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V� 7 *�×
Integrals over Paths and

Surfaces

V� 1 â�
 Path Integral

Path integral

R
2 or R

3. A parameterized curve c can be written as c(t) = (x(t), y(t), z(t)). If

x(t), y(t), z(t) are continuous then we say c is continuous, and if x(t), y(t), z(t)

are differentiable, then c is differentiable. If x′(t), y′(t), z′(t)are continuous

then we say c us C1-curve.

Let c be defined on [a, b] and let P : a = t0 < t1 < · · · < tk = b be the

partition of [a, b]. t∗i is a point between ti−1 and ti. Then the Riemann sum is

k
∑

i=1

f(c(t∗i ))‖c(ti) − c(ti−1)‖

As ‖P‖ approaches 0 the sum approaches

k
∑

i=1

f(c(t∗i ))‖c′(t∗i )‖(ti − ti−1)

Definition 1.1. If c is defined over I = [a, b] having values in R
3- C1-curve,

f is defined over a region containing the image of c. Then f ◦ c is real valued

function defined on I. We define the path integral of c as:

∫ b

a
f(c(t))‖c′(t)‖ dt

3
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a = t0 t1 ti−1 ti tk = b

c

c(t0)

c(t1)

b

b

c(ti−1) c(ti)

c(tk)

f(c(ui))·‖c(ti)−c(ti−1)‖

O

z

y

xÕªaË> 7.1: Riemann sum over a path

We denote it by
∫

c f ds or
∫

c f(x, y, z) ds. If f = 1 then
∫

c 1ds is the length of

c.

Example 1.2. Find path integral of f(x, y, z) = x2 + y2 + z2 over c.

c(t) = (cos t, sin t, t), t ∈ [0, 2π]

sol. Since c′(t) = (− sin t, cos t, 1), the line integral is

∫

c
f ds =

∫ 2π

0
f(c(t))‖c′(t)‖ dt

=

∫ 2π

0
(1 + t2)

√
2 dt

=
√

2
(

2π + 8π3/3
)

Path integral over planar Curves

If f(x, y) is a continuous function defined over a region containing the image

of c, then the path integral of f along c is given by

∫

c
f(x, y) ds =

∫ b

a
f(x(t), y(t))

√

x′(t)2 + y′(t)2dt

If f = 1, it is nothing but the arc -length.

Example 1.3 (Tom Sawyer’s fence). Find the area of fence along a parame-

terized curve c in R
2 and height is given by f(x, y) = 1 + 3y.
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sol. c(t) = (30 cos3 t, 30 sin3 t) for t ∈ [0, π/2]. The area of one side is

∫

C
f(x, y)ds

where ds = ‖c′(t)‖dt = 90 sin t cos tdt. So

∫

C
f(x, y)ds =

∫ π/2

0

(

1 + 10 sin3 t
)

90 sin t cos tdt

= 90

∫ π/2

0
(sin t + 10 sin4 t) cos t dt = 225.

This is half of the fence. Total area of fence(both sides) is 900 square ft.

If he can get .05 dollar per square feet, he can make 900 × 0.05 = 1.80.

V� 2 â�
 Line integrals

First consider work by force fields. Suppose a particle move along a curve c

while acted upon by a force F. If c is straight line segment given by the vector

d and F is constant force, then the work is, by definition

F · d = magnitude of force × displacement in the direction of force

If the path is curved, we break the curve into small pieces and add the

work at each piece then take the limit. So the work is defined by

lim
n

n−1
∑

i=0

F(c(ti)) · [c(t + ∆t) − c(t)] =

∫ b

a
F(c(t)) · c′(t)dt

Here c′(t)dt ≈ c(t + ∆t) − c(t) represent line segment.

The work done by the force is the following sum.

k
∑

i=1

F(c(ti)) · (c(ti) − c(ti−1))

As ‖P‖ → 0 the sum is
k

∑

i=1

F (c(ti)) · c′(ti)∆ti

the limit is
∫ b
a F (c(t)) · c′(t) dt.
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We use the notation:

∆s = c(t + ∆t) − c(t) ≈ c′(t)∆t

In the limit this becomes ds.

Definition 2.1. Let F be a vector field on R
3 that is continuous on the C1-

path c : [a, b] → R
3. Define the line integral

∫

c
F · ds =

∫ b

a
F(c(t)) · c′(t)dt

A nice interpretation in terms of scalar integral is as follows: For c′(t) 6= 0,

we see, if T(t) = c′(t)/‖c′(t)‖ is the unit tangent vector, then

∫

c
F · ds =

∫ b

a
F(c(t)) · c′(t)dt

=

∫ b

a

[

F(c(t)) · c′(t)

‖c′(t)‖

]

‖c′(t)‖dt

=

∫ b

a
[F(c(t)) ·T(t)] ‖c′(t)‖dt

=

∫

C
F(c(t)) · T(t)ds.

So the line integral is like the path integral of the tangential component:

F(c(t)) ·T(t) along c.

Another Notation for Line integral

Let us write c(t) = (x(t), y(t), z(t)) and F = (F1, F2, F3). Then ds = (dx, dy, dz) =

(dx
dt ,

dy
dt ,

dy
dt )dt. So the integral

∫

c
F · ds =

∫

c
(F1, F2, F3) · (dx, dy, dz)

=

∫

c
F1dx + F2dy + F3dz

=

∫ b

a

(

F1
dx

dt
+ F2

dy

dt
+ F3

dy

dt

)

dt

Example 2.2.
∫

c
x2dx + xydy + dz =

11

15

where c(t) = (t, t2, 1) = (x, y, z) on [0, 1].
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Example 2.3.
∫

c
cos zdx + exdy + eydz

where c(t) = (1, t, et) on [0, 2].

Example 2.4.

∫

c
(sin zdx + cos zdy − (xy)1/3dz) = −1

2

where x = cos3 θ, y = sin3 θ, z = θ on [0, 7π/2].

Draw the curve in R
3.

Example 2.5. Suppose F(x, y, z) = x3i+ yj+ zk and parameterize the circle

x = 0, y = a cos θ, z = a sin θ, 0 ≤ θ ≤ 2π

c′(t) = (0,−a sin θ, a cos θ)

Since F(c(θ)) ·c′(θ) = 0, the work must be zero. You can verify by finding the

value.

Reparametrization

The line integral depends not only on F but also depends on the path c. If

c1, c2 are two different parametrization of the same curve, we shall see

∫

c1

F · ds = ±
∫

c2

F · ds

Definition 2.6. Let h : I → I1 be real valued C1 curve that is one-to-one.

Let c : I1 → R
3 be a C1 curve. Then the composition

p = c ◦ h : I → R
3

is called a reparametrization of c.

Theorem 2.7. Let c : [a1, b1] → R
3 be a curve and p : [a, b] → R

3 is given by

p = c ◦ h where h : [a, b] → [a1, b1] satisfies

p(a) = a1, h(b) = b1(Orientation preserving)
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a b

p(t)

a1 b1

c(t)

C

h(t)

ÕªaË> 7.2: Reparametrization of a curve

or

h(a) = b1, h(b) = a1(Orientation reversing)

Then we have
∫

p
F · ds = ±

∫

c
F · ds

Here we have + sign, if p is orientation preserving, and − sign, if p is orien-

tation reversing.

Proof. If h is orientation preserving then h(a) = a1, h(b) = b1. In this case,

∫

p
F(c(s)) · ds =

∫ b

a
F(c(h(t))) · c′(h(t))h′(t) dt

Let s = h(t). Then

=

∫ b

a
F(c(h(t))) · c′(h(t))h′(t) dt

=

∫ h(b)

h(a)
F(c(s)) · c′(s) ds

=

∫ b1

a1

F(c(s)) · c′(s) ds

=

∫

c
F(c(s)) ds
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If p is orientation reversing, then the integral becomes

=

∫ a1

b1
F(c(s)) · c′(s) ds

= −
∫

c
F(c(s)) ds

Example 2.8. (1) Given c : [a, b] → R
n. As a typical example, consider

cop : [a, b] → R
n defined by

cop = c(a + b − t) : [a, b] → R
n.

cop is called opposite path. This is orientation reversing. We see

∫

cop

F · ds =

∫ b

a
F · (cop)

′(t)dt

=

∫ b

a
F · c′(b + a − t)(−1)dt

=

∫ a

b
F · c′(u)du

= −
∫ b

a
F · c′(u)du

= −
∫

c
F · ds

(2) The path p; [0, 1] → R
3 given by p(t) = c(a + (b − a)t) is an orientation

preserving reparametrization.

Example 2.9. Find the line integral of f(x, y, z) = x2y2z2 on C.

C = {(x, y, z) : x2 + y2 + z2 = 2, x2 + y2 = z2, z > 0}



10 ℄j 7 �©� INTEGRALS OVER PATHS AND SURFACES

sol. Subtracting we see z2 = 1. So z = 1. A parametrization of C is

c(t) = (cos t, sin t, 1), t ∈ [0, 2π]

c′(t) = (− sin t, cos t, 0)

Hence the integral is

∫

c
f ds =

∫ 2π

0
f(c(t))‖c′(t)‖ dt

=

∫ 2π

0
cos2 t sin2 t dt

=
1

8

∫ 2π

0
(1 − cos 4t) dt

=
π

4

The line integral is an oriented integral, in the sense that change of sign occurs

if the orientation is reversed. The path integral does not have this property.

Theorem 2.10 (Path integral is independent of parametrization). If c and p

are two parametrization of a piecewise C1-curve C, and f is any real valued

continuous function, then

∫

c
f(x, y, z) ds =

∫

p
f(x, y, z) ds

Let c(t) : [a, b] → R
n. As an example, let p defined by p(t) = c(a + b− t).

Then

∫

p
f ds =

∫ b

a
f(−c(t))‖(−c)′(t)‖ dt

=

∫ b

a
f(c(b + a − t))‖c′(b + a − t)(−1)‖ dt

=

∫ b

a
f(c(b + a − t))‖c′(b + a − t)‖ dt

=

∫ a

b
f(c(u))‖c′(u)‖(−1) du

=

∫

c
f ds

Here u = b + a − t.
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Example 2.11. Find path integral of f(x, y, z) = x2 + y2 + z2 over C.

C = {(cos t, sin t, t) : t ∈ [0, 2π]} ∪ {(1, 0, t) : t ∈ [0, 2π]}

sol. C is the union of C1 and C2.

C1 = {(cos t, sin t, t) : t ∈ [0, 2π]}, C2 = {(1, 0, t) : t ∈ [0, 2π]}

We parameterize C1 and C2 as follows:

c1 = (cos t, sin t, t) t ∈ [0, 1], c2 = (1, 0, t) t ∈ [0, 2π]

Then

∫

C
f ds =

∫

C1

f ds +

∫

C2

f ds

=

∫

c1

f ds +

∫

c2

f ds

=

∫ 2π

0
(1 + t2)

√
2 dt +

∫ 2π

0
(1 + t2) dt

= (1 +
√

2)
(

2π + 8π3/3
)

Line integrals of Gradient Fields

A vector field F is called a gradient vector field if F = ∇f for some real

valued function f. Thus

F =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k.

Theorem 2.12. Suppose f : R
3 → R is class C1 and c : [a, b] → R

3 is smooth.

Then
∫

c
∇f · ds = f(c(b)) − f(c(a)).

Proof. Apply chain rule to

f(c(t))

(f ◦ c)′(t) = ∇f(c(t)) · c′(t)
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So

∫

c
∇f · ds =

∫ b

a
∇f(c(t)) · c′(t)dt =

∫ b

a
f ′(u)du = f(c(b)) − f(c(a)).

So the line integral is independent of parametrization.

Example 2.13. Let c(t) = (t4, sin3(tπ/2), 0), t ∈ [0, 1]. Evaluate

∫

c
ydx + xdy

which means
∫

c ydx + xdy + 0dz.

sol. We recognize (y, x, 0) as gradient of f(x, y, z) = xy. Hence the value is

f(c(1)) − f(c(1)) = 1 − 0

Definition 2.14. We say a curve is simple if it is the 1-1 image of piecewise

C1 map c : I → R
3. A simple curve is one which does not intersect itself.

If I = [a, b], then c(a), c(b) are called end points of the curve. Each simple

curve has two orientations. (From P to Q) It is oriented or directed curve.

Definition 2.15. If c is 1-1 except at end points and, c(a) = c(b), it is simple

closed curve if it is c(a) = c(b), but not 1-1, then it is a closed curve.

Line integrals over oriented simple curves

Suppose c is any orientation preserving parametrization of C, then the line

integral is independent of parametrization: Hence we can define

∫

C
F · ds =

∫

c
F · ds

If C− is the same curve as C but with the opposite orientation. Then

∫

C
F · ds = −

∫

C−

F · ds

Line integrals over curves with several components

Let C be an oriented curve which is made up of several oriented curves Ci, i =

1, 2, · · · Since each Ci can be parameterized separately, we can show that the
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integral satisfies

∫

C
F · ds =

∫

C1

F · ds +

∫

C2

F · ds + · · · +
∫

Ck

F · ds

Thus the following sum of oriented curves makes sense.

C = C1 + C2 + · · · + Ck

C1

C2

C3

ÕªaË> 7.3: Sum of several curves

Example 2.16. Find the line integral of F(x, y, z) = xi + yj + zk over c.

c(t) = (cos t, sin t, t), t ∈ [0, 2π]

sol. We have c′(t) = (− sin t, cos t, 1) and F(c(t)) = cos ti+sin tj+ tk. Hence

F(c(t)) · c′(t) = cos t(− sin t) + sin t cos t + t = t

∫

c
F · ds =

∫ 2π

0
t dt = 2π2

More examples in the book.

The notation dr for line integrals

Sometimes we use the notation for line integral:

∫

C
F · dr
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Here r denotes the position vector r = xi + yj + zk.

∫

C
F · dr =

∫ b

a
F(r(t)) · dr

dt
dtV� 3 â�
 Parameterized Surfaces

Graphs are too restrictive.

See the example of a surface in the book. Or simply a sphere or torus. Those

are important examples of figures that arise often in real life. But those figures

cannot be represented as the graphs of functions.

ÕªaË> 7.4: A surface that is not the graph of a function

Definition 3.1. A parameterization of a Surface is a function Φ: D ⊂
R

2 → R
3 where D is a domain in R

2. The surface S corresponding to the

function Φ is the image S = Φ(D).

Φ(u, v) = (x(u, v), y(u, v), z(u, v))

If Φ is differentiable or C1, then we say S is differentiable or C1-surface.

The graph of a function is a special case.
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x

yv

u

Φ(u, v)

ÕªaË> 7.5: A parametrization

Tangent Vectors and Tangent Plane to a Surface

Consider the mapping Φ: D → R
3 through (x, y, z) = Φ(u, v). First look at

the case the surface is the graph of f : D → R we can write Φ: D → R
3 as

Φ(x, y) = (x, y, f(x, y))

First fix x = x0 and then y = y0. Then tangent vector along y-axis and x-axis

at Φ(x0, y0) = (x0, y0, f(x0, y0)) is

Φx(x0, y0) = i + fx(x0, y0)k, Φy(x0, y0) = j + fy(x0, y0)k

Hence tangent plane is perpendicular to the normal vector given by the cross

product

Φx(x0, y0) × Φy(x0, y0) = (i + fx(x0, y0)k) × (j + fy(x0, y0)k)

=

∣

∣

∣

∣

∣

∣

∣

∣

i j k

1 0 fx(x0, y0)

0 1 fy(x0, y0)

∣

∣

∣

∣

∣

∣

∣

∣

= −fx(x0, y0)i − fy(x0, y0)j + k

In general, we see two tangent vectors are

Tu =
∂Φ

∂u
=

∂x

∂u
i +

∂y

∂u
j +

∂z

∂u
k

∣

∣

∣

∣

(u0,v0)
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This is obtained by fixing u0 Similarly,

Tv =
∂Φ

∂v
=

∂x

∂v
i +

∂y

∂v
j +

∂z

∂v
k

∣

∣

∣

∣

(u0,v0)

If the normal vector

n = Φu × Φv =
∂Φ

∂u
× ∂Φ

∂v

is nonzero, then we see the surface is smooth. So call it regular.

Definition 3.2. Since n is normal to tangent plane the equation of tangent

plane at Φ(u0, v0) = (x0, y0, z0)is given by

n · (x − x0, y − y0, z − z0) = 0

Or if n = (n1, n2, n3) then the tangent plane is

n1(x − x0) + n2(y − y0) + n3(z − z0) = 0

Example 3.3 (Paraboloid). Consider

x = u cos v, y = u sin v, z = u2 + v2

Find tangent plane at Φ(1, 0).

sol. Φ(u, v) = (u cos v, u sin v, u2 + v2). So

Tu = (cos v, sin v, 2u), Tv = (−u sin v, u cos v, 2v)

So Tu×Tv = (−2u2 cos v+2v sin v,−2u2 sin v−2v cos v, u). At Φ(1, 0) =

(1, 0, 1),

n = Tu × Tv(1, 0) = (−2, 0, 1)

Example 3.4 (Cone). Consider

Φ(u, v) = (u cos v, u sin v, u), u ≤ 0

Is ti regular, differentiable ?

sol.

Tu = (cos v, sin v, 1), Tv = (−u sin v, u cos v, 0)

So Tu × Tv = 0 at (0, 0, 0).
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Example 3.5. Find a parametrization of the following hyperboloid of one

sheet.

x2 + y2 − z2 = 1

sol. Since the graph is symmetric in x and y it is natural to use polar coor-

dinate

x = cos θ, y = sin θ

Then we have

r2 − z2 = 1

Thus we use

r = cosh u, z = sinhu

to get

x = cosh u cos θ, y = cosh u sin θ, z = sinhu

so

Φ(u, θ) = (x(u, θ), y(u, θ), z(u, θ))

= (cosh u cos θ, cosh u sin θ, sinhu)

Here

0 ≤ θ ≤ 2π, −∞ < u < ∞

Φ(u, θ) belongs to the surface since

cos2 θ + sin2 θ = 1, cosh2 θ − sinh2 θ = 1

Example 3.6. Find equation of tangent plane to Φ at (1, 0, 1) .

Φ(u, v) = (u cos v, u sin v, u2), 0 ≤ v ≤ 2π, −∞ < u < ∞
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sol. Φ(1, 0) = (1, 0, 1). Find normal vector n at (1, 0, 1).

n = Φu(1, 0) × Φv(1, 0)

= (cos vi + sin vj + 2uk) × (−u sin vi + u cos vj) |(u,v)=(1,0)

= (i + 2k) × j

= −2i + k

Then equation is

−2(x − 1) + (z − 1) = 0

V� 4 â�
 Area of Parameterized Surface

Find the area of U = Φ(D) where Φ: D → R
3 is a surface parametrization.

Divide D into small rectangles. Consider small rectangle R = [u, u + ∆u] ×
[v, u + ∆v] The area of small rectangle under Φ is approximated by parallel-

ogram by Φ(u, v), Φ(u + ∆u, v), Φ(u, v + ∆v), Φ(u + ∆u, v + ∆v). Two sides

are given by Φu(u, v)∆u and Φv(u, v)∆v. (Fig 7.6)

Tu =
∂Φ

∂u
=

∂x

∂u
i +

∂y

∂u
j +

∂z

∂u
k

Tv =
∂Φ

∂v
=

∂x

∂v
i +

∂y

∂v
j +

∂z

∂v
k

Hence the area of Φ(R) is

‖Tu × Tv‖∆u∆v

Hence Area of surface is the limit of the following

∑

‖Tu × Tv‖∆u∆v

Definition 4.1. We define the surface area A(S) of a parameterized surface

S by

A(S) =

∫∫

D
‖Tu × Tv‖dudv

Later we shall also denote it by
∫∫

T dS.
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Φ

v

u
O

(u, v) (u+∆u, v)

(u, v+∆v) (u+∆u, v+∆v)

R

D

x

z

y
O

Φ(u, v)

Φu∆u

Φv∆v

Φ(D)

ÕªaË> 7.6: Area of surface

Let Φ(u, v) = (x(u, v), y(u, v), z(u, v)). We define dS by

dS = ‖Φu × Φv‖dudv,

and call the (area element). Recall the notation

∂(x, y)

∂(u, v)
=

∣

∣

∣

∣

∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣

∣

∣

∣

∣

Then we see (Not trivial. Need justification).1

∫∫

Φ
dS =

∫∫

D
‖Φu × Φv‖dudv

=

∫∫

D

√

[

∂(y, z)

∂(u, v)

]2

+

[

∂(z, x)

∂(u, v)

]2

+

[

∂(x, y)

∂(u, v)

]2

dudv

Area of surface is independent of parametrization.

Example 4.2 (Cone). Let D be given by

x = r cos θ, y = r sin θ, z = r.

sol. Either use formula above or ‖Tr × Tθ‖drdθ. ‖Tr × Tθ‖ = r
√

2

1Φ is assumed to be 1-1.
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Example 4.3 (Helicoid). Let the helicoid given by

x = r cos θ, y = r sin θ, z = θ.

and let D be the region where 0 ≤ θ ≤ 2π and 0 ≤ r ≤ 1. Find the area.

‖Tr × Tθ‖ =
√

r2 + 1 Need table to see

π[
√

2 + log(1 +
√

2)].

Surface Area of a Graph

When a surface U is given by the graph of function z = f(x, y) on D, we see

U is parameterized by Φ(x, y) = (x, y, f(x, y)). Find Φx Φy by

Φx = i +
∂f

∂x
k, Φy = j +

∂f

∂y
k

Since

Φx × Φy = (i +
∂f

∂x
k) × (j +

∂f

∂y
k) = −∂f

∂x
i− ∂f

∂y
j + k,

Area is
∫∫

Φ
dS =

∫∫

D

(

(∂f/∂x)2 + (∂f/∂y)2 + 1
)1/2

dxdy

The unit normal vector n(x, y, z) on U is

n = n(x, y, z) = −∂f

∂x
i− ∂f

∂y
j + k

We can find the formula using the angle between n and k. Let ϕ be the angle

between n and k. Then cos ϕ satisfies

cos ϕ =
n · k
‖n‖ =

1
√

(∂f/∂x)2 + (∂f/∂y)2 + 1

Hence

dS =
√

(∂f/∂x)2 + (∂f/∂y)2 + 1dxdy =
dxdy

cos ϕ
,

and we get
∫∫

Φ
dS =

∫∫

D

dxdy

cos ϕ

Example 4.4. Find the surface area of a unit ball.
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sol. From x2 + y2 + z2 = 1, we let z = f(x, y) =
√

1 − x2 − y2.

∂f

∂x
=

−x
√

1 − x2 − y2
,

∂f

∂y
=

−y
√

1 − x2 − y2

Area of half sphere is

∫∫

Φ
dS =

∫∫

D

1
√

1 − x2 − y2
dxdy

=

∫ 2π

0

∫ 1

0

r√
1 − r2

drdθ

= 2π

Surface of revolution

The lateral surface area generated by revolving the graph y = f(x) ≥ 0 is

A = 2π

∫ b

a
y
√

1 + (f ′(x))2dx

Example 4.5. Use parametrization to express the area generated by revolving

the graph y = f(x). We can choose the parametrization

Φ(u, v) = (x, y, z) = (u, f(u) cos v, f(u) sin v)

over the region

a ≤ u ≤ b, 0 ≤ v ≤ 2π.
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sol. Find the derivatives

∂(y, z)

∂(u, v)
= f(u)f ′(u),

∂(z, x)

∂(u, v)
= f(u) cos v,

∂(x, y)

∂(u, v)
= −f(u) sin v

Hence the area is

∫∫

Φ
dS =

∫∫

D
|f(u)|

√

[

∂(y, z)

∂(u, v)

]2

+

[

∂(z, x)

∂(u, v)

]2

+

[

∂(x, y)

∂(u, v)

]2

dudv

=

∫∫

D
f(u)

√

1 + [f ′(u)]2 dudv

=

∫ b

a

∫ 2π

0
f(u)

√

1 + [f ′(u)]2 dvdu

= 2π

∫ b

a
f(u)

√

1 + [f ′(u)]2 du

This formula coincide with earlier formula.V� 5 â�
 Integrals of Scalar functions over Surface

Integrals of Scalar functions over Surface

Let Φ: D → R
3 be a parameterized surface S = Φ(D) and let f : S → R be a

real valued function defined on Φ. First, if f = 1, it represents the area.

∫∫

S
dS =

∫∫

D
‖Φu × Φv‖dudv,

In general, the integral of f on
∫∫

S f dS is defined by is

Definition 5.1.

∫∫

S
f dS =

∫∫

D
f(Φ(u, v))‖Φu × Φv‖dudv

If the surface is parameterized by Φ(u, v) = (x(u, v), y(u, v), z(u, v)) then

the integral becomes

∫∫

S
f dS =

∫∫

D
f(Φ(u, v))‖Tu × Tv‖ dudv

∫∫

D
f(x(u, v), y(u, v), z(u, v))

√

[

∂(y, z)

∂(u, v)

]2

+

[

∂(z, x)

∂(u, v)

]2

+

[

∂(x, y)

∂(u, v)

]2

dudv
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If Φ = the sum of Φ1,Φ2, . . . ,Φm,

∫∫

Φ
f dS =

∫∫

Φ1

f dS +

∫∫

Φ2

f dS + · · · +
∫∫

Φm

f dS

Surface integrals over graphs

Suppose S is the graph of a C1 function z = g(x, y). Then we parameterize it

by

x = u, y = v, z = g(u, v)

and

‖Tu × Tv‖ =

√

1 + (
∂g

∂u
)2 + (

∂g

∂v
)2

So

∫∫

S
f(x, y, z) dS =

∫∫

D
f(x, y, g(x, y))

√

1 + (
∂g

∂x
)2 + (

∂g

∂y
)2dxdy

Example 5.2. Let S be defined by z = x2 + y, where D is 0 ≤ x ≤ 1, −1 ≤
y ≤ 1. Find

∫∫

S x dS

sol.

∫∫

S
x dS =

∫∫

D
x

√

1 + (
∂g

∂x
)2 + (

∂g

∂y
)2dxdy =

∫ 1

−1

∫ 1

0
x
√

1 + 4x2 + 1dxdy

=
1

8

∫ 1

−1

[
∫ 1

0
(2 + 4x2)1/2(8xdx)

]

dy =
2

3

1

8

∫ 1

−1

[

(2 + 4x2)3/2
]
∣

∣

∣

1

0
dy

=
√

6 −
√

2

3

Example 5.3. Evaluate
∫∫

S z2dS when S is the unit sphere.
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sol. Use spherical coordinate for x2+y2+z2 = 1. Then ρ = 1 and z2 = cos2 φ.

∫∫

S
z2dS =

∫∫

D
cos2 φ‖Tθ × Tφ‖dθdφ

Since

‖Tθ × Tφ‖ = sinφ

∫∫

S
f(x, y, z) dS =

∫ 2π

0

∫ π

0
cos2 φ sin φdφdθ

=
4π

3

Integral over Graphs

We show

∫∫

S
f(x, y, z)dS =

∫∫

D
f(Φ(u, v))‖Tu × Tv‖dudv =

∫∫

D

f(x, y, g(x, y))

cos θ
dxdy

where θ is the angle between normal vector and k vector. ∆S = ∆A/ cos θ.

kN

θ

ÕªaË> 7.7: Ratio between two surface

cos θ =
N · k
‖N‖ =

1
√

(∂g/∂x)2 + (∂g/∂y)2 + 1

Example 5.4. Compute
∫∫

S xdS where S is triangle with vertices (1, 0, 0),

(0, 1, 0) and (0, 0, 1).
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S

k n

θ

sol. cos θ = n · k = 1/
√

3.

√
3

∫∫

D
xdxdy =

√
3

∫ 1

0

∫ 1−x

0
xdydx =

√
3

6

Example 5.5. Let Φ = (r cos θ, r sin θ, θ) be the helicoid where 0 ≤ r ≤ 1.

Suppose S has density m equal to twice the distance to the central axis,

m = 2
√

x2 + y2 = 2r. Total mass of the surface.

sol.

M =

∫∫

S
2rdS = 2

∫∫

D
r‖Tr × Tθ‖drdθ

But ‖Tr × Tθ‖ =
√

1 + r2. Hence

M =

∫ 2π

0

∫ 1

0
2r

√

1 + r2drdθ =
4

3
π(23/2 − 1).

V� 6 â�
 Surfaces Integrals of vector Fields

This section we develop the notion of integral of a vector field over a surface.

Recall the line integral of a vector field has a physical interpretation:

Work. Similarly, the notion of integral of a vector field over a surface is

a Flux.

Suppose F represent the velocity of a fluid.(like river) Then you place a

net into the water and imagine the amount of water that passes through your

net per unit time(= rate at which water pass through the net)

Let F : V → R
3 defined over the surface S = Φ(D), Φ: D → R

3 we define
∫∫

Φ F · dS
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Definition 6.1.

∫∫

Φ
F · dS =

∫∫

D
F(Φ(u, v)) · (Φu × Φv)dudv

Note we used the notation
∫∫

Φ instead of
∫∫

S .

If we let n = Φu ×Φv/‖Φu ×Φv‖ be the unit normal vector to the surface,

then
∫∫

Φ
F · dS =

∫∫

D
(F · n) · (Φu × Φv)dudv =

∫∫

S
F · ndS.

Hence if F has same direction as n = Φu×Φv/‖Φu×Φv‖, i.e, ( F(x, y, z) =

f(x, y, z)n for some scalar function f) then

∫∫

Φ
f(x, y, z)dS =

∫∫

Φ
F(x, y, z) · dS

Example 6.2.

Example 6.3 (Spherical coordinate). Let S be the unit sphere parameterized

by

D : 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

Φ: D → R
3, Φ(θ, φ) = (cos θ sin φ, sin θ sin φ, cos φ)

Compute
∫∫

S r · dS where r = xi + yi + zk denotes the position vector.
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sol.

Φθ = − sin θ sin φi + cos θ sinφj

Φφ = cos θ cos φi + sin θ cos φj − sin φk

Now compute Φθ × Φφ:

Φθ × Φφ = − sinφ(cos θ sin φi + sin θ sin φj + cos φk)

= (− sin φ) r(Φ(θ, φ))

Hence

∫∫

Φ
r · dS =

∫∫

D
(− sin φ)r · r dθdφ

=

∫∫

D
(− sin φ) dθdφ = −4π

Orientation

As with line integral, the surface integral also has the notion of direction. First

we need to define the orientation of a surface S. It depends on the particular

parametrization.

Definition 6.4 (Oriented Surface). Oriented Surface is two sided surface with

one side specified as outside(or positive side) At each point there are two unit

normal vectors n1 and n2, where n1 = −n2. Each of these normals can be

associated with one side of the surface. (orientation) orientable surface

. For orientable surface, there are two possible normal vectors. There are

nonorientable surface.(Mobius strip)

Let Φ: D → R
3 represent a oriented surface. If n(Φ) is the unit normal to

S, then

n(Φ) = ± Φu × Φv

‖Φu × Φv‖
A parametrization is called Orientation-preserving if

Tu × Tv

‖Tu × Tv‖
= +n(Φ)
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Otherwise, it is Orientation-reversing.

Example 6.5. The parametrization of sphere by spherical coordinate is orientation-

reversing. By changing the order of θ and φ, we can get orientation-preserving

parametrization.

clockwise

counter-clockwise
−n1

n1

n2

U

ÕªaË> 7.8: clockwise, counter-clockwise (n1 and n2 are normals the orientation
points)

1

2
3

4

5

67

8

9

ÕªaË> 7.9: Möbius strip

Orientation of graph

Example 6.6. Let S be the graph of a function z = g(x, y). Then the unit

normal
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The normal is given by

n =
− ∂g

∂x i −
∂g
∂y j + k

√

1 +
(

∂g
∂x

)2
+

(

∂g
∂y

)2
dxdy

We can give orientation of such surface by taking the positive side to be the

side away from which n points. (Fig 7.7)

Independence of parametrization

Theorem 6.7. Let S be an oriented surface and let Φ1, Φ2 be two regular

orientation preserving parametrization, then for continuous F defined on S,

then
∫∫

Φ1

F · dS =

∫∫

Φ2

F · dS

If one of them is orientation reversing, then

∫∫

Φ1

F · dS = −
∫∫

Φ2

F · dS

For scalar f , we have for any Φ1,Φ2

∫∫

Φ1

fdS =

∫∫

Φ2

fdS

If Φ consists of Φ1, Φ2, . . . , Φm

∫∫

Φ
F · dS =

∫∫

Φ1

F · dS +

∫∫

Φ2

F · dS + · · · +
∫∫

Φm

F · dS

Hence we can define the sum of surfaces as

Φ = Φ1 + Φ2 + · · · + Φm

n =
−∂f/∂x i − ∂f/∂y j + k

√

(∂f/∂x)2 + (∂f/∂y)2 + 1

Surface U is given by Φ(x, y) = (x, y, f(x, y)). If F = F1 i + F2 j + F3 k is a
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vector field then
∫∫

S F · dS is expressed as

∫∫

Φ
F · dS =

∫∫

D
F · (Φx × Φy)dxdy

=

∫∫

D

[

F1

(

−∂f

∂x

)

+ F2

(

−∂f

∂y

)

+ F3

]

dxdy

Relation with scalar integrals

Recall

Definition 6.8.

∫∫

Φ
F · dS =

∫∫

D
F(Φ(u, v)) · (Φu × Φv)dudv

If we write

n = (Φu × Φv)/‖Φu × Φv‖, dS = (Φu × Φv)dudv, dS = n dS

then it can be written as

∫∫

Φ
F · dS =

∫∫

Φ
F · n dS

Physical Interpretation of Surface Integrals

Consider the parallelogram determined by three vectors F, Tu∆u and Tv∆v.

The volume is

F · (Tu∆u × Tv∆v) = F · (Tu × Tv)∆u∆v

If F is velocity of a fluid, the volume is the amount of fluid to flow ourward

the surface per unit time. Hence

∫∫

S
F · dS

is the net quantity of fluid to flow across the surface per unit time, i.e, the

rate of fluid flow. It is also called flux of F across S.

Example 6.9 (Heat flow). Let T denote the temperature at a point. Then

∇T =
∂T

∂x
i +

∂T

∂y
j +

∂T

∂z
k
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v · dS
v

dSv

F

Φ(u,v)
U =Φ(D)

ÕªaË> 7.10: Area of shadow region and flux across S

represent the temperature gradient and heat ”flows” with the vector field

−k∇T .

Example 6.10. Suppose temperature is T = x2 + y2 + z2 on S where

S : x2 + y2 + z2 = 1.

Find the flux across S if k = 1

sol. We have F = −2r. Then r · n = −2. So

∫∫

S
F · dS = −2

∫∫

S
dS = −8π

Example 6.11 (Gauss Law). The sum of the flux of an electric field E over

a closed surface S is the net charge Q contained in the surface. Namely,

∫∫

S
E · dS = Q
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S

ÕªaË> 7.11: Water through a pipe and a surface S

Suppose E = En(constant multiple of normal vector) then

∫∫

S
E · dS =

∫∫

S
EdS = Q = EA(S)

So

E =
Q

A(S)

If S is sphere of radius R then

E =
Q

4πR2
(7.1)

Surface Integral over Graphs

Suppose S is the graph of z = g(x, y). We show

∫∫

S
F · dS =

∫∫

D
F · (Tx × Ty)dxdy =

∫∫

D

[

F1(−
∂g

∂x
) + F1(−

∂g

∂y
) + F3

]

dxdy

We parameterize the surface S by Φ(x, y) = (x, y, g(x, y)) and compute

Tx = i +
∂g

∂x
k, Ty = j +

∂g

∂y
k

Hence

Tx × Ty = −(
∂g

∂x
)i − (

∂g

∂y
)j + k

and we proved the formula.

Example 6.12. The equation

z = 12, x2 + y2 ≤ 25
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describes a disk of radius 5 lying on the plane z = 12. Compute
∫∫

S r ·dS when

r = xi + yj + zk.

sol.

Tx × Ty = i · j = k

So r · (Tx × Ty) = z and

∫∫

S
r · dS =

∫∫

D
zdxdy = 12A(D) = 300π.

Summary

(1) Parameterized Surface Φ(u, v)

(a) Integral of a scalar f :

∫∫

Φ
fdS =

∫∫

D
f(Φ(u, v))‖Tu × Tv‖dudv

(b) Scalar surface element:

dS = ‖Tu × Tv‖dudv

(c) Integral of a vector field:

∫∫

Φ
F · dS =

∫∫

D
F(Φ(u, v)) · (Tu × Tv)dudv

(d) Vector surface element:

dS = (Tu × Tv)dudv = n dS

(2) Graph z = g(x, y)

(a) Integral of a scalar f :

∫∫

S
fdS =

∫∫

D

f(x, y, g(x, y))

cos θ
dxdy
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(b) Scalar surface element:

dS =
dx dy

cos θ
=

√

(

∂g

∂x

)2

+

(

∂g

∂y

)2

+ 1 dxdy

(c) Integral of a vector field:

∫∫

S
F · dS =

∫∫

D

(

−F1
∂g

∂x
− F2

∂g

∂y
+ F3

)

dxdy

(d) Vector surface element:

dS = n dS =

(

−∂g

∂x
i− ∂g

∂y
j + k

)

dxdy

(3) Sphere x2 + y2 + z2 = R2

(a) Scalar surface element:

dS = R2 sin φdφdθ

(b) Vector surface element:

dS = (xi + yj + zk)R sin φdφdθ = rR sin φdφdθ = nR2 sin φdφdθ

V� 7 â�
 Application to Differential Geometry

Curvature

Let Φ: D → R
3 be a surface parametrization of S. Then

Tu =
∂Φ

∂u
, Tv =

∂Φ

∂v

are tangent vectors. Assume the normals are well defined so that Tu ×Tv 6 0.
Let

E = ‖Tu‖2, F = Tu ·Tv, G = ‖ × Tv‖2

We can show that

‖Tu × Tv‖2 = EG − F 2
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If we let

N =
Tu × Tv

‖Tu × Tv‖
=

Tu × Tv√
EG − F 2

denote the unit normal vector to the surface at point p = Φ(u, v). We define

”Gauss curvature” K(p) and ”mean curvature” H(p). To define these first

define three new functions ℓ,m, n on S:

ℓ(p) = N(u, v) · ∂2Φ
∂u2 = N(u, v)Φuu

m(p) = N(u, v) · ∂2Φ
∂u∂v = N(u, v)Φuv

n(p) = N(u, v) · ∂2Φ
∂v2 = N(u, v)Φvv

(7.2)

The ”Gauss curvature” K(p) is given by

K(p) =
ℓn − m2

EG − F 2
(7.3)

and ”mean curvature” H(p) is given by

H(p) =
Gℓ + En − 2Fm

2(EG − F 2)
(7.4)

7.1 Gauss-Bonnet Theorem

The Gauss curvature to the sphere of radius R is 1/R2. The Gauss curvature

is in general a function. We consider

∫∫

S
K dA

For the sphere, we have
1

R2

∫∫

S
dA = 4π

Gauss-Bonnet found out that this quantity is preserved for any sphere like

object. This is a topological invariant. Now consider a torus like object. (This

has one handle) In general consider an object with g-handles. Then

∫∫

S
K dA = 4π(1 − g)
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