제 4 장

Vector valued functions

제 1 절 Acceleration and Newton's law

그림 4.1: Gravitational force is represented as vectors

Example 1.1. The force acting on a particle of mass m. Suppose the mass of the earth is M and G gravitational constant. If \mathbf{r} is the position vector then the gravity \mathbf{F} is (Figure 4.1)

$$\mathbf{F} = -\frac{GmM}{\|\mathbf{r}\|^3}\mathbf{r}$$

Definition 1.2. A **path** C is the image of a function **c** with domain I range in \mathbb{R}^n . We call **c** the **parametrization** of C.

A parameterized curve **c** in \mathbb{R}^2 or \mathbb{R}^3 can be written as $\mathbf{c}(t) = (x(t), y(t), z(t))$.

If x(t), y(t), z(t) are continuous, then we say **c** is continuous, and if x(t), y(t), z(t) are differentiable, then **c** is differentiable. If x'(t), y'(t), z'(t) are continuous then we say **c** is C^1 -curve.

Differentiation Rues

- (1) $\frac{d}{dt}[\mathbf{b}(t) + \mathbf{c}(t)] = \mathbf{b}'(t) + \mathbf{c}'(t)$
- (2) $\frac{d}{dt}[p(t)\mathbf{c}(t)] = p'(t)\mathbf{c}(t) + p(t)\mathbf{c}'(t)$
- (3) $\frac{d}{dt} [\mathbf{b}(t) \cdot \mathbf{c}(t)] = \mathbf{b}'(t) \cdot \mathbf{c}(t) + \mathbf{b}(t) \cdot \mathbf{c}'(t)$
- (4) $\frac{d}{dt}[\mathbf{b}(t) \times \mathbf{c}(t)] = \mathbf{b}'(t) \times \mathbf{c}(t) + \mathbf{b}(t) \times \mathbf{c}'(t)$
- (5) $\frac{d}{dt}[\mathbf{c}(q(t))] = q'(t)\mathbf{c}'(q(t))$

Example 1.3. Show that if $\mathbf{c}(t)$ is a vector function such that $\|\mathbf{c}(t)\|$ is constant, then $\mathbf{c}'(t)$ is perpendicular to $\mathbf{c}(t)$ for all t.

Solution:

 $\|\mathbf{c}(t)\|^2 = \mathbf{c}(t) \cdot \mathbf{c}(t)$. Derivative of constant is zero. Hence

$$0 = \frac{d}{dt} [\mathbf{c}(t) \cdot \mathbf{c}(t)] = \mathbf{c}'(t) \cdot \mathbf{c}(t) + \mathbf{c}(t) \cdot \mathbf{c}'(t) = 2\mathbf{c}(t) \cdot \mathbf{c}'(t)$$

Thus $\mathbf{c}'(t)$ is perpendicular to $\mathbf{c}(t)$.

Second derivative of a curve $\mathbf{c}(t)$ is acceleration, i.e., $\mathbf{a}(t) = d\mathbf{v}(t)/dt = \mathbf{c}''(t)$.

Example 1.4. A particle moves with a constant acceleration $\mathbf{a}(t) = -bk$. If the position when t = 0 is (0, 0, 1) and velocity at t = 0 is $\mathbf{i} + \mathbf{j}$. Describe the motion of the particle.

Sol. Let (x(t), y(t), z(t)) represents the path traveled by the particle. Since the acceleration is $\mathbf{c}''(t) = -\mathbf{k}$ we see the velocity is

$$\mathbf{c}'(t) = C_1 \mathbf{i} + C_2 \mathbf{j} - t\mathbf{k} + C_3 \mathbf{k}.$$

Hence by initial condition, $\mathbf{c}'(t) = \mathbf{i} + \mathbf{j} - t\mathbf{k}$ and so $\mathbf{c}(t) = t\mathbf{i} + t\mathbf{j} - \frac{t^2}{2}\mathbf{k} + Const vec$. The constant vector is \mathbf{k} . Hence $\mathbf{c}(t) = t\mathbf{i} + t\mathbf{j} + (1 - \frac{t^2}{2})\mathbf{k}$.

Remark 1.5. The image of C^1 -curve is not necessarily "smooth". it may have sharp edges;

- (1) Cycloid: $\mathbf{c}(t) = (t \sin t, 1 \cos t)$ has cusps when it touches x-axis. That is, when $\cos t = 1$ or when $t = 2\pi n, n = 1, 2, 3, \cdots$
- (2) Hypocycloid: $\mathbf{c}(t) = (\cos^3 t, \sin^3 t)$ has cusps at four points when $\cos t = 0, \pm 1$

At all these points, we can check that $\mathbf{c}'(t) = 0.$ (Roughly speaking, tangent vector has no direction.)

Definition 1.6. A differentiable path **c** is said to be **regular** if $\mathbf{c}'(t) \neq 0$ at all t. In this case, the image curve looks smooth.

Circular Orbits

Consider a particle of mass m moving at constant speed s in a circular path of radius r_0 . We can represent its motion (in the plane) as

$$\mathbf{r}(t) = (r_0 \cos Ct, r_0 \sin Ct)$$

Find C. Since speed is $||\mathbf{r}'(t)|| = |C|r_0 = s$, we get $C = s/r_0$. So the motion is described as

$$\mathbf{r}(t) = \left(r_0 \cos \frac{st}{r_0}, r_0 \sin \frac{st}{r_0}\right)$$

The quantity $\frac{s}{r_0}$ is called **frequency** denoted by ω . Thus

$$\mathbf{r}(t) = (r_0 \cos \omega t, r_0 \sin \omega t)$$

It's acceleration is

$$\mathbf{a}(t) = \mathbf{r}''(t) = -\frac{^2st}{r_0} \left(r_0 \cos \frac{st}{r_0}, r_0 \sin \frac{st}{r_0} \right) = -\frac{s^2t}{r_0^2} \mathbf{r}(t) = -\omega^2 \mathbf{r}(t).$$

Let us describe motion of a particle having circular motion. The centripetal force must equal to Gravitational force; By Newton's Law $\mathbf{F} = m\mathbf{a}$

$$-\frac{s^2m}{r_0^2}\mathbf{r}(t) = -\frac{GmM}{r_0^3}\mathbf{r}(t)$$

Hence

$$s^2 = \frac{GM}{r_0}$$

If T denotes the period $s = 2\pi r_0/T$; then we obtain

_

그림 4.2: acceleration and centripetal force $m\mathbf{a}$,

Kepler's Law

$$T^2 = r_0^3 \frac{(2\pi)^2}{GM}$$

Thus the square of the period is equal to the cube of the radius.

Example 1.7. Suppose a satellite is in circular motion about the earth over the equator. What is the radius of *geosynchronous* orbit?(It stays fixed over a point on equator) $M = 5.98 \times 10^{24}$ kg and $G = 6.67 \times 10^{-11}$ meter kg -sec.

Sol. Period must be one day: So $T = 60 \times 60 \times 24 = 86,400$ seconds. From Kepler's law,

$$r_0^3 = \frac{T^2 G M}{(2\pi)^2} \approx 7.54 \times 10^{22} m^3 \approx 42,300 km$$

제 2 절 Arc Length

The length of an arc is obtained by dividing the arc into several pieces and then summing the length of individual line segements; then take the limit.

The Riemann sum is defined as

$$\sum_{i=1}^{k} \|\mathbf{c}(t_i) - \mathbf{c}(t_{i-1})\|$$

As the partition $P \rightarrow 0 ({\rm i.e,}~ \|P\| \rightarrow 0)^{-1}$ we see the sum

그림 4.3: Riemann sum on the curve

$$\sum_{i=1}^{k} \|\mathbf{c}'(u_i)\|(t_i - t_{i-1})\|$$

approaches $\int_{a}^{b} \|\mathbf{c}'(t)\| dt$.

Definition 2.1 (Arc Length). Suppose a curve C has one-to-one C^1 -parametrization **c**. Then the **arc length** of C is defined by

$$L(\mathbf{c}) = \int_{a}^{b} \|\mathbf{c}'(t)\| dt = \int_{a}^{b} \sqrt{x'(t)^{2} + y'(t)^{2} + z'(t)^{2}} dt$$

Example 2.2. Find the arclength of $(\cos t, \sin t, t^2)$ $0 \le t \le 2\pi$. Sol.

$$\|\mathbf{v}\| = \sqrt{1+4t^2} = 2\sqrt{t^2 + \frac{1}{4}}$$

To evaluate this integral we need a table of integrals:

$$\int \sqrt{x^2 + a^2} \, dx = \frac{1}{2} \left[x \sqrt{x^2 + a^2} + a^2 \log(x + \sqrt{x^2 + a^2}) \right] + C$$

Thus

$$L(\mathbf{c}) = \cdots$$

Example 2.3.

$$\mathbf{c}(\theta) = (2\cos^2\theta + \cos\theta, \sin 2\theta + \cos\theta), \quad \theta \in [0, 2\pi]$$

¹The norm of partition $P = \{t_0, t_1, \dots, t_n\} ||P||$ is defined as $\max_{0 \le i < n} (t_{i+1} - t_i)$.

sol. Above curve is divided into three paths.

$$\begin{aligned} \mathbf{c}_1(\theta) &= (2\cos^2\theta + \cos\theta, \ \sin 2\theta + \cos\theta), \quad \theta \in [0, 2\pi/3] \\ \mathbf{c}_2(\theta) &= (2\cos^2\theta + \cos\theta, \ \sin 2\theta + \cos\theta), \quad \theta \in [2\pi/3, 4\pi/3] \\ \mathbf{c}_3(\theta) &= (2\cos^2\theta + \cos\theta, \ \sin 2\theta + \cos\theta), \quad \theta \in [4\pi/3, 2\pi] \end{aligned}$$

Example 2.4. Consider the cycloid

$$\mathbf{c}(t) = (t - \sin t, 1 - \cos t)$$

Its length is

$$\|\mathbf{c}'(t)\|\sqrt{2-2\cos t}$$

Hence

$$L(\mathbf{c}) = \int_0^{2\pi} \sqrt{2 - 2\cos t} dt = 2 \int_0^{2\pi} \sqrt{\frac{1 - \cos t}{2}} dt$$
$$= 2 \int_0^{2\pi} \sin \frac{t}{2} dt$$
$$= 4 \left(-\cos \frac{t}{2} \right) |_0^{2\pi} = 8$$

Arc-Length Differential

Definition 2.5. We let the **infinitesimal displacement** of a particle following a path $\mathbf{c}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$

$$d\mathbf{s} = dx\mathbf{i} + dy\mathbf{j} + dz\mathbf{k}$$

and its arc length differential

$$ds = \sqrt{dx^2 + dy^2 + dz^2} = \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2} dt$$

The arc length is defined as

arc length
$$= \int_{a}^{b} ds = \int_{a}^{b} \sqrt{x'(t)^{2} + y'(t)^{2} + z'(t)^{2}} dt$$

One can also define **arc-length function** s(t):

$$s(t) = \int_a^t \|\mathbf{c}'(t)\| \, dt$$

so that

$$s'(t) = \|\mathbf{c}'(t)\|$$

Definition 2.6. Suppose $\mathbf{c} : [a, b] \to \mathbb{R}^n$ is a C^1 -parametrization of a curve C. Then the **arc length** of C is defined by

$$L(\mathbf{c}) = \int_{a}^{b} \|\mathbf{c}'(t)\| dt = \int_{a}^{b} \sqrt{x'(t)^{2} + y'(t)^{2} + z'(t)^{2}} dt.$$

Example 2.7. Suppose a function y = f(x) given. Then the graph is viewed as a curve parameterized by t = x and $\mathbf{c}(x) = (x, f(x))$ So the length of the graph from a to b is

$$L(\mathbf{c}) = \int_{a}^{b} \sqrt{1 + (f'(x))^2} dx$$

Path integral-See Ch 7

Definition 2.8. Suppose a curve C has one-to-one C^1 -parametrization c. Then the **path integral** of f(x, y, z) on C is defined by

$$\int_{\mathbf{c}} f(x, y, z) \, ds$$

We write it as $\int_C f \, ds$ as $\int_C f(x, y, z) \, ds$. Note this integral is independent of choice of **c**.

Example 2.9. Find the path integral of $f(x, y, z) = x^2 y^2 z^2$ on C.

$$C = \{(x, y, z) \colon x^2 + y^2 + z^2 = 2, \ x^2 + y^2 = z^2, \ z > 0\}$$

$$\int_C f \, ds = \int_{C_1} f \, ds + \int_{C_2} f \, ds + \dots + \int_{C_k} f \, ds$$

$$\int_{-\mathbf{c}} f \, ds = \int_{a}^{b} f(-\mathbf{c}(t)) \| (-\mathbf{c})'(t) \| \, dt$$

= $\int_{a}^{b} f(\mathbf{c}(b+a-t)) \| \mathbf{c}'(b+a-t)(-1) \| \, dt$
= $\int_{a}^{b} f(\mathbf{c}(b+a-t)) \| \mathbf{c}'(b+a-t) \| \, dt$
= $\int_{b}^{a} f(\mathbf{c}(u)) \| \mathbf{c}'(u) \| (-1) \, du$
= $\int_{\mathbf{c}} f \, ds$

where u = b + a - t was used.

Example 2.10. Find the path integral of $f(x, y, z) = x^2 + y^2 + z^2$ on C.

$$C = \{(\cos t, \sin t, t) \colon t \in [0, 2\pi]\} \cup \{(1, 0, t) \colon t \in [0, 2\pi]\}$$

sol. C =is the sum of C_1 and C_2 .

$$C_1 = \{(\cos t, \sin t, t) \colon t \in [0, 2\pi]\}, \quad C_2 = \{(1, 0, t) \colon t \in [0, 2\pi]\}$$

So parameterize C_1 and C_2 as follows:

$$\mathbf{c}_1 = (\cos t, \sin t, t) \quad t \in [0, 1], \quad \mathbf{c}_2 = (1, 0, t) \quad t \in [0, 2\pi]$$

Hence the integral is

$$\int_{C} f \, ds = \int_{C_1} f \, ds + \int_{C_2} f \, ds$$

= $\int_{\mathbf{c}_1} f \, ds + \int_{\mathbf{c}_2} f \, ds$
= $\int_{0}^{2\pi} (1+t^2)\sqrt{2} \, dt + \int_{0}^{2\pi} (1+t^2) \, dt$
= $(1+\sqrt{2}) \left(2\pi + 8\pi^3/3\right)$

제 3 절 Vector Fields

Definition 3.1. Let $D \subset \mathbb{R}^n$. A vector function defined on D with values lying in \mathbb{R}^n is called **vector field**.

A vector field **F** is represented by *n* real valued function F_1, F_2, \ldots, F_n .

$$\mathbf{F}(P) = (F_1(P), F_2(P), \dots, F_n(P))$$

If n = 3

$$\mathbf{F}(P) = (F_1(P), F_2(P), F_3(P))$$

is written as

$$\mathbf{F}(P) = F_1(P)\mathbf{i} + F_2(P)\mathbf{j} + F_3(P)\mathbf{k}$$

Gradient vector field

Given real valued function $f(x_1, x_2, \ldots, x_n)$ we define

$$\nabla f := \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right)$$

call it gradient vector field.

Flow lines

Example 3.2. Heat flux vector fields

$$J = -k\nabla T$$

Example 3.3. A gravitational force field. Place the origin at the center of earth. Newton's law

$$\mathbf{F} = -\frac{mMG}{r^3}\mathbf{r}$$

We see $\mathbf{F} = -\nabla V$ where the potential V is given by

$$V = -\frac{mMG}{r}$$

Note that \mathbf{F} point in the direction of decreasing V.

Example 3.4. Similarly, we have Coulomb's law. The force acting on a charge e at position **r** due to a charge Q at the origin is

$$\mathbf{F} = \frac{\epsilon Q e}{r^3} \mathbf{r} = -\nabla V$$

where $V = \epsilon Q e/r$. The level sets of V are called **equipotential surface or lines** Note that the force field is orthogonal to the equipotential surfaces. We see $\mathbf{F} = -\nabla V$ where the potential V is given by

$$V = -\frac{mMG}{r}$$

Note that \mathbf{F} point in the direction of decreasing V.

Example 3.5. Show the vector field $\mathbf{V}(x, y) = y\mathbf{i} - x\mathbf{j}$ is not a gradient vector field. i.e, there is no C^1 function f such that

$$\mathbf{V} = \nabla f = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j}$$

sol. Suppose there is such an f. Then $\frac{\partial f}{\partial x} = y$ and $\frac{\partial f}{\partial y} = -x$. Solving, f(x,y) = xy + g(y). Then $\frac{\partial f}{\partial y} = x + g'(y) = -x$, which is impossible.

Conservation of energy

Consider a particle of mass m moving in a force field that is a potential field. $(\mathbf{F} = -\nabla V)$

$$m\mathbf{r}''(t) = -\nabla V(\mathbf{r}(t))$$

A basic fact about such a motion is the *conservation of energy*. The energy E is defined to be the sum of kinetic energy and potential energy

$$E = \frac{1}{2}m\|\mathbf{r}'(t)\|^2 + V(\mathbf{r}(t))$$

The principle of *Conservation of energy* says: E is independent of time. So dE/dt = 0. We can prove it simply:

$$\frac{dE}{dt} = m\mathbf{r}'(t) \cdot \mathbf{r}''(t) + (\nabla V) \cdot \mathbf{r}'(t) = \mathbf{r}' \cdot (-\nabla V + \nabla V) = 0$$

Escape Velocity

As an application of conservation of energy, we compute the velocity of a rocket to escape the earth gravitational influence. The energy(kinetic energy +potential energy) is

$$E_0 = \frac{1}{2}mv_e^2 - \frac{mMG}{R_0}.$$

The escape velocity is obtained when this energy is zero. Thus

$$v_e = \sqrt{\frac{2MG}{R_0}}$$

Now MG/R_0^2 is gravity g, thus

$$v_e = \sqrt{2gR_0}.$$

Flow Lines

Definition 3.6. Given a vector field \mathbf{F} the path $\mathbf{c}(t)$ satisfying

$$\mathbf{c}'(t) = \mathbf{F}(\mathbf{c}(t))$$

is called the flow line for F. That is, F yields the velocity fields of the path $\mathbf{c}(t)$. flow line is also called as streamlines or integral curves

Example 3.7. Suppose water is flowing in a pipe as in fig 4.4. Suppose it does not depends on time. Then it is given by a vector field.

그림 4.4: Water flow in a pipe

Let $\mathbf{F} = P\mathbf{i} + Q\mathbf{j} + R\mathbf{k}$ and $\mathbf{c}(t) = (x(t), y(t), z(t))$ A flow line may be viewed as the solution of system of DE. Indeed from $\mathbf{c}'(t) = \mathbf{F}(\mathbf{c}(t))$, we see

$$\begin{aligned} x'(t) &= P(x(t), y(t), z(t)) \\ y'(t) &= Q(x(t), y(t), z(t)) \\ z'(t) &= R(x(t), y(t), z(t)) \end{aligned}$$

Example 3.8. Show $\mathbf{c}(t) = (\cos t, \sin t)$ is a flow line of $\mathbf{F} = -y\mathbf{i} + x\mathbf{j}$. can you find others?

그 림 4.5: The vector field $\mathbf{F}(x,y) = (-y\mathbf{i} + x\mathbf{j})/\sqrt{x^2 + y^2}$

sol. Verify

$$\mathbf{c}'(t) = \mathbf{F}(\mathbf{c}(t))$$

Others may be

$$\mathbf{c}(t) = (r\cos(t - t_0), r\sin(t - t_0))$$

Example 3.9. Draw the vector fields F

$$\mathbf{F}(x,y) = \frac{-y\mathbf{i} + x\mathbf{j}}{x^2 + y^2}, (x,y) \neq (0,0).$$

It describes the flow of water in a sink(bathtub).

Example 3.10. Draw the vector fields **F** and its integral curve (Flow line) (Fig 4.5)

$$\mathbf{F}(x,y) = \frac{-y\mathbf{i} + x\mathbf{j}}{\sqrt{x^2 + y^2}}, (x,y) \neq (0,0).$$

Let $\mathbf{c}(t) = (x(t), y(t))$ be the flow line. Then $\mathbf{c}'(t) = (x'(t), y'(t))$ must be $\mathbf{F}(\mathbf{c}(t))$. Hence

$$x'(t) = \frac{-y(t)}{\sqrt{x(t)^2 + y(t)^2}}$$
(4.1)

$$y'(t) = \frac{x(t)}{\sqrt{x(t)^2 + y(t)^2}}$$
(4.2)

Multiply first by x(t) and second by y(t). Then adding we get

$$x'(t)x(t) + y'(t)y(t) = 0$$

Integrating

$$x(t)^2 + y(t)^2 = r$$

This is equation for circle. So we can parameterize it by trig function.

$$\mathbf{c}(t) = (x(t), y(t)) = (r \cos \theta(t), r \sin \theta(t))$$

Hence

$$x'(t) = -r\theta'(t)\sin\theta(t) \tag{4.3}$$

$$y'(t) = r\theta'(t)\cos\theta(t) \tag{4.4}$$

From (4.2) (4.4)

$$-r\theta'(t)\sin\theta(t) = -\sin\theta(t)$$

Hence

$$\theta'(t) = \frac{1}{r}$$

So the flow line $\mathbf{c}(t)$ is

$$\mathbf{c}(t) = (x(t), y(t)) = (r \cos \frac{t}{r}, r \sin \frac{t}{r})$$

The period of $\mathbf{c}(t)$ is $2\pi r$.

Example 3.11. Show that $\mathbf{F}(x, y) = x\mathbf{i} - y\mathbf{j}$ is a gradient field and find flow line

sol. Suppose **F** is a gradient field of f(x, y) then

$$\frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j} = x\mathbf{i} - y\mathbf{j}$$

Find f(x, y) such that

$$\frac{\partial f}{\partial x} = x, \quad \frac{\partial f}{\partial y} = -y$$

Hence $f(x, y) = \frac{1}{2}(x^2 - y^2)$

$$\frac{1}{2}(x^2 - y^2) = c$$

Suppose $\mathbf{F}(x, y)$ is given by

$$\mathbf{F}(x,y) = (F_1(x,y), F_2(x,y)).$$

Then the flow line (x(t), y(t)) satisfies

$$x'(t) = F_1(x(t), y(t))$$

 $y'(t) = F_2(x(t), y(t)).$

제 4 절 Divergence and curl

For divergence and curl operations, (PROCESS) we make use of **del operator** defined by

$$\nabla = \mathbf{i}\frac{\partial}{\partial x} + \mathbf{j}\frac{\partial}{\partial y} + \mathbf{k}\frac{\partial}{\partial z}$$

It works like this: For gradient

$$\nabla f = \left(\mathbf{i}\frac{\partial}{\partial x} + \mathbf{j}\frac{\partial}{\partial y} + \mathbf{k}\frac{\partial}{\partial z}\right)f = \mathbf{i}\frac{\partial f}{\partial x} + \mathbf{j}\frac{\partial f}{\partial y} + \mathbf{k}\frac{\partial f}{\partial z}$$

Divergence

Definition 4.1 (Divergence). If $\mathbf{F} = F_1\mathbf{i} + F_2\mathbf{j} + F_3\mathbf{k}$ is a vector field then the **divergence** is the scalar field

div
$$\mathbf{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$$

= $\left(\frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}\right) \cdot \left(F_1\mathbf{i} + F_2\mathbf{j} + F_3\mathbf{k}\right)$
= $\nabla \cdot \mathbf{F}$

Similarly for n-dim

div
$$\mathbf{F} = \sum_{i=1}^{n} \frac{\partial F_i}{\partial x_i} = \frac{\partial F_1}{\partial x_1} + \frac{\partial F_2}{\partial x_2} + \dots + \frac{\partial F_n}{\partial x_n}$$

Example 4.2. Find the divergence of $\mathbf{F} = (e^x \sin y, e^x \cos y, yz^2)$.

sol. Since div $\mathbf{F} = \nabla \cdot \mathbf{F}$

div
$$\mathbf{F} = \frac{\partial}{\partial x}(e^x \sin y) + \frac{\partial}{\partial y}(e^x \cos y) + \frac{\partial}{\partial z}(yz^2)$$

= $e^x \sin y + (-e^x \sin y) + 2yz = 2yz.$

Hence div $\mathbf{F} = 2yz$.

Example 4.3.

$$\mathbf{F} = x^2 y \mathbf{i} + z \mathbf{j} + x y z \mathbf{k}$$

Meaning of divergence

Suppose **F** represent the velocity of a gas or fluid. Then divergence represents **the rate of expansion per unit volume**: If $\operatorname{div} \mathbf{F}(P) > 0$ then it is expanding. If $(\operatorname{div} \mathbf{F}(P) < 0)$ then it is compressing.

It is

$$\frac{1}{V(0)} \frac{d}{dt} V(t) \Big|_{t=0} \approx \operatorname{div} \mathbf{F}(\mathbf{x}_0)$$

Example 4.4. Draw flow lines of

$$F = x\mathbf{i} + y\mathbf{j}$$

Div is positive

그림 4.6: vector field (x, y) and -(x, y)

Example 4.5. Graph of

$$F = x\mathbf{i}$$

Div is positive(Expanding)

 $F = -x\mathbf{i} - y\mathbf{j}$

그림 4.7: Incompressible $\mathbf{F} = -y\mathbf{i} + x\mathbf{j}$

Example 4.7. The flow lines of

$$F = -y\mathbf{i} + x\mathbf{j}$$

are concentric circles. From this we guess the fluid is neither expanding or compressing. Div is zero. Fig 4.7.

Example 4.8. The vector field $F = x\mathbf{i} - y\mathbf{j}$ is divergence free. The flow lines are as in figure.

Curl

Use the symbol ∇ to see

$$\operatorname{curl} \mathbf{F} = \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{vmatrix}$$
$$= \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}\right) \mathbf{i} + \left(\frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}\right) \mathbf{j} + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}\right) \mathbf{k}$$

그림 4.8: $\mathbf{F} = x\mathbf{i} - y\mathbf{j}$ Incompressible: Volume preserving

Example 4.9. Let $\mathbf{F} = x\mathbf{i} + xy\mathbf{j} + \mathbf{k}$. Find $\nabla \times \mathbf{F}$.

$$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x & xy & 1 \end{vmatrix} = 0\mathbf{i} - 0\mathbf{j} + y\mathbf{k}$$

Example 4.10. Let $\mathbf{F} = xy\mathbf{i} - \sin z\mathbf{j} + \mathbf{k}$. Find $\nabla \times \mathbf{F}$.

$$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ xy & -\sin z & 1 \end{vmatrix}$$
$$= \begin{vmatrix} \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -\sin z & 1 \end{vmatrix} \mathbf{i} - \begin{vmatrix} \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\ xy & 1 \end{vmatrix} \mathbf{j} + \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ xy & \sin z \end{vmatrix} \mathbf{k}$$
$$= \cos z \mathbf{i} - x \mathbf{k}$$

Meaning of curl

그림 4.9: velocity **v** and angular velocity **w** has relation $\mathbf{v} = \mathbf{w} \times \mathbf{r}$.

Consider a rigid body *B* rotating about an axis *L*. (Fig 4.9). The rotational motion of *B* can be described by a vector along axis of rotation w. Let w the vector along *z*-axis s.t. $\omega = ||\mathbf{w}||$. The vector w is called the angular velocity vector and ω is angular speed.

$$\omega = ||\mathbf{w}||$$

Assume L is z-axis Q is any point on the body B, α is distance from Q to L. Then $\alpha = ||\mathbf{r}||\sin\theta$ (**r** points to Q). Consider the tangent vector **v** at Q. Since Q moves around a circle of radius α and parallel to xy-plane (counterclockwise), we see,

$$||\mathbf{v}|| = \omega \alpha = \omega ||\mathbf{r}|| \sin \theta = ||\mathbf{w}|| ||\mathbf{r}|| \sin \theta,$$

Then by definition of cross product,

$$\mathbf{v} = \mathbf{w} \times \mathbf{r}$$

Since $\mathbf{w} = \omega \mathbf{k}$, $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ we see from the property of cross product,

$$\mathbf{v} = \mathbf{w} \times \mathbf{r} = -\omega y \mathbf{i} + \omega x \mathbf{j}$$

So curl $\mathbf{v} = 2\omega \mathbf{k} = 2\mathbf{w}$. Hence for the rotation of a rigid body, the curl is a vector field whose direction is along the axis of rotation and magnitude is twice the angular speed.

Curl and rotational flow

 $\nabla \times \mathbf{F}$ represents twice the angular velocity: So if it is 0, then we have irrotational fluid.

Example 4.11. Find curl **F** when $\mathbf{F}(x, y, z) = (y\mathbf{i} - x\mathbf{j})/(x^2 + y^2)$ in \mathbb{R}^3 .

sol. Write $\mathbf{F}(x, y, z) = \frac{y}{x^2 + y^2}\mathbf{i} + \frac{-x}{x^2 + y^2}\mathbf{j} + 0\mathbf{k}$. Then we see

$$\begin{aligned} \nabla \times \mathbf{F} &= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{y}{x^2 + y^2} & \frac{-x}{x^2 + y^2} & 0 \end{vmatrix} \\ &= \left[\frac{\partial}{\partial x} \left(\frac{-x}{x^2 + y^2} \right) - \frac{\partial}{\partial y} \left(\frac{y}{x^2 + y^2} \right) \right] \mathbf{k} \\ &= \left[\frac{-(x^2 + y^2) - (-x)(2x)}{(x^2 + y^2)^2} - \frac{(x^2 + y^2) - (y)(2y)}{(x^2 + y^2)^2} \right] \mathbf{k} \\ &= \left[\frac{x^2 - y^2}{(x^2 + y^2)^2} - \frac{x^2 - y^2}{(x^2 + y^2)^2} \right] \mathbf{k} \\ &= \mathbf{0}. \end{aligned}$$

Gradients are curl Free

Theorem 4.12. For any C^2 function

$$\nabla \times (\nabla f) = 0$$

Proof.

$$\nabla \times \nabla f = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial f} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z} \end{vmatrix}$$
$$= \left(\frac{\partial^2 f}{\partial y \partial z} - \frac{\partial^2 f}{\partial z \partial y} \right) \mathbf{i} + \left(\frac{\partial^2 f}{\partial z \partial z x} - \frac{\partial^2 f}{\partial x \partial z} \right) \mathbf{j} + \left(\frac{\partial^2 f}{\partial x \partial y} - \frac{\partial^2 f}{\partial y \partial x} \right) \mathbf{k}$$

Example 4.13. Show $\mathbf{F}(x, y, z) = y\mathbf{i} - x\mathbf{j}$ is not a gradient field. i.e, there does not exists C^2 -function f s.t $\nabla f = \mathbf{F}$ holds.

sol. If \mathbf{F} is the gradient of f then by Thm 4.12

 $\operatorname{curl} \mathbf{F} = \nabla \times \mathbf{F} = \nabla \times \nabla f = \mathbf{0}$

Let $\mathbf{F}(x, y, z) = y\mathbf{i} - x\mathbf{j} + 0\mathbf{k}$. Then

$$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y & -x & 0 \end{vmatrix}$$
$$= \left[\frac{\partial}{\partial x} \left(-x \right) - \frac{\partial}{\partial y} \left(y \right) \right] \mathbf{k} = -2\mathbf{k}$$

curl $\mathbf{F} = -2\mathbf{k} \neq \mathbf{0}$, a contradiction.

그림 4.10: Movement of small paddle in vector fields

Remark 4.14. Vector field $\mathbf{F}(x, y, z) = (y\mathbf{i} - x\mathbf{j})/(x^2 + y^2)$ (It describes flow in a tub) does not rotate about any point except z-axis. When small paddle is placed in the fluid, it will follow the flow line(a circle in this case), but it does not rotate about its own axis. Such a field is called **irrotational**.

But the vector field $\mathbf{F}(x, y, z) = y\mathbf{i} - x\mathbf{j}$ has nonzero rotation. (fig 4.10(b)).

Scalar curl

As a special case, if $\mathbf{F} = P\mathbf{i} + Q\mathbf{j}$ then

$$\nabla \times \mathbf{F} = \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \mathbf{k}$$

 $(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y})$ is called a scalar curl.

Example 4.15. Find scalar curl of $\mathbf{V} = -y^2 \mathbf{i} + x \mathbf{j}$,

$$\nabla \times \mathbf{V} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -y^2 & x & 0 \end{vmatrix} = (1+2y)\mathbf{k}$$

Curls are divergence free

Theorem 4.16. For any C^2 vector field **F**

$$\operatorname{div}\operatorname{curl}\mathbf{F} = \nabla\cdot(\nabla\times\mathbf{F}) = 0$$

Physical meaning of divergence

Let

$$\mathbf{F}(x, y, z) = (F_1, F_2, F_3) = F_1 \mathbf{i} + F_2 \mathbf{j} + F_3 \mathbf{k}$$

be a velocity vector field of some fluid in \mathbb{R}^3 .

그림 4.11: Geometric meaning of divergence

Fig 4.11. Consider a box W with dimension $\Delta x, \Delta y, \Delta z$ Then volume of W is $\Delta W = \Delta x \Delta y \Delta z$. Consider the loss of fluid across W per unit time. First consider fluid loss through left side of W whose area is $\Delta x \Delta z$. (Consider F_2 only). The outflux is

$$\mathbf{F}(x, y, z) \cdot (-\mathbf{j})\Delta x \Delta z = -F_2(x, y, z)\Delta x \Delta z$$

influx is

$$\mathbf{F}(x, y + \Delta y, z) \cdot \mathbf{j} \Delta x \Delta z = F_2(x, y + \Delta y, z) \Delta x \Delta z$$

제 4 절 DIVERGENCE AND CURL

$$\left(F_2(x, y + \Delta y, z) - F_2(x, y, z)\right)\Delta x\Delta z \approx \left(\frac{\partial F_2}{\partial y}\Delta y\right)\Delta x\Delta z$$

Considering all the direction, the change in fluid across W per unit time is(total flux)

$$\Big(\frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}\Big)\Delta x \Delta y \Delta z$$

Now divide by volume ΔW

density of flux/time =
$$\frac{\text{Flux across boundary}}{\text{vol}} \approx \left(\frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}\right)$$

Let $\Delta x, \Delta y, \Delta z \to 0$ Then fluid density of **F** is div **F**. If **F** is gas, then div **F** represents the rate of expansion of gas per unit time per unit volume. If $\mathbf{F}(x, y, z) = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ then div $\mathbf{F} = 3$ and this means the gas is expanding three times per unit time.

Laplace operator

$$\nabla^2 f = \nabla \cdot (\nabla f) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}.$$

 $\nabla^2 f = 0$ is called Laplace equation.

Example 4.17. Find $\nabla^2 f$ when

$$f(x,y) = \frac{1}{r} = \frac{1}{\sqrt{x^2 + y^2 + z^2}}, \quad (x,y,z,) \neq 0$$

where $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ and $r = \|\mathbf{r}\|$.

$$\frac{\partial f}{\partial x} = \frac{-x}{(x^2 + y^2 + z^2)^{3/2}}, \quad \frac{\partial f}{\partial y} = \frac{-y}{(x^2 + y^2 + z^2)^{3/2}}, \quad \frac{\partial f}{\partial z} = \frac{-z}{(x^2 + y^2 + z^2)^{3/2}}.$$

Second derivatives, we find that

$$\begin{aligned} \frac{\partial^2 f}{\partial x^2} &= \frac{3x^2}{(x^2 + y^2 + z^2)^{5/2}} - \frac{1}{(x^2 + y^2 + z^2)^{3/2}} \\ \frac{\partial^2 f}{\partial y^2} &= \frac{3y^2}{(x^2 + y^2 + z^2)^{5/2}} - \frac{1}{(x^2 + y^2 + z^2)^{3/2}} \\ \frac{\partial^2 f}{\partial z^2} &= \frac{3z^2}{(x^2 + y^2 + z^2)^{5/2}} - \frac{1}{(x^2 + y^2 + z^2)^{3/2}} \end{aligned}$$

Thus

$$\nabla^2 f = 0.$$

Example 4.18. For given $f(x, y) = x^3 - 3xy^2 + 7z$, compute $\nabla^2 f$.

sol. First compute $\partial f/\partial x$, $\partial f/\partial y$ and $\partial f/\partial z$.

$$\frac{\partial f}{\partial x} = 3x^2 - 3y^2, \quad \frac{\partial f}{\partial y} = -6xy, \quad \frac{\partial f}{\partial z} = 7.$$

Hence

$$\frac{\partial^2 f}{\partial x^2} = 6x, \quad \frac{\partial^2 f}{\partial y^2} = -6x, \quad \frac{\partial^2 f}{\partial z^2} = 0.$$

and

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 6x + (-6x) + 0 = 0.$$

Vector differential identities

– Vector differential identities —

(1)
$$\nabla(f+g) = \nabla f + \nabla g$$

(2) $\nabla(cf) = c\nabla f$, for constant c.

(3)
$$\nabla(fg) = f\nabla g + g\nabla f$$

(4) $\nabla(f/g) = (g\nabla f - f\nabla g)/g^2, g \neq 0$

sol.

(5) div (**F** + **G**) = div **F** + div **G**
(6) curl (**F** + **G**) = curl **F** + curl **G**
(7) div (f**F**) = f div **F** + **F** ·
$$\nabla f$$

(8) div (**F** × **G**) = **G** · curl **F** - **F** · curl **G**
(9) div curl **F** = 0
(10) curl (f**F**) = f curl **F** + $\nabla f \times \mathbf{F}$
(11) curl (**F** × **G**) = **F** div **G** - **G** div **F** + (**G** · ∇)**F** - (**F** · ∇)**G**
(12) curl curl **F** = grad div **F** - ∇^2 **F**
(13) curl ∇f = **0**
(14) ∇ (**F** · **F**) = 2(**F** · ∇)**F** + 2**F** × (curl **F**)
(15) $\nabla^2(fg) = f\nabla^2 g + g\nabla^2 f + 2(\nabla f \cdot \nabla g)$
(16) ∇ (**F** · **G**) = (**F** · ∇)**G** + (**G** · ∇)**F** + **F** × curl **G** + **G** × curl **F**
(17) div ($\nabla f \times \nabla g$) = 0
(18) $\nabla \cdot (f\nabla g - g\nabla f) = f\nabla^2 g - g\nabla^2 f$
(19) $\mathbf{H} \cdot (\mathbf{F} \times \mathbf{G}) = \mathbf{G} \cdot (\mathbf{H} \times \mathbf{F}) = \mathbf{F} \cdot (\mathbf{G} \times \mathbf{H})$
(20) $\mathbf{H} \cdot ((\mathbf{F} \times \nabla) \times \mathbf{G}) = ((\mathbf{H} \cdot \nabla)\mathbf{G}) \cdot \mathbf{F} - (\mathbf{H} \cdot \mathbf{F})(\nabla \cdot \mathbf{G})$
(21) $\mathbf{F} \times (\mathbf{G} \times \mathbf{H}) = (\mathbf{F} \cdot \mathbf{H})\mathbf{G} - \mathbf{H}(\mathbf{F} \cdot \mathbf{G})$

Example 4.19. Prove (7).

sol.

div
$$(f\mathbf{F}) = \frac{\partial}{\partial x}(fF_1) + \frac{\partial}{\partial y}(fF_2) + \frac{\partial}{\partial z}(fF_3)$$

By product rule,

$$\operatorname{div}(f\mathbf{F}) = f\left(\frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}\right) + F_1\frac{\partial f}{\partial x} + F_2\frac{\partial f}{\partial y} + F_3\frac{\partial f}{\partial z}$$
$$= f(\nabla \cdot \mathbf{F}) + \mathbf{F} \cdot \nabla f.$$

Example 4.20. Show $\nabla^2(1/r) = 0$ for $\mathbf{r} \neq 0$.

sol. As before $\nabla(1/r) = -\mathbf{r}/r^3$. In general, $\nabla(r^n) = nr^{n-2}\mathbf{r}$. By (7),

$$\begin{aligned} -\nabla^2(1/r) &= \nabla \cdot (\mathbf{r}/r^3) = \frac{1}{r^3} \nabla \cdot \mathbf{r} + \mathbf{r} \cdot \nabla(\frac{1}{r^3}) \\ &= \frac{3}{r^3} + \mathbf{r} \cdot (\frac{-3\mathbf{r}}{r^5}) = 0. \end{aligned}$$