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V� 4 *�×
Vector valued functions

V� 1 â�
 Acceleration and Newton’s law

b

b

r

M

m
F

Earth

object

ÕªaË> 4.1: Gravitational force is represented as vectors

Example 1.1. The force acting on a particle of mass m. Suppose the mass of

the earth is M and G gravitational constant. If r is the position vector then

the gravity F is (Figure 4.1)

F = −GmM

‖r‖3
r

Definition 1.2. A path C is the image of a function c with domain I range

in R
n. We call c the parametrization of C .

A parameterized curve c in R
2 or R

3 can be written as c(t) = (x(t), y(t), z(t)).

3
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If x(t), y(t), z(t) are continuous, then we say c is continuous, and if x(t), y(t), z(t)

are differentiable, then c is differentiable. If x′(t), y′(t), z′(t) are continuous

then we say c is C1-curve.

Differentiation Rues

(1) d
dt [b(t) + c(t)] = b′(t) + c′(t)

(2) d
dt [p(t)c(t)] = p′(t)c(t) + p(t)c′(t)

(3) d
dt [b(t) · c(t)] = b′(t) · c(t) + b(t) · c′(t)

(4) d
dt [b(t) × c(t)] = b′(t) × c(t) + b(t) × c′(t)

(5) d
dt [c(q(t))] = q′(t)c′(q(t))

Example 1.3. Show that if c(t) is a vector function such that ‖c(t)‖ is con-

stant, then c′(t) is perpendicular to c(t) for all t.

Solution:

‖c(t)‖2 = c(t) · c(t). Derivative of constant is zero. Hence

0 =
d

dt
[c(t) · c(t)] = c′(t) · c(t) + c(t) · c′(t) = 2c(t) · c′(t)

Thus c′(t) is perpendicular to c(t).

Second derivative of a curve c(t) is acceleration, i.e, a(t) = dv(t)/dt =

c′′(t).

Example 1.4. A particle moves with a constant acceleration a(t) = − = bk.

If the position when t = 0 is (0, 0, 1) and velocity at t = 0 is i + j. Describe

the motion of the particle.

Sol. Let (x(t), y(t), z(t)) represents the path traveled by the particle. Since

the acceleration is c′′(t) = −k we see the velocity is

c′(t) = C1i + C2j − tk + C3k.

Hence by initial condition, c′(t) = i + j − tk and so c(t) = ti + tj − t2

2 k +

Const vec. The constant vector is k. Hence c(t) = ti + tj + (1 − t2

2 )k.

Remark 1.5. The image of C1-curve is not necessarily ”smooth”. it may

have sharp edges;
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(1) Cycloid: c(t) = (t − sin t, 1 − cos t) has cusps when it touches x-axis.

That is, when cos t = 1 or when t = 2πn, n = 1, 2, 3, · · ·

(2) Hypocycloid: c(t) = (cos3 t, sin3 t) has cusps at four points when cos t =

0,±1

At all these points, we can check that c′(t) = 0.(Roughly speaking, tangent

vector has no direction.)

Definition 1.6. A differentiable path c is said to be regular if c′(t) 6= 0 at

all t. In this case, the image curve looks smooth.

Circular Orbits

Consider a particle of mass m moving at constant speed s in a circular path

of radius r0. We can represent its motion (in the plane) as

r(t) = (r0 cos Ct, r0 sin Ct)

Find C. Since speed is ‖r′(t)‖ = |C|r0 = s, we get C = s/r0. So the motion is

described as

r(t) =

(

r0 cos
st

r0
, r0 sin

st

r0

)

The quantity s
r0

is called frequency denoted by ω. Thus

r(t) = (r0 cos ωt, r0 sin ωt)

It’s acceleration is

a(t) = r′′(t) = −
2st

r0

(

r0 cos
st

r0
, r0 sin

st

r0

)

= −s2t

r2
0

r(t) = −ω2r(t).

Let us describe motion of a particle having circular motion. The centripetal

force must equal to Gravitational force; By Newton’s Law F = ma

−s2m

r2
0

r(t) = −GmM

r3
0

r(t)

Hence

s2 =
GM

r0

If T denotes the period s = 2πr0/T ; then we obtain
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b
r(t)

r
′(t)

a(t)

a ⊥ r
′(t)ÕªaË> 4.2: acceleration and centripetal force ma,

Kepler’s Law

T 2 = r3
0

(2π)2

GM

Thus the square of the period is equal to the cube of the radius.

Example 1.7. Suppose a satellite is in circular motion about the earth over

the equator. What is the radius of geosynchronous orbit?(It stays fixed over

a point on equator) M = 5.98 × 1024 kg and G = 6.67 × 10−11 meter kg -sec.

Sol. Period must be one day: So T = 60×60×24 = 86, 400 seconds. From

Kepler’s law,

r3
0 =

T 2GM

(2π)2
≈ 7.54 × 1022m3 ≈ 42, 300kmV� 2 â�
 Arc Length

The length of an arc is obtained by dividing the arc into several pieces and

then summing the length of individual line segements; then take the limit.

The Riemann sum is defined as

k
∑

i=1

‖c(ti) − c(ti−1)‖

As the partition P → 0(i.e, ‖P‖ → 0) 1 we see the sum
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a = t0 t1 ti−1 ti tk = b

c

c(t0)

c(t1)

b

b

c(ti−1) c(ti)

c(tk)

f(c(ui))·‖c(ti)−c(ti−1)‖

O

z

y

xÕªaË> 4.3: Riemann sum on the curve

k
∑

i=1

‖c′(ui)‖(ti − ti−1)

approaches
∫ b
a ‖c′(t)‖ dt.

Definition 2.1 (Arc Length). Suppose a curve C has one-to-one C1-parametrization

c. Then the arc length of C is defined by

L(c) =

∫ b

a
‖c′(t)‖ dt =

∫ b

a

√

x′(t)2 + y′(t)2 + z′(t)2dt

Example 2.2. Find the arclength of (cos t, sin t, t2) 0 ≤ t ≤ 2π.

Sol.

‖v‖ =
√

1 + 4t2 = 2

√

t2 +
1

4

To evaluate this integral we need a table of integrals:

∫

√

x2 + a2 dx =
1

2
[x
√

x2 + a2 + a2 log(x +
√

x2 + a2)] + C

Thus

L(c) = · · ·

Example 2.3.

c(θ) = (2 cos2 θ + cos θ, sin 2θ + cos θ), θ ∈ [0, 2π]

1The norm of partition P = {t0, t1, . . . , tn} ‖P‖ is defined as max0≤i<n(ti+1 − ti).
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sol. Above curve is divided into three paths.

c1(θ) = (2 cos2 θ + cos θ, sin 2θ + cos θ), θ ∈ [0, 2π/3]

c2(θ) = (2 cos2 θ + cos θ, sin 2θ + cos θ), θ ∈ [2π/3, 4π/3]

c3(θ) = (2 cos2 θ + cos θ, sin 2θ + cos θ), θ ∈ [4π/3, 2π]

Example 2.4. Consider the cycloid

c(t) = (t − sin t, 1 − cos t)

Its length is

‖c′(t)‖
√

2 − 2 cos t

Hence

L(c) =

∫ 2π

0

√
2 − 2 cos tdt = 2

∫ 2π

0

√

1 − cos t

2
dt

= 2

∫ 2π

0
sin

t

2
dt

= 4

(

− cos
t

2

)

|2π
0 = 8

Arc-Length Differential

Definition 2.5. We let the infinitesimal displacement of a particle follow-

ing a path c(t) = x(t)i + y(t)j + z(t)k

ds = dxi + dyj + dzk

and its arc length differential

ds =
√

dx2 + dy2 + dz2 =
√

x′(t)2 + y′(t)2 + z′(t)2dt

The arc length is defined as

arc length =

∫ b

a
ds =

∫ b

a

√

x′(t)2 + y′(t)2 + z′(t)2dt

One can also define arc-length function s(t):

s(t) =

∫ t

a
‖c′(t)‖ dt
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so that

s′(t) = ‖c′(t)‖

Definition 2.6. Suppose c : [a, b] → R
n is a C1-parametrization of a curve

C. Then the arc length of C is defined by

L(c) =

∫ b

a
‖c′(t)‖ dt =

∫ b

a

√

x′(t)2 + y′(t)2 + z′(t)2dt.

Example 2.7. Suppose a function y = f(x) given. Then the graph is viewed

as a curve parameterized by t = x and c(x) = (x, f(x)) So the length of the

graph from a to b is

L(c) =

∫ b

a

√

1 + (f ′(x))2dx

Path integral-See Ch 7

Definition 2.8. Suppose a curve C has one-to-one C1-parametrization c.

Then the path integral of f(x, y, z) on C is defined by

∫

c

f(x, y, z) ds

We write it as
∫

C f ds as
∫

C f(x, y, z) ds. Note this integral is independent of

choice of c.

Example 2.9. Find the path integral of f(x, y, z) = x2y2z2 on C.

C = {(x, y, z) : x2 + y2 + z2 = 2, x2 + y2 = z2, z > 0}

∫

C
f ds =

∫

C1

f ds +

∫

C2

f ds + · · · +
∫

Ck

f ds
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∫

−c

f ds =

∫ b

a
f(−c(t))‖(−c)′(t)‖ dt

=

∫ b

a
f(c(b + a − t))‖c′(b + a − t)(−1)‖ dt

=

∫ b

a
f(c(b + a − t))‖c′(b + a − t)‖ dt

=

∫ a

b
f(c(u))‖c′(u)‖(−1) du

=

∫

c

f ds

where u = b + a − t was used.

Example 2.10. Find the path integral of f(x, y, z) = x2 + y2 + z2 on C.

C = {(cos t, sin t, t) : t ∈ [0, 2π]} ∪ {(1, 0, t) : t ∈ [0, 2π]}

sol. C = is the sum of C1 and C2.

C1 = {(cos t, sin t, t) : t ∈ [0, 2π]}, C2 = {(1, 0, t) : t ∈ [0, 2π]}

So parameterize C1 and C2 as follows:

c1 = (cos t, sin t, t) t ∈ [0, 1], c2 = (1, 0, t) t ∈ [0, 2π]

Hence the integral is

∫

C
f ds =

∫

C1

f ds +

∫

C2

f ds

=

∫

c1

f ds +

∫

c2

f ds

=

∫ 2π

0
(1 + t2)

√
2 dt +

∫ 2π

0
(1 + t2) dt

= (1 +
√

2)
(

2π + 8π3/3
)

V� 3 â�
 Vector Fields

Definition 3.1. Let D ⊂ R
n. A vector function defined on D with values

lying in R
n is called vector field.
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A vector field F is represented by n real valued function F1, F2, . . . , Fn.

F(P ) = (F1(P ), F2(P ), . . . , Fn(P ))

If n = 3

F(P ) = (F1(P ), F2(P ), F3(P ))

is written as

F(P ) = F1(P )i + F2(P )j + F3(P )k

Gradient vector field

Given real valued function f(x1, x2, . . . , xn) we define

∇f := (
∂f

∂x1
,

∂f

∂x2
, . . . ,

∂f

∂xn
)

call it gradient vector field.

Flow lines

Example 3.2. Heat flux vector fields

J = −k∇T

Example 3.3. A gravitational force field. Place the origin at the center of

earth. Newton’s law

F = −mMG

r3
r

We see F = −∇V where the potential V is given by

V = −mMG

r

Note that F point in the direction of decreasing V .

Example 3.4. Similarly, we have Coulomb’s law. The force acting on a charge

e at position r due to a charge Q at the origin is

F =
ǫQe

r3
r = −∇V

where V = ǫQe/r. The level sets of V are called equipotential surface or

lines Note that the force field is orthogonal to the equipotential surfaces. We



12 ℄j 4 �©� VECTOR VALUED FUNCTIONS

see F = −∇V where the potential V is given by

V = −mMG

r

Note that F point in the direction of decreasing V .

Example 3.5. Show the vector field V(x, y) = yi−xj is not a gradient vector

field. i.e, there is no C1 function f such that

V = ∇f =
∂f

∂x
i +

∂f

∂y
j

sol. Suppose there is such an f . Then ∂f
∂x = y and ∂f

∂y = −x. Solving,

f(x, y) = xy + g(y). Then ∂f
∂y = x + g′(y) = −x, which is impossible.

Conservation of energy

Consider a particle of mass m moving in a force field that is a potential field.

(F = −∇V )

mr′′(t) = −∇V (r(t))

A basic fact about such a motion is the conservation of energy. The energy E

is defined to be the sum of kinetic energy and potential energy

E =
1

2
m‖r′(t)‖2 + V (r(t))

The principle of Conservation of energy says: E is independent of time. So

dE/dt = 0. We can prove it simply:

dE

dt
= mr′(t) · r′′(t) + (∇V ) · r′(t) = r′ · (−∇V + ∇V ) = 0

Escape Velocity

As an application of conservation of energy, we compute the velocity of a

rocket to escape the earth gravitational influence. The energy(kinetic energy

+potential energy) is

E0 =
1

2
mv2

e − mMG

R0
.
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The escape velocity is obtained when this energy is zero. Thus

ve =

√

2MG

R0
.

Now MG/R2
0 is gravity g, thus

ve =
√

2gR0.

Flow Lines

Definition 3.6. Given a vector field F the path c(t) satisfying

c′(t) = F(c(t))

is called the flow line for F. That is, F yields the velocity fields of the path

c(t). flow line is also called as streamlines or integral curves

Example 3.7. Suppose water is flowing in a pipe as in fig 4.4. Suppose it

does not depends on time. Then it is given by a vector field.

ÕªaË> 4.4: Water flow in a pipe

Let F = P i + Qj + Rk and c(t) = (x(t), y(t), z(t)) A flow line may be

viewed as the solution of system of DE. Indeed from c′(t) = F(c(t)), we see

x′(t) = P (x(t), y(t), z(t))

y′(t) = Q(x(t), y(t), z(t))

z′(t) = R(x(t), y(t), z(t))

Example 3.8. Show c(t) = (cos t, sin t) is a flow line of F = −yi + xj. can

you find others?
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x

y

O

ÕªaË> 4.5: The vector field F(x, y) = (−yi + xj)/
√

x2 + y2

sol. Verify

c′(t) = F(c(t))

Others may be

c(t) = (r cos(t − t0), r sin(t − t0))

Example 3.9. Draw the vector fields F

F(x, y) =
−yi + xj

x2 + y2
, (x, y) 6= (0, 0).

It describes the flow of water in a sink(bathtub).

Example 3.10. Draw the vector fields F and its integral curve (Flow line)

(Fig 4.5)

F(x, y) =
−yi + xj
√

x2 + y2
, (x, y) 6= (0, 0).

Let c(t) = (x(t), y(t)) be the flow line. Then c′(t) = (x′(t), y′(t)) must be

F(c(t)). Hence
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x′(t) =
−y(t)

√

x(t)2 + y(t)2
(4.1)

y′(t) =
x(t)

√

x(t)2 + y(t)2
(4.2)

Multiply first by x(t) and second by y(t). Then adding we get

x′(t)x(t) + y′(t)y(t) = 0

Integrating

x(t)2 + y(t)2 = r

This is equation for circle. So we can parameterize it by trig function.

c(t) = (x(t), y(t)) = (r cos θ(t), r sin θ(t))

Hence

x′(t) = −rθ′(t) sin θ(t) (4.3)

y′(t) = rθ′(t) cos θ(t) (4.4)

From (4.2) (4.4)

−rθ′(t) sin θ(t) = − sin θ(t)

Hence

θ′(t) =
1

r

So the flow line c(t) is

c(t) = (x(t), y(t)) = (r cos
t

r
, r sin

t

r
)

The period of c(t) is 2πr.

Example 3.11. Show that F(x, y) = xi − yj is a gradient field and find flow

line
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sol. Suppose F is a gradient field of f(x, y) then

∂f

∂x
i +

∂f

∂y
j = xi− yj

Find f(x, y) such that

∂f

∂x
= x,

∂f

∂y
= −y

Hence f(x, y) = 1
2(x2 − y2)

1

2
(x2 − y2) = c

Suppose F(x, y) is given by

F(x, y) = (F1(x, y), F2(x, y)).

Then the flow line (x(t), y(t)) satisfies

x′(t) = F1(x(t), y(t))

y′(t) = F2(x(t), y(t)).

V� 4 â�
 Divergence and curl

For divergence and curl operations,(PROCESS) we make use of del operator

defined by

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

It works like this: For gradient

∇f =

(

i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)

f = i
∂f

∂x
+ j

∂f

∂y
+ k

∂f

∂z

Divergence

Definition 4.1 (Divergence). If F = F1i + F2j + F3k is a vector field then

the divergence is the scalar field



℄j 4 ℄X� DIVERGENCE AND CURL 17

divF =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z

=
( ∂

∂x
i +

∂

∂y
j +

∂

∂z
k
)

·
(

F1i + F2j + F3k
)

= ∇ · F

Similarly for n-dim

divF =
n
∑

i=1

∂Fi

∂xi
=

∂F1

∂x1
+

∂F2

∂x2
+ · · · + ∂Fn

∂xn

Example 4.2. Find the divergence of F = (ex sin y, ex cos y, yz2).

sol. Since divF = ∇ · F

divF =
∂

∂x
(ex sin y) +

∂

∂y
(ex cos y) +

∂

∂z
(yz2)

= ex sin y + (−ex sin y) + 2yz = 2yz.

Hence divF = 2yz.

Example 4.3.

F = x2yi + zj + xyzk

Meaning of divergence

Suppose F represent the velocity of a gas or fluid. Then divergence repre-

sents the rate of expansion per unit volume: If divF(P ) > 0 then it is

expanding. If ( divF(P ) < 0) then it is compressing.

It is
1

V (0)

d

dt
V (t)

∣

∣

∣

∣

t=0

≈ divF(x0)

Example 4.4. Draw flow lines of

F = xi + yj

Div is positive
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ÕªaË> 4.6: vector field (x, y) and −(x, y)

Example 4.5. Graph of

F = xi

Div is positive(Expanding)

Example 4.6. Graph of

F = −xi− yj
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ÕªaË> 4.7: Incompressible F = −yi + xj

Example 4.7. The flow lines of

F = −yi + xj

are concentric circles. From this we guess the fluid is neither expanding or

compressing. Div is zero. Fig 4.7.

Example 4.8. The vector field F = xi− yj is divergence free. The flow lines

are as in figure.

Curl

Use the symbol ∇ to see

curlF = ∇× F =

∣

∣

∣

∣

∣

∣

∣

∣

i j k

∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

∣

∣

∣

∣

∣

∣

∣

∣

=
(∂F3

∂y
− ∂F2

∂z

)

i +
(∂F1

∂z
− ∂F3

∂x

)

j +
(∂F2

∂x
− ∂F1

∂y

)

k
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ÕªaË> 4.8: F = xi− yj Incompressible: Volume preserving

Example 4.9. Let F = xi + xyj + k. Find ∇× F.

∇× F =

∣

∣

∣

∣

∣

∣

∣

∣

i j k

∂
∂x

∂
∂y

∂
∂z

x xy 1

∣

∣

∣

∣

∣

∣

∣

∣

= 0i − 0j + yk

Example 4.10. Let F = xyi− sin zj + k. Find ∇× F.

∇× F =

∣

∣

∣

∣

∣

∣

∣

∣

i j k

∂
∂x

∂
∂y

∂
∂z

xy − sin z 1

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∂
∂y

∂
∂z

− sin z 1

∣

∣

∣

∣

∣

∣

i−
∣

∣

∣

∣

∣

∂
∂z

∂
∂z

xy 1

∣

∣

∣

∣

∣

j +

∣

∣

∣

∣

∣

∣

∂
∂x

∂
∂y

xy sin z

∣

∣

∣

∣

∣

∣

k

= cos zi− xk

Meaning of curl
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b

b

b

O y

x

L

z

α Q

B

w

r

v
θ

ÕªaË> 4.9: velocity v and angular velocity w has relation v = w × r.

Consider a rigid body B rotating about an axis L. (Fig 4.9 ). The rotational

motion of B can be described by a vector along axis of rotation w.

Let w the vector along z-axis s.t. ω = ||w||. The vector w is called the

angular velocity vector and ω is angular speed.

ω = ||w||
Assume L is z-axis Q is any point on the body B, α is distance from Q

to L. Then α = ||r|| sin θ (r points to Q). Consider the tangent vector v

at Q. Since Q moves around a circle of radius α and parallel to xy-plane

(counterclockwise), we see,

||v|| = ωα = ω||r|| sin θ = ||w||||r|| sin θ,

Then by definition of cross product,

v = w × r.

Since w = ωk, r = xi + yj + zk we see from the property of cross product,

v = w × r = −ωyi + ωxj.

So curlv = 2ωk = 2w. Hence for the rotation of a rigid body, the curl is

a vector field whose direction is along the axis of rotation and magnitude is

twice the angular speed.
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Curl and rotational flow

∇×F represents twice the angular velocity: So if it is 0, then we have irrota-

tional fluid.

Example 4.11. Find curlF when F(x, y, z) = (yi− xj)/(x2 + y2) in R
3.

sol. Write F(x, y, z) =
y

x2 + y2 i + −x
x2 + y2 j + 0k. Then we see

∇× F =

∣

∣

∣

∣

∣

∣

∣

∣

∣

i j k

∂
∂x

∂
∂y

∂
∂z

y
x2 + y2

−x
x2 + y2 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

[

∂

∂x

( −x

x2 + y2

)

− ∂

∂y

( y

x2 + y2

)

]

k

=

[−(x2 + y2) − (−x)(2x)

(x2 + y2)2
− (x2 + y2) − (y)(2y)

(x2 + y2)2

]

k

=

[

x2 − y2

(x2 + y2)2
− x2 − y2

(x2 + y2)2

]

k

= 0.

Gradients are curl Free

Theorem 4.12. For any C2 function

∇× (∇f) = 0

Proof.

∇×∇f =

∣

∣

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

∂f
∂x

∂f
∂y

∂f
∂z

∣

∣

∣

∣

∣

∣

∣

∣

=

(

∂2f

∂y∂z
− ∂2f

∂z∂y

)

i +

(

∂2f

∂z∂zx
− ∂2f

∂x∂z

)

j +

(

∂2f

∂x∂y
− ∂2f

∂y∂x

)

k

Example 4.13. Show F(x, y, z) = yi − xj is not a gradient field. i.e, there

does not exists C2-function f s.t ∇f = F holds.
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sol. If F is the gradient of f then by Thm 4.12

curlF = ∇×F = ∇×∇f = 0

Let F(x, y, z) = yi− xj + 0k. Then

∇× F =

∣

∣

∣

∣

∣

∣

∣

∣

i j k

∂
∂x

∂
∂y

∂
∂z

y −x 0

∣

∣

∣

∣

∣

∣

∣

∣

=

[

∂

∂x

(

− x
)

− ∂

∂y

(

y
)

]

k = −2k

curlF = −2k 6= 0, a contradiction.

b

(a) F = (yi− xj)/(x2 + y2)

b

(b) F = yi− xjÕªaË> 4.10: Movement of small paddle in vector fields

Remark 4.14. Vector field F(x, y, z) = (yi − xj)/(x2 + y2)(It describes flow

in a tub) does not rotate about any point except z-axis. When small paddle

is placed in the fluid, it will follow the flow line( a circle in this case), but it

does not rotate about its own axis. Such a field is called irrotational.

But the vector field F(x, y, z) = yi−xj has nonzero rotation. (fig 4.10(b) ).

Scalar curl

As a special case, if F = P i + Qj then

∇× F = (
∂Q

∂x
− ∂P

∂y
)k
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(∂Q
∂x − ∂P

∂y ) is called a scalar curl.

Example 4.15. Find scalar curl of V = −y2i + xj,

∇× V =

∣

∣

∣

∣

∣

∣

∣

∣

i j k

∂
∂x

∂
∂y

∂
∂z

−y2 x 0

∣

∣

∣

∣

∣

∣

∣

∣

= (1 + 2y)k

Curls are divergence free

Theorem 4.16. For any C2 vector field F

div curlF = ∇ · (∇× F) = 0

Physical meaning of divergence

Let

F(x, y, z) = (F1, F2, F3) = F1i + F2j + F3k

be a velocity vector field of some fluid in R
3.

O

x

y

z

∆W = ∆x∆y∆z

bc

bc

∆x ∆y

∆z

(x, y, z)

ÕªaË> 4.11: Geometric meaning of divergence

Fig 4.11. Consider a box W with dimension ∆x,∆y,∆z Then volume of

W is ∆W = ∆x∆y∆z. Consider the loss of fluid across W per unit time.

First consider fluid loss through left side of W whose area is ∆x∆z. (Consider

F2 only). The outflux is

F(x, y, z) · (−j)∆x∆z = −F2(x, y, z)∆x∆z

influx is

F(x, y + ∆y, z) · j∆x∆z = F2(x, y + ∆y, z)∆x∆z
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(

F2(x, y + ∆y, z) − F2(x, y, z)
)

∆x∆z ≈
(∂F2

∂y
∆y
)

∆x∆z

Considering all the direction, the change in fluid across W per unit time is(total

flux)
(∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z

)

∆x∆y∆z

Now divide by volume ∆W

density of flux/time =
Flux across boundary

vol
≈
(∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z

)

Let ∆x,∆y,∆z → 0 Then fluid density of F is divF. If F is gas, then divF

represents the rate of expansion of gas per unit time per unit volume. If

F(x, y, z) = xi + yj + zk then divF = 3 and this means the gas is expanding

three times per unit time.

Laplace operator

∇2f = ∇ · (∇f) =
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
.

∇2f = 0 is called Laplace equation.

Example 4.17. Find ∇2f when

f(x, y) =
1

r
=

1
√

x2 + y2 + z2,
(x, y, z, ) 6= 0

where r = xi + yj + zk and r = ‖r‖.
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sol.

∂f

∂x
=

−x

(x2 + y2 + z2)3/2
,

∂f

∂y
=

−y

(x2 + y2 + z2)3/2
,

∂f

∂z
=

−z

(x2 + y2 + z2)3/2
.

Second derivatives, we find that

∂2f

∂x2
=

3x2

(x2 + y2 + z2)5/2
− 1

(x2 + y2 + z2)3/2

∂2f

∂y2
=

3y2

(x2 + y2 + z2)5/2
− 1

(x2 + y2 + z2)3/2

∂2f

∂z2
=

3z2

(x2 + y2 + z2)5/2
− 1

(x2 + y2 + z2)3/2

Thus

∇2f = 0.

Example 4.18. For given f(x, y) = x3 − 3xy2 + 7z, compute ∇2f .

sol. First compute ∂f/∂x, ∂f/∂y and ∂f/∂z.

∂f

∂x
= 3x2 − 3y2,

∂f

∂y
= −6xy,

∂f

∂z
= 7.

Hence
∂2f

∂x2
= 6x,

∂2f

∂y2
= −6x,

∂2f

∂z2
= 0.

and

∇2f =
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
= 6x + (−6x) + 0 = 0.

Vector differential identities

—————————– Vector differential identities ———————————

(1) ∇(f + g) = ∇f + ∇g

(2) ∇(cf) = c∇f, for constant c.

(3) ∇(fg) = f∇g + g∇f

(4) ∇(f/g) = (g∇f − f∇g)/g2, g 6= 0
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(5) div (F + G) = divF + divG

(6) curl (F + G) = curlF + curlG

(7) div (fF) = fdiv F + F · ∇f

(8) div (F× G) = G · curlF− F · curlG

(9) div curlF = 0

(10) curl (fF) = f curlF + ∇f × F

(11) curl (F × G) = F divG −G divF + (G · ∇)F − (F · ∇)G

(12) curl curlF = grad div F−∇2F

(13) curl∇f = 0

(14) ∇(F · F) = 2(F · ∇)F + 2F × (curlF)

(15) ∇2(fg) = f∇2g + g∇2f + 2(∇f · ∇g)

(16) ∇(F · G) = (F · ∇)G + (G · ∇)F + F × curlG + G× curlF

(17) div (∇f ×∇g) = 0

(18) ∇ · (f∇g − g∇f) = f∇2g − g∇2f

(19) H · (F× G) = G · (H × F) = F · (G × H)

(20) H · ((F×∇) × G) = ((H · ∇)G) · F − (H · F)(∇ · G)

(21) F × (G× H) = (F · H)G −H(F · G)

——————————————————————————-

Example 4.19. Prove (7).

sol.

div (fF) =
∂

∂x
(fF1) +

∂

∂y
(fF2) +

∂

∂z
(fF3)

By product rule,

div (fF) = f

(

∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z

)

+ F1
∂f

∂x
+ F2

∂f

∂y
+ F3

∂f

∂z

= f(∇ · F) + F · ∇f.

Example 4.20. Show ∇2(1/r) = 0 for r 6= 0.

sol. As before ∇(1/r) = −r/r3. In general, ∇(rn) = nrn−2r. By (7),

−∇2(1/r) = ∇ · (r/r3) =
1

r3
∇ · r + r · ∇(

1

r3
)

=
3

r3
+ r · (−3r

r5
) = 0.
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