
V� 8 *�×
Vector Analysis

V� 1 â�
 Green’s Theorem

Given a y-simple region, D, we can divide the the boundary C into four parts

C1, C2 B1 and B2. (fig 8.1) The boundary of a x-simple region can be similarly

divided (fig 8.2)
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bbÕªaË> 8.1: y-simple region and boundary

Green’s Theorem

Lemma 1.1. Let D be a y-simple region and C+ be its boundary with positive

orientation. If P is a C1-function on D, then

∫

C+

Pdx = −
∫∫

D

∂P

∂y
dxdy

255
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ÕªaË> 8.2: x-simple region and boundary

Proof. Suppose

D = {(x, y)| a ≤ x ≤ b, φ1(x) ≤ y ≤ φ2(x)}

We decompose (fig 8.1) C+ as C+ = C+
1 + B+

2 + C−
2 + B−

1 and use Fubini’s

theorem, we can evaluate the double integral as an iterated integral

∫∫

D

∂P (x, y)

∂y
dxdy =

∫ b

a

∫ φ2(x)

φ1(x)

∂P (x, y)

∂y
dydx

=

∫ b

a
[P (x, φ2(x)) − P (x, φ1(x))]dx.

On the other hand C+
1 can be parameterized as x → (x, φ1(x)), a ≤ x ≤ b and

C+
2 can be parameterized as x → (x, φ2(x)), a ≤ x ≤ b. Hence

∫ b

a
P (x, φi(x))dx =

∫

C+

i

P (x, y)dx, i = 1, 2

By reversing orientations

−
∫ b

a
P (x, φ2(x))dx =

∫

C−

2

P (x, y)dx

Hence
∫∫

D

∂P

∂y
dydx = −

∫

C+

1

Pdx −
∫

C−

2

Pdx
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Since x is constant on B+
2 , B−

1

∫

B+

2

Pdx = 0 =

∫

B−

1

Pdx

So

∫

C+

Pdx =

∫

C+

1

Pdx +

∫

B+

2

Pdx +

∫

C−

2

Pdx +

∫

B−

1

Pdx

=

∫

C+

2

Pdx +

∫

C−

1

Pdx.

Hence
∫∫

D

∂P

∂y
dxdy = −

∫

C+

1

Pdx −
∫

C−

2

Pdx = −
∫

C+

Pdx

The proof is completed.

Lemma 1.2. Let D be a x-simple region with boundary C+. Then if Q is

C1-function in D,
∫

C+

Qdy =

∫∫

D

∂Q

∂x
dxdy

Proof. This is same as corollary 5.3.1 with x, y interchanged with negative

direction. (figure 8.2).

From these Lemmas we obtain Green’s theorem for simple region.

Theorem 1.3. (Green’s theorem) Let D be a simple region boundary ∂D.

Suppose P and Q : D → R are C1, then

∫

∂D
Pdx + Qdy =

∫∫

D

(

∂Q

∂x
− ∂P

∂y

)

dxdy

Generalizing Green’s theorem

In fact, Green’s theorem holds for more general region. For example, Green’s

theorem can be used for a region with a hole. One cuts the region so that each

region is simple.

Theorem 1.4. (Green’s theorem for general region) Let D be a region

which can be divided into a few pieces of regions where Green’s theorem apply,

and let ∂D be the boundary. Suppose P and Q : D → R are C1 then

∫

∂D
Pdx + Qdy =

∫∫

D

(

∂Q

∂x
− ∂P

∂y

)

dxdy
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ÕªaË> 8.3: Region between Ch and C

Proof. Assume D is the union of simple regions Di, i = 1, 2, . . . , n whose

boundary ∂D is the sum of ∂Di, i = 1, 2, . . . , n. In other words,

D =
n
∑

i=1

Di , ∂D =
n
∑

i=1

∂Di.

So
∫

∂D
Pdx + Qdy =

n
∑

i=1

∫

∂Di

Pdx + Qdy

and
∫∫

D

(

∂Q

∂x
− ∂P

∂y

)

dxdy =
n
∑

i=1

∫∫

Di

(

∂Q

∂x
− ∂P

∂y

)

dxdy.

Since each Di is simple, we have by corollary 5.3.1

∫

∂Di

Pdx =

∫∫

Di

−∂P

∂y
dxdy

and
∫

∂Di

Qdy =

∫∫

Di

∂Q

∂x
dxdy

We add all these terms to get the result.

Example 1.5. Verify Green’s theorem for

P (x, y) =
−y

x2 + y2
, Q(x, y) =

x

x2 + y2

on D = {(x, y)| h2 ≤ x2 + y2 ≤ 1}, 0 < h < 1.
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1h

R
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y

O

ÕªaË> 8.4: Concentric region for Green’s theorem

sol. The boundary of D consists of two circles(fig 8.4)

C1 : x = cos t, y = sin t, 0 ≤ t ≤ 2π

Ch : x = h cos t, y = h sin t, 0 ≤ t ≤ 2π

The curve ∂D = Ch ∪ C1 is counterclockwise along C1, and clockwise

along Ch. For (x, y) 6= (0, 0) P,Q are class C1. Since

∂P

∂y
=

(x2 + y2)(−1) + 2(2y)

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
=

∂Q

∂x

we have
∫∫

D

(

∂Q

∂x
− ∂P

∂y

)

dxdy =

∫

D
0 dxdy = 0

On the other hand

∫

∂D
Pdx + Qdy =

∫

C1

xdy − ydx

x2 + y2
+

∫

Ch

xdy − ydx

x2 + y2

=

∫ 2π

0
(cos2 t + sin2 t)dt +

∫ 0

2π

h2(cos2 t + sin2 t)

h2
dt

= 2π − 2π = 0

Hence
∫

∂D
Pdx + Qdy = 0 =

∫∫

D

(

∂Q

∂x
− ∂P

∂y

)

dxdy.

Example 1.6. Evaluate
∫

C
xdy−ydx
x2+y2 . Since the integrand is e not continuous

at (0, 0) we cannot use Green’s theorem. But use Green’s theorem on the
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region between two two curves s (fig 8.3) to see

∫

C
(Pdx + Qdy) = −

∫

Ch

(Pdx + Qdy)

Now the integral −
∫

Ch
(Pdx + Qdy) can be computed by polar coordinate:

From

x = r cos θ, y = r sin θ,

dx = −r sin θdθ + cos θdr,

dy = r cos θdθ + sin θdr

we see
xdy − ydx

x2 + y2
=

r2(cos2 θ + sin2 θ)

r2
dθ = dθ

Hence
∫

C

xdy − ydx

x2 + y2
= 2π

Area

Theorem 1.7. If C is a simple closed curve bounding a region D, then the

area A is

A =
1

2

∫

∂D
xdy − ydx.

Proof. Let P (x, y) = −y,Q(x, y) = x. Then

1

2

∫

∂D
xdy − ydx =

1

2

∫∫

D

(

∂x

∂x
− ∂(−y)

∂y

)

dxdy

=
1

2

∫∫

D
(1 + 1)dxdy =

∫

D
dxdy = A

Example 1.8. Find the area of the region enclosed by x2/3 + y2/3 = a2/3.
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sol. Let x = a cos3 θ, y = a sin3 θ, (0 ≤ θ ≤ 2π). Then

A =
1

2

∫

∂D
xdy − ydx

=
1

2

∫ 2π

0
[(a cos3 θ)(3a sin2 θ cos θ)− (a sin3 θ)(−3a cos2 θ sin θ)]dθ

=
3

2
a2
∫ 2π

0
(sin2 θ cos4 θ + cos2 θ sin4 θ)dθ

=
3

8
a2
∫ 2π

0
sin2 2θdθ =

3

8
πa2.

Hence area is 3πa2/8. (fig 8.5).
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ÕªaË> 8.5: /BG��� x2/3 + y2/3 = a2/3

Vector Form using the Curl

For a vector field F = P i+Qj on R
2, we may consider it as F = P i+Qj+0k.

Then curl of F is (∂Q/∂x − ∂P/∂y)k. Then using dS = k dxdy we obtain

(curlF) · dS =

[

(∂Q

∂x
− ∂P

∂y

)

k

]

· k dxdy =
(∂Q

∂x
− ∂P

∂y

)

dxdy

Hence by Green’s theorem,

∫

∂D
F · ds =

∫

∂D
Pdx + Qdy =

∫∫

D

(∂Q

∂x
− ∂P

∂y

)

dxdy

This is vector form of Green’s theorem.
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Theorem 1.9. (Vector form of Green’s theorem) Let D ⊂ R
2 be region

with ∂D. if F = P i + Qj is a C1-vector field on D then

∫

∂D
F · ds =

∫∫

D
(curlF) · k dxdy =

∫∫

D
(∇× F) · k dxdy

(fig 8.6)
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ÕªaË> 8.6: vector in Green’s Theorem

Example 1.10. Given a vector field F(x, y) = (y + 3x4)i + (ey − x)j and

C : x2 + y2/4 = 1. Find
∫

C F · ds.

sol. Let P (x, y) = y +3x4, Q(x, y) = ey −x. Then ∂Q/∂x = −1, ∂P/∂y = 1

and curlF = (−1 − (−1))k = −2k. Hence

∫

C
F · ds =

∫∫

D
(curlF) · k dxdy =

∫∫

D
−2k · k dxdy = (−2) · (Are(D)).

The area of x2/a2 + y2/b2 = 1 is πab area of D is 2π. Hence
∫

C F · ds =

−4π.

We study a divergence form of Green’s theorem. For this, we need unit

outward normal Suppose D ⊂ R
2 is a region with boundary ∂D. If ∂D

is parameterized as σ(t) = (x(t), y(t)) : [a, b] → R
2, t → σ(t) then the unit

outward normal vector n on ∂D is defined as

n =
(y′(t),−x′(t))

√

[x′(t)]2 + [y′(t)]2
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Vector form of Divergence

Theorem 1.11. Divergence form of Green’s theorem If F = P i + Qj is

a C1-vector field on D then

∫

∂D
(F · n)ds =

∫∫

D
divF dxdy

(fig 8.7).

n

D

ÕªaË> 8.7: n is the unit outward normal vector to ∂D

Proof. Since σ′(t) = (x′(t), y′(t)) is tangent to ∂D we see n · σ′ = 0. i.e, n is

perpendicular to the boundary. Choosing the proper sign of n

∫

∂D
(F · n)ds =

∫ b

a

(

P (x, y)y′(t) − Q(x, y)x′(t)
√

[x′(t)]2 + [y′(t)]2

)

√

[x′(t)]2 + [y′(t)]2dt

=

∫ b

a
[P (x, y)y′(t) − Q(x, y)x′(t)]dt

=

∫

∂D
Pdy − Qdx.

By Green’s theorem,

∫

∂D
(F · n)ds =

∫

∂D
Pdy − Qdx

=

∫∫

D

(

∂P

∂x
+

∂Q

∂y

)

dxdy

=

∫∫

D
divF dxdy

Example 1.12. Given a vector field F = sin y3i+ ex2

j find
∫

C(F ·n)ds where

C is the boundary of rectangle given by fig 8.8.
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nÕªaË> 8.8: Curve of Example 1.12

sol. Let C = ∂D. Since

div F =
∂

∂x

(

sin y3
)

+
∂

∂y

(

ex2
)

= 0 + 0 = 0

∫

C
(F · n)ds =

∫

∂D
(F · n)ds =

∫

D
divF dxdy =

∫

D
0 dxdy = 0.

V� 2 â�
 Stokes’ Theorem

The vector form of Green’s theorem related the line integral of a vector field

on a simple closed curve to the integral of the curl of the vector on the surface

having the curve as boundary.

Stokes’ theorem exactly the generalization of Green’s theorem: the curve

may lie in the space the the region is replaced by any surface in the space

surrounded by the curve: A caution: there are many surfaces having the same

curve as boundary. But as long as the vector fields are C1 in a region, any

surface play the same role.

Stokes’ Theorem for Graphs

Let us recall ch7. Suppose a surface S is given as the graph of a function

parameterized by














x = u

y = v

z = f(u, v)
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for (u, v) in some domain D. The integral of a vector field F = F1 i+F2 j+F3 k

over S was defined by

∫∫

S
F · dS =

∫∫

D

[

F1

(

−∂z

∂x

)

+ F2

(

−∂z

∂y

)

+ F3

]

dxdy (8.1)

Suppose c(t) : [a, b] → R, c(t) = (x(t), y(t)) is a parametrization of ∂D in

positive direction. Then we define the boundary curve ∂S to be the

oriented simple closed curve that is the image of the mapping p : t →
(x(t), y(t), f(x(t), y(t))) with the orientation induced by c.

Theorem 2.1. Let S be a oriented surface defined by C2-function z = f(x, y),

where (x, y) ∈ D, a region to which Green’s theorem holds. Let F be a C1-

vector fields on S. Then

∫∫

S
curlF · dS =

∫∫

S
(∇× F) · dS =

∫

∂S
F · ds.

Proof. If F = F1i + F2j + F3k then by (8.1)

curlF =
(∂F3

∂y
− ∂F2

∂z

)

i +
(∂F1

∂z
− ∂F3

∂x

)

j +
(∂F2

∂x
− ∂F1

∂y

)

k

=

∣

∣

∣

∣

∣

∣

∣

∣

i j k

∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

∣

∣

∣

∣

∣

∣

∣

∣

= ∇× F.

∫∫

S
curlF · dS =

∫∫

D

[(∂F3

∂y
− ∂F2

∂z

)

(

−∂z

∂x

)

+
(∂F1

∂z
− ∂F3

∂x

)

(

−∂z

∂y

)

+
(∂F2

∂x
− ∂F1

∂y

)]

dxdy

On the other hand

∫

∂S
F · ds =

∫

p

F · ds =

∫

p

F1dx + F2dy + F3dz

If we use parametrization of p = (x(t), y(t), z(t)) then

∫

∂S
F · ds =

∫ b

a

(

F1
dx

dt
+ F2

dy

dt
+ F3

dz

dt

)

dt (8.2)
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Use the chain rule
dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt

Substituting into above

∫

∂S
F · ds =

∫ b

a

[(

F1 + F3
∂z

∂x

)

dx

dt
+

(

F2 + F3
∂z

∂y

)

dy

dt

]

dt

=

∫

c

(

F1 + F3
∂z

∂x

)

dx +

(

F2 + F3
∂z

∂y

)

dy (8.3)

=

∫

∂D

(

F1 + F3
∂z

∂x

)

dx +

(

F2 + F3
∂z

∂y

)

dy

Applying Green’s theorem to (8.3) yields

∫∫

D

[(

∂(F2 + F3
∂z
∂y )

∂x
− ∂(F1 + F3

∂z
∂x)

∂y

)]

dxdy

Now use chain rule remembering F1, F2, F3 are functions of x, y, and that z is

also a function of x, y,

∫∫

D

[(

∂F2

∂x
+

∂F2

∂z

∂z

∂x
+

∂F3

∂x

∂z

∂y
+

∂F3

∂z

∂z

∂x

∂z

∂y
+ F3

∂2z

∂x∂y

)

−
(

∂F1

∂y
+

∂F1

∂z

∂z

∂y
+

∂F3

∂y

∂z

∂x
+

∂F3

∂z

∂z

∂y

∂z

∂x
+ F3

∂2z

∂x∂y

)]

dA

Because mixed partials are equal last two integrals cancel and we obtain

∫∫

D

[(∂F3

∂y
− ∂F2

∂z

)

(

−∂z

∂x

)

+
(∂F1

∂z
− ∂F3

∂x

)

(

−∂z

∂y

)

+
(∂F2

∂x
− ∂F1

∂y

)]

dxdy

=

∫∫

S
curlF · dS

Example 2.2. Let F = yezi + xezj + xyezk. Compute
∫

C F · ds.
∣

∣

∣

∣

∣

∣

∣

∣

i j k

∂
∂x

∂
∂y

∂
∂z

yez xez xyez

∣

∣

∣

∣

∣

∣

∣

∣

= 0

Theorem 2.3. (Stokes’ theorem for Parameterized Surface) Let S be

a oriented surface defined by C2- parametrization Φ : D ⊂ R
2 → S. If ∂S is
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an oriented boundary of S and F is C1-vector field then

∫∫

S
(∇× F) · dS =

∫

∂S
F · ds

Example 2.4. Show that
∫

C F ·ds = −4π for F = (x2 +y)i+(x2 +2y)j+2z3k

and C : x2 + y2 = 4.

sol. Let S be the region surrounded by C : x2 + y2 = 4. If n is the unit

normal to S. Then n = k and

∇× F =

∣

∣

∣

∣

∣

∣

∣

∣

i j k

∂
∂x

∂
∂y

∂
∂z

x2 + y x2 + 2y 2z3

∣

∣

∣

∣

∣

∣

∣

∣

= (0 − 0)i − (0 − 0)j + (2x − 1)k = (2x − 1)k

Hence Stokes’ theorem

∫

C
F · ds =

∫∫

S
(∇× F) · ndS

=

∫∫

S
(2x − 1)k · kdS =

∫ 2

−2

∫

√
4−y2

−
√

4−y2

(2x − 1)dxdy

= −2

∫ 2

−2

√

4 − y2dy = −4πs���.

Example 2.5. Evaluate

∫

C
−y3dx + x3dy − z3dz

where C is the intersection of the cylinder x2 +y2 = 1 and plane x+y +z = 1.

sol. let F = −y3i + x3j − z3k. Then curlF = 3(x2 + y2)k. Here we need to

compute dS or dS = ‖Tu × Tv‖ dudv from (u, v, 1 − u − v). But we can

use graph form (8.1)

∫

S
curlF · dS =

∫

D
3(x2 + y2)dxdy =

3π

2
.
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Writing thm 5.4.3 again. Let FT denote the tangential component of F,

we have

∫

S
(curlF) · ndS =

∫

S
curlF · dS =

∫

∂S
F · ds =

∫

∂S
FT ds

Example 2.6. Show Stokes theorem holds for

F = (2x − y)i− yz2j − y2zk

when S is upper part of x2 + y2 + z2 = 1, C is the boundary

sol. The boundary C is the unit circle in xy-plane, oriented counter-

clockwise. So

x = cos t, y = sin t, z = 0, (0 ≤ t ≤ 2π).

∫

C
F · ds =

∫

C
(2x − y)dx − yz2dy − y2zdz

=

∫ 2π

0
(2 cos t − sin t)(− sin t)dt = π.

Since ∇× F = k

∫∫

S
(∇× F) · ndS =

∫∫

S
(k · n)dS =

∫ 1

−1

∫

√
1−y2

−
√

1−y2

dydx

= 4

∫ 1

0

∫

√
1−y2

0
dydx = π.

Hence
∫

S
(∇× F) · ndS = π =

∫

C
F · ds.

Stokes’ theorem holds.

Curl as Circulation per Unit area

Suppose V represent the velocity of a fluid. Consider a point P and unit

normal vector n. If Sρ is a disk centered at P with radius ρ perpendicular to
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n

∂Sρ

ρPSρ
bÕªaË> 8.9: n unit normal to Sρ

n (fig 8.9)then by Stokes’ theorem,

∫

Sρ

curlV · dS =

∫

Sρ

(curlV) · ndS =

∫

∂Sρ

V · ds.

holds. Here ∂Sρ has the orientation according to n. If A(Sρ) = πρ2 denote

the area of Sρ, curlV(Q) is an average curlV on Q\�"f_Æ , n(Q), we have by

MVT
∫

Sρ

(curlV) · ndS = [curlV(Q) · n(Q)]A(Sρ)

for some point Q in Sρ. Hence

lim
ρ→0

1

A(Sρ)

∫

∂Sρ

V · ds = lim
ρ→0

1

A(Sρ)

∫

Sρ

(curlV) · ndS

= lim
ρ→0

(curlV(Q)) · n(Q)

= (curlV(P )) · n(P ).

(curlV(P )) · n(P ) = lim
ρ→0

1

A(Sρ)

∫

∂Sρ

V · ds. (8.4)

Now consider physical meaning of
∫

C V · ds (fig 8.10).

Assume V is tangent to C and
∫

C V · ds > 0 then an object on C rotates

along the direction of C. If
∫

C V · ds < 0, it rotates counter-clockwise on C.

Also, if V ⊥ C then object on C does not rotate and

∫

C
V · ds = 0

In general the integral of tangential component of a fluid vector field V
∫

C V·ds
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b

b

b

b

b

V

C
∫

C
V · ds > 0

b

b

b

b

b

V

C

∫

C
V · ds < 0

b

b

b

b

b

V

C

∫

C
V · ds = 0ÕªaË> 8.10: Meaning of

∫

C V · ds

represent the net amount of turning around C. Thus,

∫

C
V · ds

is called the circulation of V around C. (fig 8.11 ).

V

V

bb

motion of particle

C

(b)

b

b

V

V(x, y, z)

(x, y, z)

V

V

bb

C

motion of fluid

(a)ÕªaË> 8.11: Circulation of a vector field; (a) 0 circulation (b) nonzero circulation

The circulation
∫

∂Sρ
V · ds is the net velocity of a fluid around��H ∂Sρ, and

(curlV) · n is the circulation of V per unit area on a surface perpendicular to

n

Observe that (curlV) · n is maximized when n = curlV/||curlV||. So the

rotating effect is maximized about an axis parallel to curlV/||curlV||.

Example 2.7. p 541. Use physical interpretation to compute ∇×F·er. Let er,

eθ, ez associate to cylindrical coordinates as fig ??. Let F = Frer+Fθeθ+Fzez.
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Find a formula for er component of ∇× F in cylindrical coordinate.

z

x y
r = f(θ)ÕªaË> 8.12: cylindrical coordinate

O

b

x

y

z

z

r

θ

er

eθ

ez

ÕªaË> 8.13: unit orthogonal vectors in cylindrical coordinate er, eθ, ez
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sol.

See figure 8.13. The area of S is rdθ dz. The integral of F around the

edges of S is

[Fθ(r, θ, z) − Fθ(r, θ, z + dz)]rdθ + [Fz(r, θ + dθ, z) − Fz(r, θ, z)]dz

≈ −∂Fθ

∂z
dz rdθ +

∂Fz

∂θ
dθ dz

Dividing by the area, we get circulation per unit area.
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rem of Calculus

Let us summarize theorems so far.

• Fundamental Theorem of Calculus:

∫

σ
∇f · ds = f(σ(b)) − f(σ(a))

• Green’s Theorem :

∫

∂D
Pdx + Qdy =

∫

D

(

∂Q

∂x
− ∂P

∂y

)

dxdy

• Divergence Theorem for Plane:

∫

∂D
(F · n)ds =

∫

D
divF dxdy

• Stokes’ Theorem:
∫

S
curlF · dS =

∫

∂S
F · ds

• Gauss’ Divergence Theorem:

∫

Ω
divFdV =

∫

∂Ω
F · dS

Look at (1):

∫

σ
∇f · ds = f(σ(b)) − f(σ(a)) = f(A) − f(B)

The line integral of a gradient is independent of path:

For example, if V = −f represents a potential energy(Gravitational, elec-

trical) the F = ∇f is a force. For f = GmM
r , the force F = −GmM

r2 r = −GmM
r2 n

is the gravitational force.

What vectors are Gradient?

Theorem 3.1. (Conservative Field Let F be a C1-vector field in R
3 except

finite number of points. Then the following conditions are equivalent:

(1)
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(2) For any oriented simple closed curve C,
∫

C F · ds = 0.

(3) For any two oriented simple curve C1, C2 having same end points,

∫

C1

F · ds =

∫

C2

F · ds.

(4) F is the gradient of some function f , i.e, F = ∇f .

(5) curlF = 0.

If a vector field F satisfy one of these conditions we say conservative

field.

Proof. We use the sequence of implication: (i)⇒(2)⇒(3)⇒(4)⇒(1).

(1)⇒(2): Suppose we have two curves C1, C2 having same end points, we

can form a closed curve by C = C1 − C2(fig 8.14) Hence by (1)

0 =

∫

C
F · ds =

∫

C1−C2

F · ds =

∫

C1

F · ds −
∫

C2

F · ds

b

b

oriented simple closed curve C = C1 − C2

C = C1 − C2 b

b

(b) two oriented simple curves C1

C1

C2

ÕªaË> 8.14: Constructing oriented simple closed curve from two oriented simple
curve C1, C2

(2)⇒(3): Fix a point (x0, y0, z0). Given any point (x, y, z), choose any

curve C connecting two points we define. Given F = (F1, F2, F3) define

f(x, y, z) =

∫

C
F · ds =

∫

C
F1dx + F2dy + F3dz

Here f is well-defined, since it is defined independent of the choice of C. So

we choose C consisting of edges of rectangular pipe.

In particular, choose C = C1 + C2 + C3 + C4 (fig 8.15). Then
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b b

b

b

b

(x0, y0, z0)
x

y

z

C1

C2

C3

C4

(x1, y1, z1)
(x1, y, z1)

(x, y, z1)

(x, y, z)

O

bc

bc

bc

bc

Path avoid points where vector field isÕªaË> 8.15: A path from (x0, y0, z0) to (x, y, z) is C = C1 + C2 + C3 + C4

f(x, y, z) =

∫

C
F · ds

=

∫

C1

F · ds +

∫

C2

F · ds +

∫

C3

F · ds +

∫

C4

F · ds

=

∫

C1

F · ds +

∫ y

y1

F2(x1, t, z1)dt

+

∫ x

x1

F1(t, y, z1)dt +

∫ z

z1

F3(x, y, t)dt.

From this we see ∂f/∂z = F3. Similarly by choosing different path(i.e, choos-

ing a path whose last path is along x-direction) we have

f(x, y, z) =

∫

C1

F · ds +

∫ y

y1

F2(x1, t, z1)dt

+

∫ z

z1

F3(x1, y, t)dt +

∫ x

x1

F1(t, y, z)dt

so ∂f/∂x = F1. Similarly, we have ∂f/∂y = F2. Thus F = ∇f .

(3)⇒(4): By theorem 5.1.2, we have ∇×∇f = 0. So curlF = ∇×F = 0.

(4)⇒(1): Let S be a surface having C as boundary. Then
∫

C
F · ds =

∫

S
curlF · dS

Since curlF = 0 the integral
∫

C F · ds = 0.

Physical Interpretation of
∫

C F · ds

(1)
∫

C F · ds is work done be F along C.
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(2) Circulation: F · ∆s is tangential component ∆̇s. Thus
∫

C F · ds is net

tangential component of F along C.

Example 3.2.

F(x, y, z) = yi + (z cos yz)j + (y cos yz)k

Show F is irrotational and find a scalar potential.

Example 3.3.

F(x, y) = −yi + xj

We see F(0, 0) = 0 but curlF = 2. So if a paddle is place at this point, it

rotates even if it stay there. Show F is irrotational and find a scalar potential.

sol.

∇× F =

∣

∣

∣

∣

∣

∣

∣

∣

i j k

∂
∂x

∂
∂y

∂
∂z

y z cos yz y cos yz

∣

∣

∣

∣

∣

∣

∣

∣

= (cos yz − yz sin yz − cos yz + yz sin yz)i − (0 − 0)j + (1 − 1)k = 0

So F is irrotational. To find a potential

Method 1:

f(x, y, z) = +

∫ x

0
F1(t, 0, 0)dt +

∫ y

0
F2(x, t, 0)dt +

∫ y

0
F3(x, t, 0)dt

=

∫ x

0
0dt +

∫ y

0
x dt +

∫ y

0
y cos yt dt

= 0 + xy + sin yz

One easily check that ∇f = F.
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sol. Method 2: If such f exists, it satisfies

∂f

∂x
= y,

∂f

∂y
= x + z cos yz,

∂f

∂z
= y cos yz. (8.5)

Thus we obtain

(1) f(x, y, z) = xy + h1(y, z)

(2) f(x, y, z) = sin yz + xy + h2(x, z)

(3) f(x, y, z) = sin yz + h3(x, y)

Substitute this into (8.5) we find

∂h1(y, z)

∂z
= y cos yz

or

h1(y, z) =

∫

y cos yz dz + g(y) = sin yz + g(y).

Substituting back to (1) (2) we see g(y) = h2(x, z). Then this must be

constant.

Potential function

If F satisfies curlF = ∇×F = 0 then it is given by F = ∇f for some f¿ This

f is called potential function of F.

Theorem 3.4. If F is a C1 vector field with divF = 0 then there is a C1

field G with F = curlG.

Example 3.5. By Newton’s law, the force acting to an object of mass M at

r = (x, y, z) is

F(x, y, z) = −GMr/r3

Show F is irroataitonal and find potential for it.



278 ℄j 8 �©� VECTOR ANALYSIS

sol. First show ∇× F = 0.

r× r = 0,∇
(

1

r3

)

= −3r/r5,

∇× r =

∣

∣

∣

∣

∣

∣

∣

∣

i j k

∂
∂x

∂
∂y

∂
∂z

x y z

∣

∣

∣

∣

∣

∣

∣

∣

= 0,

∇× F = −GM

{

∇
( 1

r3

)

× r +
1

r3
∇× r

}

= 0.

From exercise we can show ∇(rn) = nrn−2r F = −∇φ, The function

φ(x, y, z) = −GM/r is the gravitational potential function.

Planar Case

Suppose F is a C1-vector field of the form F = P i + Qj then we have

∇× F =

(

∂Q

∂x
− ∂P

∂y

)

k

Hence

curlF = ∇× F = 0

is equivalent to

∂Q/∂x = ∂P/∂y

Using this we can study conservative field R
2. In R

3 vector field may have a

few points where function is undefined. But in planar case, the vector field

must be defined everywhere.

.

O
x

y

b b

b

(x, 0)

(x, y)

CÕªaË> 8.16: A path from (0, 0) to (x, y)
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Example 3.6. The vector field F(x, y, z) = (yi − xj)/(x2 + y2) satisfies (a)

∇× F = 0 but (b) F is not conservative.

sol. (a) We have seen ∇× F = 0 before.

(b) To show F is not conservative we need to show the line integral
∫

C F · ds is nonzero for some closed curve C. Let C be

x = cos t, y = sin t, 0 ≤ t ≤ 2π

Then

∫

C
F · ds =

∫

C

y

x2 + y2
dx +

−x

x2 + y2
dy

=

∫ 2π

0

[

sin t

cos2 t + sin2 t
(− sin tdt) +

− cos t

cos2 t + sin2 t
(cos tdt)

]

= −
∫ 2π

0

sin2 t + cos2 t

cos2 t + sin2 t
dt = −

∫ 2π

0
dt = −2π 6= 0.

Hence F is not conservative.

Example 3.7. (a) If F = exyi + ex+yj then P (x, y) = exy, Q(x, y) = ex+y,

∂P/∂y = xexy, ∂Q/∂x = ex+y. So no potential exists.

(b) For F = (2x cos y)i − (x2 sin y)j we see ∂P/∂y = −2x sin y = ∂Q/∂x.

Hence F has a potential f . To find it f we see

∂f

∂x
= 2x sin y,

∂f

∂y
= −x sin y

f(x, y) = x2 cos y + h1(y)

f(x, y) = x2 cos y + h2(x).

we can set h1 = h2 = 0. So f(x, y) = x2 cos y.

Example 3.8. For a path σ : [1, 2] → R
2 x = et−1, y = sin(π/t) find the line

integral of F = 2x cos yi− x2 sin yj.

∫

σ
F · ds =

∫

σ
2x cos ydx − x2 sin ydy
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sol. Since σ(1) = (1, 0), σ(2) = (e, 1), ∂(2x cos y)/∂y = ∂(−x2 sin y)/∂x F is

irrotataional. Hence we can replace the path by another C1 having same

end points. Choose from (1, 0) to (e, 0). Next from (e, 0) to (e, 1). Then

the integral is

∫

σ
F · ds =

∫ e

1
2t cos 0dt +

∫ 1

0
−e2 sin tdt

= (e2 − 1) + e2(cos 1 − 1)

= e2 cos 1 − 1.

On the other hand f(x, y) = x2 cos y is a potential of F. Hence

∫

σ
2x cos ydx − x2 sin ydy =

∫

σ
∇f · ds

= f(σ(2)) − f(σ(1)) = e2 cos 1 − 1.

The latter integral is easier.

V� 5 â�
 Gauss’ Theorem

Some Elementary Regions

Gauss’ Divergence Theorem

The flux of a vector field F across Ω is equal to the sum of divF in Ω.s

Theorem 5.1. Gauss’ Divergence Theorem Let Ω be an elementary region

in R
3 and ∂Ω be oriented closed surface bounding it. Let F be a C1 vector field

on W . Then
∫∫∫

Ω
divFdV =

∫∫

∂Ω
F · dS

Proof. Suppose W is an elementary region of 4th kind and F = P i+ Qj+ Rk

Then

divF =
∂P

∂x
+

∂Q

∂y
+

∂R

∂z

and
∫∫∫

Ω
divFdV =

∫∫∫

Ω

∂P

∂x
dV +

∫∫∫

Ω

∂Q

∂y
dV +

∫∫∫

Ω

∂R

∂z
dV.
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On the other hand, the surface integral is

∫∫

∂Ω
(F · n)dS =

∫∫

∂Ω
(P i + Qj + Rk) · ndS

=

∫∫

∂Ω
P i · ndS +

∫∫

∂Ω
Qj · ndS +

∫∫

∂Ω
Rk · ndS.

If we show the following

∫∫

∂Ω
P i · ndS =

∫∫∫

Ω

∂P

∂x
dV,

∫∫

∂Ω
Qj · ndS =

∫∫∫

Ω

∂Q

∂y
dV,

∫∫

∂Ω
Rk · ndS =

∫∫∫

Ω

∂R

∂z
dV,

then the proof is complete. We prove only one of them.

Suppose Ω is given by two functions z = f1(x, y), z = f2(x, y) defined on a

region D in xy-plane such that Ω = {(x, y, z)|f1(x, y) ≤ z ≤ f2(x, y), (x, y) ∈
D} (fig 8.17).

Hence
∫∫∫

Ω

∂R

∂z
dV =

∫∫

D

(

∫ z=f2(x,y)

z=f1(x,y)

∂R

∂z
dz

)

dxdy

∫∫∫

Ω

∂R

∂z
dV =

∫∫

D
[R(x, y, f2(x, y)) − R(x, y, f1(x, y))]dxdy. (8.6)

S1 :z = f1(x, y)

S3

S6

S2 :z = f2(x, y)

S4

S5

ÕªaË> 8.17: For elementary region Ω
∫

∂Ω Rk · dS =
∫

Ω(∂R/∂z)dV and Four
sides S3, S4, S5, S6 of ∂Ω are perpendicular to z.

The boundary of Ω consists of two surface S2 : the graph of z = f2(x, y), (x, y) ∈
D and the S1: the graph of z = f1(x, y), (x, y) ∈ D. The other four sides of
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∂Ω are S3, S4, S5, S6 unit normal vectors to them are perpendicular to z-axis.

Hence

∫∫

∂Ω
Rk · ndS =

∫∫

S1

Rk · n1dS +

∫∫

S2

Rk · n2dS +
6
∑

i=3

∫∫

Si

Rk · nidS.

Since the unit vector ni, i = 3, 4, 5, 6 Si are perpendicular to k, we have

ni · k = 0. Hence

∫∫

∂Ω
Rk · ndS =

∫∫

S1

Rk · n1dS +

∫∫

S2

Rk · n2dS. (8.7)

Bottom surface S1 is given by z = f1(x, y), (x, y) ∈ D

n1 =

∂f1
∂x

i + ∂f1
∂y

j − k
√

(

∂f1
∂x

)2

+

(

∂f1
∂y

)2

+ 1

.

Hence

k · n1 =
−1

√

(

∂f1
∂x

)2

+

(

∂f1
∂y

)2

+ 1

,

∫

S1

Rk · n1dS = −
∫

D
R(x, y, f1(x, y))dxdy. (8.8)

Similarly on S2

k · n2 =
−1

√

(

∂f2
∂x

)2

+

(

∂f2
∂y

)2

+ 1

. (8.9)

Hence
∫∫

S2

Rk · n2dS =

∫∫

D
R(x, y, f2(x, y))dxdy.

Compare (5.11), (5.12) and substitute in (5.10) (5.9) we obtain

∫∫

∂Ω
Rk · ndS =

∫∫

Ω

∂R

∂z
dV.

The other relations can be similarly shown,

Example 5.2. S is the unit sphere x2 + y2 + z2 = 1 and vector field is



℄j 5 ℄X� GAUSS’ THEOREM 283

F = 2xi + y2j + z2k find
∫∫

S F · ndS

sol. Let Ω be the region inside S. By Gauss theorem, it holds

∫∫

S
F · ndS =

∫∫∫

Ω
divFdV

Since divF = ∇ · (2xi + y2j + z2k) = 2(1 + y + z), the rhs is

2

∫∫∫

Ω
(1 + y + z)dV = 2

∫∫∫

Ω
1dV + 2

∫∫∫

Ω
ydV + 2

∫∫∫

Ω
zdV

and
∫∫∫

Ω
ydV =

∫∫∫

Ω
zdV = 0

∫∫∫

S
F · ndS = 2

∫∫∫

Ω
(1 + y + z)dV = 2

∫∫∫

Ω
1dV =

8

3
π.

Hence
∫∫

S F · ndS = 8π/3.

Generalizing Gauss’ theorem

Example 5.3. Show Gauss’ theorem holds for F = xi + yj + zk in Ω :

x2 + y2 + z2 ≤ a2.



284 ℄j 8 �©� VECTOR ANALYSIS

sol. First compute divF = ∇ · F

divF =
∂x

∂x
+

∂y

∂y
+

∂z

∂z
= 3

So
∫∫∫

Ω
(div F)dV =

∫∫∫

Ω
3 dV = 3

(4

3
πa3

)

= 4πa3.

We must find unit normal n on ∂Ω. Set

f(x, y, z) = x2 + y2 + z2 − a2

n = ± ∇f

||∇f || .

The gradient of f is ∇f = 2(xi + yj + zk). hence

n =
2(xi + yj + zk)
√

4(x2 + y2 + z2)
=

xi + yj + zk

a

(fig 8.18).

So when (x, y, z) ∈ ∂Ω

F · n =
x2 + y2 + z2

a
=

a2

a
= a

and
∫∫

∂Ω
F · ndS =

∫∫

∂Ω
a dS = a(4πa2) = 4πa3.

Hence
∫∫∫

Ω
(div F)dV = 4πa3 =

∫∫

∂Ω
F · ndS.

Gauss’ theorem holds

Example 5.4. Region Ω is given as x2+y2+z2 ≤ 1 Find
∫∫

∂Ω(x2+4y−5z)dS

by Gauss’ theorem
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b

b

b

b

(x, y, z)

n = xi + yj + zk

(0, 1, 0)

(1, 0, 0)

(0, 0, 1)

y

x

z

O

ÕªaË> 8.18: The unit normal vector n = xi + yj + zk = r to the unit ball

sol. To use Gauss’ theorem, we need a vector field F = F1i+ F2j+ F3k such

that F · n = x2 + 4y − 5z.

n is n = xi+ yj+ zk. Hence F satisfies F ·n = F1x + F2y + F3z. Hence

if we set F1x = x2, F2y = 4y, F3z = −5z and compute F1, F2, F3, then

F = xi + 4j − 5k, divF = 1 + 0 + (−0) = 1. Now by Gauss theorem

∫∫

∂Ω
(x2 + 4y − 5z)dS =

∫∫

∂Ω
(xi + 4j − 5k) · ndS

=

∫∫

∂Ω
F · ndS =

∫∫∫

Ω
divFdV

=

∫∫∫

Ω
1 dV =

4

3
π.

Hence
∫∫

∂Ω(x2 + 4y − 5z)dS = 4π/3.

Divergence as flux per unit Volume

As we have seen before that divF(P ) is the rate of change of total flux at P

per unite volume. Let Ωρ be a ball of radius ρ center at P . Then for some Q

in Ωρ
∫∫

∂Ωρ

F · ndS =

∫∫∫

Ωρ

divFdV = div F(Q) · (Vol(Ωρ))

divF(P ) = lim
ρ→0

divF(Q) = lim
ρ→0

1

Vol(Ωρ)

∫∫

∂Ωρ

F · ndS. (8.10)
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bcbc

divF(P ) > 0

Fluid is draining through P (sink)

div F(P ) < 0

Fluid springs out from P (source)ÕªaË> 8.19: Physical meaning of divergence

If divF(P ) > 0 we say P is a source of F if divF(P ) < 0 it is called sink

of F(fig 8.19).

If divF = 0 then by Gauss theorem, total flux of F through S is
∫

S F ·dS =

0. Thus we call this vector field incompressible field.

n

n

O
ε

M

∂M
∂B

b

b

b

ÕªaË> 8.20: Unit outward normal vector n to M and Gauss’ Law

Example 5.5. Find
∫∫

S f ·dS where F = xy2i+x2yj+yk and S is the surface

of the cylinder x2 + y2 = 1, bounded by z = 1, z = −1 including the top and

bottom lid.
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sol. By divergence theorem,

∫∫∫

W
( divF)dV =

∫∫∫

W
(x2 + y2)dxdydz

=

∫ 1

−1

(
∫∫

x2+y2≤1
(x2 + y2)dxdy

)

dz

= 2

∫∫

x2+y2≤1
(x2 + y2)dxdy

Now use polar coordinate,

2

∫∫

x2+y2≤1
(x2 + y2)dxdy = 2

∫ 2π

0

∫ 1

0
r3drdθ = π

Gauss’ Law

Now apply Gauss’ theorem to more general region. (A region with a hole)

Theorem 5.6. (Gauss’ Law) Let M be a region in R
3 and O /∈ ∂M

∫∫

∂M

r · n
r3

dS =







0 if O /∈ M ,

4π if O ∈ M

Here r = xi + yj + zk and r =
√

x2 + y2 + z2.

Proof. First suppose O /∈ M . Then r/r3 is a C1-vector field on M and ∂M .

Hence
∫∫

∂M

r · n
r3

dS =

∫∫∫

M
∇ ·

(

r

r3

)

dV

For r 6= 0, ∇ · (r/r3) = 0. Thus the following holds.

∫∫

∂M

r

r3
dS = 0

Next if O ∈ M , r/r3 is not continuous on M . Then we remove small ball

B of radius ε( fig 8.20). Then if we let W be the region between M and B,

then the boundary of W is S = ∂B ∪ ∂M . Also note that the unit vector to

W is opposite direction of the normal to to B. We see in ∇ · (r/r3) = 0 in W .

Hence by Gauss theorem

∫∫

S

r · n
r3

dS =

∫∫∫

Ω
∇ ·

(

r

r3

)

dV = 0.
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When n is unit outward normal on S,

∫∫

S

r · n
r3

dS =

∫∫

∂M

r · n
r3

dS +

∫∫

∂B

r · n
r3

dS

Hence
∫∫

∂M

r · n
r3

dS = −
∫∫

∂B

r · n
r3

dS.

Now on ∂B, we know n = −r/r, r = ε, and ∂B is a sphere of radius ε.

−
∫∫

∂B

r · n
r3

dS =

∫∫

∂B

ε2

ε4
dS =

1

ε2

∫∫

∂B
dS.

Hence
∫∫

∂B dS = 4πε2 and
∫∫

∂M r · n/r3dS = 4π.

Physical Interpretation of Gauss’ Law

Let

φ(x, y, z) =
Q

4πr
=

Q

4π
√

x2 + y2 + z2

be the potential to a point charge O at (0, 0, 0). Then the electric field is

E = −∇φ =
Q

4π

(

r

r3

)

.

The total electric flux is
∫

∂M E · dS if the charge lies in M , 0 otherwise.

For a charge with density ρ, the field E is related by

divE = ∇ · E = ρ

Thus by Gauss’ theorem

∫

S
E · dS =

∫

Ω
ρdV =

∫

Ω

Q

V
dV = Q.

In other words, total flux through a surface equals total charge inside.
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Divergence in Spherical Coordinate

O

b

x

y

z

ρφ

θ

eφ

eθ

eρ

ÕªaË> 8.21: unit normal vectors in spherical coordinate eρ, eφ, eθ

See figure 8.21, ??. We use Gauss’ theorem to derive

div F =
1

ρ2

∂

∂ρ
(ρ2Fρ) +

1

ρ sin φ

∂

∂φ
(sin φFφ) +

1

ρ sin φ

∂Fθ

∂θ

Since

div F = lim
1

W

∫∫

∂W
F · n dS

we compute the right hand side by inspection. The surface integral is

The area of S is rdθ dz. The integral of F around the edges of S is

Fρ(ρ + dρ, φ, θ) · area outer face − Fρ(ρ, φ, θ) · area inner face

≈ Fρ(ρ + dρ, φ, θ)(ρ + dρ)2 sin φdφdθ − Fρ(ρ, φ, θ)(ρ)2 sin φdφdθ

≈ ∂

∂Fρ
(ρ2 sinφ) dρdφdθ

Dividing by the area, we get flux per unit volume.
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z

x y

ρ

∆θθ

ρ∆θ

ρ sinφ

φ

∆φ

ρ sinφ∆θ

ρ∆φ

ÕªaË> 8.22: Partition in spherical coordinate


