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Chapter 1

Functions and Limits

1.4 Limit of Functions

Limit of function values

Example 1.4.1. ff

Theorem 1.4.2. If f(x), g(x) has limit at x = a and values are L, M Then
the following hold.

(1) lim
x→a

(f(x) + g(x)) = L+M ( sum rule)

(2) lim
x→a

(f(x)− g(x)) = L−M ( Difference rule)

(3) lim
x→a

(kf(x)) = kL ( Constant multiple)

(4) lim
x→a

f(x) · g(x) = LM ( Product rule)

(5) lim
x→a

f(x)

g(x)
=

L

M
, M 6= 0 ( Quotient rule).

Poly and rational function

Theorem 1.4.3. For any polynomial f(x) = a0x
n + a1x

n−1 + · · · + an,

lim
x→a

f(x) = a0a
n + a1a

n−1 + · · ·+ an = f(a).

Example 1.4.4. Use Theorem 1.4.2 (3), (4) we see

lim
x→a

2x2 = 2 lim
x→a

x2 = 2 lim
x→a

x lim
x→a

x = 2a · a = 2a2

Theorem 1.4.5. If f(x), g(x) are polynomials and g(a) 6= 0 then

lim
x→a

f(x)

g(x)
=

f(a)

g(a)
.

3



4 CHAPTER 1. FUNCTIONS AND LIMITS

Example 1.4.6. Find

lim
x→2

x3 + x+ 2

x+ 1
.

sol.

lim
x→2

x3 + x+ 2

x+ 1
=

23 + 2 + 2

2 + 1
= 4

Eliminating zero denominator

Example 1.4.7.

lim
x→1

x3 − 1

x2 − 1
.

sol. Now denominator is zero. But as long as x 6= 1 it holds that

x3 − 1

x2 − 1
=

(x− 1)(x2 + x+ 1)

(x− 1)(x+ 1)
=

x2 + x+ 1

x+ 1

lim
x→1

x3 − 1

x2 − 1
= lim

x→1

x2 + x+ 1

x+ 1
=

3

2
.

Example 1.4.8. limx→0

√
x2+1−1
x2

sol.

lim
x→0

√
x2 + 1− 1

x2
=

x2 + 1− 1

x2(
√
x2 + 1 + 1)

=
1√

x2 + 1 + 1

Example 1.4.9.

lim
x→∞

x3 + x

2x3 + 3
=

1

2
.

sol. Factor out x3

x3 + x

2x3 + 3
=

1 + 1/x2

2 + 3/x3

As x → ∞ Theorem 1.4.2 (5) limit is 1/2.
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Sandwich Theorem

Theorem 1.4.10 (Sandwich Theorem). If, for an interval (α, β) containing
a, it holds g(x) ≤ f(x) ≤ h(x)

lim
x→a

g(x) = lim
x→a

h(x) = L

then
lim
x→a

f(x) = L

This hold for left or right limit also.

Example 1.4.11. Suppose that

v(x)− x2 ≤ u(x) ≤ v(x) + 3x2

holds for all x 6= 0. Then

lim
x→0

u(x) = lim
x→0

v(x)

provided the limit of the r.h.s term exists.

Example 1.4.12. We will later see that

−|θ| ≤ sin θ ≤ |θ|

for all θ. Hence limx→0 sin θ = 0 by Sandwich theorem.

Example 1.4.13. Similarly, from the inequality

0 ≤ 1− cos θ ≤ |θ|

for all θ. Hence limx→0 cos θ = 1.

Theorem 1.4.14 (Sandwich Theorem, inequality). If f(x) ≤ g(x) holds for
all x in an interval (α, β) containing c except possibly c, then

lim
x→c

f(x) ≤ lim
x→c

g(x)

This hold for left- right limit also.
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When limit do not exist ?

Three cases: Jump, infinity, oscillation:

Figure 1.1: Broken graph or undefined(infinity)

0

1

−1

x

y

y = sin(1/x)

Figure 1.2: y = sin
1

x

1.5 Precise definition

Definition 1.5.1. Let f(x) be defined on an open interval containing a except
possibly a. If there is a number L such that for any positive ε, there exists
δ > 0 such that

0 < |x− a| < δ ⇒ |f(x)− L| < ε

we say f(x) has limit L at x = a and write

lim
x→a

f(x) = L

Remark 1.5.2. In general, δ depends on x, f and ε. Also, note that we do
not care what happens at x = a. (This why we have strict inequality in
0 < |x− a|.)
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ǫ
δ

Figure 1.3: How to control bow to hit bull’s eye within ǫ tolerance?

Remark 1.5.3. L is unique

1 2

1

2

3

4

x

y

y = 3x

δ δ

ε

ε

Figure 1.4: Linear case, y = 3x

Example 1.5.4 (Linear case). Show y = 3x+ 1 has limit 7 at x = 2.

sol. Suppose the following holds.

|y − 7| = |3x+ 1− 7| < ε

Then we take

3|x− 2| < ε, |x− 2| < ε/3

So δ =
ε

3
.
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ǫ

−ǫ

2
−δ δ

δ′

Figure 1.5: Choosing δ

Finding δ algebraically when ǫ is given

Example 1.5.5. For the limit limx→2

√
x+ 7 = 3, find a δ > 0 that works for

ǫ = 1. Repeat with ǫ = 0.1, 0.001, etc.

sol. Step 1) Solve the inequality |
√
x+ 7− 3| < 2:

−2 <
√
x+ 7− 3 < 2

2 <
√
x+ 7 < 4

4 < x+ 7 < 16

−3 < x < 9

Step 2). Find a value δ > 0 to place the centered interval (2 − δ, 2 + δ)
inside the interval −3 < x < 9. A choice of delta is δ = 5. Any value smaller
than that works.

Example 1.5.6. Limit of f(x) = (x2 − 1)/(x − 1) is 2 at x = 1.

sol. From

|x+ 1− 2| < ε

we have 0 < |x− 1| < ε. Hence we may choose δ = ε.

Example 1.5.7. Show that y = x2 has limit 4 at x = 2.

sol. (Method 1) We try to solve the exact values of x where

|x2 − 4| = |(x− 2)(x+ 2)| < ε (1.1)
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1 2−1−2

1

2

3

4

5
y = x2ε

ε

δ δ

Figure 1.6: The graph of y = x2

holds. Thus we see
−ε < x2 − 4 < ε

from which we get √
4− ε < x <

√
4 + ε

Now for any x in the interval (2 − δ1, 2 + δ2), (1.1) holds. But the interval is
not an symmetric interval.Thus the idea is to choose δ := min{δ1, δ2} so that

|x− 2| < δ ⇒ x ∈ (2− δ1, 2 + δ2) ⇒ |x2 − 4| < ε

(Method 2) Choose certain interval near x = 2 where the following holds:

|x2 − 4| = |(x− 2)(x+ 2)| < ε (1.2)

Suppose δ < 1. So 0 < |x− 2| < 1 and Since |x+ 2| between 3 and 5 we have

|x2 − 4| = |(x− 2)(x+ 2)| ≤ |x− 2| · max
1≤x≤3

|x+ 2| ≤ 5|x− 2|

To satisfy (1.2) we take |x− 2| < ε/5. Since δ was chosen to satisfy δ < 1, we
may choose δ = min{1, ε/5}.

Example 1.5.8. Show y =
√
x− 1 has limit 2 at x = 5.

sol. We need to find an interval near x = 5 where the inequality is true:

|
√
x− 1− 2| < ε

(Method 1) Just solve the inequality exactly.

−ε <
√
x− 1− 2 < ε

2− ε <
√
x− 1 < 2 + ε

(2− ε)2 < x− 1 < (2 + ε)2

−4ε+ ε2 < x− 5 < 4ε+ ε2
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10

y = 1

x

δ δ

Figure 1.7: Choose smaller δ

We may assume 0 < ε < 1. Hence we can choose

δ = min{4ε− ε2, 4ε+ ε2} = 4ε− ε2.

(Method 2)

√
x− 1− 2 =

(
√
x− 1− 2)(

√
x− 1 + 2)√

x− 1 + 2

=
x− 5√
x− 1 + 2

Taking absolute values

∣
∣
√
x− 1− 2

∣
∣ =

∣
∣
∣
∣

(
√
x− 1− 2)(

√
x− 1 + 2)√

x− 1 + 2

∣
∣
∣
∣

=

∣
∣
∣
∣

x− 5√
x− 1 + 2

∣
∣
∣
∣

≤
∣
∣
∣
∣

x− 5

2

∣
∣
∣
∣

This will be less than ǫ if |x− 5| < 2ǫ. Hence δ = 2ε.

Proving theorems with definitions

Example 1.5.9. Assume limx→a f(x) = L, limx→a g(x) = M . Prove lim
x→a

(f(x) + g(x)) =

L+M .
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sol. Let ǫ be given. Note that

|f(x) + g(x) − (L+M)| = |f(x)− L+ g(x) −M | ≤ |f(x)− L|+ |g(x) −M |.

We want to show this term is less than ǫ when x lies within certain interval.
From the definitions, we see there exists two deltas δ1, δ2 > 0 such that

0 < |x− a| < δ1 ⇒ |f(x)− L| < ǫ/2

0 < |x− a| < δ2 ⇒ |g(x) − L| < ǫ/2.

Thus for those x with 0 < |x− a| < min(δ1, δ2), we see the desired inequality
holds.

1.6 One sided limit

Definition 1.6.1. We say f(x) has right-handed limit L at x0 and write

lim
x→x0

f(x) = L

if for every positive ε, there is a number δ > 0 such that for all

x0 < x < x0 + δ ⇒ |f(x)− L| < ε.

Similar definition can be given for left-handed limit.(Write it down as an ex-
ercise)

Limit involving sin θ etc.

Useful limits:

Theorem 1.6.2. (1) lim
θ→0

sin θ = 0

(2) lim
θ→0

cos θ = 1

(3) lim
θ→0

sin θ

θ
= 1

Proof. (1) Referring to Fig 1.8, let P be the point on the unit circle so that θ
is the angle between the x-axis and line OP. Then the length of segment PQ
is sin θ. The arc from (1, 0) to P has length s = θ. Hence

0 < PQ < PA < θ
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θ

A(1, 0)QO x = cos θ

y = sin θ

P (x, y)

1

T (1, tan θ)

x

y

s

Figure 1.8:

and it holds that
0 < sin θ < θ.

As θ approaches 0, we see
lim
θ→0+

sin θ = 0

Since sin(−θ) = − sin θ
−θ < sin(−θ) < 0

Hence
lim
θ→0−

sin θ = 0

(2) Comparing QA and PA, we see

0 < QA < PA < θ

0 < 1− cos θ < θ

Also, as θ approaches to 0 1− cos θ approaches to 0.
(3) We note that

PQ ≤ θ ≤ TA
sin θ ≤ θ ≤ tan θ
1 ≤ θ/ sin θ ≤ 1/ cos θ

As θ approaches 0, 1/ cos θ approaches 1 by (2). Hence limθ→0
sin θ
θ = 1.

Example 1.6.3. lim
θ→0

sin 2θ

θ
= lim

θ→0
2
sin 2θ

2θ
= 2 lim

x→0

sinx

x
= 2.

Example 1.6.4.

lim
θ→0

tan θ sin θ

θ2
= 1.
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sol. Thm 1.4.2 (4)

lim
θ→0

tan θ sin θ

θ2
= lim

θ→0

sin2 θ

θ2
· 1

cos θ

= lim
θ→0

(
sin θ

θ

)2

· lim
θ→0

1

cos θ

= lim
θ→0

(
sin θ

θ

)

· lim
θ→0

(
sin θ

θ

)

= 1.

1.7 Continuity

Assume f is defined on the interval [a, b].

Definition 1.7.1. If a function f(x) is continuous at an interior point x = c
if

lim
x→c

f(x) = f(c)

A function f(x) is continuous at a left end point x = a (resp. right end
point x = b) if

lim
x→a+

f(x) = f(a), (resp. lim
x→b−

f(x) = f(b))

If f is continuous at all points of its domain, we say f is a continuous
function.

Equivalently, we have

Definition 1.7.2. For a point c in (a, b), the function f(x) is continuous at
x = c iff

(1) f(c) exists

(2) lim
x→c

f(x) exists.

(3) lim
x→c

f(x) = f(c) holds.

Example 1.7.3. Consider the function y = [x] defined by the largest integer
not exceeding x. For example, [5] = 5, [2.4] = 2 and [−1.3] = −2, etc. This
function is (greatest integer) is right-continuous at every integer, but not left-
continuous.

Theorem 1.7.4. If f , g are continuous at x = c then
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(1) f ± g is continuous at x = c.

(2) For any constant k, the function kf is continuous at x = c

(3) fg is continuous at x = c

(4) f/g is continuous at x = c, provided g(c) 6= 0.

Corollary 1.7.5. Polynomials f(x) = anx
n + an−1x

n−1 + · · · + a1x+ a0 are
continuous at all points.

Corollary 1.7.6. For two polynomials f(x) = anx
n+an−1x

n−1+· · ·+a1x+a0
and g(x) = bmxm+ bm−1x

m−1+ · · ·+ b1x+ b0, the rational function f(x)/g(x)
is continuous where g(x) does not vanish.

Composite function

Theorem 1.7.7. Suppose f is continuous at c and g continuous at f(c) then
g ◦ f is continuous at c.

Proof. Since g is continuous at f(c) and limx→c f(x) = f(c)

lim
x→c

g(f(x)) = g(lim
x→c

f(x)) = g(f(c))

Does it hold if any one of the functions f or g is not continuous?

Theorem 1.7.8 (Intermediate Value theorem). Suppose f is continuous on
[a, b]. Then for any value y0 between f(a) and f(b) there is a point c ∈ [a, b]
such that f(c) = y0.

When does this breaks down?

1.8 Limit Involving Infinite and vertical asymptote

We know f(x) = 1/x → 0 as x → ∞. We use ε-δ to define it.

Definition 1.8.1. We say f(x) has limit L as x approaches ∞, if for every
positive ε, there is M such that for all

x > M ⇒ |f(x)− L| < ε.

We write

lim
x→∞

f(x) = L
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Example 1.8.2. Explain

lim
x→∞

x+ 2

x+ 1
= 1

sol. f(x) = 1 + 1/(x+ 1) We want to know when the following holds:

|f(x)− 1| = 1

|x+ 1|

Thus we solve |x+ 1| > 1/ε for x. It will holds when x > M where

M =
1

ε
− 1

Example 1.8.3.

lim
x→0

1

x

lim
x→∞

(

x+
1

x

)

Horizontal Asymptote

Definition 1.8.4. A line y = b is a horizontal asymptote of the graph of
a function y = f(x) if either

lim
x→∞

f(x) = b or lim
x→−∞

f(x) = b

Example 1.8.5. Find the horizontal asymptote of the graph of

y =
x3 + 2

|x|3 + 1

sol.

lim
x→∞

x3 + 2

|x|3 + 1
= lim

x→∞
1 + 2/x3

1 + 1/x3
= 1

For x < 0, we see

lim
x→−∞

x3 + 2

|x|3 + 1
= lim

x→∞
1 + 2/x3

1− 1/x3
= −1

Hence we have two horizontal asymptotes y = ±1.
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Sandwich theorem revisited

Sandwich theorem holds when x → ∞.

The concept of ∞ as a limit

We give a precise meaning of the symbol ∞ using similar idea used for limit.

Definition 1.8.6. We say f approaches infinity as x approaches x0 and
write

lim
x→x0

f(x) = ∞

if for every real number B there exists a corresponding δ > 0 such that for all
x with

0 < |x− x0| < δ ⇒ f(x) > B.

Give a similar definition for −∞ as an exercise.

Vertical Asymptotes

Definition 1.8.7. The line x = a is called a vertical asymptote of a graph
of a function y = f(x) if either

lim
x→a+

f(x) = ±∞ or lim
x→a−

f(x) = ±∞.

Example 1.8.8. (1) Find a vertical asymptote of f(x) = x+3
x+1 .

(2) Find a horizontal and vertical asymptote of f(x) = − 8
x2−4 .

Oblique asymptote?



Chapter 2

Differentiation

2.1 Tangents and Derivatives at a point

Finding tangent to the graph of a function

Definition 2.1.1. The slope of the curve y = f(x) at a point P = (x0, f(x0))
is the number

lim
h→0

f(x0 + h)− f(x0)

h
provided it exists. The tangent line to the curve at the point P is the line
through P with this slope.

The rate of change of y = f(x) between P (x0, y0) and Q(x1, y1) is

msec =
f(x1)− f(x0)

x1 − x0

In the limit, it is the slope of tangent line.

x0 x1

f(x0)

f(x1)

P
Q

Tangent

Secant

y = f(x)

Figure 2.1: Tangent and secant

Hence the slope of tangent line at P is

mtan = lim
x1→x0

f(x1)− f(x0)

x1 − x0
= lim

h→0

f(x0 + h)− f(x0)

h

17
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Rate of change:Derivative at a point

Definition 2.1.2. The derivative of a function f(x) at a point is given by

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h

exists, it is called derivative at x = x0.

Example 2.1.3. Interpretations:

(1) The slope of y = f(x) at x0

(2) The slope of tangent to the curve y = f(x) at x0

(3) The rate of change of f with respect to x at x0

(4) The derivative f ′(x0) at the point.

2.2 Derivative as a function

Definition 2.2.1. If the derivative of a function f(x) at a

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

exists, it is called the derivative (function) of f(x). (Treated as a function) f
is said to be differentiable at x. If f is differentiable at all points of domain
we say f is differentiable. We also use the notation df/dx, (d/dx)f for f ′.

Alternative formula for the derivative is

f ′(x) = lim
z→x

f(z)− f(x)

z − x

Try some examples in the text.

One sided derivative

Definition 2.2.2. Suppose f is defined on [a, b]. Then at each end point the
one sided derivative is defined by

f ′(a+) = lim
h→0+

f(a+ h)− f(a)

h
,

f ′(b−) = lim
h→0−

f(b+ h)− f(b)

h
= lim

h→0+

f(b)− f(b− h)

h
.

Example 2.2.3. Using definition, find (d/dx)x3.
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sol. Set f(x) = x3

f(x+ h)− f(x) = h{(x+ h)2 + x(x+ h) + x2}

lim
h→0

1

h
{f(x+ h)− f(x)} = lim

h→0
{(x+ h)2 + x(x+ h) + x2} = 3x2

So f ′(x) = 3x2

Example 2.2.4. The one sided derivatives of f(x) = |x| at x = 0 are f ′(0−)
= −1 and f ′(0+) = 1. Hence f is not differentiable at x = 0. (Figure 2.2)

y = |x|

Figure 2.2: y = |x|

When does a function do not have derivative at a point?

Figure 2.3: Cases with no derivative

Example 2.2.5. The function defined by

f(x) =

{

x sin(1/x), x 6= 0

0, x = 0

is conti at x = 0 but not differentiable.
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sol. Since −|x| ≤ f(x) ≤ and limx→0 |x| = limx→0 = 0 by theorem f is
conti. at x = 0. But the limit

lim
h→0

1

h

{

h sin
1

h
− 0

}

= lim
h→0

sin
1

h

does not exist, f is not differentiable x = 0.

Differentiable functions are continuous

Theorem 2.2.6. If f is differentiable at x = a, then f is conti. at x = a.

Proof. By definition of derivative we have

lim
h→0

{f(a+ h)− f(a)} =

(

lim
h→0

1

h
{f(a+ h)− f(a)}

)

·
(

lim
h→0

h

)

= 0.

Hence f(x) is conti. at x = a.

Intermediate Value property of derivatives(Darboux’s theorem)

Theorem 2.2.7. If a, b are any two points in an interval where f is differen-
tiable, then f ′ takes any value between f ′(a) and f ′(b).

2.3 Differentiation Rules

Proposition 2.3.1. Suppose f , g are differentiable functions. Then

(1) For any constant C, dC
dx = 0 for any constant C.

(2) When n is positive integer , d
dxx

n = nxn−1.

(3) For any constant C, d(Cu)
dx = C du

dx .

(4) d
dx(u± v) = du

dx ± dv
dx .

(5) d(uv)
dx = v du

dx + u dv
dx .

(6) d
dx

(
u
v

)
=

v du
dx

−u dv
dx

v2
.

(7) For any real number n, d
dxx

n = nxn−1.
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Proof. (2) Use

zn − xn = (z − x)(zn−1 + zn−2x+ · · ·+ xn−2z + xn−1)

(4)

d

dx
(uv) = lim

h→0

u(x+ h)v(x+ h)− u(x)v(x)

h

= lim
h→0

{
u(x+ h)− u(x)

h
v(x+ h) + u(x)

v(x + h)− v(x)

h

}

= u′(x)v(x) + u(x)v′(x).

Try to prove the product rule and draw Figure for product rule.

v(x)

∆v

u(x)v(x)
v(x)∆u

u(x)∆v

u(x)∆u

Figure 2.4: product rule

Higher order derivative

f ′′(x) =
d2y

dx2
=

d

dx

(
dy

dx

)

y(n) =
dy(n−1)

dx
=

dny

dxn

2.4 The Derivative as a Rate of change

Definition 2.4.1. The instantaneous rate of change of f at x0 is

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h

provided the limit exists.
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How to describe a moving object?

How fast ? etc. First we assume an object is moving along a line(coordinate
line) and its position is given as a function of time:

s = f(t)

Then the displacement of the object over the time interval t to t+∆t is

∆s = f(t+∆t)− f(t)

and define the average velocity of the object over that time interval is

vav =
displacement

elapsed time
=

∆s

∆t
=

f(t+∆t)− f(t)

∆t

Definition 2.4.2. Velocity(instantaneous velocity) is the derivative of a po-
sition function w.r.t time. If a moving object position is given by s = f(t),
then the velocity at t is

v(t) = lim
h→0

f(t+ h)− f(t)

h

provided the limit exists.

Definition 2.4.3. (Speed) is the absolute value of the velocity, i.e, Speed

Speed = |v(t)| =
∣
∣
∣
∣

ds

dt

∣
∣
∣
∣

Acceleration is

a(t) =
dv

dt
=

d2s

dt2

Third derivative is called a Jerk

2.5 Derivative of Trig functions

Use definition to find the derivative of f(x) = sinx.

= lim
h→0

sin(x+ h)− sinx

h

= lim
h→0

sinx cos h+ cos x sinh− sinx

h

= sinx lim
h→0

cos h− 1

h
+ cos x lim

h→0

sinh

h

= sinx · 0 + cos x · 1 = cosx.
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Hence d
dx sinx = cos x. Similarly, we have

d

dx
cos x = − sinx

Other trigonometric functions are defined by the following relation and their
derivatives can be found using differentiation rules:

tan x =
sinx

cos x
, sec x =

1

cos x
, csc x =

1

sinx
, cot x =

cos x

sinx

The derivative of tan x is

d

dx
tanx =

(sinx)′ cos x− (cos x)′ sinx
cos2 x

=
1

cos2 x
= sec2 x

Summarizing, we have

Proposition 2.5.1. (1)
d

dx
sinx = cos x

(2)
d

dx
cosx = − sinx

(3)
d

dx
tanx = sec2 x

(4)
d

dx
secx = secx tan x

(5)
d

dx
cscx = − cscx cot x

(6)
d

dx
cot x = − csc2 x

2.6 Exponential functions

Let a > 0. For any rational number x = n/m, we let ax = (an)1/m, while any
real number x we define

ax = lim
r→x

ar, rational

Rules for exponentiation. For a, b > 0 we have

(1) ax · ay = ax+y

(2) ax

ay = ax−y

(3) (ax)y = (ay)x = axy

(4) axbx = (ab)x

(5) ax

bx =
(
a
b

)x
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1 2

y = 2x

m ≈ 0.7

1 2

y = ex

m = 1

1 2

y = 3x

m ≈ 1.1

The natural exponential function ex

We define e to be the number such that the slope of tangent line to f(x) = ex

at 0 is 1. e is a irrational number e = 2.78182 · · · . Why do we use this strange
number? This simplifies computation in later sections(diff. integration)

Differentiation of exponential function

Let us compute the derivative of f(x) = ax.

lim
h→0

ax+h − ax

h
= lim

h→0

axah − ax

h

= lim
h→0

ax
(
ah − 1

h

)

= ax lim
h→0

ah − 1

h

Note that when x = 0 this limit limh→0
1
h(a

h − 1) is the slope of tangent line
to ax at x = 0. As a special case, if a = e, then we know

f ′(0) = lim
h→0

eh − 1

h
= 1

by definition of the number e! So we have

d

dx
ex = ex.

In Chapter 3 we will see this number is obtained from (1 + 1
x)

x as x ap-
proaches unboundedly.

Exponential growth

Example 2.6.1 (exponential growth). It is used to model the amount of
money to grow when the interest is compounded. Say P dollar is initially
invested in the bank with interest rate of r per year, t is the time in years,
then the total amount of money after t years is

y = Pert
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Example 2.6.2 (exponential decay). It is used to model the amount of ra-
dioactive material. e.g, Carbon 14 case, If A is initial original amount of
carbon 14.

y = Ae−1.2×10−4t

Carbon 14 is used to detect how old is the dead organisms such as shells,
wooden artifacts.

2.7 Chain rule

Chain Rule

Theorem 2.7.1. (1) If f(u) is differentiable at u = g(x) and g is differ-
entiable at x, then the composite function f ◦ g is differentiable at x
and

(f ◦ g)′(x) = f ′(g(x))g′(x)

If y = f(u), u = g(x) then

dy

dx

∣
∣
∣
∣
x

=
dy

du

∣
∣
∣
∣
u=g(x)

· du
dx

∣
∣
∣
∣
x

Proof. (Intuitive) Let ∆u = g(x+∆x)−g(x) be the change of u corresponding
to the change of ∆x. (We assume g(x+∆x) 6= g(x)) We might consider

∆y

∆x
=

∆y

∆u

∆u

∆x
, (∆u 6= 0)

lim
∆x→0

∆y

∆x
= lim

∆x→0

∆y

∆u

∆u

∆x

= lim
∆u→0

∆y

∆u
lim

∆x→0

∆u

∆x

=
dy

du

du

dx

Repeated Use

Example 2.7.2. y = cos(1 + x4)5

sol. Given function is the composite of y = cos u and u = (1+ x4)5. Hence

dy

du
= − sinu

du

dx
.
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◦
x

◦
u = g(x)

◦
y = f(u)

y = f(g(x))

Figure 2.5: Chain rule

On the other hand, since (1 + x4)5 is a composite function of u = v5 and
v = 1 + x4, use Chain rule again

du

dx
= 5v4 · 4x3.

dy

dx
= − sin(1 + x4)5 · 20(1 + x4)4x3.

Outside-Inside Rule

Example 2.7.3. The derivative of |x| can be computed as follows: Notice
that |x| =

√
x2. Hence

d

dx

√
x2 =

1

2
√
x2

· 2x =
x

|x| , x 6= 0.

Example 2.7.4. Find slope of tangent line to y = (1− 2x)3 at x = 1.

Derivatives of Power function

Find derivative of f(x) = ur(x) for any real r and x > 0.

Theorem 2.7.5. Since ur = er lnu

d

dx
ur = rur

d lnu

dx
= urr

1

u

du

dx
= rur−1du

dx
.

2.8 Implicit differentiation

There are situation where some relation between x and y defines some graph,
but not graph of any function. Suppose x, y satisfy y5 + sinxy = x3y. This
relation defines a function implicitly.
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Implicitly defined function

Assuming y is a differentiable function of x satisfying some relation like F (x, y) =
0, we take derivative of F (x, y) = 0 w.r.t x using the chain rule. Then solv-
ing for dy/dx we find the derivative. This procedure is called an Implicit
differentiation.

d

dx

(
y5
)
+

d

dx
(sinxy) =

d

dx

(
x3y

)

5y4
dy

dx
+ (cos xy)

(

y + x
dy

dx

)

= 3x2y + x3
dy

dx
.

Hence
dy

dx
=

3x2y − y cos xy

5y4 + x cos xy − x3

Example 2.8.1. (1) x3 + y3 = 3xy. Find dy/dx and d2y/dx2

(2) Find equation of tangent line to x3 + y3 = 3xy at (3/2, 3/2)

sol.

(1) Taking derivative

(3y2 − 3x)
dy

dx
= 3y − 3x2

Chain rule

(

6y
dy

dx
− 3

)
dy

dx
+ (3y2 − 3x)

d2y

dx2
= 3

dy

dx
− 6x.

Hence
dy

dx
=

y − x2

y2 − x
,

d2y

dx2
=

−2
(
(y − x2)/(y2 − x)

)2
y + 2(y − x2)/(y2 − x)− 2x

y2 − x
.

(2) At (3/2, 3/2), dy/dx = −1 The tangent line is

y = −
(

x− 3

2

)

+
3

2
= −x+ 3.



28 CHAPTER 2. DIFFERENTIATION

one-to-one Not one-to-one

Figure 2.6: Horizontal line test

2.9 Inverse functions and Their Derivatives

Definition 2.9.1. A function f is one-to-one on a domain D if f(x1) 6= f(x2)
whenever x1 6= x2.

Definition 2.9.2. Suppose a function f is one-to-one on a domain D with
range R. The inverse function f−1 exists and is defined by

f−1(b) = a if f(a) = b.

The domain of f−1 is R and range is D.

(f−1 ◦ f)(x) = x, x ∈ D

(f ◦ f−1)(y) = y, y ∈ R

Horizontal line test

Derivatives of inverse function

Theorem 2.9.3. Suppose f is one-to-one and differentiable in I. If f ′(x)
exists and is never zero, then f−1 exists, differentiable. Furthermore for a ∈ I,
f(a) = b, then

(f−1)′(b) =
1

f ′(a)
.

Set y = f(x). Then the inverse function is x = f−1(y), and its derivative is

dx

dy

∣
∣
∣
∣
y=f(a)

=
1

dy/dx|x=a

, a ∈ I.

Proof. Differentiate x = (f−1 ◦ f)(x) w.r.t x using the Chain rule

1 = (f−1)′(f(a))f ′(a)
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x

y

f(x)

x

y

f−1(x)

Figure 2.7: Slope of inverse function

Hence

(f−1)′(b) =
1

f ′(a)

Usually, we use the notation y = f−1(x). The graph of y = f(x) and that
of y = f−1(x) are symmetric w.r.t the line y = x.

Example 2.9.4. (1) f(x) = x7 + 8x3 + 4x− 2. Find (f−1)′(−2).

(2) Find d
dx sin

−1 x.

sol. (1) Since f ′ = 7x6 + 24x2 + 4 ≥ 4, the inverse function f−1 exists.
Since f(0) = −2 we have

(f−1)′(−2) = (f−1)′(f(0)) =
1

f ′(0)
=

1

4
.

(2) y = sin−1 x is equivalent to x = sin y. Hence

d

dx
sin−1 x =

dy

dx
=

1

dx/dy
=

1

(d/dy) sin y

=
1

cos y
=

1
√

1− sin2 y
=

1√
1− x2

.

2.10 Logarithmic functions

Definition 2.10.1. The logarithmic function with base a, y = loga x is the
inverse function of y = ax(a > 0, a 6= 1)
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f(x)

f−1(x)

Figure 2.8: Graph of inverse function is symmetric about y = x

loge x is written as lnx and called natural logarithmic function

log10 x is written as log x and called common logarithmic function

lnx = y ⇔ ey = x

Properties

(1) Product rule: loga xy = loga x+ loga y

(2) Quotient rule: loga
x
y = loga x− loga y

(3) Product rule: loga
1
y = − loga y

(4) Power rule: loga x
y = y loga x

Inverse properties

(1) Base a: aloga x = x, loga(a
x) = x(a > 0, a 6= 1, x > 0)

(2) Base e: elnx = x, ln(ex) = x(x > 0)

Hence (by substituting ax for x)

ax = eln ax

= ex ln a

= e(ln a)x

Every exponential function can be written as power of natural exponential
function:

ax = ex lna
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Change of base

loga x =
lnx

ln a
(a > 0, a 6= 1, x > 0)

Exponential growth

Example 2.10.2 (exponential growth). It is used to model the amount of
money to grow when the interest is compounded. Say P dollar is initially
invested in the bank with interest rate of r per year, t is the time in years,
then the total amount of money after t years is

y = Pert

Example 2.10.3 (exponential decay). It is used to model the amount of
radioactive material. e.g, Carbon 14 case, If A is initial original amount of
carbon 14.

y = Ae−1.2×10−4t

Carbon 14 is used to detect how old is the dead organisms such as shells,
wooden artifacts.

Half Life- Given a radioactive material, the time required for the material
to decay into half is the Half life. Let th be the half life. Then

y(th) = Ae−1.2×10−4th =
1

2
A

Thus

e−1.2×10−4th = 0.5, th =
ln 2

1.2× 10−4

The formula for the half life is of a radioactive material obeying the relation
y(t) = Ae−rt is

th =
ln 2

r

Example 2.10.4. Half life of Polonium 210. The time for radioactive sub-
stance required to decay by half is independent of the initial quantity. y =
y0e

−kt. So t = ln 2/k. For Polonium 210, k = 5 · 10−3.
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Derivatives of log function y = ln x

First method: Regards lnx as an inverse of exponential function f(x) = ex:
Recall f(x) = ex iff f−1(x) = lnx.

(f−1)′(x) =
1

f ′(f−1(x))

=
1

ef
−1(x)

(f ′(u) = u)

=
1

elnx

=
1

x

Alternative way is to leave the variable as is: Write y = lnx is as ey = x. Then

d

dx
ey = 1

ey
dy

dx
= 1

dy

dx
=

1

ey
=

1

x

Example 2.10.5.
d

dx
(lnu) =

1

u

du

dx

d

dx
ln(x4 + 2) =

1

x4 + 2
· 4x3

Derivatives of ln |x|
ln |x| = 1/x

Derivatives of au

ax = ex ln a. So
(ax)′ = ex ln a ln a = ax ln a

In general,
d

dx
au = au ln a

du

dx

Derivatives of loga u

loga x =
lnx

ln a

So
d

dx
loga x =

1

x ln a
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and
d

dx
loga u =

1

u ln a

du

dx

Logarithmic Differentiation

Find dy/dx if y = (x2+1)1/3(x−3)1/2

x+5

Derivatives of Power function

We prove the following theorem which was stated earlier.

Theorem 2.10.6. For any real r, d
dxu

r = ur−1 du
dx .

Proof. Since ur = er lnu we have

d

dx
ur = rur

d lnu

dx
= urr

1

u

du

dx
= rur−1du

dx
.

Example 2.10.7. Differentiate f(x) = xx, x > 0

sol. Write f(x) = xx = ex lnx. So

f ′(x) =
d

dx
(ex lnx)

= (ex lnx)
d

dx
(x lnx)

= ex lnx(lnx+ x · 1
x
)

= xx(lnx+ 1)

The number e

In section 2.6, we saw e was defined so that it satisfies

lim
h→0

eh − 1

h
= 1.

An important property is the following.

Theorem 2.10.8. The number e satisfies

e = lim
x→0

(1 + x)1/x.

Proof. If f(x) = lnx. Then f ′(1) = 1
x |x=1 = 1. By definition,

1 = f ′(1) = lim
x→0+

ln(1 + x)− ln 1

x
= lim

x→0+
ln[(1 + x)

1

x ] = ln[ lim
x→0+

(1 + x)
1

x ].

Now exponentiate.
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2.11 Inverse trig functions

b

b

1−1

y = sin−1 x

x

y

−π
2

π
2

Figure 2.9: y = sin−1 x

b

b

1−1

y = cos−1 x

x

y

π
2

π

Figure 2.10: y = cos−1 x

Inverse sine

Restrict the function sinx on [−π/2, π/2]. Then sinx : [−π/2, π/2] → [−1, 1]
is one-to - one function. So the inverse exists. Define

sin−1 x : [−1, 1] −→ [−π/2, π/2].

whenever x = sin y for x ∈ [−π/2, π/2]. Graph is as in figure 2.9. sin−1 x is
sometimes written as arcsin x.

Example 2.11.1. (1) sin−1(1/2) = π/6

(2) sin−1(1) = π/2

Inverse cosine

Restrict cos x to [0, π], we obtain cos−1 x.

cos−1 x : [−1, 1] −→ [0, π]

If cos x = y for any x ∈ [0, π] then cos−1 y = x is defined and figure is in 2.10
written as cos−1 x or arccos x.

Example 2.11.2. (1) cos−1(1/2) = π/3

(2) cos−1 0 = π/2

Example 2.11.3.

sin−1 x+ cos−1 x =
π

2
, cos−1 x+ cos−1(−x) = π
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cos−1 x

1
x

sin−1 x

Figure 2.11: sin−1 x

x−x

θθ′

1

1

Figure 2.12: θ = cos−1 x, θ′ = cos−1(−x)

Inverse of tan x

On (−π/2, π/2) tanx has inverse tan−1 x

tan−1 x : R −→ (−π/2, π/2)

for any x ∈ R, tanx = α iff tan−1 α = x. See figure 2.13. It is written as
tan−1 x or arctan x.

tan−1 1 = π/4 tan−1 0 = 0

1 2 3−1−2−3

y = tan−1 x
x

y
y = π/2

y = −π/2

Figure 2.13: y = tan−1 x

Example 2.11.4. Find the derivative of tan−1 x.
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From y = f(x) = tan x, we see

(f−1)′(y) =
1

f ′(x)

=
1

1 + tan2 x

=
1

1 + y2

Thus (f−1)′(x) = 1
1+x2 .

Example 2.11.5. Find derivatives

(1) y = sin−1 x, (|x| ≤ 1).

(2) y = sec−1 x, (|x| ≥ 1).

sol. (3) Let y = sec−1 x. Then x = sec y. Taking derivative w.r.t x we get
1 = sec y tan y(dy/dx). Thus

dy

dx
=

1

sec y tan y
.

We need to change it to expression in x.
For x > 1, tan y =

√
x2 − 1. Hence, we have

dy

dx
=

1

x
√
x2 − 1

, x > 1.

For x < −1, use (x → −x) to get

dy

dx
=

1

−x
√
x2 − 1

, x < −1

Hence
d

dx
sec−1 x =

1

|x|
√
x2 − 1

, |x| > 1

Proposition 2.11.6. Similarly, we get the derivatives of inverse trig. func-
tion

(1)
d

dx
sin−1 x =

1√
1− x2

(2)
d

dx
cos−1 x = − 1√

1− x2
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(3)
d

dx
tan−1 x =

1

1 + x2

(4)
d

dx
csc−1 x = − 1

|x|
√
x2 − 1

, |x| > 1

(5)
d

dx
sec−1 x =

1

|x|
√
x2 − 1

, |x| > 1

(6)
d

dx
cot−1 x = − 1

1 + x2

Other inverse trig function

Inverses of csc x, secx, cot x

csc−1 x : R− (−1, 1) → [−π/2, π/2] − {0}

sec−1 x : R− (−1, 1) → [0, π] − {π/2}

cot−1 x : R → (0, π)

We see the following relation hold

Proposition 2.11.7. (1) cot−1 x = (π/2) − tan−1 x

(2) sec−1 x = cos−1(1/x)

(3) csc−1 x = sin−1(1/x)

Example 2.11.8. (1) Find sin(cos−1(3/5))

(2) Simplify tan(sin−1 a)

sol. (1) Let θ = cos−1(3/5). Then cos θ = 3/5 and 0 ≤ θ ≤ π

sin θ =

√

1− 9

25
=

4

5
.

(2) Let θ = sin−1 a. Then sin θ = a and −π/2 ≤ θ ≤ π/2

cos θ =
√

1− a2.

Hence
tan θ = sin θ/ cos θ = a/

√

1− a2.
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1 2 3−1−2−3

y = cot−1 x

x

y
y = π

π
2

1 2 3−1−2−3

y = csc−1 x

x

y
π
2

−π
2

1 2 3−1−2−3

π

−π

A

B

y = sec−1 x

x

y

Figure 2.14:

2.12 Related rates

Related rates

y is a function of x and x(x = x(t)) is a function of time t the rate of change
dy/dx and dy/dt satisfies dy/dt = (dy/dx)(dx/dt).

Example 2.12.1. Figure 2.15. Water is being poured into a conical tank at
the rate of 9ft3/min. Find rate of rising water level when depth of water is
6ft.

sol.

(1) V : Volume of water at t

(2) x: Radius of water surface at t

(3) y: Depth of water at t
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y

10 ftx

5 ft

Figure 2.15: Conic Tank

We have x = y/2

V =
1

3
πx2y =

π

12
y3,

dV

dt
=

π

4
y2

dy

dt

Substitute dV/dt = 9, y = 6. Then from 9 = π/4 · 36 · dx/dt|y=6, we get
dx/dt|y=6 = π.

Strategy solving related rate problem

(1) Draw figures and name variables(think of good representatives)

(2) Write down numerical information

(3) Write down what is asked for

(4) Write down equation

(5) Solve etc....

Example 2.12.2. Rocket is rising at the speed of 300m/sec vertically. At
1000m above the ground, a camera man is watching 1000m away. Find the
rate of change of this camera angle θ.

sol. From figure 2.16, we see the angle of elevation θ and the height y is
related by

tan θ =
y

1000
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1000 m

y m

θ
b

b

Figure 2.16: A camera following the tip of a rising rocket

Differentiating w.r.t t

sec2 θ
dθ

dt
=

1

1000

dy

dt

When

y = 1000, θ = 45◦,
dy

dt
= 300

dθ

dt

∣
∣
∣
∣
y=1000

=
300

1000
· 1
2
· 180

π
≈ 8.59(degree/sec)

2.13 Linearization and differential

When we study complicated functions, we can find its derivative at a point and
study the tangent line instead. Thus, a tangent approximation is meaningful
and call it linearization. Note that any nice curve, if enlarged, will look like a
line.

Definition 2.13.1.
L(x) = f(a) + f ′(a)(x− a)

is called the linearization of f at a.

Example 2.13.2. (1) Find linearization of cosx at π/2

(2) Find approx value of
√
1.003 using linearization of

√
1 + x at x = 0.

(3) Find linearization of 1
3
√
x4+1

at x = 0

(4) Find approx value of
√
4.8

(5) Find linearization of cos x at π/2. Ans −x+ π/2.
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(6) Show the linearization of (1 + x)k is 1 + kx.

(7) Compare the linearization of
√
1 + x2 at a = 0 and the linearization of√

x at a = 1 and ∆x = x2.
Let f(x) =

√
1 + x2. Then f ′(x) = 1

2
2x√
1+x2

|0 = 0. Thus the linearization

is L(x) = 1. But if we let g(x) =
√
x, then g′(x) = 1

2
√
x
|1 = 1

2 . So the

linearization is L(x) = 1 + 1
2x. Thus

√
1 + x2 ≈ 1 + 1

2x
2.

Differential

Definition 2.13.3. Let y = f(x) be differentiable. The differential dx is an
independent variable. The quantity dy defined by

dy := f ′(x)dx

is called the differential of f.

The geometric meaning of differential is given in Figure 3.8.

∆y = f(a+ dx)− f(a), f(a+ dx) = f(a) + ∆y ≈ f(a) + dy

We see that dy is precisely the change of the tangent line as x changes by an
amount of dx = ∆x. In other words, dy is an approximation of exact change
∆y.

dx = ∆x

f ′(a)dx
∆y

Figure 2.17: Differential dy = f ′(a)dx and ∆y

Example 2.13.4. Find differential of

(1) y = x3 − sinx

(2) y = sinu(x)
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(3) tan(3x)

(4) d( x
1+x ).

Estimating with differentials

Radius of a circle is enlarged from 10 to 10.1. Use dA to estimate the increase
in area. Compare with exact increase.

A = πr2,
dA = 2πrdr = 2π(10)(0.1) = 2π

Actual increase is A(10.1) −A(10) = π((10.1)2 − 100) = 0.01π.

Error in differential approximation

We estimate the change in y in more detail.

Theorem 2.13.5. We have

∆f = f ′(a)∆x+ ǫ∆x

where ǫ → 0 as ∆x → 0.

Proof.

approximation error = ∆f − df

= ∆f − f ′(a)∆x

= f(a+∆x)− f(a)− f ′(a)∆x

=

(
f(a+∆x)− f(a)

∆x
− f ′(a)

)

∆x

= ǫ∆x

Since f is differentiable, we know ǫ :=
(
f(a+∆x)−f(a)

∆x − f ′(a)
)

approaches 0 as

∆x approaches 0. Thus

true

change

∆f =

estimated

change

f ′(a)∆x +
error
ǫ∆x

Proof of Chain rule

Assume y = f(u) is a diff’ble function of u and u = g(x) is a diff’ble function of
x. Then the composite function y = f(g(x)) is diff’ble and by above theorem
there exist ǫ1, ǫ2 which approach 0 as ∆u,∆x approaches 0(resp.) in such a
way that

∆y = f ′(u0)∆u+ ǫ1∆u

∆u = g′(x0)∆x+ ǫ2∆x
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Hence
∆y = (f ′(u0) + ǫ1)(g

′(x0) + ǫ2)∆x

∆y

∆x
= (f ′(u0) + ǫ1)(g

′(x0) + ǫ2)

Let ∆x → 0. Then we obtain the Chain rule.

Example 2.13.6. Converting mass to energy: The Newton’s law

F = m
dv

dt
= ma

is not exactly true when an object is moving at very high speed, because the
mass increases with velocity. In Einstein’s correction, the mass is

m =
m0

√

1− v2/c2
≈ m0(1 +

v2

2c2
)

So the new mass is

m ≈ m0 +
mv2

2c2

By multiplying c2

(m−m0)c
2 ≈ 1

2
mv2 =

1

2
mv2 − 1

2
m · 02 = ∆(KE)

Thus the change in the energy by the mass corresponds to the change in the
Kinetic Energy.

Power function

Derivative of a power functiony = ur(x) for rational number r.

Theorem 2.13.7. For any rational number r

d

dx
ur = rur−1du

dx
.

Proof. Assume r > 0. We have r = p/q for some positive integer p and q.
Hence y = ur = rp/q can be written as yq = up. Taking derivative w.r.t. x we
obtain

qyq−1 dy

dx
= pup−1du

dx

dy

dx
=

pup−1

qyq−1

du

dx
=

p

q

y

u

du

dx
= rur−1du

dx

Example 2.13.8. Find the equation of tangent and normal line to the curve
y = (1 + x1/3)2/3 at (−8, 1).
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b

0

1

−1

(−8, 1)

Figure 2.18: Tangent and normal

sol.

y′
∣
∣
∣
∣x=−8 =

2

3
(1 + x1/3)−1/3 · 1

3
x−2/3

∣
∣
∣
∣
x=−8

= − 1

18

Tangent line is y = −1/18(x + 8) + 1 = −x/18 + 5/9 normal line is y =
18(x+ 8) + 1 = 18x+ 145.

Example 2.13.9 (Slope of tangent in Polar coordinate). Express dy/dx for
the equation given in polar coordinate r = f(θ) in θ.

sol. Using the relation x = r cos θ, y = r sin θ, we see x = f(θ) cos θ, y =
f(θ) sin θ. Hence the slope of tangent is

dy

dx
=

dy/dθ

dx/dθ
=

f ′(θ) sin θ + f(θ) sin θ

f ′(θ) cos θ − f(θ) sin θ
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Applications of Derivatives

3.1 Absolute Maximum, Minimum

Definition 3.1.1. Let f be defined on a domain D. Then f has abso-
lute(global) maximum at c if

f(x) ≤ f(c), for all x ∈ D.

It has absolute(global) minimum at c if

f(x) ≥ f(c), for all x ∈ D.

Theorem 3.1.2. [Extreme Value Theorem] If f is continuous on a closed
interval [a, b]. Then f assumes both absolute maximum M and absolute min-
imum m in [a, b]. In other words, there are numbers x1, x2 in [a, b] such that
f(x1) = m and f(x2) = M , and m ≤ f(x) ≤ M for all x ∈ [a, b].

Maximum or minimum are called extreme values.

Definition 3.1.3. Let f be defined on a domain D. Then f has rela-
tive(local) maximum at c if

f(x) ≤ f(c), for all x in some interval containing c.

It has relative(local) minimum at c if

f(x) ≥ f(c), for all x in some interval containing c.

Theorem 3.1.4 (First derivative theorem). Suppose f is differentiable and if
f has local max(min) at an interior point c, then f ′(c) = 0.

Proof. Suppose f ′(c) > 0. Then there is an interval I = (c − δ, c + δ) near c
such that for all x in I

f(x)− f(c)

x− c
> 0

45
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hold. If x ∈ I and x > c, then

f(x)− f(c) = (x− c)
f(x)− f(c)

x− c
> 0

Hence f(x) > f(c) and f cannot have a maximum at c. Similarly, if x < c,
then

f(x)− f(c) = (x− c)
f(x)− f(c)

x− c
< 0

Thus f cannot have minimum at c. This contradiction shows that f cannot
have local extreme at c. The case f ′(c) < 0 is dealt similarly. Hence we must
have f ′(c) = 0.

Remark 3.1.5. This is not a necessary condition for a function to have a local
extreme. Often, a function has an extreme value where f is not differentiable!
So the points where f is not differentiable is also point of interest. Thus, we
define

Definition 3.1.6. If f ′(c) = 0 or f ′(c) does not exists, we say c is critical
point of f .

Remark 3.1.7. How to find Absolute max(min) on I

(1) Evaluate f at all critical points

(2) Check all end points and compare

Example 3.1.8. Find max(min) of f(x) =
∣
∣4− x2

∣
∣ on [−3, 3].

b b

−3 −2 2 3

4

5
y = |4− x2|

Figure 3.1: y = |4− x2|

sol. By Theorem 3.1.2, f has absolute minimum and maximum. Its graph
is as in Figure 3.1. The critical points of f are −2, 0, 2. f(−2) = f(2) = 0,
f(0) = 4 while at end points f assumes f(−3) = f(3) = 5. Hence maximum
is 5 (at x = −3 or x = 3) and minimum is 0 (at x = −2 or x = 2).
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Example 3.1.9. Find absolute extrema of f(x) = 10x(2 − lnx) on [1, e2].

sol. f ′(x) = 10(1 − lnx). So critical point is e. Fig 3.1 Check end points
1, e2. We see maximum is

Example 3.1.10. Find absolute extrema of f(x) = x2/3 on [−2, 3].

sol. Derivative at 0 does not exist. By drawing graph we see x = 0 is cusp
but local and absolute minimum.

Example 3.1.11. Find exrtema of f(x) = x2/3(1− x)3/2 (x ≤ 1).

sol. Since

f ′(x) =
2

3
x−1/3(1− x)3/2 − 2

3
x2/3(1− x)1/2

= x−1/3(1− x)1/2
(
2

3
(1− x)− 3

2
x

)

=

√
1− x(4− 13x)

6x1/3

Extreme points are x = 0, x = 4/13. Here f(0) = 0 is local min and f(4/13) =
(4/13)2/3(9/13)3/2 is local max. (Refer to Fig 3.2 )

0 4

13
1

y = x2/3(1− x)3/2

Figure 3.2: y = x2/3(1− x)3/2
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Remark 3.1.12. In above example the point (0, 0) satisfies

lim
x→0+

f ′(x) = +∞, lim
x→0−

f ′(x) = −∞

This kind of point is called a cusp .

Example 3.1.13. Piping from Oil well from the see to the refinery on the
shore.

Underwater pipe cost 500,000 per mile while land pipe cost 300,000 per
mile

x

b

b

Sea

20− y y

Refinery

Well

20

12

Figure 3.3: Refinery and hole in the sea

sol. cost is c = 500, 000x + 300, 000y. But x2 = 122 + (20 − y)2. Thus
R(y) · 10−5 = 5

√

144 + (20 − y)2

R′(y) =
−5(20 − y)

√

144 + (20− y)2
+ 3

y = 11.

3.2 Mean Value Theorem

Theorem 3.2.1 (Rolle’s Theorem). If f is continuous on [a, b] and differen-
tiable on (a, b). Suppose f(a) = f(b) holds. Then there exists a point c ∈ (a, b)
such that f ′(c) = 0.

Proof. By theorem 3.1.2, f must attain maximum and minimum at some point
c. Then there are two possibilities:

(1) max or min occurs at interior point.

(2) both max or min occur at end points.
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a x bc

f(a)

f(b)

g(x)

y = f(x)

Figure 3.4:

In the first case, by theorem 3.1.4 there is a point where f ′(c) = 0. In the
second case, the maximum is equal to minimum since f(a) = f(b). Hence f
is constant and f ′(c) = 0 for any c ∈ (a, b).

Theorem 3.2.2 (Mean Value Theorem). If f is continuous on [a, b] and dif-
ferentiable on
(a, b). Then there exists a c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a

Proof. Consider the line given by the equation

g(x) =

(

f(a) +
f(b)− f(a)

b− a
(x− a)

)

Then ( 3.4 .)

h(x) = f(x)− g(x) = f(x)−
(

f(a) +
f(b)− f(a)

b− a
(x− a)

)

h continuous on [a, b] diff’ble in (a, b) and h(a) = h(b). Hence by Thm 3.3.9
(Rolle’s) there exists c ∈ (a, b) such that h′(c) = 0. That is

h′(c) = f ′(c)− f(b)− f(a)

b− a

Application of MVT

Theorem 3.2.3. (1) If f satisfies f ′(x) = 0 on an interval I, then f is
constant on I.
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(2) If f ′(x) = g′(x) on I, then f(x) = g(x) + C, x ∈ I

Proof. (1) By Mean Value Theorem 3.2.2, we have for any x, z ∈ I,

f(z)− f(x)

z − x
= f ′(c)

for some c ∈ (x, z) ⊂ I. Since f ′(c) = 0, we have f(z) = f(x). This holds for
any x, z, hence f is constant.

Definition 3.2.4. Suppose F defined on I. satisfies F ′(x) = f(x), F is and
anti-derivative of f .

Example 3.2.5. Show that π/4 + 3/25 < tan−1 4/3 < π/4 + 1/6 holds.

sol. Apply Thm 3.2.2(MVT) to

f(x) = tan−1 on [1, 4/3]

Since f ′(x) = 1/(1 + x2), there is a point c ∈ (1, 4/3) such that

tan−1(4/3) − π/4

4/3− 1
=

1

1 + c2

holds. Hence
1

1 + (4/3)2
< 3

(

tan−1 4

3
− π

4

)

<
1

1 + 12

3

25
< tan−1 4

3
− π

4
<

1

6
.

Proof of Log rule ln bx = ln b+ ln x

Consider
d

dx
ln(bx) =

1

x
=

d

dx
lnx

So by above result,

ln(bx) =
1

x
= lnx+ C

Place x = 1 to see C = ln b.
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Proof of Log rule lnr x = r ln x

Consider
d

dx
lnr x =

1

xr
d

dx
(xr) =

1

xr
rxr−1 =

r

x
=

d

dx
(r lnx)

Thus lnr x and r lnx have same derivative.

3.3 Monotonic function and derivative

b

b

b

b
b

b
b

(f ′ > 0) (f ′ < 0) (f ′ > 0) (f ′ < 0) (f ′ > 0)

(f ′′ < 0) (f ′′ > 0) (f ′′ < 0) (f ′′ > 0)

y = f(x)

Figure 3.5: · ·

Definition 3.3.1. f is said to be a increasing function if f(x) ≤ f(z) holds
for all all x, z (x < z).

First derivative test

Theorem 3.3.2. (1) Suppose f ′(x) > 0 for all x, then f is increasing on I.

(2) Suppose f ′(x) < 0 for all x, then f is decreasing.

Proof.

f ′(c) =
f(z)− f(x)

z − x

for some c ∈ (x, z). Since f ′(c) ≥ 0 and z > x we see f(z) ≥ f(x). If f is
not one-to-one, there exists two point v,w ∈ I, v < w such that f(v) = f(w).
Then f ′(x) = 0 on (v,w). This contradicts to f ′(x) = 0 at finite points.

Example 3.3.3. Investigate the increase and decrease of f(x) = x5 − 5x4 +
5x3 + 1.
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sol. f ′(x) = 5x4− 20x3+15x2 = 5x2(x− 1)(x− 3) We obtain the following
table.

x · · · 1 · · · 0 · · · 3 · · ·
f ′ + 0 − 0 − 0 +
f ր 2 ց 1 ց −26 ր

Hence f is mon. inc. on x ≤ 1 and mon. dec on 1 ≤ x ≤ 3, mon. inc. on
3 ≤ x.

First derivative test for local extrema

Theorem 3.3.4. (1) If f ′ changes from negative to positive at c then f has
local minimum at c

(2) If f ′ changes from positive to negative at c then f has local maximum at
c

Proof. f is decreasing on [c− δ, c] and increasing on [c, c+ δ]. Hence, f(x) has
local minimum at c.

Example 3.3.5. (1) f(x) = (x2 − 3)ex

(2) x1/3(x− 4)

Second derivative test for extreme values

Theorem 3.3.6. Suppose f ′(c) = 0. Then

(1) f(c) is local maximum if f ′′(c) < 0.

(2) f(c) is local minimum if f ′′(c) > 0.

Proof. (1) Since

f ′′(c) = lim
x→c

f ′(x)
x− c

< 0

there is a δ such that
f ′(x)
x− c

< 0

for all x ∈ (c− δ, c+ δ) (x 6= c). Hence if c− δ < x < c then f ′(x) > 0, and if
c < x < c+ δ then f ′(x) < 0. Hence f ′ change from positive to negative at c.
By theorem 3.3.4, f(c) is a local maximum.
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(x2 − 3)ex

Figure 3.6: y = (x2 − 3)ex

3.4 Concavity and sketching

Definition 3.4.1. Assume f is differentiable. The graph of y = f(x) is

(1) concave up if f ′ is increasing on I,

(2) concave down if f ′ is decreasing on I,

Theorem 3.4.2. Suppose f ′′ exists on I. Then

(1) If f ′′(x) > 0 for all x ∈ I, the graph of f is concave up.

(2) If f ′′(x) < 0 for all x ∈ I, the graph of f is concave down.

Definition 3.4.3. Assume f has a tangent line at a point c and if the concavity
of f(x) changes across c then it is a inflection point

Example 3.4.4. Sketch f(x) = x+ sinx.

sol. f ′(x) = 1 + cos x, f ′′(x) = − sinx

x · · · −π · · · 0 · · · π · · · 2π · · · 3π · · ·
f ′ · · · 0 + + + 0 + + + 0 · · ·
f ′′ · · · 0 + 0 − 0 + 0 − 0 · · ·
f · · · ր ր ր ր · · ·

Hence f is increasing for all x and for integer n concave down on (2nπ, 2nπ+π)
concave up on (2nπ + π, 2nπ + 2π). Points of inflection are (nπ, nπ). (n is
integer)
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x1/3(x− 4)

Figure 3.7: y = x1/3(x− 4) and its inflection point

0
loc. min

y = x4

0
inflection point

y = x3

0
loc. max

y = −x4

Figure 3.8: y = x4, y = x3, y = −x4

Example 3.4.5. Show f(π/4) is a local maximum when f(x) = sin4 x sin 4x+
cos4 x cos 4x.

sol. Compute f ′ and f ′′ at x = π/4.

f ′(x) = 4(sin3 x− cos3 x) sin 5x,

f ′′(x) = 12 sin x cos x(sinx+ cos x) sin 5x+ 20 cos 5x(sin3 x− cos3 x)

Since f ′(π/4) = 0 and f ′′(π/4) = −6 < 0. Hence f(π/4) is local maximum.



3.4. CONCAVITY AND SKETCHING 55

y = x+ sin x

π 2π

Figure 3.9: y = x+ sinx

Example 3.4.6. For y = x4, an inflection point may not exists when y′′ = 0.

Example 3.4.7. For y = x1/3 an inflection point may exist even if y′′ does
not exist.

Example 3.4.8. Sketch the graph of y = x4 − 4x3 + 10.

Example 3.4.9. Sketch the graph of f(x) = (x+1)2

1+x2 . Check inflection point
and horizontal asymptote. Show details.

f ′(x) =
2(1 − x2)

(1 + x2)2

Possible critical points are ±2.

f”(x) =
4x(x2 − 3)

(1 + x2)3

So possible point of inflection are −
√
3, 0,

√
3.

Example 3.4.10. Sketch the graph of f(x) = e1/2x. Check inflection point
and horizontal asymptote.

sol. Since f is not defined at x = 0, we investigate the behavior as x →±.
Next we compute the derivative of f = e

1

2x . Since f ′ = − 1
2x2 e

1

2x we see f is
decreasing function where it is defined. Now check second derivative:

f ′′ =
1

2x3
4x+ 1

2x
e

1

2x

Thus x = −1/4 is a point of inflection.

Theorem 3.4.11. Suppose f ′′ continuous on I.

(1) If f ′(c) = 0 and f ′′(c) < 0 then f has local maximum

(2) If f ′(c) = 0 and f ′′(c) > 0 then f has local minimum

(3) If f ′(c) = 0 and f ′′(c) = 0 then the test fails. We need more information.
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1 2 3−1−2−3

1

2

−1

b

b

b

inflection pt

1 2 3−1−2−3

1

2

3

4

−1

−2

b

inflection pt

Figure 3.10: y = (x+1)2

1+x2 and y = e
1

2x

3.5 Parametrization

Suppose x, y are given by the equations

x = f(t), y = g(t)

for t ∈ I. Then the set of points (x, y) = (f(t), g(t)) are called parametric
curve and these are called parametric equations.

Example 3.5.1. (1) x = cos t, y = sin t, 0 ≤ t ≤ 2π.

(2) x =
√
t, y = t.

Example 3.5.2. Sketch the path traced by the point P (x, y) where

x = t+ 1
t , y = t− 1

t .

Slopes of parametrized curves

If, f and g are differentiable and f ′ 6= 0. Then t = f−1(x) exists and y(x) =
(g ◦ f−1)(x) is well defined. By implicit function theorem, the derivative of y
w.r.t x is given by

dy

dx
=

dy

dt
· dt
dx

=
dy/dt

dx/dt



3.6. APPLIED OPTIMZIATION 57

Second derivative for parametric equation

If x = f(t), y = g(t) define y as a twice differentiable function of x at the
point where dx/dt 6= 0, then

d2y

dx2
=

d

dt

(
dy

dx

)

/
dx

dt

=
dy′/dt
dx/dt

Example 3.5.3. Compute dy/dx and d2y/dx2 when x = t− t2, y = t− t3.

sol. Chain rule and implicit differentiation

dy

dx
=

dy/dt

dx/dt
=

1− 3t2

1− 2t

d2y

dx2
=

d

dt

(
dy

dx

)

/
dx

dt

=
d

dt

(
1− 3t2

1− 2t

)

/(1 − 2t)

=
2− 6t+ 6t2

(1− 2t)3
.

3.6 Applied Optimziation

3.7 Intermediate form and L’Hopital’s Rule

L’Hopital’s Rule

When f(a) = g(a) = 0 or f(a) = g(a) = ∞, the limit

lim
x→a

f(x)

g(x)

cannot be found by substituting a

Theorem 3.7.1 (L’Hopital’s Rule: First form). Suppose that f(a) = g(a) = 0,
that f ′(a), g′(a) exist and g′(a) 6= 0. Then

lim
x→a

f(x)

g(x)
=

f ′(a)
g′(a)

.
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Proof. lim
x→a

f(x)

g(x)
=

limx→a(f(x)− f(a))/(x − a)

limx→a(g(x) − g(a))/(x − a)
=

f ′(a)
g′(a)

.

Example 3.7.2. (1) lim
x→0

√
1 + x− 1

x

(
0

0

)

=
1/2

√
1 + x

1

∣
∣
∣
∣
x=0

=
1

2
.

(2) lim
x→1

x2 − 1

x− 1

(
0

0

)

=
2x

1

∣
∣
∣
∣
x=1

= 2.

(3) lim
x→(π/2)

cos x

sinx− 1

(
0

0

)

= lim
x→(π/2)

− sinx

cosx
= −∞.

But the first form of L’Hopital’s rule cannot be used for the following case

lim
x→∞

x− sinx

x sinx

(
0

0

)

because the limit of the ratio of the derivative 1−cos x
sinx+x cos x is again

(
0
0

)
form.

Fortunately we can use the following result.

Theorem 3.7.3 (L’Hopital’s Rule: Stronger form). Suppose that f(a) =
g(a) = 0 and f, g are differentiable on (a, b). (The case f ′(c) = g′(c) = 0
is allowed) and that g′(x) 6= 0 for x 6= a. Then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)
g′(x)

as long as the rhs limit exists.

The proof is based on

Theorem 3.7.4 (Cauchy’s Mean value theorem ). Suppose f and g are conti
in [a, b], diff’ble in (a, b). If g′ 6= 0 on (a, b) then g(b) 6= g(a) and there exist
c ∈ (a, b) such that

f(b)− f(a)

g(b)− g(a)
=

f ′(c)
g′(c)

Proof. Suppose g(b) = g(a) then by thm 3.2.2

g′(c) =
g(b) − g(a)

b− a
= 0

for some c ∈ (a, b). This contradict to g′ 6= 0. So, g(b) 6= g(a). Next consider
the function F defined by

F (x) = f(x)− f(a)−
(
f(b)− f(a)

g(b)− g(a)

)

(g(x) − g(a))
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We apply Rolle’s theorem 3.2.1 to F . F satisfies the condition of Rolle’s thm.
Hence there exist c ∈ (a, b) such that F ′(c) = 0. Since

F ′(c) = f ′(c)−
(
f(b)− f(a)

g(b)− g(a)

)

g′(c) = 0

we have
f ′(c)
g′(c)

=
f(b)− f(a)

g(b)− g(a)

Proof. First show

lim
x→c+

f(x)

g(x)
= lim

x→c+

f ′(x)
g′(x)

When c < x < b use thm 3.7.4(Cauchy’ MVT) on [c, x]. Then there is
d ∈ (c, x) s.t.

f ′(d)
g′(d)

=
f(x)− f(c)

g(x)− g(c)
=

f(x)

g(x)

and d → c+ as as x → c+

lim
x→c+

f(x)

g(x)
= lim

d→c+

f ′(d)
g′(d)

= lim
x→c+

f ′(x)
g′(x)

The following can be shown the same way.

lim
x→c−

f(x)

g(x)
= lim

x→c−

f ′(x)
g′(x)

Example 3.7.5. (1) lim
x→0

(
1

sinx
− 1

x

)

(∞−∞) = lim
x→∞

x− sinx

x sinx

(
0

0

)

= lim
x→0

1− cos x

sinx+ x cos x

(
0

0

)

= lim
x→0

sinx

2 cos x− x sinx
=

0

2
= 0.

Intermediate forms ∞/∞, ∞ · 0, ∞−∞
Example 3.7.6.

(1) lim
x→0

x sin
1

x

(2) lim
x→0+

√
x lnx

(3) lim
x→(π/2)−

tan x

1 + tanx

(∞
∞

)

= lim
x→(π/2)−

sec2 x

sec2 x
= 1.
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(4) lim
x→∞

π/2− tan−1 x

1/x

(
0

0

)

= lim
x→∞

−1/(1 + x2)

−1/x2

= lim
x→∞

x2

1 + x2

(∞
∞

)

= lim
x→∞

2x

2x
= 1.

(5) lim
x→∞

√
9x+ 1√
4x+ 1

(∞
∞

)

= lim
x→∞

9/(2
√
9x+ 1)

4/(2
√
4x+ 1)

(
0

0

)

= lim
x→∞

−(81/4)(9x + 1)−3/2

−4(4x+ 1)−3/2

(
0

0

)

.

(6) lim
x→π/2

sec x

1 + tanx

(7) lim
x→∞

lnx

2
√
x

Wrong use of L’hopital’s rule

lim
x→∞

π/2− tan−1 x

1/x

(
0

0

)

= lim
x→∞

−1/(1 + x2)

−1/x2

= lim
x→∞

x2

1 + x2

(∞
∞

)

= lim
x→∞

2x

2x
= 1.

In this case we can find limit as follows:

lim
x→∞

√
9x+ 1√
4x+ 1

=

√

lim
x→∞

9x+ 1

4x+ 1
=

√

9

4
=

3

2
.

lim
x→0

1− cos x

x+ x2
= lim

x→0

sinx

1 + 2x
= 0

But do not continue.

Intermediate forms 0∞, ∞0, ∞−∞
Example 3.7.7. Use continuity

If limx→a ln f(x) = L then

lim
x→a

f(x) = lim
x→a

eln f(x) = eL.

Here a may be either finite or infinite.

(1) lim
x→0+

(1 + x)1/x

(2) lim
x→∞

x1/x

(3) limx→0

(
1

sinx − 1
x

)
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Example 3.7.8. Sketch the graph of x1/x. To do this, we first investigate the
behavior of the function as x → 0+ and x → ∞. To study the limit, we take
the logarithm:

lim
x→∞

lnx1/x = lim
x→∞

lnx

x
= 0

Hence

lim
x→∞

x1/x = exp( lim
x→∞

lnx

x
) = e0 = 1

Meanwhile

lim
x→0+

lnx1/x = lim
x→0+

lnx

x
= −∞.

Hence

lim
x→0+

x1/x = exp( lim
x→0+

lnx

x
) = e−∞ = 0.

To see the local extrema, take the derivative and find the critical point. f ′(x) =
(1 − lnx)/x2 = 0 for x = e. By checking the sign of f ′(x) near x = e, we
conclude x = e is a point of local maximum.

1 2 3 4 5 6 7 8 9 10

1

2

b

local max

Figure 3.11: Graph of y = x1/x

3.8 Newton’s Methods

Let us now derive the Newton’s method for solving f(x) = 0 using the tangent
approximation. Given an approximate root xn, we consider

y = f(xn)− f ′(xn)(x− xn)

The root of the linear equation y = 0 is

x = xn − f(xn)

f ′(xn)
.

Hence we define

xn+1 = xn − f(xn)

f ′(xn)
, when f ′(xn) 6= 0.
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0 x1x2x3

y = f(x)

Figure 3.12: Newton’s method

3.9 Hyperbolic functions

Definitions

For any function f(x) we have

f(x) =
f(x) + f(−x)

2
︸ ︷︷ ︸

Even function

+
f(x)− f(−x)

2
︸ ︷︷ ︸

Odd function

In particular, ex has the form

ex =
ex + e−x

2
+

ex − e−x

2
(3.1)

Definition 3.9.1. A (hyperbolic function) is defined as

hyperbolic cosine cosh x =
ex + e−x

2
,

hyperbolic sine sinhx =
ex − e−x

2
,

hyperbolic tangent tanhx =
sinhx

cosh x
=

ex − e−x

ex + e−x
,

hyperbolic cotangent coth x =
1

tanhx
=

ex + e−x

ex − e−x
,

hyperbolic secant sech x =
1

coshx
=

2

ex + e−x
,

hyperbolic cosecant csch x =
1

sinhx
=

2

ex − e−x
.

Proposition 3.9.2.
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1−1

1

−1

x

y

0

y = coshx

y = sinhx

y = ex

2
y = e−x

2

y = − e−x

2

x

y

0

y = 1

y = −1

y = coth x

y = coth x

y = tanh x

x

y

0

y = 1

y = coshx

y = sech x
x

y

0

y = csch x

y = sinhx

Figure 3.13: hyperbolic functions

(1) sinh 2x = 2 sinhx cosh x

(2) cosh 2x = cosh2 x+ sinh2 x

(3) sinh2 x =
cosh 2x− 1

2

(4) cosh2 x =
cosh 2x+ 1

2

(5) cosh2 x− sinh2 x = 1

(6) tanh2 x = 1− sech2 x

(7) coth2 x = 1 + csch2 x

Derivatives of hyperbolic functions

Proposition 3.9.3.

(1)
d

dx
(sinhu) = coshu

du

dx

(2)
d

dx
(coth u) = − csch2 u

du

dx
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(3)
d

dx
(cosh u) = sinhu

du

dx

(4)
d

dx
(sech u) = − sech u tanhu

du

dx

(5)
d

dx
(tanh u) = sech2 u

du

dx

(6)
d

dx
(csch u) = − csch u coth u

du

dx

Proposition 3.9.4.

(1)

∫

sinhu du = cosh u+ C

(2)

∫

cosh u du = sinhu+ C

(3)

∫

sech2 u du = tanhu+C

(4)

∫

csch2 u du = − coth u+ C

(5)

∫

sech u tanhu du = − sech u+ C

(6)

∫

csch u coth udu = − csch u+ C

Example 3.9.5. (1) The integral of sinh2 x is obtained in a similar method
to that of sin2 x .

∫ 1

0
sinh2 x dx =

∫ 1

0

cosh 2x− 1

2
dx

=
1

2

[
sinh 2x

2
− x

]1

0

=
sinh 2

4
− 1

2
.

(2) By definition of sinhx

∫ ln 2

0
4ex sinhx dx =

∫ ln 2

0
4ex

ex − e−x

2
dx =

∫ ln 2

0
(2e2x − 2) dx

=
[
e2x − 2x

]ln 2

0

= 3− 2 ln 2.
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Inverse hyperbolic functions

y = sinhx is a one-to -one function from (−∞,∞) onto (−∞,∞). Thus its
inverse function y = sinh−1 x is well defined on all of (−∞,∞). Thus the
inverse hyperbolic sine is

sinh−1 x : (−∞,∞) → (−∞,∞).

For y = coshx, we restrict the domain to x ≥ 0. Then y = cosh−1 x exists
on [1,∞). Thus the inverse hyperbolic cosine is

y = cosh−1 : [1,∞) → [0,∞).

Likewise if we restricted y = sech x to x ≥ 0, then inverse function y =
sech−1 x exists on (0, 1]. y = tanhx, y = coth x, y = csch x are all one-to-one
on (−∞,∞). Hence inverse functions

y = tanh−1 x : (−1, 1) → (−∞,∞),

y = coth−1 x : |x| > 1 → (−∞,∞)

y = csch−1 x : (−∞,∞) \ {0} → (−∞,∞).

Proposition 3.9.6.

(1) sinh−1 x = ln
(
x+

√

x2 + 1
)
, −∞ < x < ∞

(2) cosh−1 x = ln
(
x+

√

x2 − 1
)
, x ≥ 1

(3) tanh−1 x =
1

2
ln

1 + x

1− x
, |x| < 1

(4) sech−1 x = ln

(
1 +

√
1− x2

x

)

, 0 < x ≤ 1

(5) csch−1 x = ln

(
1

x
+

√
1 + x2

|x|

)

, x 6= 0

(6) coth−1 x =
1

2
ln

x+ 1

x− 1
, |x| > 1

Proof. We prove for sinh−1 x only.

y = sinhx =
ex − e−x

2
,

ex − e−x = 2y,

e2x − 2yex − 1 = 0.

Solving this equation for ex we have

ex = y +
√

y2 + 1.

Since y−
√

y2 + 1 is negative, we choose positive sign. So x = ln(y+
√

y2 + 1)
and hence y = ln(x+

√
x2 + 1) is the inverse of sinh−1 x.
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x

y

y = sinh x

y = sinh−1 x

y = x

x

y

y = cosh x

y = cosh−1 x

y = x

x

y

y = sech−1 x

y = sech x, x ≥ 0

y = x

x

y

y = csch x

y = csch−1 x

y = x

x

y
y = tanh−1 x

y = tanhx

y = x

x

y

y = cothx

y = coth−1 x

y = x

Figure 3.14: Inverse hyperbolic functions

Properties of inverse hyperbolic functions

Proposition 3.9.7.

(1) sech−1 x = cosh−1 1

x

(2) csch−1 x = sinh−1 1

x

(3) coth−1 x = tanh−1 1

x

Proposition 3.9.8.

(1)
d(sinh−1 u)

dx
=

1√
1 + u2

du

dx

(2)
d(cosh−1 u)

dx
=

1√
u2 − 1

du

dx
, u > 1

(3)
d(tanh−1 u)

dx
=

1

1− u2
du

dx
, |u| < 1
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(4)
d(coth−1 u)

dx
=

1

1− u2
du

dx
, |u| > 1

(5)
d(sech−1 u)

dx
=

−du/dx

u
√
1− u2

, 0 < u < 1

(6)
d(csch−1 u)

dx
=

−du/dx

|u|
√
1 + u2

, u 6= 0

Proposition 3.9.9.

(1)

∫
du√
1 + u2

= sinh−1 u+ C

(2)

∫
du√
u2 − 1

= cosh−1 u+ C, u > 1

(3)

∫
du

1− u2
=

{

tanh−1 u+ C, |u| < 1 ,

coth−1 u+ C, |u| > 1

(4)

∫
du

u
√
1− u2

= − sech−1 |u|+ C = − cosh−1

(
1

|u|

)

+C

(5)

∫
du

u
√
1 + u2

= − csch−1 |u|+ C = − sinh−1

(
1

|u|

)

+ C

Exercise 3.9.10. (1) Show

(a) sinh(x+ y) = sinhx cosh y + coshx sinh y

(b) cosh(x+ y) = cosh x cosh y + sinhx sinh y

(2) Find derivatives

(a) x− tanhx2

(b) ln(sech x)

(c) 1
2 ln | tanhx|

(d) tan−1(sinhx)

(e) (x2 + 1) sech(lnx)

(f) (1− x) tanh−1 x

(g) sinh−1(tan x)

(h) (1− x2) coth−1 x

(i) tan−1(sinx), −π/2 < x < π/2

(j) sech−1(sinx), 0 < x < π/2

(3) Find the following integrals
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(a)

∫ 0

−1
cosh(2x+ 1) dx

(b)

∫ π

−π
tanh 2x dx

(c)

∫ 1/2

0
4e−x sinhx dx

(d)

∫
cosh(lnx)

x
dx

(e)

∫ ln 2

0
tanh2 x dx

(f)

∫ 4

1

cosh
√
x√

x
dx

(g)

∫ ln 3

ln 2
cosh2 x dx

(h)

∫ ln 2

− ln 2

√

cosh(2x− 1) dx

(i)

∫

sech3 5x tanh 5x dx

(j)

∫

tanh3 x dx

(4) Prove theorem 3.9.6.

(5) Find the integral.

(a)

∫ 1

0

dx√
1 + 2x2

(b)

∫ 12/13

4/5

dx

x
√
1− x2

(c)

∫ 5/3

5/4

dx√
x2 − 1

(d)

∫ 1/2

0

dx√
1− x2

(e)

∫ 2

5/4

dx√
1− x2

(f)

∫ 2
√
3

0

dx√
4 + x2

(g)

∫ 2

1

dx

x
√
4 + x2
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(h)

∫ π

0

cos xdx
√

1 + sin2 x

(6) Find the volume of the region when the graph y = sechx is rotated
about x axis between − ln

√
3 ≤ x ≤ ln

√
3.

(7) Find the centroid of the volume obtained when the region between y =
tanhx, y = 1, x = 0, x = ln

√
199 is rotated about y = 1.

(8) Find the solution of differential equation.

x
d2y

dx2
=

√

1 +

(
dy

dx

)2

, y(1) = 0,
dy

dx
(1) = 0
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Chapter 4

Integration

4.1 Anti-derivatives

If F ′(x) = f(x) then F is an anti-derivative. In general, F (x) + C is an
anti-derivative.

D.E. Find the solution of y′ = x2

Definition 4.1.1. The set of all anti-derivative of f is called indefinite in-
tegral and denoted by

∫

f(x) dx.

4.2 Estimating with finite sums

4.3 Sigma and limit

4.4 Definite integral

Suppose f(x) is a positive(temporarily) continuous function on [a, b]. Let A
be the region under the graph of y = f(x), between x = a, x = b. To find the
area of the region, we divide [a, b] into small subintervals. (See Figure 4.1).
For example, uniform n-subintervals {x0, x1, . . . , xn} are obtained if

xi = a+ i(b− a)/n, i = 0, 1, · · · , n.

Now the area A is approximated by

Sn =
n−1∑

i=0

f(ci)(xi+1 − xi).

In general, nonuniform intervals allowed provided that maxi |xi+1−xi| → 0
as n → ∞.

71



72 CHAPTER 4. INTEGRATION

x

y

O a b

y = f(x)

Figure 4.1: S6

The set of points {x0, x1, . . . , xn} such that

a = x0 < x1 < · · · < xn−1 < xn = b

is called a partition of [a, b]. Suppose f(x) is defined on [a, b] and P =
{x0, x1, . . . , xn} is any partition of [a, b]. For any set of points {c1, c2, . . . , cn}
satisfying xi ≤ ci ≤ xi+1, we define the Riemann sum R(f, P ) of f(x) w.r.t
P (Figure 4.2) as

R(f, P ) =

n∑

i=1

f(ci)(xi+1 − xi).

x

y

O
b

b

b

b

b

b

b

b

x0=a x1 x2 xk xk+1 xn=b

c1 c2 ck cn

(c1, f(c1))

(c2, f(c2))

(ck, f(ck))

(cn, f(cn))

y = f(x)

Figure 4.2: R(f, P )

Now as we can expect the Riemann sum is a good estimate for the area as
long as all the subintervals are small. Thus we need a measure to control the
length of subintervals.
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Definition 4.4.1. The norm of a partition P = {x0, x1, . . . , xn} is defined
by

‖P‖ = max
0≤n−1

(xi+1 − xi).

If ‖P‖ → 0, then we can assure that the lengths of all the subintervals
approach zero. And in this case we can consider the limit of the Riemann
sum: Suppose the Riemann sum R(f, P ) of f(x) approaches some value I as
the norm ‖P‖ of the partition P approaches 0. Then this limit is defined as
the area under the graph. A precise definition using an argument similar to
ǫ-δ used to define the limit of a function is given below:

Definition 4.4.2 (Definite Integral as the limit of a Riemann Sum). Let f(x)
be defined on [a, b]. We say the value I is the definite integral of f over
[a, b] if the following holds:

For any ǫ > 0, there corresponds a δ > 0 such that for any partition
P = {x0, x1, . . . , xn} satisfying ‖P‖ < δ and for any choice of ci,
(xi ≤ ci ≤ xi+1, i = 0, · · · , n− 1), we have ‖R(f, P )− I‖ < ǫ.

This value I is denoted by
∫ b
a f(x) dx and called the definite integral of f(x)

on [a, b]. In this case, we say f(x) is integrable on [a, b].

We write it as

∫ b

a
f(x) dx = lim

‖P‖→0

n−1∑

i=0

f(ci)(xi+1 − xi)

upper limit

∫ b

a

f(x) dx
integral sign

lower limit

integrand

variable of integration

Figure 4.3: Integral of f from a to b

Non-integrable function

f(x) =

{

0, x rational number

1, x irrational number

Theorem 4.4.3 (Definite integral). The following holds:
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(1)

∫ b

a
(f(x) + g(x)) dx =

∫ b

a
f(x) dx+

∫ b

a
g(x) dx

(2)

∫ b

a
kf(x) dx = k

∫ b

a
f(x) dx

(3)

∫ c

a
f(x) dx =

∫ b

a
f(x) dx+

∫ c

b
f(x) dx, (a ≤ b ≤ c)

(4) If f(x) ≥ 0 on [a, b], then

∫ b

a
f(x) dx ≥ 0

(5) min
x∈[a,b]

f(x) · (b− a) ≤
∫ b

a
f(x) dx ≤ max

x∈[a,b]
f(x) · (b− a)

(6)

∣
∣
∣
∣

∫ b

a
f(x) dx

∣
∣
∣
∣
≤

∫ b

a
|f(x)| dx

Definition 4.4.4.

∫ a

a
f(x) dx = 0,

∫ a

b
f(x) dx = −

∫ b

a
f(x) dx.

Example 4.4.5. Find
∫ a
0 x2 dx by definition.

sol. Suppose P = {x0, x1, . . . , xn} is a uniform partition of [0, a]. Then we
have xi = i a/n and

n∑

i=1

x2i (xi − xi−1) =
n∑

i=1

(
i · a
n

)2 a

n

=
a3

n3

n∑

i=1

i2

=
a3(n+ 1)(2n + 1)

6n2

So

∫ a

0
x2 dx = lim

n→∞

n∑

i=1

x2i (xi − xi−1)

= lim
n→∞

a3(n+1)(2n + 1)

6n2

=
a3

3



4.5. FUNDAMENTAL THEOREM OF CALCULUS 75

Theorem 4.4.6 (Mean value theorem for integral). Let a < b. If f(x) is
conti. on closed interval [a, b] then there is a c in [a, b]

f(c) =
1

b− a

∫ b

a
f(x) dx

This value is called the average of f on [a, b] denoted by av(f).

Proof. Since f(x) is continuous on [a, b] there are min and max;

f(x0) = min
x∈[a,b]

f(x), f(x1) = max
x∈[a,b]

f(x)

for some x0, x1 in [a, b].

First, if x0 = x1 then f(x) is constant and the equality holds for all c ∈
[a, b]. Suppose x0 < x1. Then by intermediate value theorem, f(x) assumes
all values between f(x0) and f(x1) in [x0, x1]. Since

f(x0) ≤
1

b− a

∫ b

a
f(x) dx ≤ f(x1)

So there is a c such that

f(c) =
1

b− a

∫ b

a
f(x) dx

for some c ∈ [x0, x1].

The case x0 < x1 is the same.

x

y

O

f(c)

a bc

y = f(x)

Figure 4.4: MVT for Integral

4.5 Fundamental theorem of Calculus

If f is integrable on I, the integral from a fixed point a to another point x
defines a new function F (x) =

∫ x
a f(t) dt. We have the following theorem.



76 CHAPTER 4. INTEGRATION

Theorem 4.5.1 (Fundamental theorem of Calculus I). Suppose f(x) is con-
tinuous on [a, b]. Then the function F (x) defined by

F (x) =

∫ x

a
f(t) dt

is differentiable on (a, b) and

F ′(x) =
d

dx

∫ x

a
f(t) dt = f(x)

Proof. By definition,

F ′(x) = lim
h→0

F (x+ h)− F (x)

h

F (x+ h)− F (x)

h
=

1

h

(∫ x+h

a
f(t) dt−

∫ x

a
f(t) dt

)

=
1

h

∫ x+h

x
f(t) dt

By the integral MVT there is c between x and x+ h s.t.

1

h

∫ x+h

x
f(t) dt = f(c).

Now f(c) approaches f(x) as h → 0. Hence

F ′(x) = lim
h→0

F (x+ h)− F (x)

h

= lim
h→0

1

h

∫ x+h

x
f(t) dt

= f(x)

Theorem 4.5.2 (Fundamental theorem of Calculus II). Suppose f(x) is conti
on [a, b]. If F (x) is the anti-derivative of f(x), then

∫ b

a
f(x) dx = F (b)− F (a).

Proof. Set G(x) =
∫ x
a f(t) dt. Then by (1), G(x) is anti-derivative of f(x) on

[a, b]. Since F (x) is also an anti-derivative of f(x), we have

G(x) = F (x) + C.

But G(a) = F (a) + C =
∫ a
a f(t) dt = 0, hence C = −F (a). Hence G(b) =

∫ b
a f(t) dt = F (b)− F (a).
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t

y

O

b
f(c)

F (x) =
∫ x

a
f(t) dt

∆F =
∫ x+h

x
f(t) dt

y = f(t)

a x x+ h

Figure 4.5: ∆F
∆x ≈ f(c) → f ′(x)

Example 4.5.3. (1)
d

dx

∫ x2

1
cos t dt.

(2)
d

dx

∫ 9

3+x2

1

1 + et
dt.

Example 4.5.4. Find derivative of A(x) when h(t) is continuous and u(x),
v(x) are differentiable. Find the derivative of

A(x) =

∫ v(x)

u(x)
h(t) dt

sol. Let H(t) be an antiderivative of h(t). Then A(x) = H(v(x))−H(u(x))
and A′(x) = h(v(x))v′(x)− h(u(x))u′(x).

In other words,

d

dx

∫ v(x)

u(x)
h(t) dt = h(v(x))v′(x)− h(u(x))u′(x).

Example 4.5.5.

∫ b

a
ex dx = eb − ea.

Total area.

4.6 Indefinite integrals and substitution

Recall
d

dx

(
un+1

n+ 1

)

= un
du

dx

So we have ∫

undu =
un+1

n+ 1
+ C
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Example 4.6.1.
∫ √

1 + x22xdx =
∫
u1/2du =

chain rule
d

dx
F (u(x)) =

d

du
F (u)

d

dx
u(x)

∫
d

du
F (u)

d

dx
u(x) dx = F (u(x)) + C

∫
d

du
F (u) du = F (u) + C

∫
d

du
F (u)

d

dx
u(x) dx =

∫
d

du
F (u) du

Proposition 4.6.2.

∫

f(g(x)) · g′(x) dx =

∫

f(u) du.

Proof. Let F (u) be an anti-derivative of f(u).

d

dx
F (g(x)) = f(g(x)) g′(x)

∫

f(g(x)) g′(x) dx =

∫

f(u) du

Example 4.6.3.

∫ π/2

0
esinx cosx dx =

∫ 1

0
eu du.

Example 4.6.4. Find ∫

sec x dx

The idea is to multiply sec x+ tanx both the numerator and denominator:
∫

sec x dx =

∫

sec x · sec x+ tanx

sec x+ tanx
dx

=

∫
sec2 x+ sec x tanx

secx+ tan x
dx

=

∫
du

u

= ln | sec x+ tanx|+ C

Similarly, we obtain
∫

csc x dx = − ln | csc x+ cot x|+ C

Example 4.6.5. ∫

sin2 x dx =

∫
1− cos 2x

2
dx
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4.7 Area between curves

If f(x) > 0,
∫ b
a f(x) dx is the area defined by

y = f(x), a ≤ x ≤ b

In general, when f(x) ≤ g(x) on [a, b], the area defined by

∫ b

a
(g(x) − f(x)) dx

Use of symmetry

If there is any symmetry it is useful to take advantage of it.

Proposition 4.7.1.

For even function,

∫ a

−a
f(x) dx = 2

∫ a

0
f(x) dx

For odd function,

∫ a

−a
f(x) dx = 0

Integration w.r.t y

When the region is determined by functions of y, we need to integrate w.r.t.
y.

x

x = g(y)

x = f(y)

c

y

d

Figure 4.6: Region by between functions of y

A =

∫ d

c
(g(y)− f(y)) dy


