
V� 5 *�×
Double and Triple integrals

Double integral, triple integral,V� 1 â�
 Double integral as volumes

For the convenience of presentation we assume the domain of a function on a

rectangle R given by

R = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}.

We also denote it by [a, b]× [c, d] and call it Cartesian product of [a, b], [c, d]

If f is nonnegative then the graph of z = f(x, y) is a surface over R.

Double Integral(of a nonnegative function)

The volume of the region above R and under the graph of a nonnegative

function f(x, y) is called the double integral of f over R and is denoted by

∫∫

R
f(x, y) dA or

∫∫

R
f(x, y) dxdy,

Since f has nonnegative value, we interpret it as the volume. Let V be the

volume of the region between the graph of and xy-plane.

Cavalieri’s Principle and reduction to iterated integral

Fig 5.3 Let A(x) be the volume of cross section by a plane perpendicular to

the axis, then the volume is

255
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x

y

z

a
bc

dÕªaË> 5.1: Graph of a function

x y

z

z = 4 − x2

ÕªaË> 5.2: z = 4 − x2, 0 ≤ x ≤ 1, 0 ≤ y ≤ 2

V =

∫ b

a
A(x) dx (5.1)

This is Cavalieri’s Principle. To understand it. let us divide the interval

[a, b] by n subintervals a = x0 < x1 < · · · < xn = b, ∆xi = xi − xi−1. Then

A(x)∆xi is approx. the volume of each slice. (Fig 5.3 ) Now the Riemann sum

R(A,n) =
n
∑

i=1

A(xi)∆x

is approx volume. If n→ ∞, the limit is (5.1).
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Reduction to iterated integrals

Consider the volume of a solid under f over R = [a, b] ×[c, d]. As in figure

5.4, the cross section along x = x0 is given by the inequality 0 ≤ z ≤ f(x0, y),

(c ≤ y ≤ d) the area of cross section is

∫ d

c
f(x0, y) dy

Hence Cavalieri principle says the volume is

∫ b

a
A(x) dx =

∫ b

a

[

∫ d

c
f(x, y) dy

]

dx

This is called iterated integral. On the other hand, if we cut it by the plane

y = y0, then the volume is

∫ b

a
A(y) dy =

∫ d

c

[

∫ b

a
f(x, y) dx

]

dy

Since these two values are equal,

∫

R
f(x, y) dA =

∫ b

a

[

∫ d

c
f(x, y) dy

]

dx =

∫ d

c

[

∫ b

a
f(x, y) dx

]

dy

This is called Fubini’s theorem. Notice the similarity with Cavalieri Prin-

ciple.

A(x)
x

a b

∆xÕªaË> 5.3: Cavalieri’s Principle
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x

y

z

y0
x0ÕªaË> 5.4: Fubini’s theorem by Cavalieri Principle

Example 1.1. Evaluate

∫∫

R
(x2 + y2) dxdy, R = [−1, 1] × [0, 1]

sol.
∫ 1

0

[∫ 1

−1
(x2 + y2)

]

dy =
4

3

Now change the order.

Example 1.2. Evaluate

∫∫

S
cos x sin y dxdy, S = [0,

π

2
] × [0,

π

2
]

sol.

∫∫

S
cos x sin y dxdy =

∫ π/2

0

[

∫ π/2

0
cos x sin y dx

]

dy

=

∫ π/2

0
sin y

[

∫ π/2

0
cos x dx

]

dy =

∫ π/2

0
sin y dy = 1

Now change the order.V� 2 â�
 Double integral over a rectangle

n- (regular partition)
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Subdivide two intervals [a, b], [c, d] by n-equal

a = x0 < x1 < · · · < xn = b, c = y0 < y1 < · · · < yn = d

and

∆x = xj − xj−1 =
b− a

n
, ∆y = yk − yk−1 =

d− c

n

Let ∆Rjk = [xj−1, xj ] × [yk−1, yk] its area is ∆x∆y and for any point cjk in

∆Rjk consider Riemann sum

Sn = R(f, n) =
n
∑

i,j=1

f(cij)∆x∆y. (5.2)

(a, d) (b, d)

(a, c) (b.c)

∆xi

∆yj

ÕªaË> 5.5: partition of a rectangle

Definition 2.1. If the series {Sn} converge to S regardless of the points cjk

then f is integrable over R and its value is denoted by

∫

R
f,

∫∫

R
f(x, y) dA,

∫∫

R
f(x, y) dxdy

lim
n→∞

n
∑

j,k=1

f(cjk)∆x∆y =

∫∫

R
f(x, y) dxdy

Theorem 2.2. Continuous functions over a rectangle is integrable.

Properties of integral

Theorem 2.3. If f , g are integrable over R, R1, R2

(1)

∫∫

R
cf(x, y) dxdy = c

∫∫

R
f(x, y) dxdy, (éß�, c��H �©��º).
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(2)

∫∫

R
(f(x, y) + g(x, y)) dxdy

=

∫∫

R
f(x, y) dxdy +

∫∫

R
g(x, y) dxdy.

(3) If f(x, y) ≥ 0,

∫∫

R
f(x, y) dxdy ≥ 0.

(4) If f(x, y) ≥ g(x, y),

∫∫

R
f(x, y) dxdy ≥

∫∫

R
g(x, y) dxdy.

(5) If R1 and R2 do not meet, then for R = R1 ∪R2

∫∫

R
f(x, y) dxdy =

∫∫

R1

f(x, y) dxdy +

∫∫

R2

f(x, y) dxdy.

(6)

∣

∣

∣

∣

∫∫

R
fdA

∣

∣

∣

∣

≤
∫∫

R
|f |dA

Integrability of bounded function

Definition 2.4. f is called bounded if there is M such that −M ≤ f(x, y) ≤
M holds for all (x, y) in R.

Theorem 2.5. If f is bounded on R and the set of points where f is dis-

continuous lies on a finite union of graphs of continuous functions, then f is

integrable over R.

This is useful to define integral over general region.

Example 2.6. (1) {(x, y) | y =
√
x, 0 ≤ x ≤ 1}∪{(x, y) | y = x, 0 ≤ x ≤ 1}

(2) {(x, y) | y = x2,−1 ≤ x ≤ 1} ∪ {(x, y) | y = 1,−1 ≤ x ≤ 1}

Theorem 2.7 (Fubini Theorem 1). Let f be continuous on R = [a, b]× [c, d].

Then f satisfies

∫ b

a

[

∫ d

c
f(x, y) dy

]

dx =

∫ d

c

[

∫ b

a
f(x, y) dx

]

dy =

∫∫

R
f(x, y) dA. (5.3)

Sketch of proof first.

Let a = x0 < x1 < · · · < xn = b, c = y0 < y1 < · · · < yn = d be the

regular partition of [a, b] and [c, d]. Riemann sum for iterated integral in this

case is

n
∑

j,k=1

f(cjk)∆x∆y =
n
∑

j=1

(

n
∑

k=1

f(cjk)∆y

)

∆x =
n
∑

k=1





n
∑

j=1

f(cjk)∆x



∆y.
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This can be proved as follows: Let [ajk] be n× n array of numbers. Then

n
∑

j,k=1

ajk =
n
∑

j=1

(

n
∑

k=1

ajk

)

=
n
∑

k=1





n
∑

j=1

ajk





This idea will be used.

Proof. We will first prove that

∫ b

a

[

∫ d

c
f(x, y) dy

]

dx =

∫

R
f(x, y) dA.

Let

F (x) =

∫ d

c
f(x, y) dy

Then

F (x) =
n
∑

k=1

∫ yk

yk−1

f(x, y) dy

Integral mean value theorem (with fixed x). Then for some Yk(x) in [yk−1, yk]

∫ yk

yk−1

f(x, y) dy = f(x, Yk(x))∆y

Thus

F (x) =
n
∑

k=1

f(x, Yk(x))∆y.

Then it holds by one variable integral that, for any pj ∈ [xj−1, xj ]

∫ b

a
F (x) dx = lim

n→∞

n
∑

j=1

F (pj)∆x

Let cjk = (pj , Yk(pj)). Then

F (pj) =
n
∑

k=1

f(pj, Yk(pj))∆y =
n
∑

k=1

f(cjk)∆y
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holds. Hence

∫ b

a

[

∫ d

c
f(x, y) dy

]

dx =

∫ b

a
F (x) dx

= lim
n→∞

n
∑

j=1

F (pj)∆x

= lim
n→∞

n
∑

j=1

n
∑

k=1

f(cjk)∆y∆x

=

∫∫

R
f(x, y) dA.

By the same reasoning, we can show

∫ d

c

[

∫ b

a
f(x, y) dx

]

dy =

∫∫

R
f(x, y) dA.

Remark 2.8. Fubini’s theorem holds if f has certain discontinuities.

Example 2.9. Find the volume of the region 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤
2 − x− y.

sol. Fix x then the area of cross section with a plane perpendicular to x-axis

is

A(x) =

∫ 1

0
(2 − x− y) dy

So the volume is

V =

∫ 1

0
A(x) dx =

∫ x=1

x=0

∫ y=1

y=0
(2 − x− y) dydx

=

∫ 1

0

[

2y − xy − y2

2

]1

0

dx

=

∫ 1

0

(

3

2
− x

)

dx =

[

3x

2
− x2

2

]1

0

= 1
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sol. [2] Another way: You can fix y. Then the area of cross section with a

plane perpendicular to y-axis is

A(y) =

∫ 1

0
(2 − x− y) dx

Hence the volume is

V =

∫ 1

0
A(y) dy =

∫ y=1

y=0

∫ x=1

x=0
(2 − x− y) dxdy

=

∫ 1

0

[

2x− x2

2
− xy

]1

0

dy

=

∫ 1

0

(

3

2
− y

)

dy =

[

3y

2
− y2

2

]1

0

= 1

Example 2.10. Compute
∫∫

R(x2 + y)dA, where A = [0, 1] × [0, 1].

sol.

∫∫

R
(x2+y)dA =

∫ 1

0

∫ 1

0
(x2+y)dxdy =

∫ 1

0
[

∫ 1

0
(x2+y)dx]dy =

∫ 1

0
(
1

3
+y)dy =

5

6
.

Change the order.

Example 2.11. f = y(x3 − 12x). f take both positive and negative values.

−2 ≤ x ≤ 1, 0 ≤ y ≤ 1,

sol.

∫∫

R
y(x3 − 12x)dxdy =

∫ 1

0

[∫ 1

−2
y(x3 − 12x)dx

]

dy =
57

4

∫ 1

0
ydy =

57

8
.

V� 3 â�
 Double integral over general regions

Elementary regions

There are three kind of elementary regions: Let y = φ1(x), y = φ2(x) (

φ1(x) ≤ φ2(x) for x ∈ [a, b]) be two continuous functions. The the region

D = {(x, y) | a ≤ x ≤ b, φ1(x) ≤ y ≤ φ2(x)}
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x

y

a x b

y = φ1(x)

y = φ2(x)

(a) y-simple or region of 1st kind

x

y

x = ψ2(y)

x = ψ1(y)

c

y

d

(b) x-simple or 2nd kindÕªaË> 5.6: y-simple region, x-simple region

is y-simple region.

Now change the role of x, y as in figure 5.6 (b). If x = ψ1(y), x = ψ2(y),

(c ≤ y ≤ d) satisfies ψ1(y) ≤ ψ2(y) for y ∈ [c, d], then the region determined

by

D = {(x, y) | c ≤ y ≤ d, ψ1(y) ≤ x ≤ ψ2(y)}

is x-simple region. The region that is both x-simple and y-simple is called

region of the third kind. These are called elementary regions.

x

y

c

y0

d

a x0 bÕªaË> 5.7: Region of third kind

Double Integral by Cavalieri principle

y-simple region: Let f ≥ 0. As in figure 5.6 (a) cross section with a plane
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perpendicular to x-axis, has area

A(x) =

∫ φ2(x)

φ1(x)
f(x, y) dy

Then by Cavalieri principle, the volume of solid between the graph of f and

xy-plane over D is

∫∫

D
f(x, y) dA =

∫ b

a
A(x) dx =

∫ b

a

∫ φ2(x)

φ1(x)
f(x, y) dydx

x-simple region: Now the cross section by plane perpendicular to y-axis

has area

A(y) =

∫ ψ2(y)

ψ1(y)
f(x, y) dx

and the integral is

∫∫

D
f(x, y) dA =

∫ d

c
A(y) dy =

∫ d

c

∫ ψ2(y)

ψ1(y)
f(x, y) dxdy.

This will be justified below by extending the definition of function and using

the Fubini’s theorem.

Integrals over elementary regions(by extension to 0)

We would like top define the integral of f defined on an elementary region. The

idea is to extend the function to a rectangular domain. Given a continuous

function f on D where D is an elementary region

D = {(x, y) | φ1(x) ≤ y ≤ φ2(x), a ≤ x ≤ b}.

The idea is to find a rectangle which contains D and extend f to R outside D

by zero:

f∗(x, y) =







f(x, y), (x, y) ∈ D

0, (x, y) ∈ R \D.

Then f∗ has discontinuities on the graphs of y = φ1(x), y = φ2(x), a ≤ x ≤ b.

Hence it is integrable by Theorem 2.5. Thus we can define

∫∫

D
f(x, y) dA :=

∫∫

R
f∗(x, y) dA
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Definition 3.1. Assume the boundary of D is given by graphs of a finite

number of continuous functions. The integral of f over D is defined as the

limit of Riemann sum

∫∫

D
f dA = lim

n→∞

∑

i,j

f(cij)∆Rij

R
f = 0D

x

y

z

f∗ = f(x, y)

ÕªaË> 5.8: Extension of a function

Theorem 3.2 (Reduction to iterated integrals). If f is continuous on D ⊂ R

(1) If D is a domain bounded by two continuous functions φ1, φ2, i.e, D =

{(x, y) : φ1(x) ≤ y ≤ φ2(x), a ≤ x ≤ b } then f is integrable on D and

∫∫

D
f(x, y) dA =

∫ b

a

[

∫ φ2(x)

φ1(x)
f(x, y) dy

]

dx.

(2) Similarly if D is bounded by two continuous functions ψ1, ψ2, ψ1(y) ≤
x ≤ ψ2(y) (c ≤ y ≤ d) then

∫∫

D
f(x, y) dA =

∫ d

c

[

∫ ψ2(y)

ψ1(y)
f(x, y) dx

]

dy.
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Proof. By Fubini theorem, we have

∫∫

D
f(x, y) dA =

∫∫

D
f∗(x, y) dA

=

∫ b

a

∫ d

c
f∗(x, y) dydx

=

∫ d

c

∫ b

a
f∗(x, y) dxdy

If D is y-simple, we use
∫ b
a

∫ d
c f

∗(x, y) dydx, and if If D is x-simple, we use
∫ d
c

∫ b
a f

∗(x, y) dxdy. So we have for y-simple region,

∫ d

c
f∗(x, y) dy =

∫ φ2(x)

φ1(x)
f(x, y) dy.

For x-simple region, we see

∫ b

a
f∗(x, y) dx =

∫ ψ2(y)

ψ1(y)
f(x, y) dx.

Example 3.3. Find the integral on D : 0 ≤ x ≤ 1, x ≤ y ≤ 1

∫∫

D
(x+ y2) dxdy

sol. Use Fubini’s theorem

∫ 1

0

∫ 1

x
(x+ y2) dydx =

∫ 1

0

[

xy +
y3

3

]1

x

dx

=

∫ 1

0

(

x+
1

3
− x2 − x3

3

)

dx

=

[

x2

2
+
x

3
− x3

3
− x4

12

]1

0

=
5

12

Example 3.4. Find
∫∫

D(x3y + cos x) dA where D is given by 0 ≤ x ≤ π/2,

0 ≤ y ≤ x.
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sol.

∫∫

D
(x3y + cos x) dA

=

∫ π/2

0

∫ x

0
(x3y + cos x)dy dx

=

∫ π/2

0

[

x3y2

2
+ y cos x

]x

y=0

dx =

∫ π/2

0

(

x5

2
+ x cosx

)

dx

=
π6

768
+
π

2
− 1.

Example 3.5. Find volume of tetrahedron bounded by the planes y = 0, x =

0, y − x+ z = 1.

sol.

∫∫

D
(1 − y + x)dA =

∫ 0

−1

∫ 1+x

0
(1 − y + x)dydx =

∫ 0

−1

[

(1 + x)y − y2

2

]1+x

y=0

dx =
1

6
.

Example 3.6. Let D be given by 0 ≤ x ≤ ln 2, 0 ≤ y ≤ ex − 1 Express the

double integral
∫∫

D
f(x, y) dA

in two iterated integrals.

sol. See figure 5.9 As an x-simple region, the points of intersection is y = 0,

y = ex − 1( 0 ≤ x ≤ ln 2). Hence

∫ ln 2

0

∫ ex−1

0
f(x, y) dydx

As a y-simple region, the points of intersection is x = ln(y+1), x = ln 2(

0 ≤ y ≤ 2) So the integral is

∫ 1

0

∫ ln 2

ln(y+1)
f(x, y) dxdy
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y

y = 4 − 2x

y = 4 − x2

2
x

4

ÕªaË> 5.9: 4 − 2x ≤ y ≤ 4 − x2

Example 3.7. Given domain D (fig. 5.10) by

4 − 2x ≤ y ≤ 4 − x2, 0 ≤ x ≤ 2

Find
∫∫

D
(1 + x) dA

sol. This region is third kind.

∫ 2

0

∫ 4−x2

4−2x
(1 + x) dydx =

∫ 2

0
[(1 + x)y]y=4−x2

y=4−2x dx

=

∫ 2

0
(−x3 + x2 + 2x) dx

=

[

−x
4

4
+
x3

3
+ x2

]2

0

=
8

3
.

On the other hand, as a function of y x = (4 − y)/2, x =
√

4 − y. So

∫ 4

0

∫

√
4−y

(4−y)/2
(1 + x) dxdy =

∫ 4

0

[

x+
x2

2

]x=
√

4−y

x=(4−y)/2
dy

=

∫ 4

0

(

√

4 − y − (4 − y)2

8

)

dy

=

[

−2

3
(4 − y)3/2 +

(4 − y)3

24

]4

0

=
2

3
43/2 − 43

24
=

8

3
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Suppose D is both x-simple and y-simple. Thus it is give by

φ1(x) ≤ y ≤ φ2(x), a ≤ x ≤ b

and

ψ1(y) ≤ x ≤ ψ2(y), c ≤ y ≤ d

∫∫

D
f(x, y)dA =

∫ b

a

∫ φ2(x)

φ1(x)
f(x, y)dydx =

∫ d

c

∫ ψ2(y)

ψ1(y)
f(x, y) dxdy

Theorem 4.1. Suppose D is given by ψ1(y) ≤ x ≤ ψ2(y)

∫ b

a

∫ φ2(x)

φ1(x)
f(x, y) dydx

Example 4.2. Compute by change of order of integration

∫ a

0

∫ (a2−x2)1/2

0
(a2 − y2)1/2 dydx

sol.

∫ a

0

∫ (a2−x2)1/2

0
(a2 − y2)1/2 dydx =

∫ a

0

∫ (a2−y2)1/2

0
(a2 − y2)1/2 dxdy

=

∫ a

0
[x(a2 − y2)1/2]

(a2−y2)1/2

0 (a2 − y2)1/2 dy

=

∫ a

0
(a2 − y2) dy =

2a3

3
.

Example 4.3. Find
∫ π

0

∫ π

x

sin y

y
dydx
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y

π

y = x

xÕªaË> 5.10: 0 ≤ x ≤ π, x ≤ y ≤ π

sol. It is not to find the integral as the given form. But if we change the

order of integration (fig 5.11)

∫ π

0

∫ π

x

sin y

y
dydx =

∫ π

0

∫ y

0

sin y

y
dxdy

=

∫ π

0

[

sin y

y
x

]x=y

x=0

dy

=

∫ π

0
sin y dy = [− cos y]π0 = 2

Example 4.4. Find

∫ ln 2

0

∫ ex−1

0
e−x

√

1 + ln(y + 1) dydx+
1

2

∫ 1

0

√

1 + ln(y + 1) dy

sol. Again change the order(Fig 5.9) as in example 3.6 we see

∫ 1

0

∫ ln 2

ln(y+1)
e−x

√

1 + ln(y + 1) dxdy +
1

2

∫ 1

0

√

1 + ln(y + 1) dy

= −
∫ 1

0
(e− ln 2 − e− ln(y+1))

√

1 + ln(y + 1) dy

+
1

2

∫ 1

0

√

1 + ln(y + 1) dy

=

∫ 1

0

√

1 + ln(y + 1)

y + 1
dy =

[

2

3
(1 + ln(y + 1))3/2

]1

0

=
2

3
[(1 + ln 2)3/2 − 1].
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4.1 Mean value inequality

Theorem 4.5. Suppose f : D → R is continuous on an elementary region D

and m ≤ f(x, y) ≤M . Then we have

mA(D) ≤
∫∫

D
f dA ≤MA(D) (5.4)

Example 4.6. Estimate

∫

D

1
√

1 + x6 + y7
dxdy

where D is the unit square.

1√
3
≤ 1
√

1 + x6 + y7
≤ 1

Theorem 4.7. If f is continuous over D then

∫∫

D
f dA = f(x0, y0)A(D)

Proof. Divide (5.4) by A(D) to get

m ≤ 1

A(D)

∫∫

D
f dA ≤M

Since m ≤ f ≤M and f is continuous, there is a point (x0, y0) such that

f(x0, y0) =
1

A(D)

∫∫

D
f

which is precisely the conclusion.V� 5 â�
 Triple integral

Assume f(x, y, z) is defined on B = [a, b] × [c, d] × [p, q]

We partition the box into small n3 boxes as in 5.12, and denote each

volume as ∆Vijk (i, j, k = 1, . . . , n). Then the Riemann sum becomes

R(f, n) = Sn =
n
∑

i,j,k=1

f(cijk)∆Vijk.
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x y

z

ÕªaË> 5.11: partition of box

Here cijk is any point in the subbox Bijk.

Definition 5.1. Let f be a bounded function on B. If limn Sn = S exists and

is independent of the choice of cijk, then we say f is integrable in B and call

S the triple integral and we write it by

∫∫∫

D
fdV,

∫∫∫

D
f(x, y, z)dV, or

∫∫∫

D
f(x, y, z)dxdydz

Reduction to iterated integral

Theorem 5.2 (Fubini’s theorem). . Suppose f is continuous on D = [a, b] ×
[c, d] × [p, q] Then the triple integral

∫∫∫

D f(x, y, z)dxdydz equals with any of

the following integrals.

∫ q

p

∫ d

c

∫ b

a
f(x, y, z) dxdydz,

∫ q

p

∫ b

a

∫ d

c
f(x, y, z) dydxdz

∫ b

a

∫ d

c

∫ q

p
f(x, y, z) dzdydx

Example 5.3. B = [0, 1] × [−1
2 , 0] × [0, 1

3 ].

∫∫∫

B
(x+ 2y + 3z)2dxdydz =

1

12

Change the order and compute again to see the value does not change.

Example 5.4.
∫

B
ex+y+zdV
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where B is unit cube at origin.

Elementary regions

Definition 5.5. A region D is elementary regions if a variable lies between

two continuous functions of the other variables, and the domain of these func-

tions is elementary(i.e, x-simple or y-simple). If f is continuous on D, then

we extend f on box E

f∗(x, y, z) =







f(x, y, z), (x, y, z) ∈ D

0, (x, y, z) ∈ E \D

and define
∫

D
fdV =

∫

E
f∗dV

Suppose R is an elementary region in xy-plane and there are continuous

functions γ1(x, y), γ2(x, y)

{(x, y, z) | γ1(x, y) ≤ z ≤ γ2(x, y), (x, y) ∈ R} (5.5)

Sometimes called elementary region of first kind. In other words, there

exist two functions φ1(x), φ2(x) such that

R = {(x, y) | φ1(x) ≤ y ≤ φ2(x), a ≤ x ≤ b}

y =
φ
1 (x) y =

φ
2 (x)

z =
λ
1 (x, y)

z =
λ
2 (x, y

z

x
y

b

a

ÕªaË> 5.12: 1st kind
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If roles of x, z are interchanged, i.e, there exist ψ1(y), ψ2(y) such that

R = {(x, y) | ψ1(y) ≤ x ≤ ψ2(y), c ≤ y ≤ d}

and (5.5) holds then it is called elementary region of second kind.

Example 5.6. Describe the unit ball as an elementary region.

sol. The domain of defining function is described by

−
√

1 − x2 ≤ y ≤
√

1 − x2, −1 ≤ x ≤ 1

while the functions are

−
√

1 − x2 − y2 ≤ z ≤
√

1 − x2 − y2, on unit disk

x = λ
2(y, z)

x = λ
1(y, z)

z = φ
2(y)

z = φ
1(y

z

x y

c

dÕªaË> 5.13: 2nd kind

Integrals over Elementary regions

Given a y-simple region in xy-plane

R = {(x, y) | φ1(x) ≤ y ≤ φ2(x), a ≤ x ≤ b}

D is defined by

D = {(x, y, z) | γ1(x, y) ≤ z ≤ γ2(x, y), (x, y) ∈ R}

the integral is given by
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∫∫∫

D
f dV =

∫

R

∫

f(x, y, z) dzdA

=

∫ b

a

∫ φ2(x)

φ1(x)

∫ γ2(x,y)

γ1(x,y)
f(x, y, z) dzdydx

x+ y + z = 1

x+ y = 1

z

x

yÕªaË> 5.14: x+ y + z = 1

Example 5.7. Find the volume of radius 1.

z =
√

1 − x2
− y2

z = −

√

1 − x2
− y2

z

y

xÕªaË> 5.15: x2 + y2 + z2 = 1
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sol. Unit ball is described by x2 + y2 + z2 ≤ 1. The volume is (fig 5.16)

∫

D
1 dV, D = {(x, y, z) | x2 + y2 + z2 ≤ 1}

Here we can take R = {(x, y) | x2 +y2 ≤ 1} and D = {−
√

1 − x2 − y2 ≤
z ≤

√

1 − x2 − y2, (x, y) ∈ R}. Hence

∫

R

∫

dzdydx =

∫

R

∫ z=
√

1−x2−y2

z=−
√

1−x2−y2
1 dzdydx

= 2

∫

R

√

1 − x2 − y2 dydx

= 2

∫ 1

−1

∫

√
1−x2

−
√

1−x2

√

1 − x2 − y2 dydx

Let
√

1 − x2 = a. The inner integral is area of semi circle or radius a

2

∫

√
1−x2

−
√

1−x2

√

1 − x2 − y2 dy = 2

∫ a

−a

√

a2 − y2dy = a2π = (1 − x2)π

Hence

2

∫ 1

−1

∫

√
1−x2

−
√

1−x2

√

1 − x2 − y2 dydx =

∫ 1

−1
(1 − x2)π dx

=

[

(x− x3

3
)π

]1

−1

= 2(1 − 1

3
)π =

4

3
π

Other type of elementary regions can be described similarly. If a region can

be described in all three ways we call these regions symmetric elementary

regions

Example 5.8. Let D be the region bounded by x+ y + z = 1, x = 0, y = 0,

z = 0. Find

∫∫∫

D
(1 + 2z)dxdydz
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sol. Let R = {(x, y) | 0 ≤ y ≤ 1 − x, 0 ≤ x ≤ 1}. Then D is described by

D = {(x, y, z) | 0 ≤ z ≤ 1 − x− y, (x, y) ∈ R}

and integrate along z direction.

∫∫∫

D
(1 + 2z) dxdydz =

∫∫

R

[

z + z2
]1−x−y

0
dxdy

=

∫ 1

0

∫ y=1−x

y=0
(1 − x− y + (1 − x− y)2) dydx

=

∫ 1

0

[

−(1 − x− y)2

2
− (1 − x− y)3

3

]y=1−x

y=0

dx

=

∫ 1

0

(

(1 − x)2

2
+

(1 − x)3

3

)

dx =
1

4

Example 5.9. Let W x = 0, y = 0z = 2 and the surface z = x2 + y2 and

x ≥ 0, y ≥ 0 Find
∫∫∫

W x dxdydz.

sol. Method1. We describe the region by

0 ≤ x ≤
√

2, 0 ≤ y ≤
√

2 − x2, x2 + y2 ≤ z ≤ 2.

∫∫∫

W
x dxdydz =

∫

√
2

0

[

∫

√
2−x2

0
(

∫ 2

x2+y2
x dz)dy

]

dx

=
8
√

2

15

Method2. We describe the region by solving for x, i.e, 0 ≤ x ≤ (z−y2)1/2

and (y, z) in R where R is given by the relation

0 ≤ z ≤ 2, 0 ≤ y ≤ z1/2.

Then

∫∫∫

W
x dxdydz =

∫∫

R

(

∫ (z−y2)1/2

0
xdx

)

dydz

=
8
√

2

15
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x

y

z

x2 + y2 = 1

x2 + z2 = 1ÕªaË> 5.16: common region of two cylinders

Example 5.10.
∫ 1

0

∫ x

0

∫ 2

x2+y2
dzdydx

Sketch region first.

sol. Sketch

Example 5.11. Find the common region of two cylinders (figure 5.17) x2 +

y2 ≤ 1, x2 + z2 ≤ 1 (z ≥ 0).

sol.

∫∫

x2+y2≤1

∫

√
1−x2

0
dzdxdy =

∫ 1

−1

∫

√
1−x2

−
√

1−x2

√

1 − x2dydx

= 2

∫ 1

−1
(1 − x2)dx

= 2

[

x− x3

3

]1

−1

= 4(1 − 1

3
) =

8

3

Example 5.12. Find the region bounded by two parabolids z = x2 + y2 and

z = 2 − 3x2 − y2.(figure 5.18)
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sol. The intersection is the curve x2 + y2 = 2 − 3x2 − y2, i.e, 2x2 + y2 = 1.

If we let R = {(x, y) : 2x2 + y2 ≤ 1} this region is 1st kind on R. Hence

∫∫∫

D
dxdydz =

∫∫

2x2+y2≤1
(2 − 3x2 − y2) − (x2 + y2) dxdy

=

∫∫

2x2+y2≤1
(2 − 4x2 − 2y2) dxdy

Now use polar coordinate x = r/2 cos θ, y = r/
√

2 sin θ. Then dxdy =

r/(2
√

2)drdθ. Hence

1

2
√

2

∫ 2π

0

∫

r≤
√

2
(2 − r2)r drdθ

=
1

2
√

2

∫ 2π

0

[

r2 − r4

4

]

√
2

0

dθ =
π√
2

√

21
x

y

z

z = x2 + y2

z = 2 − 3x2
− y2ÕªaË> 5.17: z = x2 + y2, z = 2 − 3x2 − y2


