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Vector valued functions

Al 1 A Acceleration and Newton’s law

13 4.1: Gravitational force is represented as vectors

Example 1.1. The force acting on a particle of mass m. Suppose the mass of
the earth is M and G gravitational constant. If r is the position vector then

the gravity F is (Figure 4.1)

GmM

F=——"_"r
[alks

Definition 1.2. A path C is the image of a function ¢ with domain I range

in R™. We call ¢ the parametrization of C .

A parameterized curve ¢ in R? or R? can be written as c(t) = (z(t), y(t), 2(t)).
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If 2(t), y(t), z(t) are continuous, then we say c is continuous, and if z(t), y(t), z(t)
are differentiable, then c is differentiable. If z'(t), y/(t), 2/(t) are continuous
then we say c is C''-curve.

Differentiation Rues
(1) &bt +e®)] =b'(t) +c(1)
(2) glp(t)e®)] =p/(t)et) +p(t)c'(t)
(3) & b(t) - c(t)] =Db'(t) - e(t) +b(t) - /(1)
(4) Lb(t) x c(t)] =Db'(t) x c(t) + b(t) x c'(t)

(5) gle(a(®)] = d'(t)e'(a(1))

Example 1.3. Show that if c(¢) is a vector function such that |c(¢)|| is con-

stant, then ¢(t) is perpendicular to c(t) for all ¢.

Solution:

llc(t)]|? = c(t) - c(t). Derivative of constant is zero. Hence

0= %[c(t) ~c(t)] = c'(t) - c(t) + c(t) - /(t) = 2¢(t) - /()

Thus ¢/(t) is perpendicular to c(t).
Second derivative of a curve c(t) is acceleration, i.e, a(t) = dv(t)/dt =
c’(t). O

Example 1.4. A particle moves with a constant acceleration a(t) = — = bk.
If the position when ¢ = 0 is (0,0,1) and velocity at t = 0 is i 4 j. Describe

the motion of the particle.

Sol. Let (xz(t),y(t), z(t)) represents the path traveled by the particle. Since

the acceleration is ¢”(t) = —k we see the velocity is
C/(t) = Chi+ Csj — tk + Csk.

Hence by initial condition, ¢/(t) = i+ j — tk and so c(t) = ti + tj — %k +
Const vec. The constant vector is k. Hence c(t) = ti+¢j + (1 — %)k

Remark 1.5. The image of C''-curve is not necessarily “smooth”. it may

have sharp edges;
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(1) Cycloid: c¢(t) = (t — sint,1 — cost) has cusps when it touches x-axis.

ACCELERATION AND NEWTON’S LAW

That is, when cost =1 or when t =2mn,n=1,2,3,--

(2) Hypocycloid: c(t) = (cos®t,sin®t) has cusps at four points when cost =

0,41

At all these points, we can check that ¢/(t) = 0.(Roughly speaking, tangent

vector has no direction.)

Definition 1.6. A differentiable path c is said to be regular if ¢/(t) # 0 at

all t. In this case, the image curve looks smooth.

Circular Orbits

Consider a particle of mass m moving at constant speed s in a circular path

of radius 9. We can represent its motion (in the plane) as

r(t) = (rgcos Ct,rosin Ct)

Find C'. Since speed is ||t/(t)|| = |C|ro = s, we get C' = s/rg. So the motion is

described as

st . st
r(t) = (ro cos —, ro sin —)

7o To

The quantity % is called frequency denoted by w. Thus

r(t) = (ro cos wt, rosinwt)

It’s acceleration is

25t

To

Let us describe motion of a particle having circular motion. The centripetal

force must equal to Gravitational force; By Newton’s Law F = ma

Hence

st . st s%t
Tg cOs —,Tosin — | = ——r(t)
To To 7‘0

If T denotes the period s = 27rg/T'; then we obtain
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r'(t)
r(t)
a(t)

alr'(t)

1% 4.2: acceleration and centripetal force ma,

Kepler’s Law

3 (2m)?
= 7"0
GM
Thus the square of the period is equal to the cube of the radius.

T2

Example 1.7. Suppose a satellite is in circular motion about the earth over
the equator. What is the radius of geosynchronous orbit?(It stays fixed over
a point on equator) M = 5.98 x 10?4 kg and G = 6.67 x 10! meter kg -sec.

Sol. Period must be one day: So T = 60 x 60 x 24 = 86, 400 seconds. From
Kepler’s law,

T2GM

T ~ 7.54 x 1022m3 ~ 42, 300km

=

Al 2 4  Arc Length

The length of an arc is obtained by dividing the arc into several pieces and
then summing the length of individual line segements; then take the limit.

The Riemann sum is defined as

As the partition P — 0(i.e, |[P|| — 0) ! we see the sum



Al 2 d ARC LENGTH 7

a:a) 21 c tiv—lti -

1% 4.3: Riemann sum on the curve

k
>l (@)t = tim1)
i=1

approaches f llc’(2)]] dt.

Definition 2.1 (Arc Length). Suppose a curve C has one-to-one C'-parametrization
c. Then the arc length of C' is defined by

b b
L(c) = / 1</ ()| dt = / V(62 + g (62 + 2/()%dt

Example 2.2. Find the arclength of (cost,sint, t?) 0 <t < 2.

Sol.
vl = V1 +4¢2 —21/t2+—

To evaluate this integral we need a table of integrals:

/\/3:2—|—a2d1‘— [zVx2 + a2 + a®log(z + Va2 + a?)]

Thus

Example 2.3.

c(f) = (2cos? 0 + cos @, sin26 + cosh), 6 € [0,2n]

'The norm of partition P = {to,t1,...,tn} |P|| is defined as maxo<i<n (tit1 — t;).
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Above curve is divided into three paths.

c1(6) = (2cos? 6 + cosh, sin260 + cos), 6 € [0,2n/3]
co(6) = (2cos? 6 + cosh, sin260 + cosb), 6 € [2m/3,4w/3]
c3(6) = (2cos? 6 + cosh, sin260 + cosb), 6 € [4r/3,27]
Example 2.4. Consider the cycloid
c(t) = (t —sint,1 — cost)

Its length is
I (#)]|V2 — 2 cost

Hence

2 2r [T —cost
Lc) = \/2—2005tdt:2/ Tdt
0 0
2m t
= 2 in — dt
/0 sin o
t 2m
= 4 —cos 0" =8

Arc-Length Differential

Definition 2.5. We let the infinitesimal displacement of a particle follow-
ing a path c(t) = z(¢t)i + y(t)j + z(t)k

ds = dxi + dyj + dzk

and its arc length differential

ds = \/dm2 +dy? +dz? = \/3:’(75)2 + /()2 + 2/ (t)%dt

The arc length is defined as

b b
arc length = / ds = / \/:L'/(t)2 + /()% + 2/ (t)%dt

One can also define arc-length function s(t):

st = [ 1) a
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so that

Definition 2.6. Suppose c : [a,b] — R" is a C'-parametrization of a curve
C. Then the arc length of C' is defined by

b b
L(c) = / 1< ()] dt = / V(02 + 4/ (02 + 2/ (t)%t.

Example 2.7. Suppose a function y = f(x) given. Then the graph is viewed
as a curve parameterized by ¢ = = and c(z) = (x, f(x)) So the length of the

5e) = [ T+ ()P

graph from a to b is

Path integral-See Ch 7

Definition 2.8. Suppose a curve C has one-to-one C'-parametrization c.
Then the path integral of f(z,y,z) on C is defined by

/Cf(ac,y,z) ds

We write it as [~ fds as [~ f(x,y, 2)ds. Note this integral is independent of

choice of c.

Example 2.9. Find the path integral of f(x,vy,2) = #?y?2% on C.

C={(z,y,2): 2 +1>+22=2 22+ =22 2> 0}

/Cfds:/01fds+ fds+---+ [ fds

C: 2 Ck
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b
| fas= / F(—e@)ll(—e) (1) dt
b
- / Fle(b+a—1t)||c/(b+a—t)(—1)] dt
:/abf(c(b+a—t))||c'(b—|—a—t)||dt

= [ Fle) e )(=1) du

b
:Lf@

where © = b+ a — t was used.

Example 2.10. Find the path integral of f(z,y, z) = 2% + y? + 22 on C.
C = {(cost,sint,t): t € [0,27]} U{(1,0,¢): t € [0,27]}
C = is the sum of Cy and Cs.
Cy = {(cost,sint,t): t € [0,27]}, Co={(1,0,t): t € [0,27]}
So parameterize C; and Cy as follows:
c; = (cost,sint,t) te€[0,1], ca2=(1,0,t) te]0,2n]

Hence the integral is

2m 2m

:/ (1+t2)\/§dt—|—/ (1+2)dt
0 0

= (1+v2) (27 +87/3)

Al 3 A Vector Fields

Definition 3.1. Let D C R™ A vector function defined on D with values
lying in R" is called vector field.
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A vector field F is represented by n real valued function Fy, Fy, ..., F,.

F(P) = (F1(P), Fa(P), ..., Fu(P))

Ifn=3
F(P) = (Fi(P), F2(P), F3(P))

is written as
F(P) = F(P)i+ F2(P)j + F3(P)k
Gradient vector field

Given real valued function f(x1,xa,...,x,) we define

_(9f of  Oof
Vi '_(8361’8362""’895”

)

call it gradient vector field.

Flow lines

Example 3.2. Heat flux vector fields
J=—kVT

Example 3.3. A gravitational force field. Place the origin at the center of

earth. Newton’s law
mMG

F=-—
T3

r
We see F = —VV where the potential V is given by

_mMG

T

V=

Note that F point in the direction of decreasing V.

Example 3.4. Similarly, we have Coulomb’s law. The force acting on a charge
e at position r due to a charge ) at the origin is

eQe
= r

where V' = eQe/r. The level sets of V are called equipotential surface or

lines Note that the force field is orthogonal to the equipotential surfaces. We
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see F = —VV where the potential V' is given by

_mMG
r

V =

Note that F point in the direction of decreasing V.

Example 3.5. Show the vector field V(z,y) = yi— xj is not a gradient vector
field. i.e, there is no C'! function f such that

of .  Of.
V = = — _
v/ oz + dy
Suppose there is such an f. Then % = y and g—g = —xz. Solving,

flx,y) = zy + g(y). Then ?9_5 =z + ¢'(y) = —x, which is impossible.
=

Conservation of energy

Consider a particle of mass m moving in a force field that is a potential field.
(F=-VV)
mr”(t) = —=VV(x(t))

A basic fact about such a motion is the conservation of energy. The energy E

is defined to be the sum of kinetic energy and potential energy
1 / 2
B =gm|r @) + V(r(t))

The principle of Conservation of energy says: E is independent of time. So
dE/dt = 0. We can prove it simply:
dE

o mr'(t) - (t) + (VV) - ') =1 - (-=VV +VV) =0

Escape Velocity

As an application of conservation of energy, we compute the velocity of a
rocket to escape the earth gravitational influence. The energy(kinetic energy

+potential energy) is
1 5 mMG
Ly = 3Me — Ry
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The escape velocity is obtained when this energy is zero. Thus

o _ [mG
e — Ry .

Ve = 2gR0.

Now MG/ R} is gravity g, thus

Flow Lines

Definition 3.6. Given a vector field F the path c(t) satisfying

is called the flow line for F. That is, F yields the velocity fields of the path

c(t). flow line is also called as streamlines or integral curves

Example 3.7. Suppose water is flowing in a pipe as in fig 4.4. Suppose it

does not depends on time. Then it is given by a vector field.

N

1% 4.4: Water flow in a pipe

Let F = Pi+ Qj + Rk and c(t) = (z(t),y(t),2(t)) A flow line may be

viewed as the solution of system of DE. Indeed from ¢/(t) = F(c(t)), we see

Example 3.8. Show c(t) = (cost,sint) is a flow line of F = —yi + xj. can
you find others?



14 Al 4 % VECTOR VALUED FUNCTIONS

1% 4.5: The vector field F(z,y) = (—yi+ zj)/vx? + y?

Verify

Others may be

c(t) = (rcos(t — tg), rsin(t — tg))

Example 3.9. Draw the vector fields F

—yi + xj

(z,y) # (0,0).

It describes the flow of water in a sink(bathtub).

Example 3.10. Draw the vector fields F and its integral curve (Flow line)
(Fig 4.5) o
—Yyl+xj

Let c(t) = (z(t),y(t)) be the flow line. Then c'(t) = (2/(t),y'(t)) must be
F(c(t)). Hence

F($>y) = (:L'vy) a (0’0)'
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/ _y(t)
O T o .
W p——_) (42)

Multiply first by z(¢) and second by y(¢). Then adding we get

' (t)z(t) +y'(t)y(t) =0

Integrating
z(t)? +y@t): =r

This is equation for circle. So we can parameterize it by trig function.
c(t) = (x(t),y(t)) = (rcosf(t),rsinb(t))
Hence

2'(t) = —rf'(t)sin6(t) (4.3)
y'(t) = r0'(t) cos O(t) (4.4)
From (4.2) (4.4)
—r0'(t)sin O(t) = —sin O(t)

Hence

o) =

So the flow line c(t) is

c(t) = (z(t),y(t)) = (rcos ;,rsin;)

The period of c(t) is 27r.

Example 3.11. Show that F(z,y) = zi — yj is a gradient field and find flow

line
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Suppose F is a gradient field of f(z,y) then

08 4 085 _ iy
Find f(z,y) such that

of of

— = x7 — =

Oz y

Hence f(z,y) = 2(2? — y?)

1
5(952 - yz) =cC

Suppose F(z,y) is given by

F(z,y) = (Fi(z,y), Fa(z,y)).

Then the flow line (z(t), y(t)) satisfies

Al 4 A Divergence and curl

For divergence and curl operations,(PROCESS) we make use of del operator
defined by
0 0 0
V=i—+j—+k—
18:E +J dy * 0z
It works like this: For gradient
0 0 0 LOf af of

Divergence

Definition 4.1 (Divergence). If F = Fji + Fyj + Fs3k is a vector field then

the divergence is the scalar field
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divE — 0Fy + 0F, + 0F3

ox dy 0z
= (Ziy a%j + k) - (Pt B+ BiK)
=V-F
Similarly for n-dim
oF;  0F Z?Fg 0F,

divF = Z (%EZ 3361 3362 R Po.

Example 4.2. Find the divergence of F = (e“siny, e® cosy, yz?).

Since divF =V - F

0 0, . 0 . 4
divF = %(e siny) + ay(e cosy) + 8Z(Z/Z )

= e”siny + (—e” siny) + 2yz = 2yz.

Hence div F = 2y2.

Example 4.3.
F = 2%yi + 2j + zyzk

Meaning of divergence

Suppose F represent the velocity of a gas or fluid. Then divergence repre-
sents the rate of expansion per unit volume: If divF(P) > 0 then it is
expanding. If (divF(P) < 0) then it is compressing.
It is
1 d

mdtV( ) o ~ div F(XQ)

Example 4.4. Draw flow lines of
F=zi+vyj

Div is positive
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1% 4.6: vector field (z,y) and —(z,y)

Example 4.5. Graph of

Div is positive(Expanding)

L= |

> X

Example 4.6. Graph of
F=—2xi—yj
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12 4.7: Tncompressible F = —yi + j
Example 4.7. The flow lines of

F=—yi+aj

are concentric circles. From this we guess the fluid is neither expanding or

compressing. Div is zero. Fig 4.7.

Example 4.8. The vector field F' = zi — yj is divergence free. The flow lines

are as in figure.

Curl

Use the symbol V to see

i J k
curlF =V x F = 88— ay 3—
Fy Fy, F3

OF; 0Fy\. (OF OFy\. (0F, OF
=Gy ) G i (G 3 )
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y Fluid particles move
from shaded region to
\ shaded region after a

fixed time interval.

19 4.8: F = zi — yj Incompressible: Volume preserving

Example 4.9. Let F = zi + zyj + k. Find V x F.

i j k
10 0 Ol _m_m
VXF—% 8@ %—01—0J+yk
zy 1

i j k
_ |19 9 0
VXF = Oz oy 0z
ry —sinz 1
9 9 o9 9 2 9
— B‘y 0z|{_ |9z 0= j+ Ox ‘8y k
—sinz 1 zy 1 Ty sinz
= coszi—zk

Meaning of curl
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19 4.9: velocity v and angular velocity w has relation v =w x r.

Consider a rigid body B rotating about an axis L. (Fig 4.9 ). The rotational
motion of B can be described by a vector along axis of rotation w.
Let w the vector along z-axis s.t. w = ||w]||. The vector w is called the

angular velocity vector and w is angular speed.
w = |[wl|

Assume L is z-axis @ is any point on the body B, « is distance from
to L. Then a = ||r||sinf (r points to Q). Consider the tangent vector v
at Q). Since Q moves around a circle of radius « and parallel to zy-plane

(counterclockwise), we see,
VIl = war = wl[r|| sin 6 = [|w]][|r[| sin 0,
Then by definition of cross product,
V=W XT.
Since w = wk, r = zi + yj + zk we see from the property of cross product,
V=w XTI =—wyl+ wj.

So curlv = 2wk = 2w. Hence for the rotation of a rigid body, the curl is
a vector field whose direction is along the axis of rotation and magnitude is

twice the angular speed.
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Curl and rotational flow

V X F represents twice the angular velocity: So if it is 0, then we have irrota-

tional fluid.

Example 4.11. Find curl F when F(z,y, z) =

Write F(z,y, 2) = —-2
' +y

i+ ——L—j+ 0k. Then we see
2 22 —|—y2‘]

(yi — xj)/(2? + y?) in R3,

) - W],

Gradients are curl Free

Theorem 4.12. For any C? function

Vx(Vf)=0
Proof.
i j k
VxVf = |& & &
of 9f of
oz ay 0z

. >’f
= 1 + —
8y8z 8z8y 020zx

0x0z

2
9 Vg
Oyox

O

Example 4.13. Show F(x,y,z) = yi — zj is not a gradient field. i.e, there

does not exists C?-function f s.t Vf = F holds.
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If F is the gradient of f then by Thm 4.12
curl F =V xF=V xVf=0

Let F(x,y,z) = yi — zj + Ok. Then

<

i j k
o 9 0
VXF=19z 9y 0z
y —x O

=[5 (~0) = (o) o= -2

curl F = —2k # 0, a contradiction.

(a) F = (i — i)/ (2 + 4°) (b) F = i — j

1% 4.10: Movement of small paddle in vector fields

Remark 4.14. Vector field F(z,y, z) = (yi — 2j)/(2? 4+ y?)(It describes flow
in a tub) does not rotate about any point except z-axis. When small paddle
is placed in the fluid, it will follow the flow line( a circle in this case), but it
does not rotate about its own axis. Such a field is called irrotational.

But the vector field F(zx,y, z) = yi—xj has nonzero rotation. (fig 4.10(b) ).

Scalar curl

As a special case, if F = Pi+ )j then

0Q 0P
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(%—2 — %—];) is called a scalar curl.

Example 4.15. Find scalar curl of V = —3%i + zj,

i 0§ k
Vxv=|Z % 2= (1+2mk
-2z 0

Curls are divergence free

Theorem 4.16. For any C? vector field F
diveurlF =V - (VxF)=0

Physical meaning of divergence

Let
F(z,y,2) = (F1,F2, F3) = Fii + Fyj + F3k

be a velocity vector field of some fluid in R3.

Az AW = AzAyAz

Z Az Ay

9 4.11: Geometric meaning of divergence

Fig 4.11. Consider a box W with dimension Az, Ay, Az Then volume of
W is AW = AzAyAz. Consider the loss of fluid across W per unit time.
First consider fluid loss through left side of W whose area is AzAz. (Consider
F5 only). The outflux is

F(z,y,2) - (—j)AzAz = —Fy(x,y, 2)AzAz
influx is

F(z,y + Ay, 2) - jJAzAz = Fy(z,y + Ay, 2)AzAz
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oF)
dy

Considering all the direction, the change in fluid across W per unit time is(total

flux)

(Fg(ﬂ:, y+ Ay, z) — Fy(z,y, z))A:pAz ~ ( Ay) AxzAz

OF,  OF, OF
( 5t e T o )AzAyAz

Now divide by volume AW

Flux across boundary (E?Fl OFy n E?Fg)
T\ oz y 0z

density of flux/time =
vol

Let Az, Ay, Az — 0 Then fluid density of F is divF. If F is gas, then divF
represents the rate of expansion of gas per unit time per unit volume. If
F(x,y,z) = xi + yj + zk then divF = 3 and this means the gas is expanding

three times per unit time.

Laplace operator

2 2 2
R

2 — . _ -
Vif=V- (V) ox?  0y? 022

V2f =0 is called Laplace equation.

Example 4.17. Find V2f when

1 1

[1;" = -
f( y) r /,:U2+y2+227

where r = zi + yj + zk and r = ||r].

(x7y7z7) #0
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of —x of —y af —z

dr (242 +22)32 Oy (a2 4+ 2422032 9z (a2 4y +22)32

Second derivatives, we find that

ﬁ B 322 _ 1
or2 ($2 +y2 + 22)5/2 ($2 +y2 + 22)3/2
s
8y2 o (:Ez + y2 + 22)5/2 (:Ez + y2 + 22)3/2
2 32 |
822 - (ZE2 _|_y2 +Z2)5/2 (ZE2 _|_y2 +Z2)3/2
Thus
V2f =o0.
=
Example 4.18. For given f(z,y) = 2° — 3zy? + 7z, compute V2f.
First compute df/dz, 0f /0y and df/0z.
of _ 4.2 2 Of _ of
pri 3x° — 3y~ By 6y, 97 = 7.
Hence o f o o
W:fix, 6—2/2:—6113, ﬁzo
and Rf  9F oy
2, 9 0T 9T _ _ —
vf_8x2+8y2+822 6x + (—6x) +0=0.
=

Vector differential identities

Vector differential identities
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) div(F+G)=divF +divG
) curl (F+ G) = curlF + curl G
) div (fF) = fdivF + F - Vf
) div(F x G) =G - curlF — F - curl G
) divcurlF =0
) curl (fF) = fecurlF +Vf xF
) curl (F x G) = FdivG — GdivF + (G - V)F — (F - V)G
) curlcurl F = grad div F — V?F
13) crlVf =0
) V(F-F)=2(F-V)F + 2F X (curlF)
) VA(f9) = Vg +gVif+2(V] Vg)
) VF-G)=(F-V)G+ (G:-V)F+F x curlG + G x curl F
) div(VfxVg)=0
) V- (fVg—gVf)=fVig—gVf
) H-(FxG)=G-(HxF)=F- (G xH)
) H(FxV)xG)=(H-V)G)-F-(H-F)(V-G)
) Fx(GxH)=(F-HG-H(F-G)

Example 4.19. Prove (7).

sol.

div (fF) = %(fFl) - 8%(sz) + %(ng)
By product rule,

. B OF, 0F, OF; of of of
div (fF) = f<8:n + ay + az)+F1%+F28—y+F3&

= f(V-F)+F-Vf.

Example 4.20. Show V2(1/r) =0 for r # 0.

As before V(1/r) = —r/r3. In general, V(r") = nr"2r. By (7),

—V31/r) = V-(r/rd) = %V ‘r+r- V(l)

r3
3 —3r
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