mathbf{c}
$$

where $k \mathbf{a}$ is the projection of \mathbf{b} and $\mathbf{c}=\mathbf{b}-k \mathbf{a}$ is the orthogonal complement. By orthogonality $(\mathbf{a} \cdot \mathbf{c}=0)$,

$$
\|\mathbf{a}\|^{2}\|\mathbf{b}\|^{2}=\|\mathbf{a}\|^{2}\left(k^{2}\|\mathbf{a}\|^{2}+\|\mathbf{c}\|^{2}\right) \geq k^{2}\|\mathbf{a}\|^{2}\|\mathbf{a}\|^{2}
$$

Thus

$$
k^{2}\|\mathbf{a}\|^{2} \leq\|\mathbf{b}\|^{2} .
$$

Since $k=\frac{\mathbf{b} \cdot \mathbf{a}}{\|\mathbf{a}\|^{2}}$, we see

$$
\|\mathbf{a} \cdot \mathbf{b}\|^{2} \leq\|\mathbf{a}\|^{2}\|\mathbf{b}\|^{2}
$$

Theorem 1.6.6 (Triangle inequality). For any two vectors u, v in n-dim space the following holds. Equality holds iff \mathbf{u} and \mathbf{v} are parallel and same direction.

$$
\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|
$$

Proof.

$$
\begin{aligned}
\|\mathbf{u}+\mathbf{v}\|^{2} & =(\mathbf{u}+\mathbf{v}) \cdot(\mathbf{u}+\mathbf{v}) \\
& =\mathbf{u} \cdot \mathbf{u}+2 \mathbf{u} \cdot \mathbf{v}+\mathbf{v} \cdot \mathbf{v} \\
& \leq \mathbf{u} \cdot \mathbf{u}+2\|\mathbf{u}\|\|\mathbf{v}\|+\mathbf{v} \cdot \mathbf{v} \\
& =(\|\mathbf{u}\|+\|\mathbf{v}\|)^{2}
\end{aligned}
$$

General matrix

Let m, n be any natural numbers. The arrays $a_{i j}(1 \leq i \leq m, 1 \leq j \leq n)$

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

is called $m \times n$ matrix and denote by

$$
\left[a_{i j}\right]_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}},\left[a_{i j}\right]_{m \times n} \text { or }\left[a_{i j}\right]
$$

If $m=1$, then $1 \times n$ matrix consists of one row and is called row vector, and if $n=1$ then $m \times 1$ matrix is column vector. If $m=n$, it is called square matrix. $a_{i j}$ is called $i j$-entry. The $1 \times n$ matrix

$$
\left[\begin{array}{llll}
a_{i 1} & a_{i 2} & \cdots & a_{i n}
\end{array}\right]
$$

is i-th row vector, $m \times 1$ matrix

$$
\left[\begin{array}{c}
a_{1 j} \\
a_{2 j} \\
\vdots \\
a_{m j}
\end{array}\right]
$$

is j-th column vector.

Example 1.6.7. What is 4 -th row and second column of the 4×3 matrix?

$$
\left[\begin{array}{rrr}
0 & -2 & 12 \\
3 & 1 & 4 \\
-1 & 0 & 5 \\
1 & -3 & 7
\end{array}\right]
$$

sol. 4-th row and second column is

$$
\left[\begin{array}{lll}
1 & -3 & 7
\end{array}\right], \quad\left[\begin{array}{r}
-2 \\
1 \\
0 \\
-3
\end{array}\right]
$$

Matrix addition, multiplication

Let A and B be two $m \times n$ matrices. Then the matrix sum $A+B$ is the $m \times n$ matrix whose (i, j) entries are the sum of $a_{i, j}$ and $b_{i, j}$. If k is any scalar, define the scalar multiplication $k A$ by

$$
(k A)_{i j}=k a_{i j} .
$$

i.e, each entry is multiplied by k.

Definition 1.6.8 (Matrix multiplication). If $A=\left[a_{i j}\right]$ is $m \times n$ matrix and $B=\left[b_{k l}\right]$ is $n \times p$ matrix, then the $m \times p$ matrix

$$
\left[\sum_{k=1}^{n} a_{i k} b_{k j}\right]_{\substack{1 \leq i \leq m \\ 1 \leq j \leq p}}
$$

is the product of A and B denoted by $A B$. In other words, the product of A and B is $A B$ and its $i j$-component is the inner product of $i-t h$ row of A and $j-t h$ column of B.

Example 1.6.9. Product of 2×3 and 3×4 matrices

$$
\left[\begin{array}{rrr}
2 & 3 & 1 \\
-1 & 1 & 4
\end{array}\right]\left[\begin{array}{rrrr}
0 & 2 & 3 & -2 \\
-2 & 1 & 5 & -3 \\
2 & 0 & -2 & 1
\end{array}\right]=\left[\begin{array}{rrrr}
-4 & 9 & 19 & -12 \\
6 & -1 & -6 & 3
\end{array}\right]
$$

Example 1.6.10. Product of 1×3 and 3×2 matrices

$$
\left[\begin{array}{lll}
2 & 1 & -3
\end{array}\right]\left[\begin{array}{rr}
-3 & 5 \\
1 & -3 \\
0 & -2
\end{array}\right]=\left[\begin{array}{ll}
-5 & 13
\end{array}\right]
$$

Example 1.6.11. Product of 3×4 and 4×1 matrices

$$
\left[\begin{array}{rrrr}
0 & 2 & 3 & 1 \\
-1 & 2 & 0 & -3 \\
2 & 0 & 1 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right]=\left[\begin{array}{c}
2 y+3 z+w \\
-x+2 y-3 w \\
2 x+z+4 w
\end{array}\right]
$$

Definition 1.6.12. The following $n \times n$ matrix is

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right]
$$

$n \times n$ identity matrix and denote it by I_{n}.
Proposition 1.6.13 (Properties of matrix multiplication). Let A, B and C are matrices where the multiplication $A B$ and $B C$ etc, makes sense. Then
(1) $A(B C)=(A B) C$.
(2) $k(A B)=(k A) B=A(k B)$
(3) $A(B+C)=A B+A C$
(4) $(A+B) C=A C+B C$
whenever the multiplication makes sense.
Transpose.

$$
\begin{aligned}
\left(A^{T}\right)^{T} & =A \\
(A B)^{T} & =B^{T} A^{T} \\
\mathbf{a} \cdot \mathbf{b} & =a^{T} \mathbf{b}
\end{aligned}
$$

Lemma 1.6.14. For nay $m \times n$ matrix A and $n \times p$ matrix B, we have

$$
A I_{n}=A, \quad I_{n} B=B
$$

Also, for any $n \times n$ matrix A, it holds that

$$
A I_{n}=I_{n} A=A
$$

I_{n} is identity element in multiplication.
Example 1.6.15.

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Definition 1.6.16. If for any vector $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$ and scalar $\alpha \in \mathbb{R}$, a function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is defined by
(1) $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$
(2) $T(\alpha \mathbf{u})=\alpha T(\mathbf{u})$
we say T linear transformation(mapping, functions).
Example 1.6.17. Express a given linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ using the standard basis vector.

Since any vector in \mathbb{R}^{n} can be written as $a_{1} \mathbf{e}_{1}+a_{2} \mathbf{e}_{2}+\cdots+a_{n} \mathbf{e}_{n}$ and T is determined by the values at these vectors.

$$
\begin{aligned}
T\left(a_{1} \mathbf{e}_{1}+a_{2} \mathbf{e}_{2}+\cdots+a_{n} \mathbf{e}_{n}\right) & =T\left(a_{1} \mathbf{e}_{1}\right)+T\left(a_{2} \mathbf{e}_{2}\right)+\cdots+T\left(a_{n} \mathbf{e}_{n}\right) \\
& =a_{1} T\left(\mathbf{e}_{1}\right)+a_{2} T\left(\mathbf{e}_{2}\right)+\cdots+a_{n} T\left(\mathbf{e}_{n}\right)
\end{aligned}
$$

Since $T\left(\mathbf{e}_{1}\right), T\left(\mathbf{e}_{2}\right), \ldots, T\left(\mathbf{e}_{n}\right)$ are in \mathbb{R}^{m}, we can write it as linear combinations of $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{m}$. Hence there are $t_{i j}(1 \leq i \leq m, 1 \leq j \leq n)$ s.t.

$$
\begin{equation*}
T\left(\mathbf{e}_{j}\right)=\sum_{i=1}^{m} t_{i j} \mathbf{e}_{i} \quad(1 \leq j \leq n) \tag{1.6}
\end{equation*}
$$

Hence

$$
\begin{equation*}
T\left(a_{1} \mathbf{e}_{1}+a_{2} \mathbf{e}_{2}+\cdots+a_{n} \mathbf{e}_{n}\right)=\sum_{j=1}^{n} a_{j} T\left(\mathbf{e}_{j}\right)=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} t_{i j} a_{j}\right) \mathbf{e}_{i} \tag{1.7}
\end{equation*}
$$

This procedure can be written in matrix form Eq. (1.6). The matrix having $t_{i j}$ as $i j$-th component

$$
\operatorname{mat}(T)=\left[\begin{array}{cccc}
t_{11} & t_{12} & \cdots & t_{1 n} \\
t_{21} & t_{22} & \cdots & t_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
t_{m 1} & t_{m 2} & \cdots & t_{m n}
\end{array}\right]
$$

is called matrix of T. Let us multiply the column vector $a_{1} \mathbf{e}_{1}+a_{2} \mathbf{e}_{2}+\cdots+$ $a_{n} \mathbf{e}_{n}$ to the right of this matrix.

$$
\left[\begin{array}{cccc}
t_{11} & t_{12} & \cdots & t_{1 n} \\
t_{21} & t_{22} & \cdots & t_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
t_{m 1} & t_{m 2} & \cdots & t_{m n}
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]=\left[\begin{array}{c}
t_{11} a_{1}+t_{12} a_{2}+\cdots+t_{1 n} a_{n} \\
t_{21} a_{1}+t_{22} a_{2}+\cdots+t_{2 n} a_{n} \\
\vdots \\
t_{m 1} a_{1}+t_{m 2} a_{2}+\cdots+t_{m n} a_{n}
\end{array}\right]
$$

Compare this with equation (1.7). Then rhs vector has $T\left(a_{1} \mathbf{e}_{1}+a_{2} \mathbf{e}_{2}+\cdots+\right.$ $a_{n} \mathbf{e}_{n}$) as its component. Conversely, any $m \times n$ matrix $\left[t_{i j}\right]$ is given, then it determines linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ as in equation (1.7). Hence linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has one-one correspondence with $m \times n$ matrix as follows:

$$
\operatorname{mat}: T \mapsto\left[\mathbf{e}_{i} \cdot T\left(\mathbf{e}_{j}\right)\right]_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}}^{\substack{ \\\hline}}
$$

Proposition 1.6.18. For two linear transformations $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, U: \mathbb{R}^{p} \rightarrow$ \mathbb{R}^{n} it holds that

$$
\operatorname{mat}(T \circ U)=\operatorname{mat}(T) \operatorname{mat}(U)
$$

Example 1.6.19. For the given two linear transformations $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, $U: \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ check Proposition 1.6.18 holds.

$$
\begin{aligned}
T(x, y, z) & =(3 y-z, x+y) \\
U(s, t) & =(2 s-t, s+2 t,-3 s)
\end{aligned}
$$

sol. The matrices for T and U are

$$
\operatorname{mat}(T)=\left[\begin{array}{rrr}
0 & 3 & -1 \\
1 & 1 & 0
\end{array}\right], \quad \operatorname{mat}(U)=\left[\begin{array}{rr}
2 & -1 \\
1 & 2 \\
-3 & 0
\end{array}\right]
$$

Hence

$$
\operatorname{mat}(T) \operatorname{mat}(U)=\left[\begin{array}{rrr}
0 & 3 & -1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{rr}
2 & -1 \\
1 & 2 \\
-3 & 0
\end{array}\right]=\left[\begin{array}{ll}
6 & 6 \\
3 & 1
\end{array}\right]
$$

On the other hand

$$
\begin{aligned}
(T \circ U)(s, t) & =T(2 s-t, s+2 t,-3 s) \\
& =(3(s+2 t)-(-3 s),(2 s-t)+(s+2 t)) \\
& =(6 s+6 t, 3 s+t)
\end{aligned}
$$

So

$$
\operatorname{mat}(T \circ U)=\left[\begin{array}{ll}
6 & 6 \\
3 & 1
\end{array}\right]
$$

Hence the following holds.

$$
\operatorname{mat}(T \circ U)=\operatorname{mat}(T) \operatorname{mat}(U)
$$

Determinant

We have seen $3 \times 32 \times 2$. Using these, we define determinant of $n \times n$ matrix by induction. We expand w.r.t 1st column.

$$
\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdots & \cdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right|=a_{11}\left|\begin{array}{cccc}
a_{22} & a_{23} & \cdots & a_{2 n} \\
a_{32} & a_{33} & \cdots & a_{3 n} \\
\cdots & \cdots & \ddots & \vdots \\
a_{n 2} & a_{n 3} & \cdots & a_{n n}
\end{array}\right|+
$$

$$
\begin{aligned}
& \cdots+(-1)^{1+i} a_{1 i}\left|\begin{array}{cccccc}
a_{21} & \cdots & a_{2(i-1)} & a_{2(i+1)} & \cdots & a_{2 n} \\
a_{31} & \cdots & a_{3(i-1)} & a_{3(i+1)} & \cdots & a_{3 n} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n(i-1)} & a_{n(i+1)} & \cdots & a_{n n}
\end{array}\right|+\cdots \\
&+(-1)^{1+n} a_{1 n}\left|\begin{array}{cccc}
a_{21} & a_{22} & \cdots & a_{2(n-1)} \\
a_{31} & a_{32} & \cdots & a_{3(n-1)} \\
\cdots & \cdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n(n-1)}
\end{array}\right|
\end{aligned}
$$

The i-th term on the right is $(-1)^{1+i} a_{1 i}$ times the determinant of $(n-1) \times$ ($n-1$) obtained by deleting first row and i-column.

Thm 1.4.6 and corollary 1.4.7 hold for any square matrices.

Expansion with respect to any row

Let $A_{i j}$ be the $(n-1) \times(n-1)$ matrix obtained by deleting i-row and j-th column. Expand w.r.t i-th row, we see

$$
|A|=\sum_{j=1}^{n}(-1)^{i+j} a_{i j}\left|A_{i j}\right|
$$

if we expand w.r.t j-th row, we see

$$
|A|=\sum_{i=1}^{n}(-1)^{i+j} a_{i j}\left|A_{i j}\right|
$$

Example 1.6.20. Expand w.r.t 2nd row

$$
\begin{aligned}
\left|\begin{array}{rrrr}
2 & -1 & 3 & 0 \\
0 & -1 & 0 & 4 \\
3 & 1 & 0 & 2 \\
2 & 0 & -3 & 0
\end{array}\right|= & =-0\left|\begin{array}{rrr}
-1 & 3 & 0 \\
1 & 0 & 2 \\
0 & -3 & 0
\end{array}\right|+(-1)\left|\begin{array}{rrr}
2 & 3 & 0 \\
3 & 0 & 2 \\
2 & -3 & 0
\end{array}\right| \\
& -0\left|\begin{array}{rrr}
2 & -1 & 0 \\
3 & 1 & 2 \\
2 & 0 & 0
\end{array}\right|+4\left|\begin{array}{rrr}
2 & -1 & 3 \\
3 & 1 & 0 \\
2 & 0 & -3
\end{array}\right| \\
= & -2\left|\begin{array}{rr}
0 & 2 \\
-3 & 0
\end{array}\right|+3\left|\begin{array}{ll}
3 & 2 \\
2 & 0
\end{array}\right| \\
& +4 \cdot 2\left|\begin{array}{rr}
-1 & 3 \\
1 & 0
\end{array}\right|+4(-3)\left|\begin{array}{rr}
2 & -1 \\
3 & 1
\end{array}\right| \\
= & -2 \cdot 6+3 \cdot(-4)+8 \cdot(-3)-12 \cdot 5 \\
= & -108
\end{aligned}
$$

Example 1.6.21. Solve

$$
\begin{aligned}
3 x+2 y+z & =1 \\
y+z & =0 \\
x+y & =3
\end{aligned}
$$

sol. Use Cramer's rule

$$
\left|\begin{array}{lll}
3 & 2 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right|=3\left|\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right|-0\left|\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right|+1\left|\begin{array}{cc}
2 & 1 \\
1 & 1
\end{array}\right|=-2
$$

Then $x_{1} \cdot x_{2}$ and x_{3} are
$x_{1}=\frac{1}{-2}\left|\begin{array}{lll}1 & 2 & 1 \\ 3 & 1 & 1 \\ 0 & 1 & 0\end{array}\right|=-1 \quad x_{2}=\frac{1}{-2}\left|\begin{array}{ccc}3 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 3 & 0\end{array}\right|=4 \quad x_{3}=\frac{1}{-2}\left|\begin{array}{ccc}3 & 2 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 3\end{array}\right|=-4$

1.7 Cylindrical and spherical coordinate

Cylindrical coordinate system

Given a point $P=(x, y, z)$, we can use polar coordinate for (x, y)-plane. Then it holds that

$$
\text { Cylindrical to Cartesain }\left\{\begin{aligned}
x & =r \cos \theta \\
y & =r \sin \theta \\
z & =z
\end{aligned}\right.
$$

We say (r, θ, z) is cylindrical coordinate of P. Conversely, the cylindrical coordinate (r, θ, z) is given by

$$
\text { Cartesain to Cylindrical }\left\{\begin{aligned}
r^{2} & =x^{2}+y^{2} \\
\tan \theta & =\frac{y}{x} \\
z & =z
\end{aligned}\right.
$$

The expression (r, θ, z) is not unique.
Example 1.7.1. The set of all points $r=a$ in cylindrical coordinate is

$$
\left\{(x, y, z) \mid x^{2}+y^{2}=a^{2}\right\} .
$$

This is a cylinder (Figure 1.25).
Example 1.7.2. $r=3 \cos \theta$ gives

$$
r^{2}=3 r \cos \theta \Rightarrow x^{2}+y^{2}=3 x
$$

This is again a cylinder.

Example 1.7.3. Change cylindrical coordinate $(6, \pi / 3,4)$ to Cartesian coordinate.
sol.

$$
x=6 \cos (\pi / 3)=3, \quad y=6 \sin (\pi / 3)=3 \sqrt{3}, \quad z=4 .
$$

So $(x, y, z)=(3,3 \sqrt{3}, 4)$.

Figure 1.25: cylindrical coordinate

$$
\theta= \begin{cases}\tan ^{-1}(y / x) & (x>0, y \geq 0) \\ 2 \pi+\tan ^{-1}(y / x) & (x>0, y<0) \\ \pi+\tan ^{-1}(y / x) & (x<0) \\ \pi / 2 & (x=0, y>0) \\ 3 \pi / 2 & (x=0, y<0)\end{cases}
$$

Example 1.7.4. Identify the surface given by the equation $z=2 r$ in cylindrical coordinate.
sol. $z^{2}=4 r^{2}=4\left(x^{2}+y^{2}\right)$. This is a cone.

Example 1.7.5. Change the equation $x^{2}+y^{2}-z^{2}=1$ to cylindrical coordinate.
sol. $r^{2}-z^{2}=1$.

Spherical coordinate system

We call (ρ, ϕ, θ) to be the spherical coordinate of P.

$$
\text { Shperical to cylindrical }\left\{\begin{array} { l }
{ r = \rho \operatorname { s i n } \phi } \\
{ \theta = \theta } \\
{ z = \rho \operatorname { c o s } \phi }
\end{array} \left\{\begin{array}{r}
\rho^{2}=r^{2}+z^{2} \\
\tan \phi=\frac{r}{z} \\
\theta=\theta
\end{array}\right.\right.
$$

For $P=(x, y, z)$ we have

$$
\text { Shperical to Cartesian }\left\{\begin{array}{l}
x=\rho \sin \phi \cos \theta \\
y=\rho \sin \phi \sin \theta \\
z=\rho \cos \phi
\end{array} \quad\left(\begin{array}{c}
\rho \geq 0 \\
0 \leq \theta<2 \pi \\
0 \leq \phi \leq \pi
\end{array}\right)\right.
$$

Conversely, we can write ρ, ϕ, θ in terms of x, y, z.

$$
\text { Cartesian to shperical }\left\{\begin{aligned}
\rho & =\sqrt{x^{2}+y^{2}+z^{2}} \\
\cos \phi & =\frac{z}{\rho} \\
\tan \theta & =\frac{y}{x}
\end{aligned}\right.
$$

Figure 1.26: Spherical-coordinate

Now the second condition has an alternate expression:We see from the figure

$$
r=\rho \sin \phi, \quad z=\rho \cos \phi .
$$

Hence $\cos \phi=\frac{z}{\rho}$ can be replaced by

$$
\tan \phi=\frac{r}{z} .
$$

Example 1.7.6. (1) Find spherical coord. of $(1,-1,1)$ and plot.
(2) Find cartesian coord. of $(3, \pi / 6, \pi / 4)$.
(3) Find spherical coord. of $(2,-3,6)$.
(4) Find spherical coord. of $(-3,-3, \sqrt{6})$.
sol. (1) $\rho=\sqrt{3}$.

$$
\phi=\cos ^{-1}\left(\frac{z}{\rho}\right)=\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right) \approx 0.955 \approx 54.74^{\circ}
$$

Since the point $(1,-1)$ lies in the 4 -th quadrant, we see

$$
\theta=\arctan \left(\frac{y}{x}\right)=\frac{7 \pi}{4} .
$$

(3) $\rho=\sqrt{2^{2}+(-3)^{2}+6^{2}}=\sqrt{2^{2}+(-3)^{2}+6^{2}}=7$.

$$
\phi=\cos ^{-1}\left(\frac{z}{\rho}\right)=\cos ^{-1} \frac{6}{7}
$$

Also, the point lies in the fourth quadrant, we have

$$
\theta=2 \pi+\tan ^{-1}(-3 / 2) .
$$

$$
\begin{align*}
& \rho=\sqrt{9+9+6}=2 \sqrt{6} \tag{4}\\
& \phi=\cos ^{-1} \frac{\sqrt{6}}{2 \sqrt{6}}=\cos ^{-1} \frac{1}{2}=\frac{\pi}{3} \\
& \theta=\pi+\tan ^{-1}\left(\frac{-1}{-1}\right)=\pi+\frac{\pi}{4}=\frac{5 \pi}{4}
\end{align*}
$$

Hence spherical coordinate is $(2 \sqrt{6}, \pi / 3,5 \pi / 4)$.

Example 1.7.7. Express the surface (1) $x z=1$ and (2) $x^{2}+y^{2}-z^{2}=1$ in spherical coordinate.
sol. (1) Since $x z=\rho^{2} \sin \phi \cos \theta \cos \phi=1$, we have the equation

$$
\rho^{2} \sin 2 \phi \cos \phi=2 .
$$

(2) Since $x^{2}+y^{2}-z^{2}=x^{2}+y^{2}+z^{2}-2 z^{2}=\rho^{2}-2(\rho \cos \phi)^{2}=\rho^{2}\left(1-2 \cos ^{2} \phi\right)$, the equation is $1+\rho^{2} \cos 2 \phi=0$.

Standard basis for cylindrical and spherical coordinates

For cylindrical coordinates, the following sets are standard basis vectors:

$$
\mathbf{e}_{\mathbf{r}}=\frac{x \mathbf{i}+y \mathbf{j}}{\sqrt{x^{2}+y^{2}}}, \quad \mathbf{e}_{\theta}, \quad \mathbf{e}_{z}=\mathbf{k}
$$

These vary depending on the points and are defined so that only the coordinate indicated by the subscript increases. Now \mathbf{e}_{θ} is given by

$$
\mathbf{e}_{\theta}=\mathbf{e}_{\mathbf{z}} \times \mathbf{e}_{\mathbf{r}}=\frac{-y \mathbf{i}+x \mathbf{j}}{\sqrt{x^{2}+y^{2}}}
$$

In this way $\left(\mathbf{e}_{\mathbf{r}}, \mathbf{e}_{\theta}, \mathbf{e}_{z}\right)$ form a right handed coordinate system.

Figure 1.27: Standard basis for spherical coordinate

For spherical coordinates the followings are standard basis vectors.

$$
\begin{aligned}
& \mathbf{e}_{\rho}=\frac{x \mathbf{i}+y \mathbf{j}+z \mathbf{j}}{\sqrt{x^{2}+y^{2}+z^{2}}}=\sin \phi \cos \theta \mathbf{i}+\sin \phi \sin \theta \mathbf{j}+\cos \phi \mathbf{k} \\
& \mathbf{e}_{\phi}=\cos \phi \cos \theta \mathbf{i}+\cos \phi \sin \theta \mathbf{j}-\sin \phi \mathbf{k} \\
& \mathbf{e}_{\theta}=\frac{-y \mathbf{i}+x \mathbf{j}}{\sqrt{x^{2}+y^{2}}}=-\sin \theta \mathbf{i}+\cos \theta \mathbf{j}
\end{aligned}
$$

[^0]: ${ }^{1}$ By definition 1.1.8, the vectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ are denoted by $\mathbf{i}, \mathbf{j}, \mathbf{k}$ in \mathbb{R}^{3}

