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Chapter 7

Infinite Sequence and Series

7.1 Sequences

Example 7.1.1. (1)
1, 3, 5, 7, . . .

(2) n-th term is given by (−1)n+11/n:

1,−1

2
,
1

3
,−1

4
, . . . , (−1)n+1 1

n
, . . .

(3) Certain rules

1,
1

2
,
1

2
,−1

3
,−1

3
,−1

3
,
1

4
,
1

4
,
1

4
,
1

4
, . . .

(4) Constant sequence :
3, 3, 3, . . .

(5) Digits after decimal point of
√
2

4, 1, 4, 1, 5, 9, . . .

n-th term an

Definition 7.1.2. A sequence is a function with the set of natural numbers
as domain.

Sequence as graph

Example 7.1.3. (1) an = (n− 1)/n.

(2) an = (−1)n1/n.

(3) an =
√
n.

(4) an = sin(nπ/6).
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Figure 7.1: an = (n− 1)/n
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Figure 7.2: an = (−1)n1/n

(5) an is the n-th digit of π after decimal point.

Among these (1), (3), (4) are functions (x − 1)/x,
√
x, lnx are restricted

to N .

Subsequence

If all the terms of {an} appears as some term in {bn} without changing orders
we say {an} is a subsequence of {bn}.

Example 7.1.4. (1) 1, 1, 1, 1, . . . is a subsequence of 1,−1, 1,−1, . . . .

(2) {9n} (n = 1, 2, 3, . . . ) is a subsequence of {3n} (n = 1, 2, 3, . . . ).

(3) {1+1/4n} (n = 1, 2, 3, . . . ) is a subsequence of {1+1/2n} (n = 1, 2, 3, . . . ).

Recursive relation

Some sequence are defined through recursive relation such as

a1 = 1,

an+1 = 2an + 1, n = 1, 2, 3, . . .

or

a1 = 1, a2 = 2,

an+2 = an+1 + an, n = 1, 2, 3, . . .
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Figure 7.3: an = sin(nπ/6)

7.1.1 Convergence of a sequence

Definition 7.1.5. We say {an} converges to L, if for any ε > 0 there exists
some N s.t. for all n > N it holds that

|an − L| < ε.

Otherwise, we say {an} is said to diverge. If {an} converges to L we write

lim
n→∞

an = L or {an} → L.

We say L is the limit an.

Example 7.1.6. Show that {(n − 1)/n} converges to 1.

sol. We expect L = 1. For any ε, |(n− 1)/n− 1| < ε holds for n satisfying
|1/n| > ε.

Example 7.1.7. Show that {
√
n+ 2−√

n} converges to 0.

sol. Let ε be given. We want to choose a number N so that

|
√
n+ 2−

√
n− 0| = 2√

n+ 2 +
√
n

is less than ε for all n greater than certain N . Since

2√
n+ 2 +

√
n
<

1√
n

the conclusion will hold if n satisfies

1√
n
< ε.

Thus we choose N any natural number greater than 1/ε2.
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Theorem 7.1.8. Suppose and subsequence bn of an converges to L, then an
also converges to L.

Theorem 7.1.9 (Uniqueness). If {an} converges, it has unique limit.

Proof. Suppose {an} has two limits L1, L2. Choose ε = |L1 − L2|/2 There
exist N1 s.t. for n > N1 the following holds

|an − L1| < ε.

Similarly, there exist N2 s.t. for all n > N2 it holds that

|an − L2| < ε

Let N be the greater one of N1, N2. Then for all n > N

|L1 − L2| = |L1 − an + an − L2| ≤ |L1 − an|+ |an − L2|
< ε+ ε = |L1 − L2|

holds. A contradiction. So L1 = L2.

Corollary 7.1.10. If {an} converges, we have lim
n→∞

(an − an+1) = 0.

Remark 7.1.11. The above condition is not a sufficient for convergence. For
example, the sequence an = ln(n+1)/n satisfies an+1− an = ln(n+1)/n → 0
but limn→∞ an = ∞.

Properties of limit

Theorem 7.1.12. Suppose lim
n→∞

an = A, lim
n→∞

bn = B. Then we have

(1) lim
n→∞

{an + bn} = A+B

(2) lim
n→∞

{an − bn} = A−B

(3) lim
n→∞

{kan} = kA

(4) lim
n→∞

{an · bn} = A · B

(5) lim
n→∞

{
an
bn

}

= A/B, B 6= 0.

lim
n→∞

n2 − n

n2
= lim

n→∞
1− 1

n
= 1− 0 = 1.

lim
n→∞

2− 3n5

n5 + 1
= lim

n→∞
2/n5 − 3

1 + 1/n5
= −3.
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Theorem 7.1.13 (Continuous function). Suppose the limit of an is L and a
function f is defined on an interval containing all values of an and L, and
continuous at L, then

lim
n→∞

f(an) = f(L)

Proof. Since f is continuous at L, we have for any ε there is a δ such that for
all an with |an − L| < δ it holds that |f(an) − f(L)| < ε. Since an converges
to L, there is a natural number N s.t. for n > N it holds that |an − L| < δ.
Hence |f(an)− f(L)| < ε holds.

Example 7.1.14. (1) lim
n→∞

sin

(
nπ

(2n+ 1)

)

= 1 (2) limn→∞ 2
1√
n = 1

sol. (1) Since the limit of nπ/(2n + 1) is π/2 and the function sinx is
continuous at π/2, we have lim

n→∞
sin (nπ/(2n + 1)) = 1.

(2) Since f(x) = 2
√
x is continuous at x = 0+ we have

lim
n→∞

21/
√
n = 1

Theorem 7.1.15. Suppose f(x) is defined for x ≥ 0 and if {an} is given by
an = f(n), n = 1, 2, 3, . . . and if lim

x→∞
f(x) = L then lim

n→∞
an = L.

This theorem holds when f(x) → +∞ or f(x) → −∞.

Example 7.1.16. (1) lim
n→∞

lnn

n
= 0,

(2) lim
n→∞

n(e
1
n − 1) = 1

(3) Find lim
n→∞

(
n+ 1

n− 1

)n

sol. (1) Let f(x) = lnx/x. Then

lim
n→∞

f(n) = lim
x→∞

f(x) = lim
x→∞

(lnx)′

x′
= lim

x→∞
1

x
= 0

lim
n→∞

lnn/n = 0

(2) Set x = 1/n. Then it corresponds to the limit of f(x) = (ex − 1)/x as
x → 0. By L’Hopital’s rule

lim
x→0

f(x) = lim
x→0

ex = 1

lim
n→∞

n(e1/n − 1) = 1
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Theorem 7.1.17 (Sanwich theorem). Suppose an, bn, cn satisfy an ≤ bn ≤ cn
and lim

n→∞
an = lim

n→∞
cn = L. Then lim

n→∞
bn = L.

Useful Limits

Proposition 7.1.18.

(1) lim
n→∞

lnn

n
= 0

(2) lim
n→∞

n
√
n = 1

(3) lim
n→∞

x1/n = 1, x > 0

(4) lim
n→∞

xn = 0, |x| < 1

(5) lim
n→∞

(

1 +
x

n

)n
= ex, x ∈ R

(6) lim
n→∞

xn

n!
= 0, x ∈ R

Proof. (1) See Example 7.1.16.

(2) Let an = n1/n and take ln ln an = lnn1/n = lnn
n . Since this approaches

0 and ex is continuous at 0 an = eln an → e0 = 1 by theorem 7.1.15.

(3) Set an = x1/n. Since the limit of ln an = lnx1/n = lnx
n is 0, we see

x1/n = an = eln an converges to e0 = 1.

(4) Use the definition. given ε > 0, we must find n, s.t. for |x| < ε1/n

|xn − 0| < ε holds. Since lim
n→∞

ε1/n = 1 there is an N s.t |x| < ε1/N

holds. Now if n > N we have |x|n < |xN | < ε.

(5) Let an = (1 + x/n)n. Then lim
n→∞

ln an= lim
n→∞

ln (1 + x/n)n = n ln (1 + x/n)

and by L’Hopital’s rule we see

lim
n→∞

ln(1 + x/n)

1/n
= lim

n→∞
x

1 + x/n
= x

Hence an = (1 + x/n)n = eln an converges to ex.
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(6) First we will show that

−|x|n
n!

≤ xn

n!
≤ |x|n

n!

and |x|n/n! → 0. Then use Sandwich theorem. If |x| is greater than M ,
then |x|/M < 1 and hence (|x|/M)n → 0. If n > M

|x|n
n!

=
|x|n

1 · 2 · · ·M(M + 1) · · · n ≤ |x|n
M !Mn−M

=
MM

M !

( |x|
M

)n

holds. But MM/M ! is fixed number. As n∞ (|x|/M)n approaches 0. So
|x|n/n! approaches 0. Finally by Sandwich theorem 7.1.17 we get the
result. xn/n! → 0.

Example 7.1.19. (1) lim
n→∞

(
1

1000

)1/n

= 1.

(2) lim
n→∞

(
101000n2

)1/n
= lim

n→∞
(101/n)1000 lim

n→∞
n2/n = 1 · lim

n→∞

(

n1/n
)2

= 1.

(3) lim
n→∞

(

1− 2

n

)n

= e−2.

(4) lim
h→0+

(1 + h)1/h = lim
n→∞

(

1 +
1

n

)n

= e.

(5) lim
n→∞

10n

n!
= 0.

(6) The set of all x satisfying lim
n→∞

|x|n
5n

= 0 is, {x : |x| < 5}.

Example 7.1.20. lim
n→∞

n
√
5n + 1 = 1.

sol. We see
n
√
5n+ 1 = exp(ln(5n+ 1)1/n)

and

lim
n→∞

ln(5n + 1)

n
= 0.

Hence by theorem 7.1.15, the above limit is

lim
n→∞

n
√
5n+ 1 = lim

n→∞
exp(ln(5n+ 1)1/n) = exp( lim

n→∞
ln(5n + 1)

n
) = e0 = 1.
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Example 7.1.21. Show that lim
n→∞

lnn/nε = 0 for any ε > 0.

sol. By L’Hopital rule 3.6.5

lim
n→∞

lnn

nε
= lim

n→∞
1/n

εnε−1
= lim

n→∞
1

εnε
= 0.

Monotone Sequence

Definition 7.1.22. If an satisfies

a1 ≤ a2 ≤ · · · ≤ an ≤ · · ·
then an is called an nondecreasing sequence(increasing sequence).

Definition 7.1.23. If there is a number M such that an ≤ M for all n, then
this sequence is called bounded from above. Any such M is called upper

bound.

Example 7.1.24. For the sequence an = 1− 1/2n, M = 1 is an upper bound
and any number bigger than 1 is an upper bound. The smallest such number(if
exists) is the least upper bound.

Theorem 7.1.25. If a nondecreasing sequence has an upper bound, it con-
verges. Furthermore, it converges to the least upper bound.

Suppose L is a least upper bound, we observe two things:

(1) an ≤ L for all n, and

(2) for any ε > 0 there is a term aN greater than L− ε.

Suppose there does not exist such aN , it holds that an ≤ L−ε for all n, which
is a contradiction. Thus for n ≥ N

L− ε < an ≤ L

Thus |L− an| < ε and we have proved an → L.
For a decreasing sequence, we have a similar definition and theorem.

Definition 7.1.26. If an satisfies

a1 ≥ a2 ≥ · · · ≥ an · · ·
an is called a decreasing sequence. If sn ≥ N , then N is called a lower

bound(lower bound). The largest such number is called the greatest lower

bound.

Theorem 7.1.27. If a nonincreasing sequence has a lower bound, it converges.
Furthermore, it converges to the greatest lower bound.
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L
an
ε

N n
b

b

b

b

b
b

b
b

b
b b b b b b b b b b b

Figure 7.4: Nondecreasing(increasing) sequence and least upper bound L

7.2 Infinite Series

An infinite series is the sum of an infinite sequence of numbers.

Example 7.2.1. If we denote the sum of first n- term of an = 1/2n by sn
then

s1 = a1 =
1

2

s2 = a1 + a2 =
1

2
+

1

4
=

3

4

s3 = a1 + a2 + a3 =
1

2
+

1

4
+

1

8
=

7

8
...

The general term {sn} satisfies

sn = a1 + a2 + a3 + · · · + an =

n∑

k=1

ak

infinite series Write it as
∑∞

n=1 an or
∑

an.

Definition 7.2.2. an is called n-th term sn =
∑n

k=1 ak is n-th partial

sum If the limit of {sn} is L then we say
∑

an converges to L and write
∑∞

n=1 an = L or a1 + a2 + a3 + · · · = L . If s series does not converges, we say
it diverges.

Example 7.2.3 (Repeating decimals). Write 0.1111 · · · as series.

sol. Writing 0.111 · · · = 0.1 + 0.01 + 0.001 + · · · we see

a1 = 0.1,

a2 = 0.01,

...

an = (0.1)n
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Hence 0.111 =
∑∞

k=1 10
−k.

Definition 7.2.4.

a+ ar + ar2 + · · ·
is called a geometric series and r is called a ratio.

We can compute the sum of a geometric series as follows: Note that

sn = a+ ar + · · ·+ arn−1

rsn = ar + ar2 + · · ·+ arn

sn − rsn = a− arn

Hence
sn = a(1− rn)/(1− r).

Example 7.2.5 (Telescoping Series).
∑∞

n=1
1

n(n+1) .

sol. Note that 1
n(n+1) =

1
n − 1

n+1 . Hence

sn =

(
1

1
− 1

2

)

+

(
1

2
− 1

3

)

+ · · ·+
(
1

n
− 1

n+ 1

)

= 1− 1

n+ 1
.

Hence we see sn → 1.

Divergent Series

Example 7.2.6.
∑∞

n=1
(n+1)

n diverges since n-th term is greater than 1.

Example 7.2.7.
∑∞

n=1 sin(πn/2) diverges.

sol.

1, 0,−1, 0, 1, . . .

s4 = s8 = · · · = s4n = 0

but
s2 = s6 = · · · = s4n+2 = 1

So sn oscillates between 0 and 1.
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Theorem 7.2.8 (n-th term test). If
∑

an converges then an → 0.

Proof. Suppose
∑∞

n=1 an converges then sn and sn−1 must have the same limit.
Since an = sn − sn−1 we see lim an = lim sn − lim sn−1 = 0.

The converse is not true

Example 7.2.9. (1) Although
√
n+ 1−√

n converges to 0, the series
∑√

n
diverges.

(2) Moreover, one can show the series
∑ 1√

n
diverges.

(3) The following sequence diverges even if each individual term approaches
zero.

1 +
1

2
+

1

2
︸ ︷︷ ︸

2 term

+
1

3
+

1

3
+

1

3
︸ ︷︷ ︸

3term

+ · · ·+ 1

n
+ · · ·+ 1

n
︸ ︷︷ ︸

nterm

+ · · ·

Theorem 7.2.10 (nth term test for divergence). If lim an 6→ 0 or lim an does
not exists, then

∑
an diverges.

Example 7.2.11.
∑ (n−1)

n diverges since an = (n−1)
n → 1.

Example 7.2.12.
∑

(−1)n ln(lnn) diverges since ln(ln n) → ∞.

Theorem 7.2.13. Suppose
∑

an,
∑

bn converges. Then

(1)
∑

(an + bn) =
∑

an +
∑

bn,

(2)
∑

(an − bn) =
∑

an −∑ bn,

(3)
∑

kan = k
∑

an.

Example 7.2.14.

(1)

∞∑

n=1

2n − 1

3n
=

∞∑

n=1

2n

3n
−

∞∑

n=1

1

3n
=

2

3

1

1− 2/3
− 1

3

1

1− 1/3
=

3

2
.

(2)
∞∑

n=1

3n − 2n

6n
=

∞∑

n=1

3n

6n
−

∞∑

n=1

2n

6n
=

∞∑

n=1

1

2n
−

∞∑

n=1

1

3n
=

1

2
.

Question: What’s wrong with the following ?

1 =

(

1− 1

2

)

+

(
1

2
− 1

3

)

· · ·+
(
1

n
− 1

n+ 1

)

+· · · =
∞∑

n=1

(
1

n
− 1

n+ 1

)

=

∞∑

n=1

1

n
−

∞∑

n=1

1

n+ 1
.
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7.3 Series with nonnegative terms

We study the convergence or divergence of an infinite series whose n-th term
is nonnegative.

Corollary 7.3.1. A series
∑

an of nonnegative terms converges iff the partial
sums are bounded from above.

Integral Test

Example 7.3.2. Determine whether the following series converges or not.

∑ 1

n2
= 1 +

1

4
+

1

9
+ · · · + 1

n2
+ · · ·

sol. We can compare the partial sum with the integral of a function. Set
f(x) = 1/x2. Then the partial sum is

sn = 1 +
1

4
+

1

9
+ · · ·+ 1

n2
= f(1) + f(2) + f(3) + · · ·+ f(n)

and

f(2) =
1

22
<

∫ 2

1

1

x2
dx

f(3) =
1

32
<

∫ 3

2

1

x2
dx

...

f(n) =
1

n2
<

∫ n

n−1

1

x2
dx

Hence

sn = f(1) + f(2) + f(3) + · · ·+ f(n) < 1 +

∫ n

1

1

x2
dx = 2− 1

n
.

Thus sn is bounded, increasing, and hence converges.

Theorem 7.3.3 (Integral Test). Suppose f(x) is nonnegative, non-increasing
for x ≥ 1 and an = f(n). Then the series

∑∞
n=1 an converges if the integral

∫∞
1 f(x) dx converges. Conversely, if the integral

∫∞
1 f(x) dx converges, then

the series
∑∞

n=1 an also converges.
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an

n

(a) an ≤
∫ n

n−1
f(x) dx

an

n n + 1

(b)
∫ n+1

n
f(x) dx ≤ an

Figure 7.5: Integral Test

Proof. Since f is decreasing and f(n) = an, we see from figure 7.5 (a), an ≤
∫ n
n−1 f(x) dx, (n = 2, 3, 4, . . . ). Hence we have

a2 + a3 + · · ·+ an ≤
∫ n

1
f(x) dx

Conversely, we see from figure 7.5(b),
∫ n+1
n f(x) dx ≤ an. So

∫ n+1

1
f(x) dx ≤ a1 + a2 + · · ·+ an

and from these two cases, we see

∫ n+1

1
f(x) dx ≤ a1 + a2 + · · ·+ an ≤ a1 +

∫ n

1
f(x )dx.

Hence the conclusion follows.

Example 7.3.4 (p-series). Let p be a fixed number. Then

∞∑

1

1

np
=

1

1p
+

1

2p
+ · · ·+ 1

np
+ · · ·

converges when p > 1 and diverges when p ≤ 1. For p = 1, we see

∫ ∞

1

1

x
dx = lim

b→∞
[ln b]b1 = ∞

So the harmonic series

1 +
1

2
+

1

3
+ · · ·+ 1

n
+ · · ·

diverges.
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Example 7.3.5. Test the convergence of

∞∑

1

1

1 + n2
.

We see
∫ ∞

1

dx

1 + x2
= lim

b→∞
[tan−1 x]b1 = lim

b→∞
[tan−1 b− tan−1 1] =

π

4
.

7.3.1 Error estimation of integral test

Let S =
∞∑

n=1

an and Rn = S − sn = an+1 + an+2 + · · · be the remainder of the

partial sum. Then we see

∫ n+2

n+1
f(x) dx < an+1 ≤

∫ n+1

n
f(x) dx.

Hence we have the estimate for the remainder:
∫ ∞

n+1
f(x) dx < Rn <

∫ ∞

n
f(x) dx

a
n+1

n n + 1 n + 2

∫ n+2

n+1
f(x) dx < an+1 ≤

∫ n+1

n
f(x) dx

Figure 7.6: Error estimation

Example 7.3.6. Estimate the error when

∞∑

n=1

1

n2
is replaced by s10.

sol. We see ∫ ∞

n

1

x2
dx =

1

n
.

Thus

s10 +
1

11
< S < s10 +

1

10
.
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Since s10 ≈ 1.54977 and
∞∑

n=1

1

n2
≈ 1.65453

the actual error is 0.09553 which is between 1
11 ≈ 0.090909 and 1

10 = 0.1.

7.3.2 Series with nonnegative terms-Comparison

∑ 1

n3
,
∑ 1

3n + 1

Example 7.3.7. Investigate the convergence of

∞∑

n=1

1

n2
.

sol. Useful inequality: 1
n2 < 1

n(n−1) .

sn =
1

12
+

1

22
+

1

32
+ · · ·+ 1

n2

<
1

1 · 1 +
1

1 · 2 +
1

2 · 3 + · · ·+ 1

n(n− 1)

= 1 +

(

1− 1

2

)

+

(
1

2
− 1

3

)

+ · · ·+
(

1

n− 1
− 1

n

)

= 2− 1

n
< 2.

Hence sn is bounded above and as a monotonic increasing sequence it con-
verges.

Example 7.3.8 (Harmonic series). The series

∑ 1

n
= 1 +

1

2
+

1

3
+ · · · + 1

n
+ · · ·

diverges since

1 +
1

2
+

1

3
+

1

4
︸ ︷︷ ︸

> 2/4

+
1

5
+

1

6
+

1

7
+

1

8
︸ ︷︷ ︸

> 4/8

+
1

9
+

1

10
+ · · ·+ 1

16
︸ ︷︷ ︸

> 8/16

+ · · ·

is greater than

1 +
1

2
+

1

2
+

1

2
+ · · ·
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7.4 Comparison Test

Theorem 7.4.1 (The Comparison Test). Let an ≥ 0.

(a) The series
∑

an converges if an ≤ cn for all n > N and
∑

cn converges

(b) The series
∑

an diverges if an ≥ dn for all n > N and
∑

dn diverge.

Proof. In (a), the partial sum is bounded by

M = a1 + a2 + · · · an +

∞∑

n=N+1

cn

In (b), the partial sum is greater than

M∗ = a1 + a2 + · · · an +

∞∑

n=N+1

dn

But the series
∑∞

n=N+1 dn diverges. Hence so does
∑

an.

Example 7.4.2. Look at the tail part of

3 + 600 + 5000 +
1

3!
+

1

4!
+

1

5!
+ · · ·+ 1

n!
+ · · ·

Since 1/n! < 1/2n for n = 4, 5, 6, . . . we compare it with a geometric series.
What about

∑ 1

n2.5 + 100n4 + 3
or
∑ lnn+ 5

n(lnn)2 + 3

Limit Comparison Test

Example 7.4.3. Investigate the convergence of

∞∑

1

n

2n3 − n+ 3

sol. Since

an =
n

2n3 − n+ 3
=

1

2n2 − 1 + 3/n

we see the series
∑

an behaves similar to
∑

1/2n2. If we let cn = 1/2n2, then
limn→∞ an/cn = 1. Hence for any ε there is N such that if n > N for some N
then the following holds:

1− ε ≤ an
cn

≤ 1 + ε.

In other words,
(1− ε)cn ≤ an ≤ (1 + ε)cn, n ≥ N.

Since
∑

n≥N cn converges,
∑

n≥N an converges by comparison.
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Theorem 7.4.4 (Limit Comparison Test). (1) Suppose an > 0 and there is
a series

∑
cn (cn > 0) which converges and if

lim
n→∞

an
cn

= c > 0

then
∑

an converges.

(2) Suppose an > 0 and there is a series
∑

dn (dn > 0) which diverges and
if

lim
n→∞

an
dn

= c > 0

then
∑

an diverges.

Proof. We prove part (1). Since c/2 > 0 there is an N such that for all n > N
we have ∣

∣
∣
∣

an
bn

− c

∣
∣
∣
∣
<

c

2

Then

− c

2
< an

bn
− c <

c

2
c

2
< an

bn
<

3c

2

(
c

2
)bn < an <

3c

2
bn.

Hence

(
c

2
)

L∑

n≥N

bn <
L∑

n≥N

an <
3c

2

L∑

n≥N

bn

and the convergence of
∑

an follows that of
∑

bn.

Example 7.4.5. (1)
∑∞

1
n+1

100n3+n+1
converges since

∑∞
1

1
n2 converges

(2)
∑∞

20
1

3n−1000n converges since
∑∞

1
1
3n converge

(3)
∑∞

1
2n+1

n2+4n+1

(4) Does
∑∞

2
lnn
n3/2 converge ? (compare ln < n0.1)

(5) Compare
∑∞

1
(lnn)1/2

(n lnn+1) with
∑∞

2
1

n(lnn)1/2
. Use integral test.

∫ ∞

2

dx

x(lnx)1/2
=

∫ ∞

ln 2

du

u1/2
= ∞
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7.5 Ratio test and Root Tests

Example 7.5.1. It is not easy to find general term of a1 = 1, an+1 = nan
3n+2 .

But its ratio is clearly seen.

Ratio Test

Theorem 7.5.2 (Ratio Test). Suppose an > 0 and if the limit exists.

lim
n→∞

an+1

an
= ρ.

Then the following holds.

(1) The sum
∑

an converges if ρ < 1

(2) The sum
∑

an diverges if ρ > 1

(3) The test is inconclusive if ρ = 1.

Proof. The motive is to compare with a geometric series. (1) Let ρ < 1. Then
choose any r between ρ and 1 and set ε = r − ρ. Then since

lim
n→∞

an+1

an
= ρ

there exists a natural number N such that for all n > N ,
∣
∣
∣
∣

an+1

an
− ρ

∣
∣
∣
∣
< ε

holds. Solving

ρ− ε <
an+1

an
< ε+ ρ

for all n > N . Hence we see

(ρ− ε)an < an+1 < (ε+ ρ)an = ran, n > N (7.1)

and

aN+1 < raN

aN+2 < raN+1 < r2aN
...

aN+m < raN+m−1 < rmaN

We compare an with a series general term is rmaN . Since
∑∞

m=1 r
maN con-

verges,
∑∞

n=N+1 an converges. (2) Suppose ρ > 1. Then exist an M such that
for n > M and by (7.1) it holds that

an+1

an
> r
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And note that
aM < aM+1 < aM+2 < · · ·

so the series diverges.
(3) The case: ρ = 1. Both the series

∑
1/n2 and

∑
1/n. But the former

converges and the latter diverges.

Example 7.5.3.

(1)
∑ n!n!

(2n)!

(2)
∑ (2n + 5)

3n

(3)
∑ 2n

n!

sol. Ratio Test

(1)

an+1

an
=

(n+ 1)!(n + 1)!(2n)!

n!n!(2n+ 2)(2n + 1)(2n)!

=
(n+ 1)(n + 1)

(2n+ 2)(2n + 1)
=

n+ 1

4n + 2
→ 1

4

(2)
an+1

an
=

(2n+1 + 5)3n

3n+1(2n + 5)
=

2n+1 + 5

3(2n + 5)
→ 2

3

(3)
an+1

an
=

2n+1n!

(n+ 1)!2n
=

2

n+ 1
→ 0

Example 7.5.4. Find the range of x which makes the following converge.

1 +
x2

2
+

x4

4
+

x6

6
+ · · ·

sol. For n > 1, an = x2n−2

(2n−2) .

an+1

an
=

x2n(2n− 2)

2nx2n−2
=

(2n − 2)x2

2n
→ x2

So it converges if |x| < 1 and diverges if |x| > 1. When |x| = 1 the series
behaves like

1 +
1

2
+

1

4
+

1

6
· · · = 1 +

1 + 1/2 + 1/3 + · · ·
2
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Estimate error

For ρ < 1 If the series is approximated by its N - partial sum, then the error is

aN+1 + aN+2 + · · ·

So if N is large, for some r with ρ < r < 1 we have

an+1

an
< r, n ≥ N

aN+1 + aN+2 + · · · ≤ raN + r2aN + · · · = aN · r

1− r

is the estimate of errors.

Example 7.5.5 (Ratio test does not work). Investigate

1

3
+

2

9
+

1

27
+

4

81
+ · · · + f(n)

3n
+ · · ·

where f(n) =

{

n, n even

1, n odd

sol. Since an = f(n)
3n we have

an+1

an
=

f(n+ 1)

3f(n)
=

{
1
3n , n even
n+1
3 , n odd

So we cannot use ratio test. However if we take n-th root,

n
√
an =

n
√

f(n)

3
=

{
n
√

n
3 , n even

1
3 , n odd

and n
√
n converges to 1. Hence we see

lim
n→∞

n
√
an =

1

3
.

Now we can compare this series with
∑

(13 )
n.
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n-th Root Test

Theorem 7.5.6 (n-th Root Test). Suppose n
√
an → ρ. Then

(1)
∑

an converges if ρ < 1.

(2)
∑

an diverges if ρ > 1.

(3) Inconclusive if ρ = 1.

Proof. The motive is again to compare with a geometric series:

a+ aρ+ aρ2 + · · · + aρn + · · · (a > 0)

i.e, if an ∼ aρn(n ≥ N)) for some 0 < ρ < 1, then we would have

n

√
an
a

.
= ρ, n ≥ N

which is eventually equivalent to

n
√
an

.
= ρ, n ≥ N.

Now the remaining task it to prove it rigorously.

(1) Suppose ρ < 1. Choose r between ρ and 1 and set ε = ρ− r > 0. Since
n
√
an converges to ρ there is some integer N such that when n is greater than

N , then it holds that

| n
√
an − ρ| < ε,

i.e,
n
√
an < ρ+ ε = r < 1.

Hence

an < (ρ+ ε)n

holds. Since
∑

(ρ+ε)n converges the series
∑∞

n=N an converges by comparison.

(2) Suppose ρ > 1. Then n
√
an > 1 for suff. large n and hence an > 1. So

the series diverges.

(3) The case ρ = 1: the test is inclusive: It may converge or may di-
verge. See

∑ 1
n ,
∑ 1

n2 . Both series has ρ = 1 but one diverges while the other
converges.

Example 7.5.7.
∑∞

n=1
n
2n converges since n

√
n
2n = n

√
n
2 → 1

2 .

Example 7.5.8.
∑∞

n=1
3n

nn converges since n

√
3n

nn = 3
n → 0.
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7.6 Alternating Series, absolute and conditional con-

vergence

Alternating Series

Definition 7.6.1. Suppose an > 0 for all n. A series of the form

a1 − a2 + a3 − a4 + · · ·

is called an alternating series.

The followings are alternating series

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · ·

1− 2 + 3− 4 + 5− 6 + · · ·

But following is not an alternating series.

1− 1

2
− 1

3
+

1

4
+

1

5
− 1

6
− 1

7
+ · · ·

Theorem 7.6.2 (Alternating Series Test, Leibniz theorem). Suppose the fol-
lowing three conditions hold.

(1) an > 0.

(2) an ≥ an+1 for all n ≥ N for some integer N.

(3) an → 0.

Then the series

∞∑

n=1

(−1)n+1an = a1 − a2 + a3 − a4 + · · ·

converges.

b
s10 s2 s4 s3

a1

L

−a4

a3

−a2

Figure 7.7: Partial sum of alternating series



7.6. ALTERNATING SERIES, ABSOLUTE AND CONDITIONAL CONVERGENCE141

Proof. Suppose n is even (n = 2m) then the partial sum

s2m = (a1 − a2) + (a3 − a4) + · · ·+ (a2m−1 − a2m)

is increasing. But we also see

s2m = a1 − (a2 − a3)− (a4 − a5)− · · · − (a2m−2 − a2m−1)− a2m.

Hence s2m is less than a1. In other words, s2m is bounded above, hence as an
increasing sequence, it converges. Let L be its limit.

lim s2m = L.

Now suppose n is odd (n = 2m+ 1). Then

s2m+1 = s2m + a2m+1

Then since a2m+1 → 0, we see lim s2m+1 = lim(s2m + a2m+1) = L.

Remark 7.6.3. By graphical interpretation, we can see that the limit L lies
between any tow consecutive sum sn and sn+1. Hence we can also show
|sn − L| < an+1. This gives some estimation theorem(later).

Example 7.6.4.

∑

(−1)n+1 1

n
= 1− 1

2
+

1

3
− 1

4
+ · · ·

converges.

Example 7.6.5.

∑

(−1)n+1 1√
n
= 1− 1√

2
+

1√
3
− 1√

4
+ · · ·

converges.

Example 7.6.6.

∑

(−1)n+1

√
n√

n+ 1
=

1√
2
−

√
2√
3
+

√
3√
4
−

√
4√
5
+ · · ·

diverges by n-th term test.

Example 7.6.7.

2

1
− 1

1
+

2

3
− 1

3
+

2

4
− 1

4
+

2

5
− 1

5
+ · · ·+ 2

2n− 1
− 1

2n − 1
+ · · ·

is alternating. But
(
2

1
− 1

1

)

+

(
2

3
− 1

3

)

+

(
2

4
− 1

4

)

+

(
2

5
− 1

5

)

+ · · ·

+

(
2

2n− 1
− 1

2n − 1

)

+ · · · = 1 +
1

3
+

1

5
+ · · ·+ 1

2n− 1
+ · · ·

So it diverges.
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Example 7.6.8. Investigate the convergence of the series

∞∑

n=2

(−1)n
lnn

n+ 1
.

sol. The conditions (1) and (3) are easy to check. To see if (2) is satisfied,
we have to check if

lnn

n+ 1
≥ ln(n+ 1)

n+ n

which is not an easy task. The idea is to consider a function f(x) such that
f(n) = lnn/(n+ 1) and use derivative test. We let

f(x) =
lnx

x+ 1
.

Then f(n) = lnn/(n+ 1) and take derivative:

f ′(x) =
(x+ 1)/x− lnx

(x+ 1)2
=

(x+ 1)− x lnx

x(x+ 1)2
.

We can show (x + 1) − x lnx < 0, for sufficiently large x. Hence f(x) is
decreasing function for sufficiently large x. For example, for x ≥ 8, f(x) is
decreasing. So an = f(n) is decreasing for n ≥ 8. By Leibniz theorem the
series converges.

Partial Sum of Alternating Series

We look at the partial sums of an alternating series:

s1 = a1,

s2 = a1 − a2, So s2 < s1.

s3 = a1 − a2 + a3 = a1 − (a2 − a3), So s2 < s3 < s1.

s4 = a1 − a2 + a3 − a4 = a1 − a2 + (a3 − a4), So s2 < s4 < s3 < s1.

Thus s2m+1 is decreasing and s2m is increasing. Let L be its sum. Then

s2m < s2m+2 < · · · < L
︸ ︷︷ ︸

|s2m−L|

< · · · < s2m+1

︸ ︷︷ ︸

|s2m−s2m+1|

< s2m−1

But since

|s2m − L| < |s2m − s2m+1| = a2m+1,

|s2m+1 − L| < |s2m+2 − s2m+1| = a2m+2
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we see that for all n,
|sn − L| < an+1.

In other words, partial sum is an approximation to the true sum with error
bound an+1. Since an is decreasing sn+1 is better approximation than sn.

Theorem 7.6.9 (Alternating Series Estimation Theorem). Suppose
∑

(−1)n+1an
is an alternating series satisfying the conditions of Leibniz theorem. Then the
partial sum

sn = a1 − a2 + a3 − · · ·+ (−1)n+1an

is a good approximation with error bound less than an+1.

Example 7.6.10. Estimate

∞∑

n=0

(−1)n

2n
= 1− 1

2
+

1

4
+ · · · = 1

1− (−1
2)

=
2

3

with first six term.

sol. Let sn =
∑n

k=0
(−1)n

2n . Error bound for |s5 − L| is a6 = 1/64. The
actual value up to six term(a5) is

s5 = 1− 1

2
+

1

4
− 1

8
+

1

16
− 1

32
=

21

32
.

So true error is |2/3−21/32| = 1/96 which is less than a6 = 1/64, the estimate
of the theorem .

Example 7.6.11. Use s10 or s100 to estimate

∞∑

n=1

(−1)n−1

n
= 1− 1

2
+

1

3
− · · · = ln 2 = 0.69314 · · ·

sol. We have

s10 = 1− 1

2
+

1

3
− 1

4
+ · · · − 1

10
= 0.64563 · · ·

and the error of s10 is |0.64563 − ln 2| = 0.0475 · · · < a11 = 1/11. Also,

s100 = 1− 1

2
+

1

3
− 1

4
+ · · · − 1

100
= 0.68881 · · ·

and the error of s100 is |0.68881− ln 2| = 0.00433 · · · < a111 = 1/111. In either
case, the actual error is smaller than the error predicted by the theory.



144 CHAPTER 7. INFINITE SEQUENCE AND SERIES

Absolute convergence and Conditional Convergence

Example 7.6.12. Suppose we want to compute the series:

1− 1

5
+

1

3
− 1

52
+

1

32
− 1

53
+ · · ·

It would be good if we compute positive term first and then negative terms:
Hence

1+
1

3
+

1

32
+

1

33
+· · ·−

(
1

5
+

1

52
+

1

53
+ · · ·

)

=
1

1− 1/3
− 1

1− 1/5
=

3

2
− 5

4
=

1

4
.

Fortunately, this is correct. Next example is the following series which is
convergent:

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+

1

9
+ · · ·

Consider a rearrangement:

(

1 +
1

3
+

1

5
+

1

7
+

1

9
· · · −

)

−
(
1

2
+

1

4
+

1

6
+

1

8
· · ·
)

Then the sum is not defined! Thus we have to be careful when we add infinite
series.

Definition 7.6.13. If
∑ |an| converges then

∑
an is said to converge ab-

solutely. A series which converges but does not converge absolutely is said
to converges conditionally.

Example 7.6.14. (1)
∑∞

n=1(−1)n+1 1
n2 = 1 − 1

4 + 1
9 + · · · converges abso-

lutely since
∑ 1

n2 converges.

(2)
∑ cos n

n2 satisfies |an| = | cosn|
n2 ≤ 1

n2 . Since
∑ 1

n2 converges,
∑ cosn

n2 con-
verges.(absolutely)

(3) The series
∑

(−1)n+1 1

n
= 1− 1

2
+

1

3
− 1

4
+ · · ·

converges. But
∑ |an| =

∑ 1
n diverges. Hence

∑
(−1)n+1 1

n converges
conditionally.

(4)
∑ (−1)n

np converges for any p > 0. But
∑ 1

np converges for p > 1 only.

Hence
∑ (−1)n

np converges conditionally for all p > 0, but converges ab-
solutely for p > 1.

Theorem 7.6.15. If
∑ |an| converges then so does

∑
an.
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Proof.
−|an| ≤ an ≤ |an|

holds for all n. Hence
0 ≤ an + |an| ≤ 2|an|.

Since
∑ |an| converges and an + |an| ≥ 0, the series

∑

(an + |an|)

converges by comparison test. Subtracting converging series, we have
∑

an =
∑

(an + |an|)−
∑

|an|

and so
∑

an converges.

Corollary 7.6.16. If
∑

an diverges so does
∑ |an|.

Rearrangement of Series for Absolutely Convergent Series

Theorem 7.6.17 (Rearrangement of Series). Suppose bn is a rearrangement
of an(i.e, bk = an(k) for some 1-1 function n(k)). If

∑
an converges then the

series
∑

bn converges to the same sum.

Proof. First assume an ≥ 0 for all n. Suppose

|
k∑

n=1

an − L| < ǫ, for all k ≥ N

ChooseN1 so large that {b1, b2, · · · , bN1} contains all of the terms in {a1, a2, · · · , aN}.
Then

N∑

n=1

an ≤
N1∑

n=1

bn ≤ L.

Hence

ǫ > L−
N∑

n=1

an ≥ L−
N1∑

n=1

bn > 0.

This is true if N1 is replaced by any larger index. Now we allow an negative.
As in the proof of the previous theorem, we have

∑

bn =
∑

(bn + |bn|)−
∑

|bn|.

Now the result for positive terms shows that
∑

(bn+ |bn|) =
∑

(an+ |an|) and∑
|bn| =

∑
|an|. Hence

∑

bn =
∑

(bn + |bn|)−
∑

|bn|

=
∑

(an + |an|)−
∑

|an|

=
∑

an.
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Example 7.6.18. We know the following converges absolutely:

1− 1

2
+

1

4
− 1

8
+

1

16
− 1

32
+ · · ·

Hence a rearrangement

1 +
1

4
− 1

2
+

1

16
+

1

64
− 1

8
+ · · ·

converges to the same limit.
Now the series

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · ·

converges to ln 2 but not absolutely. Hence its rearrangement may not converge
or it may converge to a different value.

Consider one rearrangement:

(

1− 1

2

)

+

(
1

3
+

1

5
− 1

4

)

+

(
1

7
+

1

9
− 1

6

)

+

(
1

11
+

1

13
− 1

8

)

+ · · ·
.
= 0.5 + (0.53333 − 0.25) + (0.365079 − 0.166666) + (0.16783 − 0.125) + · · ·
= 0.5 + 0.2833333 + 0.198413 + positive terms

= 0.7833333 + 0.198413 + positive terms

Then sum is bigger than ln 2 = 0.69314 · · · .

Product of two series

Suppose
∑∞

n=0 an,
∑∞

n=0 bn converge absolutely. Then

( ∞∑

n=0

an

)

×
( ∞∑

n=0

bn

)

= (a0 + a1 + · · ·+ an + · · · )× (b0 + b1 + · · ·+ bn + · · · ).

The product of finite partial sum is

(a0 + a1 + · · · + an)× (b0 + b1 + · · · + bn).

We multiply it out and write it as

a0b0 + (a0b1 + a1b0) + (a0b2 + a1b1 + a2b0) + · · ·
+ · · ·+ (a0bn + a1bn−1 + · · · + an−1b1 + anb0) + · · ·

In other words,

(
n∑

k=0

ak

)

×
(

n∑

k=0

bk

)

=
n∑

k=0

ck + extra terms,

where c0 = a0b0, c1 = a0b1 + a1b0, · · · , cn = (a0bn + a1bn−1 + · · ·+ an−1b1 + anb0).
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In the limit, (use the fact limAn · limBn = lim(AnBn) when both sequence
converge) we have

( ∞∑

n=0

an

)

×
( ∞∑

n=0

bn

)

=

∞∑

n=0

cn.

Since it converges absolutely, its value does not change.

Theorem 7.6.19. Suppose both
∑∞

n=0 an and
∑∞

n=0 bn converge absolutely.

If we set cn =
∑k

n=0 akbn−k then
∑

cn converge absolutely and

∞∑

n=0

cn =

( ∞∑

n=0

an

)

×
( ∞∑

n=0

bn

)

.

7.7 Power Series

Definition 7.7.1. A power series about x = 0 is a series of the form

∞∑

n=0

anx
n = a0 + a1x+ a2x

2 + · · ·+ anx
n + · · ·

A power series about x = a is a series of the form

∞∑

n=0

an(x− a)n

an are coefficients and a is the center.

Example 7.7.2. (1)
∑∞

n=1
(x−1)n

2n = 1
21 + (x−1)2

22 + (x−1)3

23 + · · ·

(2)
∑∞

n=1(−1)n−1 xn

n = x− x2

2 + x3

3 − · · ·

(3)
∑∞

n=1(−1)n−1 x2n−1

2n−1 = x− x3

3 + x5

5 − · · ·

(4)
∑∞

n=0
xn

n! = 1 + x+ x2

2! +
x3

3! + · · ·

(5)
∑∞

n=0 n!x
n = 1 + x+ 2!x2 + 3!x3 + · · ·

Theorem 7.7.3 (Convergenec of Power Series). (1) Suppose the power se-
ries

∑∞
n=0 an(x − a)n converges at a point x1 (6= a), then it converges

absolutely for all points with |x− a| < |x1 − a|.

(2) Suppose the power series
∑∞

n=0 an(x−a)n diverges at x2, then it diverges
for all x with |x− a| > |x2 − a|.
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Proof. (1) Suppose
∑∞

n=0 an(x1 − a)n converges, and let x be any number
satisfying |x − a| < |x1 − a|. Then limn→∞ an(x1 − a)n = 0. Hence for suff.
large n, it holds that |an(x1 − a)n| ≤ 1 and

|an(x− a)n| = |an(x1 − a)n|
∣
∣
∣
∣

x− a

x1 − a

∣
∣
∣
∣

n

≤
∣
∣
∣
∣

x− a

x1 − a

∣
∣
∣
∣

n

.

Hence by comparison, the series
∑∞

n=0 an(x−a)n converges. (2) Now suppose
the series

∑∞
n=0 an(x2 − a)n diverges. If there is an x with |x − a| > |x2 −

a| for which the series
∑∞

n=0 an(x − a)n converge. Then by (1) the series
∑∞

n=0 an(x2 − a)n should converge. Hence a contradiction. Thus for any x
with |x− a| > |x2 − a|, the series diverges.

By Theorem 7.7.3, there are three possibilities:

(1) There exists a positive number R(0 < R < ∞) such that the series
converges absolutely for all x with |x − a| < R, and the series diverges
for all x with |x− a| > R.

(2) It converges for a only; In this case we can put R = 0.

(3) It converges absolutely for all x; In this case we can put R = ∞.

The value R is called the radius of convergence of
∑∞

n=0 an(x− a)n.

b

−R 0 R

Figure 7.8: Interval of convergence

Theorem 7.7.4. For
∑∞

n=0 an(x−a)n, R is given by any one of the following
formula(provided the limits exist):

R = lim
n→∞

∣
∣
∣
∣

an
an+1

∣
∣
∣
∣

(7.2)

R = lim
n→∞

1
n
√

|an|
(7.3)

Proof. Suppose the limit in (7.2) exists. Then

lim
n→∞

∣
∣
∣
∣

an+1(x− a)n+1

an(x− a)n

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

an+1

an

∣
∣
∣
∣
|x− a| = |x− a|

R

and by the ratio test (Thm 7.5.2), the power series converges absolutely for
all x with |x− a|/R < 1, and diverges for all x with |x− a|/R > 1. Hence R
is given by (7.2). Next (7.3) is obtained from n-th root test (Thm 7.5.6).
Fill-in some gaps.
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Definition 7.7.5. From the discussions above, we see the set of all points
for which the series converges will be an interval(open, half open or closed) I,
where

(a−R, a+R) ⊂ I ⊂ [a−R, a+R]

I is called interval of convergence.

Example 7.7.6. Find the interval of convergence of the following power series.

(1)

∞∑

n=0

nnxn

(2)
∞∑

n=1

xn

n2

(3)

∞∑

n=1

(−1)n−1xn

n

(4)

∞∑

n=0

xn

n!

sol.

(2)

R = lim
n→∞

(n + 1)2

n2
= 1

When x = ±1, the series
∑∞

n=1((±1)n/n2) converges absolutely.
(3)

R = lim
n→∞

n+ 1

n
= 1

For x = 1, the series
∑∞

n=1((−1)n−1/n) satisfies alternating series test, so
conditionally converges. While for x = −1 the sequence is

∑∞
n=1(−1/n) which

diverges. Hence I = (−1, 1].
(4)

R = lim
n→∞

(n+ 1)!

n!
= ∞

Theorem 7.7.7 (Term by term differentiation). Suppose
∑∞

n=0 an(x − a)n

converges for R > 0. If we define a function by

f(x) =
∞∑

n=0

an(x− a)n, |x− a| < R, (7.4)

then we have
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(i) f(x) is differentiable on (a−R, a+R) and its derivative can be computed
term by term

f ′(x) =
∞∑

n=1

nan(x− a)n−1, |x− a| < R (7.5)

(ii) f(x) is integrable on (a−R, a+R) and its integral can be computed term
by term

∫

f(x) dx =

∞∑

n=0

an
(x− a)n+1

n+ 1
+ C, |x− a| < R (7.6)

The radius convergence of (7.5) and (7.6) are also R.

Proof. The proof of term by term computation is out of the scope of this
book, hence skipped. Instead, we verify the radius of convergence. Suppose
the following limit exists:

R = lim
n→∞

∣
∣
∣
∣

an
an+1

∣
∣
∣
∣
.

Then the radius of convergence of (7.5) is by Thm 7.7.4

lim
n→∞

∣
∣
∣
∣

(n+ 1)an+1

(n+ 2)an+2

∣
∣
∣
∣
= lim

n→∞

∣
∣
∣
∣

an+1

an+2

∣
∣
∣
∣
= R

The case for (7.6) is the same.

Corollary 7.7.8. In fact, the function f(x) in Thm 7.7.7 is differentiable
infinitely many times on (a−R, a+R) and the derivatives are given by

f (k)(x) =

∞∑

n=k

n(n− 1) · · · (n− k + 1)an(x− a)n−k, |x− a| < R, k = 0, 1, 2, . . . .

(7.7)

Product of two Power series

Theorem 7.7.9. Suppose both A(x) =
∑∞

n=0 anx
n, B(x) =

∑∞
n=0 bnx

n con-
verge absolutely for |x| < R and let

cn = a0bn + a1bn−1 + · · ·+ anb0 =

k∑

n=0

akbn−k.

Then the series
∑∞

n=0 cnx
n converge absolutely for |x| < R, and

( ∞∑

n=0

anx
n

)

×
( ∞∑

n=0

bnx
n

)

=

∞∑

n=0

cnx
n.
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Example 7.7.10. Use
∞∑

n=0

xn = 1 + x+ x2 + · · · = 1

1− x
, for |x| < 1

to obtain the power series of 1/(1 − x)2 about x = 0.

sol. Formally we have

1

(1− x)2
=

1

(1− x)
· 1

(1− x)
= (

∞∑

n=0

xn) · (
∞∑

n=0

xn).

We let A(x) = B(x) =
∑∞

n=0 x
n. Then we see

cn = a0bn + a1bn−1 + · · ·+ anb0 =
k∑

n=0

akbn−k = n+ 1

Hence by the above theorem

A(x)B(x) =

∞∑

n=0

cnx
n =

∞∑

n=0

(n+ 1)xn.

Alternatively this series could be obtained by differentiation.

Example 7.7.11.

cos x · sinx =

(

1− x2

2!
+

x4

4!
− x6

6!
+ · · ·

)

·
(

x− x3

3!
+

x5

5!
− · · ·

)

1

2
sin 2x =

1

2

(

2x− 23x3

3!
+

25x5

5!
− 27x7

7!
· · ·
)

=

(

x− 22x3

3!
+

24x5

5!
− 26x7

7!
· · ·
)

On the other hand, by multiplying out

cos x · sinx = x−
(

1

1!2!
+

1

3!

)

x3 +

(
1

1!4!
+

1

2!3!

)

x5 −
(

1

1!6!
+

1

2!5!
+

1

3!4!

)

x7 + · · ·

Comparing the coefficients, we see

22

3!
=

1

0!3!
+

1

1!2!
24

5!
=

1

0!5!
+

1

1!4!
+

1

2!3!
26

7!
=

1

0!7!
+

1

1!6!
+

1

2!5!
+

1

3!4!
= · · ·

22n

(2n+ 1)!
=

1

0!(2n + 1)!
+

1

1!(2n)!
+

1

2!(2n − 1)!
+ · · ·+ 1

n!(n+ 1)!
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Example 7.7.12.

ln(1− x)

1− x
= −(1 + x+ x2 + x3 + · · · )

(

x+
x2

2
+

x3

3
+ · · ·+ xn

n
+ · · ·

)

= −
(

x+ (1 +
1

2
)x2 + (1 +

1

2
+

1

3
)x3 + · · · + (1 +

1

2
+

1

3
+ · · · + 1

n
)xn + · · ·

)

Now integrating the lhs,

∫ x

0

ln(1− t)

1− t
dt = −

∫

u du = −(ln(1− x))2

2

while the integral of the right hand side is

= −
(
x2

2
+ (1 +

1

2
)
x3

3
+ (1 +

1

2
+

1

3
)
x4

4
+ · · ·+ (1 +

1

2
+

1

3
+ · · ·+ 1

n
)
xn+1

n+ 1
+ · · ·

)

The direct power series expansion of (ln(1−x))2

2 is

(ln(1− x))2

2
=

1

2

(

x+
x2

2
+

x3

3
+ · · ·+ xn

n
+ · · ·

)2

=
1

2

(

x2 + (
1

2
+

1

2
)x3 + (

1

3
+

1

2 · 2 +
1

3
)x4 + · · ·+ (

1

n
+

1

2 · n− 1
+ · · · + 1

n
)xn+1 + · · ·

)

Comparing the coefficients of xn+1, we obtain

(

1 +
1

2
+

1

3
+ · · · + 1

n

)
1

n+ 1
=

1

2

(
1

n
+

1

2 · n− 1
+ · · · + 1

n

)

Or by multiplying (n+ 1)/2, we get

(

1 +
1

2
+

1

3
+ · · ·+ 1

n

)

=

(
1

n
+

1

2 · n− 1
+ · · ·+ 1

n

)
n+ 1

2

Use trapezoidal rule to estimate
∫ n
1

1
x dx. Get approximation formula for lnn.

7.8 Taylor and Maclaurin Series

In the previous discussions we have seen that a power series defines a con-
tinuous function on some interval I. How about its converse? Suppose f is
differentiable n-times. Is it possible to represents it with a power series ? To
answer to this question, let us assume that a power series

∑∞
n=0 an(x − a)n

represents a function f(x) on its interval of convergence I. Then we have

f(x) =

∞∑

n=0

an(x− a)n, x ∈ I
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If we can find the coefficients an, then we would have obtained a power series
representation of f(x).

We shall later show that if f has derivative of any order

∞∑

n=0

f (n)(a)

n!
(x− a)n

=f(a) + f ′(a)(x− a) + · · ·+ f (n)(a)

n!
(x− a)n + · · ·

This is called the Taylor series of f(x) at a.(If a = 0, it is also called
Maclaurin series).

Example 7.8.1. Find Taylor series of f(x) = 1/x at a = 2.

sol.

f(x) =
1

x
, f ′(x) = −x−2, f ′′(x) = 2!x−3, · · · , f (n)(x) = (−1)nn!x−(n+1),

f(2) =
1

2
, f ′(2) = − 1

22
,

f ′′(2)
2!

=
1

2−3
, · · · , f (n)(2)

n!
=

(−1)n

2n+1

Thus

f(x) =
1

2
− (x− 2)

22
+

(x− 2)2

23
+ · · ·+ (−1)n

(x− 2)n

2n+1
+ · · ·

We can check this series converges for 0 < x < 4.

Taylor Polynomial

Consider

y = P1(x) := f(a) + f ′(a)(x− a)

This is linear approximation to f(x) Similarly we can consider

y = P2(x) := f(a) + f ′(a)(x − a) +
1

2
f ′′(a)(x− a)2

which has same derivative up to second order. By the same way one can find
a polynomial Pn(x) of degree n. It is called a Taylor polynomial of degree

n Then we see
P (k)
n (a) = f (k)(a), k = 0, 1, · · · , n

Pn(x) = f(a) + f ′(a)(x− a) + · · · + f (n)(a)

n!
(x− a)n (7.8)
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n = 0

n = 2

n = 4

n = 6

n = 8

Figure 7.9: Taylor approx. of cos x, p8 is blue colored

The difference(error) is defined as

Rn(x) = f(x)− Pn(x)

and called the remainder

f(x) = Pn(x) +Rn(x)

is called n-th Taylor formula of f(x) at a.

Example 7.8.2. Find Taylor polynomial for cos x.

Example 7.8.3.

f(x) =

{

exp(−1/x2), x 6= 0

0, x = 0

is infinitely differentiable at 0, but the Taylor series converges only at x = 0.
In fact, we can show that f (n)(0) = 0, n = 0, 1, . . . . So the Taylor polynomial
Pn(x) = 0 and Rn+1(x) = f(x). Hence Pn(x) 6→ f(x).

7.9 Convergence of Taylor Series, Error estimates

If Rn(x) → on I, then Taylor polynomial becomes Taylor series.

Theorem 7.9.1 (Taylor’s Theorem with Remainder). Suppose f(x) is dif-
ferentiable n+ 1 times on I containing a and Pn(x) is the Taylor polynomial
given by (7.8). Then

Rn(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1. (7.9)
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Corollary 7.9.2. Suppose there is some number M such that f(x) satisfies
|f (n+1)(x)| ≤ M for all x ∈ I. Then

|Rn(x)| ≤ M
|x− a|n+1

(n + 1)!
, x ∈ I (7.10)

Example 7.9.3. At a = 0, we have

ex = 1 + x+ · · ·+ xn

n!
+Rn(x)

Here

|Rn(x)| ≤ ec
xn+1

(n+ 1)!
.

Definition 7.9.4. Suppose x ∈ I and f(x) is infinitely differentiable on I =
(a, b)

lim
n→∞

Rn(x) = 0, x ∈ I

then we say f(x) is analytic at a. Here Rn(x) = f(x)−Pn(x) is the remainder.

In this case, we write

f(x) =
∞∑

n=0

f (n)(x)

n!
(x− a)n, x ∈ I

Example 7.9.5. (1) Maclaurin series of sinx, cos x and ex are:

sinx =
∞∑

n=0

(−1)nx2n+1

(2n+ 1)!
, −∞ < x < ∞

cos x =

∞∑

n=0

(−1)nx2n

(2n)!
, −∞ < x < ∞

ex =
∞∑

n=0

xn

n!
, −∞ < x < ∞

(2) Maclaurin series of ln(1 + x) on (0,∞) is

ln(1 + x) =

∞∑

n=1

(−1)n−1xn

n
, −1 < x ≤ 1

(3) Maclaurin series of 1/(1− x)

1

1− x
=

∞∑

n=0

xn, −1 < x < 1
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(4)
√
x is analytic on (0,∞).

Example 7.9.6 (Substitution). Find series for cos x2 near x = 0.

Example 7.9.7 (Multiplication). Find series for x sinx2 near x = 0.

Example 7.9.8 (Truncation Error). For what values of x can we replace sinx
with error less than x× 10−4?

sinx ≈ x− x3

3!

Here error term is
|x|5
5!

.

Euler’s identity

eiθ = 1 +
iθ

1!
+

i2θ2

2!
+

i3θ3

3!
+

i4θ4

4!
+ · · ·

=

(

1− θ2

2!
+

θ4

4!
− θ6

6!
+ · · ·

)

+ i

(

θ − θ3

3!
+

θ5

5!
− · · ·

)

= cos θ + i sin θ

Proof of Taylor’s Formula with Remainder

We shall show that for a function f analytic near x = a, we have

∞∑

n=0

f (n)(a)

n!
(x− a)n = f(a) + f ′(a)(x− a) + · · ·+ f (n)(a)

n!
(x− a)n + · · ·

We set

φn(x) = Pn(x) +K(x− a)n+1.

This function has same first n-derivative as f at a. We can choose K so that
φn(x) agrees with f(x). We shall show that K is indeed given by the form
f(n+1)(c)
(n+1)! . The idea is to fix x = b and choose K so that φn(b) agrees with f(b).

So

f(b) = Pn(b) +K(b− a)n+1, or K =
f(b)− Pn(b)

(b− a)n+1
(7.11)

and

F (x) = f(x)− φn(x)

is the error. We use Rolle’s theorem. First since F (b) = F (a) = 0

F ′(c1) = 0, for some c1 ∈ (a, b).
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Next, because F ′(a) = F ′(c1) = 0 we have

F ′′(c2) = 0, for some c2 ∈ (a, c1).

Now repeated application of Rolle’s theorem to F ′′, etc show that there exist

c3 in (a, c2) such that F ′′′(c3) = 0,

c4 in (a, c3) such that F (4)(c4) = 0,

...

cn in (a, cn−1) such that F (n)(cn) = 0

cn+1 in (a, cn) such that F (n+1)(cn+1) = 0.

But since F (x) = f(x)− φn(x) = f(x)− Pn(x)−K(x− a)n+1, we see

F (n+1)(c) = f (n+1)(c) − 0− (n+ 1)!K.

Hence

K =
f (n+1)(c)

(n+ 1)!
, c = cn+1.

Thus we have

f(b) = Pn(b) +
f (n+1)(c)

(n+ 1)!
(b− a)n+1. (7.12)

Now since b is arbitrary, we can set b = x. Furthermore, if Rn → 0 as
n → ∞, we obtain Taylor’s theorem.

7.10 Application

Binomial Series

Consider for any real m

(1 + x)m = 1 +mx+
m(m+ 1)

2!
x2 + · · · +

(
m

n

)

xn +Rn(x). (7.13)

It can be shown that this series converges for −1 < x < 1. This is true .

lim
n→∞

Rn(x) = 0, −1 < x < 1

Here (
m

n

)

=
m(m− 1) · · · (m− n+ 1)

n!
, n = 0, 1, 2, . . .

We can show R = 1.
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Proof.

f ′(x) = m(1 + x)m−1

f ′′(x) = m(m− 1)(1 + x)m−2

· · ·
f (n)(x) = m(m− 1) · · · (m− n+ 1)(1 + x)m−n

We see

f (n)(0) =

(
m

n

)

n!, n = 0, 1, 2, · · ·

Hence equation (7.13) is the Taylor formula of f(x) at 0 and its remainder.

Example 7.10.1.

(1 + x)1/2 = 1 +
x

2
− x2

8
+

x3

16
− · · ·

Example 7.10.2. Find
∫
sin2 x dx as power series.

Estimate
∫ 1
0 sin2 x dx within error less than 0.001.

Example 7.10.3. Find Maclaurin series of arctan x.

sol. Note that for |x| < 1 the arctan x has convergent power series:

(arctan x)′ =
1

1 + x2
=

∞∑

n=0

(−1)nx2n.

Integrate it from 0 to x

arctan x =

∫ x

0

∞∑

n=0

(−1)nt2n dt

=
∞∑

n=0

(−1)nx2n+1

2n+ 1
, |x| < 1.

Thus

arctan x = x− x3

3
+

x5

5
− x7

7
+ · · ·

For example,
π

4
= arctan 1 = 1− 1

3
+

1

5
− 1

7
+ · · ·

Remark 7.10.4. We can actually use the given formula to estimate π. As it
turns out it, however, is not an effective method. Let us estimate the error
when we use this formula to approximate

π ≈ 4(1− 1

3
+

1

5
− 1

7
+ · · · )

The error using n-term is about 4/(2n+1). So to get the error less than 10−4,
we need 2n+1 ≈ 10000/4, n = 1200 terms! Too many! Fortunately there are
more effective ways.
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Example 7.10.5. Suppose 1 > an ≥ 0 and
∑

an converges. Determine
whether the following series converges or not.

(1)
∑ an

1+an

(2)
∑ an

1−an

(3)
∑

a2n

Sol. 1)
∑ an

1 + an
≤
∑

an

2)
∑

n=k

an
1− an

≤ 2
∑

n=k

an( for sufficiently large k so an <
1

2
)

3) Suppose
∑∞

n=1 a
2
n diverges. Then for any L > 0 there is N such that

∑n
1 a

2
n > L for n ≥ N . So (

∑N
1 an)

2 ≥∑N
1 a2n ≥ L. Hence

n∑

1

an ≥
√
L

for all n ≥ N. Thus
∑∞

1 an diverges.

7.10.1 Term by term differentiation and integration

Theorem 7.10.6. Suppose the radius of convergence R of
∑∞

n=0 an(x − a)n

is lager than 0.

f(x) =
∞∑

n=0

an(x− a)n, |x− a| < R (7.14)

Then

(i) f(x) is differentiable on (a − R, a + R) and the derivative is given by
term by term differentiation. Hence

f ′(x) =
∞∑

n=1

nan(x− a)n−1, |x− a| < R (7.15)

(ii) f(x) has an anti-derivative on (a−R, a+R) and it is given by

∫

f(x) dx =

∞∑

n=0

an
(x− a)n+1

n+ 1
+ C, |x− a| < R (7.16)
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The radius of convergence of (7.15) and (7.16) do not change. .

We repeat theorem 7.7.4. Then

Corollary 7.10.7. By theorem 7.7.4, the function f(x) is differentiable in
(a−R,A+R) and

f (k)(x) =

∞∑

n=k

n(n− 1) · · · (n− k + 1)an(x− a)n−k,

|x− a| < R,

(7.17)

k = 0, 1, . . . The radius of convergence is again R.

Theorem 7.10.8 (Uniqueness). Suppose f(x) has continuous derivative up
to order (n + 1) in a nhd I = (a, b) of a. Suppose

f(x) = a0 + a1(x− a) + · · ·+ an(x− a)n + r(x), x ∈ I

for some r(x) and M s.t.

|r(x)| ≤ M |x− a|n+1, x ∈ I.

Then ak is the Taylor coefficients. i.e,

ak =
1

k!
f (k)(a), k = 0, 1, . . . , n.

Proof. Taylor coefficient Ck = (1/k!)f (k)(a). Then by theorem 7.9.1

f(x) = C0 + C1(x− a) + · · ·+ Cn(x− a)n +Rn+1(x)

= a0 + a1(x− a) + · · ·+ an(x− a)n + r(x)

Hence with bk = Ck − ak we have

b0 + b1(x− a) + · · · + bn(x− a)n = r(x)−Rn+1(x)

Set x = a, then we have b0 = 0, i.e, a0 = C0.
Induction : Assume b0 = b1 = · · · = bm−1 = 0 for all m with 1 ≤ m ≤ n.

Then
bm(x− a)m + · · · + bn(x− a)n = r(x)−Rn+1(x)

Divide by (x− a)m and let x → a. Then we see bm = 0. Hence by induction,

b0 = b1 = · · · = bn = 0

or
a0 = C0, a1 = C1, . . . , an = Cn.
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Example 7.10.9. (1)

1

1− 2x
= 1 + 2x+ (2x)2 + (2x)3 + (2x)4 + · · ·

(2)
1

x
=

1

1 + x− 1
= 1− (x− 1) + (x− 1)2 − (x− 1)3 + · · ·

(3)

− 1

x2
= −1 + 2(x− 1)− 3(x− 1)2 + 4(x− 1)3 − · · ·

(4) Application

2

(1− 2x)2
= 2+2 · 2(2x)+3 · 2(2x)2 +4 · 2(2x)3 + · · ·+n · 2(2x)n−1+ · · ·

f(x) =
1

(1− 2x)2

f ′(x) =
22

(1− 2x)3

f ′′(x) =
23 · 3

(1− 2x)4

= · · ·

f (n)(x) =
2n+1 · (n+ 1)!

(1− 2x)n+2

For constant, check!

Example 7.10.10. Find Taylor polynomial of degree 3 of x3 + 3x2 + 2x+ 1
at a = 1.

sol. Set x = t+ 1, t = x− 1 and then f is

t3 + 6t2 + 11t+ 7

x3 + 3x2 + 2x+ 1 = (x− 1)3 + 6(x− 1)2 + 11(x− 1) + 7.

By theorem 7.10.8 Taylor polynomial is

(x− 1)3 + 6(x− 1)2 + 11(x− 1) + 7.
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Example 7.10.11. Estimate sin(0.1) up to third digit 3.

sol. Taylor polynomial of sinx at a = 0

sinx =
n∑

k=0

1

k!

(
d

dx

)k

sinx

∣
∣
∣
∣
x=0

xk +Rn(x)

Since | sin x| ≤ 1, for | cos x| ≤ 1

|Rn(x)| ≤
|x|n+1

(n+ 1)!

If n = 3

|R3(0.1)| ≤
(0.1)3

3!
< 10−3

we have sin(0.1) ≈ 0.1 and the error is less than ±(1/6) × 10−3.

Example 7.10.12. Find

lim
x→0

sinx− x+ (x3/6)

x4

sol. a = 0 Taylor polynomial of sinx at a = 0 is

sinx = x− x3

6
+R(x) |R(x)| ≤ |x|5

5!

Hence ∣
∣
∣
∣

sinx− x+ (x3/6)

x4

∣
∣
∣
∣
=

∣
∣
∣
∣

R(x)

x4

∣
∣
∣
∣
≤ |x|

5!

and limit is 0.

Example 7.10.13. Estimate

ln 2 = ln(1 + 1) = 1− 1

2
+ · · · + (−1)n−1

n
+Rn(1)

Since

|Rn(1)| ≤
1

n+ 1

we need to take large n. However, we can do the following:

ln 2 = ln
4

3
· ln 3

2
2 = ln(1 +

1

3
) + ln(1 +

1

2
)

and use Taylor series.
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Theorem 7.10.14 (Binomial series). For any real s

(1 + x)s = 1 + sx+
s(s+ 1)

2!
x2 + · · ·+

(
s

n

)

xn +Rn+1(x),

−1 < x < 1

(7.18)

and
lim
n→∞

Rn+1(x) = 0, −1 < x < 1

Here (
s

n

)

=
s(s− 1) · · · (s− n+ 1)

n!
, n = 0, 1, 2, . . .

Example 7.10.15. Find
√
1.2 up to two decimal point.

sol. Let f(x) =
√
1 + x. Then

√
1.2 = f(0.2). Hence from equation (7.18)

We see Taylor series at a = 0 is

f(x) = 1 +
1

2
x+ · · ·+

(
1/2

n

)

xn +Rn(x),

Rn(x) =
f (n+1)(x̄)

(n+ 1)!
xn+1 (0 ≤ x̄ ≤ 0.2)

For n = 1,

R1(0.2) = (
1

2
)f ′′(x̄)(0.2)2 = −0.005(1 + x̄)−3/2 (0 ≤ x̄ ≤ 0.2)

Hence
√
1.2 ≈ 1 + (

1

2
)(0.2) = 1.1 and the error satisfies |R2(0.2)| < 0.005.
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Chapter 8

Conic Sections and Polar

Coordinates

8.1 Polar coordinate

In polar coordinate system the origin O is called a pole, and the half line
from O in the positive direction x is polar axis

Given P let the distance from O to P be r the angle
−−→
OP is θ in radian.

Then P is denoted by (r, θ). (figure 8.1 )

We allow r and θ to have negative value, i.e, if r < 0, (r, θ) represent the
opposite point (|r|, θ). While if θ < 0 (r, θ) represents (r, |θ|) (figure 8.1 )

b

bb

b

θ

r

(r, θ)

(r,−θ)

(−r,−θ)

(−r, θ)

x

y

Figure 8.1:

Nonuniqueness of polar coordinate

Polar equations and graphs

Example 8.1.1. (1) r = a

(2) 1 ≤ r ≤ 2, 0 ≤ θ ≤ π
2

165
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x

y

0.5 ≤ r ≤ 1.5, 0 ≤ θ ≤ π
2

x

y

π
3
≤ θ ≤ 8π

18

(3) π
3 ≤ θ ≤ 8π

18

Relation with Cartesian coordinate

If (r, θ) = (x, y)

Proposition 8.1.2. (1) x2 + y2 = r2

(2) x = r cos θ

(3) y = r sin θ

Example 8.1.3. Draw

(1) Line through the origin: θ = c

(2) Line through the origin: r cos(α − θ) = d where d is the distance from
the origin to the line.

8.2 Drawing in Polar Coordinate

Example 8.2.1. Draw the graph of

r = 2cos θ
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b

b

y

P (x, y)

θ
α

Figure 8.2: Equation of line in polar coord.

sol. Since r = 2cos θ, we have r2 = 2r cos θ. Then we obtain x2 + y2 = 2x,
or (x− 1)2 + y2 = 1.

θ r θ r

0 3 ±2π/3 0

±π/6 1 +
√
3 ±3π/4 1−

√
2

±π/4 1 +
√
2 ±5π/6 1−

√
3

±π/3 2 ±π −1

±π/2 1

b

b

bb

b

b

b b

b b

b

bb

b

b

b b

b x

y

r = 1 + 2 cos θ

Figure 8.3: y = 1 + 2 cos θ

Equation of circles

Circles of radius a centered at (r0, θ0) is described by

a2 = r2 + r20 − 2rr0 cos(θ − θ0)

If the circle pass the origin, a = r0 and the equation is r = a cos(θ − θ0)

Example 8.2.2. Draw r = 1 + 2 cos θ

sol. Multiply r to have r2 = r + 2r cos θ.

x2 + y2 =
√

x2 + y2 + 2x (r ≥ 0)

x2 + y2 = −
√

x2 + y2 + 2x (r < 0)
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b

P (r, θ)

a

r

r0

b

θ0

θ

x

y

O

Example 8.2.3. Draw the graph of r = 1− sin θ.

sol.

Figure 8.5

1

2
r = 1− sin θ

θ

r

π
2 π 3π

2 2π

1−1

1

−1

−2

r = 1− sin θ

Figure 8.4: r = 1− sin θ

Example 8.2.4. Find cartesian equation of

(1) r cos θ = −4

(2) r2 = 4r cos θ

(3) r = 4
2 cos θ−sin θ (line)

sol.

Check
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b

b

x

y

(r, θ)

(r,−θ)
or(−r, π − θ)

about x-axis

bb

x

y

(r, θ)(r, π − θ)
or(−r,−θ)

about y-axis

b

b

x

y

(r, θ)

(−r, θ)
or(r, π + θ)

about the origin

Symmetry

A point symmetric to x axis of (r, θ) is (r,−θ) or (−r, π−θ). a point symmetric
to y-axis is (r, π − θ) or (−r,−θ).

(−r, θ) or (r, π + θ) is symmetric about the origin.

Proposition 8.2.5. The graph of f(r, θ) = 0 is symmetric w.r.t

(1) x-axis if f(r,−θ) = f(r, θ) f(−r, π − θ) = f(r, θ)

(2) y-axis if f(r, π − θ) = f(r, θ) or f(−r,−θ) = f(r, θ),

(3) the origin if f(−r, θ) = f(r, θ) or f(r, π + θ) = f(r, θ).

Example 8.2.6. Find the symmetry of r2 = sin 2θ.

sol. Set f(r, θ) = r2 − sin 2θ. Then

f(−r, θ) = (−r)2 − sin 2θ = f(r, θ)

is symmetric about the origin. On the other hand,

f(r,−θ) = r2 − sin(−2θ) 6= f(r, θ)

and

f(−r, π − θ) = r2 − sin(2π − 2θ) 6= f(r, θ)

Hence it is not symmetric about the x-axis. Also because

f(r, π − θ) = r2 − sin(2π − 2θ) = r2 + sin 2θ 6= f(r, θ)

f(−r,−θ) = r2 − sin(−2θ) = r2 + sin 2θ 6= f(r, θ)

it is not symmetric about y-axis either.
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Example 8.2.7. For the graph r = 2cos 2θ, we let f(r, θ) = r − cos 2θ and
we replace the x-axis symmetric point (−r, π − θ) for (r, θ) then

f(−r, π − θ) = −r − cos 2(π − θ) = −r − cos 2θ 6= f(r, θ)

This looks different from the given relation. However, if we replace another
expression of the same x-axis symmetric point (r,−θ) for (r, θ), then

f(r,−θ) = r − cos(−2θ) = r − cos 2θ = f(r, θ)

Hence it is symmetric about x-axis.

Slope of tangent

Caution: The slope of a polar curve r = f(θ) is given by dy/dx, not given by
r′ = df/dθ, because the slope is measured as the ratio between the increase in
y and increase in x(i.e, ∆y/∆x). Let us use the parametric expression

x = r cos θ = f(θ) cos θ, y = f(θ) sin θ

Using the parametric derivative, we have

dy

dx
=

dy/dθ

dx/dθ
=

d
dθ [f(θ) sin θ]
d
dθ [f(θ) cos θ]

=
df
dθ sin θ + f(θ) cos θ
df
dθ cos θ − f(θ) sin θ

Hence
dy

dx
=

f ′(θ) sin θ + f(θ) cos θ

f ′(θ) cos θ − f(θ) sin θ
.

As a special case, when the curve pass the origin at θ0 = 0, then

dy

dx

∣
∣
∣
∣
0,θ0

=
f ′(θ0) sin θ0
f ′(θ0) cos θ0

= tan θ0.

Example 8.2.8. Draw the curve: r = 1 − cos θ(This is another Cardioid).
Also, find the slope of tangent at the origin.
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1−1−2

1

−1

r = 1− cos θ

Figure 8.5: r = 1− cos θ

Problems Caused by Polar Coordinates

Example 8.2.9. Show the point (2, π/2) lies on r = 2cos 2θ.

sol. Substitute (r, θ) = (2, π/2) into r = 2cos 2θ, we see

2 = 2 cos π = −2

does not holds. However, if we use alternative expression for the same point
(−2,−π/2), then

−2 = 2 cos 2(−π/2) = −2

So the point (2, π/2) = (−2,−π/2) line on the curve.

Example 8.2.10 (Draw only r2 = 4cos θ). Find all the intersections of r2 =
4cos θ and r = 1− cos θ.

sol. [Draw only r2 = 4cos θ]. First solve

r2 = 4cos θ

r = 1− cos θ

Substitute cos θ = r2/4 into r = 1− cos θ to see

r = 1− cos θ = 1− r2/4

r = −2 ± 2
√
2 among those r = −2 − 2

√
2 is too large, we only choose

r = −2 + 2
√
2

θ = cos−1(1− r) = cos−1(3− 2
√
2) ≈ 80◦.

But if we see the graph 8.6 there are four points A, B, C, D. These parameter
θ in two equation is not necessarily the same(they run on different time.) That
is

The curve r = 1− cos θ passes C when θ = π, while the curve r2 = 4cos θ
passed C when θ = 0. Same phenomena happens with D.
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b

b

b

r2 = 4 cos θr = 1− cos θ

(2, π) = (−2, 0) (0, 0) = (0, π
2
)

x

y

A

B

C D 2a2a

Figure 8.6: Intersection of two curves

8.3 Areas and Lengths in Polar Coordinates

Areas

The function represents certain region.

r = f(θ), θ = a, θ = b

Let P = {θ0, θ1, . . . , θn} be the partition of [a, b](angle) and ri = r(θi).
Each region is approx’d by n sectors given by the figure 8.7. Let ∆θi = θi+1−θi.
Then the area of the sector determined by

r = f(θ), θi ≤ θ ≤ θi+1

is approx’d by
r2i
2 ∆θi. Hence the total area is given by

lim
n→∞

n−1∑

i=0

1

2
ri

2∆θi.

(See fig 8.8). In the limit, it is

∫ b

a

1

2
r2 dθ.

Example 8.3.1. Find the area enclosed by the cardioid: r = 2(1 + cos θ).

sol. (fig 4.6) θ ∈ [0, 2π]

∫ 2π

0

1

2
(2 + 2 cos θ)2 dθ = 6π
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(rk, θk)

∆θk

∆rk
b

Figure 8.7: Area of region in polar coord.-partition along constant angle

x

y

O

T

P

Q

S

r = f(θ)

θi

∆θi=θi+1−θi

Figure 8.8: Area of sector OST is approx’t by sum of triangles such as OPQ

Area between two curves r = f1(θ) and r = f2(θ)

A =

∫ b

a

1

2
(r22 − r21)dθ

Example 8.3.2. Find the area of the region that lies inside the circle r = 1
and outside the cardioid r = 1− cos θ. (Fig 8.5)

sol. Find points of intersection. r = 1, θ = ±π/2. Let r2 = 1 and r1 =
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1−1−2

1

−1

Figure 8.9: region between r = 1− cos θ and r = 1

1− cos θ.

A =

∫ π
2

−π
2

1

2
(r22 − r21)dθ

=

∫ π
2

0
(r22 − r21)dθ

=

∫ π
2

0
(1− (1− 2 cos θ + cos2 θ))dθ

= 2− π

4
.

Arc Length

Find the arc-length of the curve given by polar corrdinate

r = f(θ), θ ∈ [a, b]

x

y

O

b

b

θi

∆θi
ri

ri+1∆θi

∆ri

(ri, θi)

(ri+1, θi+1)

∆si

Figure 8.10: ri = r(θi), ∆ri = ri+1 − ri, ∆θi = θi+1 − θi
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Let P = {θ0, θ1, . . . , θn} be the partition of [a, b] and ri = r(θi). The line
segment connecting (ri, θi), (ri+1, θi+1) has length

√

(ri+1(θi+1 − θi))2 + (ri+1 − ri)2

Thus total curve length is approx’ed by( see fig 8.10).

n−1∑

i=0

√

(ri+1∆θi)2 + (∆ri)2

Dividing by ∆θi
n−1∑

i=0

√

r2i+1 +

(
∆ri
∆θi

)2

∆θi.

∫ b

a

√

r2 +

(
dr

dθ

)2

dθ

Example 8.3.3. Find the length of closed curve r = 1− cos θ.

sol.

r = 1− cos θ,
dr

dθ
= sin θ

r2 + (
dr

dθ
)2 = (1 − cos θ)2 + sin2 θ

= 2− 2 cos θ

L =

∫ 2π

0

√
2− 2 cos θdθ = 8 (8.1)

Area of a Surface of Revolution in Polar coordinate-Skip

Recall the formula

about x-axis S =

∫ b

a
2πy

√
(
dx

dt

)2

+

(
dy

dt

)2

dt (8.2)

about y-axis S =

∫ b

a
2πx

√
(
dx

dt

)2

+

(
dy

dt

)2

dt (8.3)

Since x = r cos θ, y = r sin θ. Changing it to polar coordinates; we have
(
dx

dθ

)2

+

(
dy

dθ

)2

= r2 +

(
dr

dθ

)2

If the graph is revolved
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(1)

about x-axis S =

∫ b

a
2πr sin θ

√

r2 +

(
dr

dθ

)2

dθ

(2)

about y-axis S =

∫ b

a
r cos θ

√

r2 +

(
dr

dθ

)2

dθ

Example 8.3.4. Revolve the right hand loop of lemniscate r2 = cos 2θ about
y-axis

8.4 Polar Coordinates of Conic Sections

Classifying Conic sections by Eccentricity

Consider the ellipse with a ≥ b

x2

a2
+

y2

b2
= 1

Let c =
√
a2 − b2. Then (±c, 0) are foci and (±a, 0) are vertices.

For the hyperbola
x2

a2
− y2

b2
= 1

Let c be defined by c =
√
a2 + b2. Foci are (±c, 0) and vertices are (±a, 0).

Definition 8.4.1. (1) eccentricity of the ellipse x2/a2+y2/b2 = 1 (a > b)
is defined by

e =
c

a
=

√
a2 − b2

a
< 1

(2) eccentricity of the hyperbola x2/a2 − y2/b2 = 1 is defined by

e =
c

a
=

√
a2 + b2

a
> 1

(3) eccentricity of the parabola is e = 1.

eccentricity and directrix

From definition of parabola we see that for any point P , PF the distance to
focus F is the same as the distance to the directrix PD. i.e,

PF = PD

Or with e = 1
PF = e · PD

This holds for other quadratic curves too!
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Definition 8.4.2. The Focus-directrix equation is defined as follows:

PF = e · PD (8.4)

where the eccentricity e = c
a and the directrix ℓ is the line x = ±a

e .

Proposition 8.4.3. eccentricity(eccentricity) e is defined by

e =
Distance between two focus

Distance between two vertices

=
2c

2a

=
c

a

b b

b

F1 F2

P (x, y)

x

y

a−a

b

−b
c = ae

a

a/e

D1 D2

Figure 8.11: x2/a2 + y2/b2 = 1

We now define conic sections using eccentricity and directrix

Definition 8.4.4. Suppose a point F and a line ℓ. If P satisfies

PF = e · PD

Then

(1) ellipse when e < 1

(2) parabola when e = 1

(3) hyperbola when e > 1
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b

b

b

D1

a/e

a

c = ae

x

y

F1(−c, 0) F2(c, 0)

P (x, y)

x2

a2 − y2

b2
= 1

O

Figure 8.12: x2/a2 − y2/b2 = 1

Relation to Cartesian Coordinate-Skip

For ellipse x2/a2 + y2/b2 = 1(a > b), the line

x = ±a

e
= ± a2√

a2 − b2

is directrix. If b > a, the lines

y = ± b

e
= ± b2√

b2 − a2

are directrix.

For hyperbola x2/a2 − y2/b2 = 1, the directrix is

x = ±a

e
= ± a2√

a2 + b2

and for the hyperbola −x2/a2 + y2/b2 = 1, directrix are

y = ± b

e
= ± b2√

b2 + a2

Example 8.4.5. Find the equation of hyperbola with center at the origin and
focus at F = (±3, 0) and directrix is the line x = 1.

sol. F = (3, 0) c = 3. Since x = a/e = 1 is directrix. we see a = e. Since
e = c/a

e =
c

a
=

3

e
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holds. So e =
√
3. From PF = e · PD we see

√

(x− 3)2 + y2 =
√
3|x− 1| ⇒ x2

3
− y2

6
= 1

Polar equation of conic section

PF = e · PD

Assume the focus F is at the origin and the directrix ℓ is the line x = k,
k > 0.

b

b b

x

y

θ

P

B

D

r

FO =

x = k

Figure 8.13:

Let D be the foot of P to directrix ℓ, while the foot on the x-axis is B.
Then

PF = r, PD = k − FB = k − r cos θ

So by (8.4)

r = PF = e · PD = e(k − r cos θ) (8.5)

Proposition 8.4.6. The polar equation of a conic section with eccentricity e,
directrix x = k, k > 0 having focus at the origin is

r =
ke

1 + e cos θ
(8.6)

Remark 8.4.7. If k < 0, we see (Draw graph) r = PF = e ·PD = e(r cos θ+
k). Hence we have

r =
ke

1− e cos θ
. (8.7)
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Example 8.4.8. Find the polar equation of a conic section with e = 2 direc-
trix x = −2 and focus at origin

sol. Since k = −2 and e = 2 we have from equation (8.7)

r =
2(−2)

1− 2 cos θ
=

4

2 cos θ − 1

Example 8.4.9. Identify

r =
−3

1− 3 cos θ

sol. Since e = 3 it is hyperbola and from ke = −3, we have k = −1. Hence
directrix is x = −1.

Example 8.4.10. Identify

r =
10

2 + cos θ

sol. From standard form r = 5
1+ 1

2
cos θ

, we see e = 1/2. Thus ellipse and

ke = 5. So k = 10.

Example 8.4.11. Find polar equation of conic section with Directrix y = 2,
eccentricity e = 3 focus at origin.

sol. Fig 8.14

PF = r, PD = 2− r sin θ.

So r = 3(2− r sin θ) and

r =
6

1 + 3 sin θ

Note that cos θ has been replaced by sin θ.
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b

b

b

θ x

y

PB

D

F

y = 2

Figure 8.14:

If x = a is the major semi-axis (ellipse or hyperbola as in Fig 8.11, 8.12,
placing the focus at the origin) then the distance between the focus and di-
rectrix is k = dist(F,D) and it is given by

k =

{
a
e − ae if e < 1

ae− a
e if e > 1

Thus the equation of a conic section(ellipse of hyperbola) with major axis at
x = a becomes

r =
ke

1 + e cos θ
=

{
a(1−e2)
1+e cos θ if e < 1
a(e2−1)
1+e cos θ if e > 1

(8.8)

8.5 Plane curves

Parameterized curve

Definition 8.5.1. If there is a continuous function γ defined on I = [a, b]
γ : I → R

2, then its image (or the function itself) C = γ(I) is called a pa-

rameterized curve

The point γ(a) is initial point of γ, γ(b) is end point of γ.

sol. For the unit circle x2 + y2 = 1, we can represent it

x(t) = cos(2πt), y(t) = sin(2πt), t ∈ [0, 1].

Another one is

γ2 = (cos(−4πt+
π

2
), sin(−4πt+

π

2
))
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1 2−1

1

−1

γ(t) = (2t2 − 1, sin πt)

x

y

Figure 8.15: γ(t) = (2t2 − 1, sin πt)

x

y

γ(t) = (2t2, 3t3)

Figure 8.16: γ(t) = (2t2, 3t3)

1−1
x

y

y2 = x2 + x3

Figure 8.17: y2 = x2 + x3

Drawing

Example 8.5.2. Draw the graph of γ(t) = (2t2 − 1, sin πt) on [0, 1].

Example 8.5.3. Find a parameterized representation of y2 = x2 + x3.

sol. First see the graph in fig 8.17. We introduce a small trick to find a
parametrization. Noting the curve pass (0, 0), let y = tx. Then substituting
into y2 = x2 + x3, we obtain

x2(t2 − 1− x) = 0

Set x = t2 − 1 then y = t(t2 − 1). Hence (t2 − 1, t(t2 − 1)) lie on the curve.
Hence γ(t) = (t2 − 1, t(t2 − 1)) is a parametrization.

Find a parametrization of the equation y3 = x2 + x3. Set y = tx. Then

(tx)3 = x2 + x3, x2(t3 − 1− x) = 0

So

x = t3 + 1, y = t(t3 + 1)
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Example 8.5.4. A parametrization of y3 = x2 + x3 + 1.

(y − 1)(y2 + y + 1) = x2 + x3

Let y = 1 + tx. Then

tx(1 + 2tx+ t2x2 + tx+ 2) = x2 + x3

t(1 + 2tx+ t2x2 + tx+ 2) = x+ x2 = x(1 + x)

Cycloid

Assume circle of radius a rolling on x-axis. Let P be a point starting to move
from the origin. Fig 8.18 If circle rotates by t radian then the point P is

x = at+ a cos θ, y = a+ a sin θ (8.9)

Since θ = (3π)/2 − t we have

x = a(t− sin t), y = a(1− cos t).

8.6 Conic Sections and Quadratic Equations

Remark 8.6.1. The upside down cycloid has two names brachistochrones
and tautochrones each one of which has some physical meanings.

Parabola

Definition 8.6.2. The set of all points in a plane equidistant from a fixed
point and a fixed line is a parabola The fixed point is called a focus and the
line is called a directrix

b

b

θ
t

a

C(at, a)

P (x, y) = (at+ a cos θ, a+ a sin θ)

x

y

O Mat

Figure 8.18: Cycloid
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Figure 8.19: Conic sections

Find equ of parabola whose focus is at F = (p, 0) and directrix ℓ is x = −p
Figure 8.20 Q P By definition it holds that PQ = PF . Thus

(x− p)2 + y2 = (x+ p)2

is the equation of parabola.
y2 = 4px (8.10)

The point closest to the curve is called
vertex the line connecting vertex and focus is axis y2 = 4px F is (0, 0)

and x-axis is the axis of parabola.
If F = (0, p) directrix ℓ is y = −p then

x2 = py

Example 8.6.3. Find parabola whose directrix is x = 1, focus is at (0, 3)

sol.

x2 + (y − 3)2 = (x− 1)2

So y2 − 6y + 2x+ 8 = 0.
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b

bb

−p

l

Q
P

x

y

F = (p, 0)

y2 = 4cx

Figure 8.20: Parabola (y2 = 4cx)

Ellipse

Definition 8.6.4. The set of all points in a plane whose sum of distances
from two given focuses is a ellipse If two points are identical, it becomes a
circle.

b b

b

F1 F2

P (x, y)

x

y

a−a

b

−b

x2

a2 + y2

b2
= 1

Figure 8.21: Ellipse (x2/a2 + y2/b2 = 1)

Now given two points F1 = (−c, 0) and F2 = (c, 0). Find the set of all
points where the sum of distances from focuses are constant. Fig 8.21 P =
(x, y). This is an ellipse

PF1 + PF2 = 2a

√

(x+ c)2 + y2 +
√

(x− c)2 + y2 = 2a

x2

a2
+

y2

a2 − c2
= 1 (8.11)
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Let assume b > 0 satisfies

b2 = a2 − c2

Then b ≤ a and hence from (8.11) we get

x2

a2
+

y2

b2
= 1 (8.12)

If x = 0 then y = ±b and if y = 0 we have x = ±a. Two points (±a, 0) are
intersection of ellipse with x-axis (0,±b) are intersection of ellipse with y-axis

major axis minor axis vertex (±a, 0) are vertices.

Foci F1 = (0,−c) and F2 = (0, c) The set of all points whose sum of
distance to these 2b

x2

a2
+

y2

b2
= 1

(0,±b) are vertices.

Example 8.6.5. Foci (±1, 0) sum of distance is 6

sol. c = 1 and a = 3. Thus b2 = a2 − c2 = 9− 1 = 8. Hence

x2

9
+

y2

8
= 1

More generally, foci may not lie on the convenient axis.

Example 8.6.6. Find ellipse whose foci are (1, 0) and (1, 4) sum of distance
is 8

sol. New coordinates X = x− 1, Y = y − 2 then on XY -plane the foci are
(0,±2) Hence

X2

12
+

Y 2

16
= 1 (8.13)

(x− 1)2

12
+

(y − 2)2

16
= 1
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Hyperbola

Definition 8.6.7. The difference of distances from given two foci are constant,
we obtain hyperbola

Two foci are F1 = (−c, 0), F2 = (c, 0) The sum of distance is 2a. Fig 8.22.
P = (x, y) satisfies |PF1 − PF2| = 2a

√

(x+ c)2 + y2 −
√

(x− c)2 + y2 = ±2a

Or
x2

a2
+

y2

a2 − c2
= 1 (8.14)

We see 2a < 2c. Thus

a2 − c2 < 0.

Let b2 = c2 − a2. Then we obtain two asymptotes: (8.14)

x2

a2
− y2

b2
= 1 (8.15)

b

b

b x

y

F1(−c, 0) F2(c, 0)

P (x, y)

x = −a x = a
x2

a2 − y2

b2
= 1

O

Figure 8.22: hyperbola x2/a2 − y2/b2 = 1

On the other hand if the distances from two foci (0,±c) is 2b, then the
equation of hyperbola is

−x2

a2
+

y2

b2
= 1

x2/a2 − y2/b2 = 1 has asymptotes

y = ± b

a
x

Example 8.6.8. Foci are (±2, 0) Find the locus whose difference is 2.
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sol. Since a = 1, c = 2, b =
√
3

x2 − y2

3
= 1

Asymptote are y = ±
√
3x, vertices (±1, 0).

Classifying Conic Sections by Eccentricity

8.7 Quadratic Equations and Rotations

General quadratic curves are give by

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0 (8.16)

The case B = 0, i.e, no xy-term

In this case the equation (8.16) is

Ax2 + Cy2 +Dx+ Ey + F = 0 (8.17)

If AC 6= 0 then are again classified into three classes:

(1) If AC = 0, but A2 +C2 6= 0, we have a parabola:

A(x− α)2 + Ey = δ

(2) AC > 0: Ellipse(Assume A > 0)

(x− α)2

Cγ2
+

(y − β)2

Aγ2
=

1

ACγ

A(x− α)2 + C(y − β)2 = γ (8.18)

(3) AC < 0: Hyperbola (Assume A > 0)

(x− α)2

|C|γ2 − (y − β)2

Aγ2
=

γ

|ACγ2|

Theorem 8.7.1. For

Ax2 + Cy2 +Dy2 + Ey + F = 0

(1) A = C = 0 and one of D E is nonzero, then we have a line

(2) If one of A or C is zero, it is parabola

(3) AC > 0, ellipse

(4) AC < 0, hyperbola
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The case B 6= 0, i.e presence of xy-term

Example 8.7.2. Find eq. of hyperbola Two foci are F1 = (−3,−3), F2 =
(3, 3) where difference of the distances are 6

sol. From |PF1 − PF2| = 6

√

(x+ 3)2 + (y + 3)2 −
√

(x− 3)2 + (y − 3)2 = ±6

2xy = 9

Rotation

Rotate xy-coordinate by α and call new coordinate x′y′- Then P (x, y) is rep-
resented by (x′, y′) in x′y′-coordinate.

θ

x
′

y
′

b

α
x

y

O

M ′

M

P

{

(x, y)

(x′, y′)

Figure 8.23: Rotation of axis

From fig 8.23 we see

x = OM = OP cos(θ + α) = OP cos θ cosα−OP sin θ sinα

y = MP = OP sin(θ + α) = OP cos θ sinα+OP sin θ cosα

On the other hand,

OP cos θ = OM ′ = x′, OP sin θ = M ′P ′ = y′

Proposition 8.7.3. Let P = (x, y) be denoted by (x′, y′) in x′y′-coordinate.
Then

x = x′ cosα− y′ sinα

y = x′ sinα+ y′ cosα
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We see from proposition 8.7.3

A′x′2 +B′x′y′ + C ′y′2 +D′x′ + E′y′ + F ′ = 0 (8.19)

So

A′ = A cos2 α+B cosα sinα+ C sin2 α

B′ = B cos 2α+ (C −A) sin 2α

C ′ = A sin2 α−B sinα cosα+ C cos2 α

D′ = D cosα+ E sinα

E′ = −D sinα+ E cosα

F ′ = F

We set B′ = 0. Then

B′ = B cosα+ (C −A) sinα = 0

Theorem 8.7.4. For

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0

If we choose

tan 2α =
B

A− C

then cross product term disappears.

Example 8.7.5.

x2 + xy + y2 − 6 = 0

sol. From tan 2α = B/(A− C)

2α =
π

2
, i.e, α =

π

4

x = x′ cosα− y′ sinα =

√
2

2
x′ −

√
2

2
y′

y = x′ sinα+ y′ cosα =

√
2

2
x′ +

√
2

2
y′

Substitute into x2 + xy + y2 − 6 = 0 to get

x′2

4
+

y′2

12
= 1

See Fig 8.24.
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x
′

y
′

2

−2

2
√ 3

−2
√ 3

x
′
2

4

+
y
′
2

12

=
1

π
4

x

y

√
6−

√
6

√
6

−
√
6

x2 + xy + y2 − 6 = 0

Figure 8.24: x2 + xy + y2 − 6 = 0

Invariance of Discriminant

Given a quadratic curve in xy-coordinate, we rotated the axis and obtain new
equation in x′y′-coordinate. In this case, one can choose the angle so that no
x′y′ term exists. However, if we are only interested in classification, there is a
simple way.

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0

A′x′2 +B′x′y′ + C ′x′2 +D′x′ + E′y′ + F ′ = 0

After some computation we can verify that

B2 − 4AC = B′2 − 4A′C ′ (8.20)

Theorem 8.7.6. For the quadratic curves given in x, y

Ax2 +Bxy + Cx2 +Dx+ Ey + F = 0

we have the following classification:

(1) B2 − 4AC = 0 parabola

(2) B2 − 4AC < 0 ellipse

(3) B2 − 4AC > 0 hyperbola

Example 8.7.7. (1) 3x2 − 5xy + y2 − 2x + 3y − 5 = 0 has B2 − 4AC =
25− 12 > 0. Thus a hyperbola.

(2) x2 + xy + y2 − 5 = 0 has B2 − 4AC = −3 < 0. Thus ellipse.

(3) x2 − 2xy + y2 − 5x− 3 = 0 satisfies B2 − 4AC = 0, a parabola.


