제 4 장

## Vector valued functions

## 제 1 절 Acceleration and Newton's law



그림 4.1: Gravitational force is represented as vectors

Example 1.1. The force acting on a particle of mass $m$. Suppose the mass of the earth is $M$ and $G$ gravitational constant. If $\mathbf{r}$ is the position vector then the gravity $\mathbf{F}$ is (Figure 4.1)

$$
\mathbf{F}=-\frac{G m M}{\|\mathbf{r}\|^{3}} \mathbf{r}
$$

Definition 1.2. A path $C$ is the image of a function $\mathbf{c}$ with domain $I$ range in $\mathbb{R}^{n}$. We call $\mathbf{c}$ the parametrization of $C$.

A parameterized curve $\mathbf{c}$ in $\mathbb{R}^{2}$ or $\mathbb{R}^{3}$ can be written as $\mathbf{c}(t)=(x(t), y(t), z(t))$.

If $x(t), y(t), z(t)$ are continuous, then we say $\mathbf{c}$ is continuous, and if $x(t), y(t), z(t)$ are differentiable, then $\mathbf{c}$ is differentiable. If $x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)$ are continuous then we say $\mathbf{c}$ is $C^{1}$-curve.

## Differentiation Rues

(1) $\frac{d}{d t}[\mathbf{b}(t)+\mathbf{c}(t)]=\mathbf{b}^{\prime}(t)+\mathbf{c}^{\prime}(t)$
(2) $\frac{d}{d t}[p(t) \mathbf{c}(t)]=p^{\prime}(t) \mathbf{c}(t)+p(t) \mathbf{c}^{\prime}(t)$
(3) $\frac{d}{d t}[\mathbf{b}(t) \cdot \mathbf{c}(t)]=\mathbf{b}^{\prime}(t) \cdot \mathbf{c}(t)+\mathbf{b}(t) \cdot \mathbf{c}^{\prime}(t)$
(4) $\frac{d}{d t}[\mathbf{b}(t) \times \mathbf{c}(t)]=\mathbf{b}^{\prime}(t) \times \mathbf{c}(t)+\mathbf{b}(t) \times \mathbf{c}^{\prime}(t)$
(5) $\frac{d}{d t}[\mathbf{c}(q(t))]=q^{\prime}(t) \mathbf{c}^{\prime}(q(t))$

Example 1.3. Show that if $\mathbf{c}(t)$ is a vector function such that $\|\mathbf{c}(t)\|$ is constant, then $\mathbf{c}^{\prime}(t)$ is perpendicular to $\mathbf{c}(t)$ for all $t$.

Solution:
$\|\mathbf{c}(t)\|^{2}=\mathbf{c}(t) \cdot \mathbf{c}(t)$. Derivative of constant is zero. Hence

$$
0=\frac{d}{d t}[\mathbf{c}(t) \cdot \mathbf{c}(t)]=\mathbf{c}^{\prime}(t) \cdot \mathbf{c}(t)+\mathbf{c}(t) \cdot \mathbf{c}^{\prime}(t)=2 \mathbf{c}(t) \cdot \mathbf{c}^{\prime}(t)
$$

Thus $\mathbf{c}^{\prime}(t)$ is perpendicular to $\mathbf{c}(t)$.
Second derivative of a curve $\mathbf{c}(t)$ is acceleration, i.e, $\mathbf{a}(t)=d \mathbf{v}(t) / d t=$ $\mathbf{c}^{\prime \prime}(t)$.

Example 1.4. A particle moves with a constant acceleration $\mathbf{a}(t)=-=b k$. If the position when $t=0$ is $(0,0,1)$ and velocity at $t=0$ is $\mathbf{i}+\mathbf{j}$. Describe the motion of the particle.

Sol. Let $(x(t), y(t), z(t))$ represents the path traveled by the particle. Since the acceleration is $\mathbf{c}^{\prime \prime}(t)=-\mathbf{k}$ we see the velocity is

$$
\mathbf{c}^{\prime}(t)=C_{1} \mathbf{i}+C_{2} \mathbf{j}-t \mathbf{k}+C_{3} \mathbf{k} .
$$

Hence by initial condition, $\mathbf{c}^{\prime}(t)=\mathbf{i}+\mathbf{j}-t \mathbf{k}$ and so $\mathbf{c}(t)=t \mathbf{i}+t \mathbf{j}-\frac{t^{2}}{2} \mathbf{k}+$ Const vec. The constant vector is $\mathbf{k}$. Hence $\mathbf{c}(t)=t \mathbf{i}+t \mathbf{j}+\left(1-\frac{t^{2}}{2}\right) \mathbf{k}$.

Remark 1.5. The image of $C^{1}$-curve is not necessarily "smooth". it may have sharp edges;
(1) Cycloid: $\mathbf{c}(t)=(t-\sin t, 1-\cos t)$ has cusps when it touches $x$-axis. That is, when $\cos t=1$ or when $t=2 \pi n, n=1,2,3, \cdots$
(2) Hypocycloid: $\mathbf{c}(t)=\left(\cos ^{3} t, \sin ^{3} t\right)$ has cusps at four points when $\cos t=$ $0, \pm 1$

At all these points, we can check that $\mathbf{c}^{\prime}(t)=0$.(Roughly speaking, tangent vector has no direction.)

Definition 1.6. A differentiable path $\mathbf{c}$ is said to be regular if $\mathbf{c}^{\prime}(t) \neq 0$ at all $t$. In this case, the image curve looks smooth.

## Circular Orbits

Consider a particle of mass moving at constant speed $s$ in a circular path of radius $r_{0}$. We can represent its motion (in the plane) as

$$
\mathbf{r}(t)=\left(r_{0} \cos C t, r_{0} \sin C t\right)
$$

Find $C$. Since speed is $\left\|\mathbf{r}^{\prime}(t)\right\|=|C| r_{0}=s$, we get $C=s / r_{0}$. So the motion is described as

$$
\mathbf{r}(t)=\left(r_{0} \cos \frac{s t}{r_{0}}, r_{0} \sin \frac{s t}{r_{0}}\right)
$$

The quantity $\frac{s}{r_{0}}$ is called frequency denoted by $\omega$. Thus

$$
\mathbf{r}(t)=\left(r_{0} \cos \omega t, r_{0} \sin \omega t\right)
$$

It's acceleration is

$$
\mathbf{a}(t)=\mathbf{r}^{\prime \prime}(t)=-\frac{2 s t}{r_{0}}\left(r_{0} \cos \frac{s t}{r_{0}}, r_{0} \sin \frac{s t}{r_{0}}\right)=-\frac{s^{2} t}{r_{0}^{2}} \mathbf{r}(t)=-\omega^{2} \mathbf{r}(t)
$$

Let us describe motion of a particle having circular motion. The centripetal force must equal to Gravitational force; By Newton's Law $\mathbf{F}=m \mathbf{a}$

$$
-\frac{s^{2} m}{r_{0}^{2}} \mathbf{r}(t)=-\frac{G m M}{r_{0}^{3}} \mathbf{r}(t)
$$

Hence

$$
s^{2}=\frac{G M}{r_{0}}
$$

If $T$ denotes the period $s=2 \pi r_{0} / T$; then we obtain


그림 4.2: acceleration and centripetal force $m \mathbf{a}$,

## Kepler's Law

$$
T^{2}=r_{0}^{3} \frac{(2 \pi)^{2}}{G M}
$$

Thus the square of the period is equal to the cube of the radius.
Example 1.7. Suppose a satellite is in circular motion about the earth over the equator. What is the radius of geosynchronous orbit?(It stays fixed over a point on equator) $M=5.98 \times 10^{24} \mathrm{~kg}$ and $G=6.67 \times 10^{-11}$ meter kg -sec.

Sol. Period must be one day: So $T=60 \times 60 \times 24=86,400$ seconds. From Kepler's law,

$$
r_{0}^{3}=\frac{T^{2} G M}{(2 \pi)^{2}} \approx 7.54 \times 10^{22} m^{3} \approx 42,300 \mathrm{~km}
$$

## 제 2 절 Arc Length

The length of an arc is obtained by dividing the arc into several pieces and then summing the length of individual line segements; then take the limit.

The Riemann sum is defined as

$$
\sum_{i=1}^{k}\left\|\mathbf{c}\left(t_{i}\right)-\mathbf{c}\left(t_{i-1}\right)\right\|
$$

As the partition $P \rightarrow 0(\text { i.e, }\|P\| \rightarrow 0)^{1}$ we see the sum


그림 4.3: Riemann sum on the curve

$$
\sum_{i=1}^{k}\left\|\mathbf{c}^{\prime}\left(u_{i}\right)\right\|\left(t_{i}-t_{i-1}\right)
$$

approaches $\int_{a}^{b}\left\|\mathbf{c}^{\prime}(t)\right\| d t$.
Definition 2.1 (Arc Length). Suppose a curve $C$ has one-to-one $C^{1}$-parametrization c. Then the arc length of $C$ is defined by

$$
L(\mathbf{c})=\int_{a}^{b}\left\|\mathbf{c}^{\prime}(t)\right\| d t=\int_{a}^{b} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}} d t
$$

Example 2.2. Find the arclength of $\left(\cos t, \sin t, t^{2}\right) 0 \leq t \leq 2 \pi$.
Sol.

$$
\|\mathbf{v}\|=\sqrt{1+4 t^{2}}=2 \sqrt{t^{2}+\frac{1}{4}}
$$

To evaluate this integral we need a table of integrals:

$$
\int \sqrt{x^{2}+a^{2}} d x=\frac{1}{2}\left[x \sqrt{x^{2}+a^{2}}+a^{2} \log \left(x+\sqrt{x^{2}+a^{2}}\right)\right]+C
$$

Thus

$$
L(\mathbf{c})=\cdots
$$

## Example 2.3.

$$
\mathbf{c}(\theta)=\left(2 \cos ^{2} \theta+\cos \theta, \sin 2 \theta+\cos \theta\right), \quad \theta \in[0,2 \pi]
$$

[^0]sol. Above curve is divided into three paths.
\[

$$
\begin{array}{ll}
\mathbf{c}_{1}(\theta)=\left(2 \cos ^{2} \theta+\cos \theta, \sin 2 \theta+\cos \theta\right), & \theta \in[0,2 \pi / 3] \\
\mathbf{c}_{2}(\theta)=\left(2 \cos ^{2} \theta+\cos \theta, \sin 2 \theta+\cos \theta\right), & \theta \in[2 \pi / 3,4 \pi / 3] \\
\mathbf{c}_{3}(\theta)=\left(2 \cos ^{2} \theta+\cos \theta, \sin 2 \theta+\cos \theta\right), & \theta \in[4 \pi / 3,2 \pi]
\end{array}
$$
\]

Example 2.4. Consider the cycloid

$$
\mathbf{c}(t)=(t-\sin t, 1-\cos t)
$$

Its length is

$$
\left\|\mathbf{c}^{\prime}(t)\right\| \sqrt{2-2 \cos t}
$$

Hence

$$
\begin{aligned}
L(\mathbf{c}) & =\int_{0}^{2 \pi} \sqrt{2-2 \cos t} d t=2 \int_{0}^{2 \pi} \sqrt{\frac{1-\cos t}{2}} d t \\
& =2 \int_{0}^{2 \pi} \sin \frac{t}{2} d t \\
& =\left.4\left(-\cos \frac{t}{2}\right)\right|_{0} ^{2 \pi}=8
\end{aligned}
$$

## Arc-Length Differential

Definition 2.5. We let the infinitesimal displacement of a particle following a path $\mathbf{c}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}$

$$
d \mathbf{s}=d x \mathbf{i}+d y \mathbf{j}+d z \mathbf{k}
$$

and its arc length differential

$$
d s=\sqrt{d x^{2}+d y^{2}+d z^{2}}=\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}} d t
$$

The arc length is defined as

$$
\text { arc length }=\int_{a}^{b} d s=\int_{a}^{b} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}} d t
$$

One can also define arc-length function $s(t)$ :

$$
s(t)=\int_{a}^{t}\left\|\mathbf{c}^{\prime}(t)\right\| d t
$$

so that

$$
s^{\prime}(t)=\left\|\mathbf{c}^{\prime}(t)\right\|
$$

Definition 2.6. Suppose $\mathbf{c}:[a, b] \rightarrow \mathbb{R}^{n}$ is a $C^{1}$-parametrization of a curve $C$. Then the arc length of $C$ is defined by

$$
L(\mathbf{c})=\int_{a}^{b}\left\|\mathbf{c}^{\prime}(t)\right\| d t=\int_{a}^{b} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}} d t
$$

Example 2.7. Suppose a function $y=f(x)$ given. Then the graph is viewed as a curve parameterized by $t=x$ and $\mathbf{c}(x)=(x, f(x))$ So the length of the graph from $a$ to $b$ is

$$
L(\mathbf{c})=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

## Path integral-See Ch 7

Definition 2.8. Suppose a curve $C$ has one-to-one $C^{1}$-parametrization c. Then the path integral of $f(x, y, z)$ on $C$ is defined by

$$
\int_{\mathbf{c}} f(x, y, z) d s
$$

We write it as $\int_{C} f d s$ as $\int_{C} f(x, y, z) d s$. Note this integral is independent of choice of $\mathbf{c}$.

Example 2.9. Find the path integral of $f(x, y, z)=x^{2} y^{2} z^{2}$ on $C$.

$$
\begin{gathered}
C=\left\{(x, y, z): x^{2}+y^{2}+z^{2}=2, x^{2}+y^{2}=z^{2}, z>0\right\} \\
\int_{C} f d s=\int_{C_{1}} f d s+\int_{C_{2}} f d s+\cdots+\int_{C_{k}} f d s
\end{gathered}
$$

$$
\begin{aligned}
\int_{-\mathbf{c}} f d s & =\int_{a}^{b} f(-\mathbf{c}(t))\left\|(-\mathbf{c})^{\prime}(t)\right\| d t \\
& =\int_{a}^{b} f(\mathbf{c}(b+a-t))\left\|\mathbf{c}^{\prime}(b+a-t)(-1)\right\| d t \\
& =\int_{a}^{b} f(\mathbf{c}(b+a-t))\left\|\mathbf{c}^{\prime}(b+a-t)\right\| d t \\
& =\int_{b}^{a} f(\mathbf{c}(u))\left\|\mathbf{c}^{\prime}(u)\right\|(-1) d u \\
& =\int_{\mathbf{c}} f d s
\end{aligned}
$$

where $u=b+a-t$ was used.
Example 2.10. Find the path integral of $f(x, y, z)=x^{2}+y^{2}+z^{2}$ on $C$.

$$
C=\{(\cos t, \sin t, t): t \in[0,2 \pi]\} \cup\{(1,0, t): t \in[0,2 \pi]\}
$$

sol. $C=$ is the sum of $C_{1}$ and $C_{2}$.

$$
C_{1}=\{(\cos t, \sin t, t): t \in[0,2 \pi]\}, \quad C_{2}=\{(1,0, t): t \in[0,2 \pi]\}
$$

So parameterize $C_{1}$ and $C_{2}$ as follows:

$$
\mathbf{c}_{1}=(\cos t, \sin t, t) \quad t \in[0,1], \quad \mathbf{c}_{2}=(1,0, t) \quad t \in[0,2 \pi]
$$

Hence the integral is

$$
\begin{aligned}
\int_{C} f d s & =\int_{C_{1}} f d s+\int_{C_{2}} f d s \\
& =\int_{\mathbf{c}_{1}} f d s+\int_{\mathbf{c}_{2}} f d s \\
& =\int_{0}^{2 \pi}\left(1+t^{2}\right) \sqrt{2} d t+\int_{0}^{2 \pi}\left(1+t^{2}\right) d t \\
& =(1+\sqrt{2})\left(2 \pi+8 \pi^{3} / 3\right)
\end{aligned}
$$

## 제 3 절 Vector Fields

Definition 3.1. Let $D \subset \mathbb{R}^{n}$. A vector function defined on $D$ with values lying in $\mathbb{R}^{n}$ is called vector field.

A vector field $\mathbf{F}$ is represented by $n$ real valued function $F_{1}, F_{2}, \ldots, F_{n}$.

$$
\mathbf{F}(P)=\left(F_{1}(P), F_{2}(P), \ldots, F_{n}(P)\right)
$$

If $n=3$

$$
\mathbf{F}(P)=\left(F_{1}(P), F_{2}(P), F_{3}(P)\right)
$$

is written as

$$
\mathbf{F}(P)=F_{1}(P) \mathbf{i}+F_{2}(P) \mathbf{j}+F_{3}(P) \mathbf{k}
$$

## Gradient vector field

Given real valued function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ we define

$$
\nabla f:=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)
$$

call it gradient vector field.

## Flow lines

Example 3.2. Heat flux vector fields

$$
J=-k \nabla T
$$

Example 3.3. A gravitational force field. Place the origin at the center of earth. Newton's law

$$
\mathbf{F}=-\frac{m M G}{r^{3}} \mathbf{r}
$$

We see $\mathbf{F}=-\nabla V$ where the potential $V$ is given by

$$
V=-\frac{m M G}{r}
$$

Note that $\mathbf{F}$ point in the direction of decreasing $V$.
Example 3.4. Similarly, we have Coulomb's law. The force acting on a charge $e$ at position $\mathbf{r}$ due to a charge $Q$ at the origin is

$$
\mathbf{F}=\frac{\epsilon Q e}{r^{3}} \mathbf{r}=-\nabla V
$$

where $V=\epsilon Q e / r$. The level sets of $V$ are called equipotential surface or lines Note that the force field is orthogonal to the equipotential surfaces. We
see $\mathbf{F}=-\nabla V$ where the potential $V$ is given by

$$
V=-\frac{m M G}{r}
$$

Note that $\mathbf{F}$ point in the direction of decreasing $V$.

Example 3.5. Show the vector field $\mathbf{V}(x, y)=y \mathbf{i}-x \mathbf{j}$ is not a gradient vector field. i.e, there is no $C^{1}$ function $f$ such that

$$
\mathbf{V}=\nabla f=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}
$$

sol. Suppose there is such an $f$. Then $\frac{\partial f}{\partial x}=y$ and $\frac{\partial f}{\partial y}=-x$. Solving, $f(x, y)=x y+g(y)$. Then $\frac{\partial f}{\partial y}=x+g^{\prime}(y)=-x$, which is impossible.

## Conservation of energy

Consider a particle of mass $m$ moving in a force field that is a potential field. $(\mathbf{F}=-\nabla V)$

$$
m \mathbf{r}^{\prime \prime}(t)=-\nabla V(\mathbf{r}(t))
$$

A basic fact about such a motion is the conservation of energy. The energy $E$ is defined to be the sum of kinetic energy and potential energy

$$
E=\frac{1}{2} m\left\|\mathbf{r}^{\prime}(t)\right\|^{2}+V(\mathbf{r}(t))
$$

The principle of Conservation of energy says: $E$ is independent of time. So $d E / d t=0$. We can prove it simply:

$$
\frac{d E}{d t}=m \mathbf{r}^{\prime}(t) \cdot \mathbf{r}^{\prime \prime}(t)+(\nabla V) \cdot \mathbf{r}^{\prime}(t)=\mathbf{r}^{\prime} \cdot(-\nabla V+\nabla V)=0
$$

## Escape Velocity

As an application of conservation of energy, we compute the velocity of a rocket to escape the earth gravitational influence. The energy (kinetic energy + potential energy) is

$$
E_{0}=\frac{1}{2} m v_{e}^{2}-\frac{m M G}{R_{0}}
$$

The escape velocity is obtained when this energy is zero. Thus

$$
v_{e}=\sqrt{\frac{2 M G}{R_{0}}}
$$

Now $M G / R_{0}^{2}$ is gravity $g$, thus

$$
v_{e}=\sqrt{2 g R_{0}} .
$$

## Flow Lines

Definition 3.6. Given a vector field $\mathbf{F}$ the path $\mathbf{c}(t)$ satisfying

$$
\mathbf{c}^{\prime}(t)=\mathbf{F}(\mathbf{c}(t))
$$

is called the flow line for $\mathbf{F}$. That is, $\mathbf{F}$ yields the velocity fields of the path $\mathbf{c}(t)$. flow line is also called as streamlines or integral curves

Example 3.7. Suppose water is flowing in a pipe as in fig 4.4. Suppose it does not depends on time. Then it is given by a vector field.


그림 4.4: Water flow in a pipe
Let $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ and $\mathbf{c}(t)=(x(t), y(t), z(t))$ A flow line may be viewed as the solution of system of DE . Indeed from $\mathbf{c}^{\prime}(t)=\mathbf{F}(\mathbf{c}(t))$, we see

$$
\begin{aligned}
x^{\prime}(t) & =P(x(t), y(t), z(t)) \\
y^{\prime}(t) & =Q(x(t), y(t), z(t)) \\
z^{\prime}(t) & =R(x(t), y(t), z(t))
\end{aligned}
$$

Example 3.8. Show $\mathbf{c}(t)=(\cos t, \sin t)$ is a flow line of $\mathbf{F}=-y \mathbf{i}+x \mathbf{j}$. can you find others?


그림 4.5: The vector field $\mathbf{F}(x, y)=(-y \mathbf{i}+x \mathbf{j}) / \sqrt{x^{2}+y^{2}}$
sol. Verify

$$
\mathbf{c}^{\prime}(t)=\mathbf{F}(\mathbf{c}(t))
$$

Others may be

$$
\mathbf{c}(t)=\left(r \cos \left(t-t_{0}\right), r \sin \left(t-t_{0}\right)\right)
$$

Example 3.9. Draw the vector fields F

$$
\mathbf{F}(x, y)=\frac{-y \mathbf{i}+x \mathbf{j}}{x^{2}+y^{2}},(x, y) \neq(0,0) .
$$

It describes the flow of water in a $\operatorname{sink}($ bathtub).
Example 3.10. Draw the vector fields $\mathbf{F}$ and its integral curve (Flow line)
(Fig 4.5)

$$
\mathbf{F}(x, y)=\frac{-y \mathbf{i}+x \mathbf{j}}{\sqrt{x^{2}+y^{2}}},(x, y) \neq(0,0)
$$

Let $\mathbf{c}(t)=(x(t), y(t))$ be the flow line. Then $\mathbf{c}^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t)\right)$ must be $\mathbf{F}(\mathbf{c}(t))$. Hence

$$
\begin{align*}
x^{\prime}(t) & =\frac{-y(t)}{\sqrt{x(t)^{2}+y(t)^{2}}}  \tag{4.1}\\
y^{\prime}(t) & =\frac{x(t)}{\sqrt{x(t)^{2}+y(t)^{2}}} \tag{4.2}
\end{align*}
$$

Multiply first by $x(t)$ and second by $y(t)$. Then adding we get

$$
x^{\prime}(t) x(t)+y^{\prime}(t) y(t)=0
$$

Integrating

$$
x(t)^{2}+y(t)^{2}=r
$$

This is equation for circle. So we can parameterize it by trig function.

$$
\mathbf{c}(t)=(x(t), y(t))=(r \cos \theta(t), r \sin \theta(t))
$$

Hence

$$
\begin{align*}
& x^{\prime}(t)=-r \theta^{\prime}(t) \sin \theta(t)  \tag{4.3}\\
& y^{\prime}(t)=r \theta^{\prime}(t) \cos \theta(t) \tag{4.4}
\end{align*}
$$

From (4.2) (4.4)

$$
-r \theta^{\prime}(t) \sin \theta(t)=-\sin \theta(t)
$$

Hence

$$
\theta^{\prime}(t)=\frac{1}{r}
$$

So the flow line $\mathbf{c}(t)$ is

$$
\mathbf{c}(t)=(x(t), y(t))=\left(r \cos \frac{t}{r}, r \sin \frac{t}{r}\right)
$$

The period of $\mathbf{c}(t)$ is $2 \pi r$.

Example 3.11. Show that $\mathbf{F}(x, y)=x \mathbf{i}-y \mathbf{j}$ is a gradient field and find flow line
sol. Suppose $\mathbf{F}$ is a gradient field of $f(x, y)$ then

$$
\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}=x \mathbf{i}-y \mathbf{j}
$$

Find $f(x, y)$ such that

$$
\frac{\partial f}{\partial x}=x, \quad \frac{\partial f}{\partial y}=-y
$$

Hence $f(x, y)=\frac{1}{2}\left(x^{2}-y^{2}\right)$

$$
\frac{1}{2}\left(x^{2}-y^{2}\right)=\mathrm{c}
$$

Suppose $\mathbf{F}(x, y)$ is given by

$$
\mathbf{F}(x, y)=\left(F_{1}(x, y), F_{2}(x, y)\right) .
$$

Then the flow line $(x(t), y(t))$ satisfies

$$
\begin{aligned}
x^{\prime}(t) & =F_{1}(x(t), y(t)) \\
y^{\prime}(t) & =F_{2}(x(t), y(t)) .
\end{aligned}
$$

## 제 4 절 Divergence and curl

For divergence and curl operations,(PROCESS) we make use of del operator defined by

$$
\nabla=\mathbf{i} \frac{\partial}{\partial x}+\mathbf{j} \frac{\partial}{\partial y}+\mathbf{k} \frac{\partial}{\partial z}
$$

It works like this: For gradient

$$
\nabla f=\left(\mathbf{i} \frac{\partial}{\partial x}+\mathbf{j} \frac{\partial}{\partial y}+\mathbf{k} \frac{\partial}{\partial z}\right) f=\mathbf{i} \frac{\partial f}{\partial x}+\mathbf{j} \frac{\partial f}{\partial y}+\mathbf{k} \frac{\partial f}{\partial z}
$$

## Divergence

Definition 4.1 (Divergence). If $\mathbf{F}=F_{1} \mathbf{i}+F_{2} \mathbf{j}+F_{3} \mathbf{k}$ is a vector field then the divergence is the scalar field

$$
\begin{aligned}
\operatorname{div} \mathbf{F} & =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z} \\
& =\left(\frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j}+\frac{\partial}{\partial z} \mathbf{k}\right) \cdot\left(F_{1} \mathbf{i}+F_{2} \mathbf{j}+F_{3} \mathbf{k}\right) \\
& =\nabla \cdot \mathbf{F}
\end{aligned}
$$

Similarly for $n$-dim

$$
\operatorname{div} \mathbf{F}=\sum_{i=1}^{n} \frac{\partial F_{i}}{\partial x_{i}}=\frac{\partial F_{1}}{\partial x_{1}}+\frac{\partial F_{2}}{\partial x_{2}}+\cdots+\frac{\partial F_{n}}{\partial x_{n}}
$$

Example 4.2. Find the divergence of $\mathbf{F}=\left(e^{x} \sin y, e^{x} \cos y, y z^{2}\right)$.
sol. Since $\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}$

$$
\begin{aligned}
\operatorname{div} \mathbf{F} & =\frac{\partial}{\partial x}\left(e^{x} \sin y\right)+\frac{\partial}{\partial y}\left(e^{x} \cos y\right)+\frac{\partial}{\partial z}\left(y z^{2}\right) \\
& =e^{x} \sin y+\left(-e^{x} \sin y\right)+2 y z=2 y z
\end{aligned}
$$

Hence $\operatorname{div} \mathbf{F}=2 y z$.

## Example 4.3.

$$
\mathbf{F}=x^{2} y \mathbf{i}+z \mathbf{j}+x y z \mathbf{k}
$$

## Meaning of divergence

Suppose $\mathbf{F}$ represent the velocity of a gas or fluid. Then divergence represents the rate of expansion per unit volume: If $\operatorname{div} \mathbf{F}(P)>0$ then it is expanding. If $(\operatorname{div} \mathbf{F}(P)<0)$ then it is compressing.

It is

$$
\left.\frac{1}{V(0)} \frac{d}{d t} V(t)\right|_{t=0} \approx \operatorname{div} \mathbf{F}\left(\mathbf{x}_{0}\right)
$$

Example 4.4. Draw flow lines of

$$
F=x \mathbf{i}+y \mathbf{j}
$$

Div is positive


그림 4.6: vector field $(x, y)$ and $-(x, y)$

Example 4.5. Graph of

$$
F=x \mathbf{i}
$$

Div is positive(Expanding)


Example 4.6. Graph of

$$
F=-x \mathbf{i}-y \mathbf{j}
$$



그림 4.7: Incompressible $\mathbf{F}=-y \mathbf{i}+x \mathbf{j}$

Example 4.7. The flow lines of

$$
F=-y \mathbf{i}+x \mathbf{j}
$$

are concentric circles. From this we guess the fluid is neither expanding or compressing. Div is zero. Fig 4.7.

Example 4.8. The vector field $F=x \mathbf{i}-y \mathbf{j}$ is divergence free. The flow lines are as in figure.

## Curl

Use the symbol $\nabla$ to see

$$
\begin{aligned}
\operatorname{curl} \mathbf{F} & =\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{1} & F_{2} & F_{3}
\end{array}\right| \\
& =\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}\right) \mathbf{i}+\left(\frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x}\right) \mathbf{j}+\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \mathbf{k}
\end{aligned}
$$



그림 4.8: $\mathbf{F}=x \mathbf{i}-y \mathbf{j}$ Incompressible: Volume preserving

Example 4.9. Let $\mathbf{F}=x \mathbf{i}+x y \mathbf{j}+\mathbf{k}$. Find $\nabla \times \mathbf{F}$.

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x & x y & 1
\end{array}\right|=0 \mathbf{i}-0 \mathbf{j}+y \mathbf{k}
$$

Example 4.10. Let $\mathbf{F}=x y \mathbf{i}-\sin z \mathbf{j}+\mathbf{k}$. Find $\nabla \times \mathbf{F}$.

$$
\begin{aligned}
\nabla \times \mathbf{F} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x y & -\sin z & 1
\end{array}\right| \\
& =\left|\begin{array}{cc}
\frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
-\sin z & 1
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
\frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\
x y & 1
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\
x y & \sin z
\end{array}\right| \mathbf{k} \\
& =\cos z \mathbf{i}-x \mathbf{k}
\end{aligned}
$$

Meaning of curl


그림 4.9: velocity $\mathbf{v}$ and angular velocity $\mathbf{w}$ has relation $\mathbf{v}=\mathbf{w} \times \mathbf{r}$.

Consider a rigid body $B$ rotating about an axis $L$. (Fig 4.9). The rotational motion of $B$ can be described by a vector along axis of rotation $\mathbf{w}$. Let $\mathbf{w}$ the vector along $z$-axis s.t. $\omega=\|\mathbf{w}\|$. The vector $\mathbf{w}$ is called the angular velocity vector and $\omega$ is angular speed.

$$
\omega=\|\mathbf{w}\|
$$

Assume $L$ is $z$-axis $Q$ is any point on the body $B, \alpha$ is distance from $Q$ to $L$. Then $\alpha=\|\mathbf{r}\| \sin \theta$ (r points to $Q$ ). Consider the tangent vector $\mathbf{v}$ at $Q$. Since $Q$ moves around a circle of radius $\alpha$ and parallel to $x y$-plane (counterclockwise), we see,

$$
\|\mathbf{v}\|=\omega \alpha=\omega\|\mathbf{r}\| \sin \theta=\|\mathbf{w}\|\|\mathbf{r}\| \sin \theta
$$

Then by definition of cross product,

$$
\mathbf{v}=\mathbf{w} \times \mathbf{r} .
$$

Since $\mathbf{w}=\omega \mathbf{k}, \mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ we see from the property of cross product,

$$
\mathbf{v}=\mathbf{w} \times \mathbf{r}=-\omega y \mathbf{i}+\omega x \mathbf{j} .
$$

So curl $\mathbf{v}=2 \omega \mathbf{k}=2 \mathbf{w}$. Hence for the rotation of a rigid body, the curl is a vector field whose direction is along the axis of rotation and magnitude is twice the angular speed.

## Curl and rotational flow

$\nabla \times \mathbf{F}$ represents twice the angular velocity: So if it is 0 , then we have irrotational fluid.

Example 4.11. Find $\operatorname{curl} \mathbf{F}$ when $\mathbf{F}(x, y, z)=(y \mathbf{i}-x \mathbf{j}) /\left(x^{2}+y^{2}\right)$ in $\mathbb{R}^{3}$.
sol. Write $\mathbf{F}(x, y, z)=\frac{y}{x^{2}+y^{2}} \mathbf{i}+\frac{-x}{x^{2}+y^{2}} \mathbf{j}+0 \mathbf{k}$. Then we see

$$
\begin{aligned}
\nabla \times \mathbf{F} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{y}{x^{2}+y^{2}} & \frac{-x}{x^{2}+y^{2}} & 0
\end{array}\right| \\
& =\left[\frac{\partial}{\partial x}\left(\frac{-x}{x^{2}+y^{2}}\right)-\frac{\partial}{\partial y}\left(\frac{y}{x^{2}+y^{2}}\right)\right] \mathbf{k} \\
& =\left[\frac{-\left(x^{2}+y^{2}\right)-(-x)(2 x)}{\left(x^{2}+y^{2}\right)^{2}}-\frac{\left(x^{2}+y^{2}\right)-(y)(2 y)}{\left(x^{2}+y^{2}\right)^{2}}\right] \mathbf{k} \\
& =\left[\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}-\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right] \mathbf{k} \\
& =\mathbf{0}
\end{aligned}
$$

## Gradients are curl Free

Theorem 4.12. For any $C^{2}$ function

$$
\nabla \times(\nabla f)=0
$$

Proof.
$\nabla \times \nabla f=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z}\end{array}\right|$
$=\left(\frac{\partial^{2} f}{\partial y \partial z}-\frac{\partial^{2} f}{\partial z \partial y}\right) \mathbf{i}+\left(\frac{\partial^{2} f}{\partial z \partial z x}-\frac{\partial^{2} f}{\partial x \partial z}\right) \mathbf{j}+\left(\frac{\partial^{2} f}{\partial x \partial y}-\frac{\partial^{2} f}{\partial y \partial x}\right) \mathbf{k}$

Example 4.13. Show $\mathbf{F}(x, y, z)=y \mathbf{i}-x \mathbf{j}$ is not a gradient field. i.e, there does not exists $\mathcal{C}^{2}$-function $f$ s.t $\nabla f=\mathbf{F}$ holds.
sol. If $\mathbf{F}$ is the gradient of $f$ then by Thm 4.12

$$
\operatorname{curl} \mathbf{F}=\nabla \times \mathbf{F}=\nabla \times \nabla f=\mathbf{0}
$$

Let $\mathbf{F}(x, y, z)=y \mathbf{i}-x \mathbf{j}+0 \mathbf{k}$. Then

$$
\begin{aligned}
\nabla \times \mathbf{F} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y & -x & 0
\end{array}\right| \\
& =\left[\frac{\partial}{\partial x}(-x)-\frac{\partial}{\partial y}(y)\right] \mathbf{k}=-2 \mathbf{k}
\end{aligned}
$$

$\operatorname{curl} \mathbf{F}=-2 \mathbf{k} \neq \mathbf{0}$, a contradiction.

(a) $\mathbf{F}=(y \mathbf{i}-x \mathbf{j}) /\left(x^{2}+y^{2}\right)$

(b) $\mathbf{F}=y \mathbf{i}-x \mathbf{j}$

그림 4.10: Movement of small paddle in vector fields

Remark 4.14. Vector field $\mathbf{F}(x, y, z)=(y \mathbf{i}-x \mathbf{j}) /\left(x^{2}+y^{2}\right)$ (It describes flow in a tub) does not rotate about any point except $z$-axis. When small paddle is placed in the fluid, it will follow the flow line( a circle in this case), but it does not rotate about its own axis. Such a field is called irrotational.

But the vector field $\mathbf{F}(x, y, z)=y \mathbf{i}-x \mathbf{j}$ has nonzero rotation. (fig 4.10(b) ).

## Scalar curl

As a special case, if $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}$ then

$$
\nabla \times \mathbf{F}=\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathbf{k}
$$

$\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)$ is called a scalar curl.
Example 4.15. Find scalar curl of $\mathbf{V}=-y^{2} \mathbf{i}+x \mathbf{j}$,

$$
\nabla \times \mathbf{V}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
-y^{2} & x & 0
\end{array}\right|=(1+2 y) \mathbf{k}
$$

## Curls are divergence free

Theorem 4.16. For any $C^{2}$ vector field $\mathbf{F}$

$$
\operatorname{div} \operatorname{curl} \mathbf{F}=\nabla \cdot(\nabla \times \mathbf{F})=0
$$

## Physical meaning of divergence

Let

$$
\mathbf{F}(x, y, z)=\left(F_{1}, F_{2}, F_{3}\right)=F_{1} \mathbf{i}+F_{2} \mathbf{j}+F_{3} \mathbf{k}
$$

be a velocity vector field of some fluid in $\mathbb{R}^{3}$.


그림 4.11: Geometric meaning of divergence
Fig 4.11. Consider a box $W$ with dimension $\Delta x, \Delta y, \Delta z$ Then volume of $W$ is $\Delta W=\Delta x \Delta y \Delta z$. Consider the loss of fluid across $W$ per unit time. First consider fluid loss through left side of $W$ whose area is $\Delta x \Delta z$. (Consider $F_{2}$ only). The outflux is

$$
\mathbf{F}(x, y, z) \cdot(-\mathbf{j}) \Delta x \Delta z=-F_{2}(x, y, z) \Delta x \Delta z
$$

influx is

$$
\mathbf{F}(x, y+\Delta y, z) \cdot \mathbf{j} \Delta x \Delta z=F_{2}(x, y+\Delta y, z) \Delta x \Delta z
$$

$$
\left(F_{2}(x, y+\Delta y, z)-F_{2}(x, y, z)\right) \Delta x \Delta z \approx\left(\frac{\partial F_{2}}{\partial y} \Delta y\right) \Delta x \Delta z
$$

Considering all the direction, the change in fluid across $W$ per unit time is(total flux)

$$
\left(\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}\right) \Delta x \Delta y \Delta z
$$

Now divide by volume $\Delta W$

$$
\text { density of flux/time }=\frac{\text { Flux across boundary }}{\text { vol }} \approx\left(\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}\right)
$$

Let $\Delta x, \Delta y, \Delta z \rightarrow 0$ Then fluid density of $\mathbf{F}$ is $\operatorname{div} \mathbf{F}$. If $\mathbf{F}$ is gas, then $\operatorname{div} \mathbf{F}$ represents the rate of expansion of gas per unit time per unit volume. If $\mathbf{F}(x, y, z)=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ then $\operatorname{div} \mathbf{F}=3$ and this means the gas is expanding three times per unit time.

## Laplace operator

$$
\nabla^{2} f=\nabla \cdot(\nabla f)=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
$$

$\nabla^{2} f=0$ is called Laplace equation.

Example 4.17. Find $\nabla^{2} f$ when

$$
f(x, y)=\frac{1}{r}=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}} \quad(x, y, z,) \neq 0
$$

where $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ and $r=\|\mathbf{r}\|$.

$$
\frac{\partial f}{\partial x}=\frac{-x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}, \quad \frac{\partial f}{\partial y}=\frac{-y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}, \quad \frac{\partial f}{\partial z}=\frac{-z}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} .
$$

Second derivatives, we find that

$$
\begin{aligned}
& \frac{\partial^{2} f}{\partial x^{2}}=\frac{3 x^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}-\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \\
& \frac{\partial^{2} f}{\partial y^{2}}=\frac{3 y^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}-\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \\
& \frac{\partial^{2} f}{\partial z^{2}}=\frac{3 z^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}-\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}
\end{aligned}
$$

Thus

$$
\nabla^{2} f=0
$$

Example 4.18. For given $f(x, y)=x^{3}-3 x y^{2}+7 z$, compute $\nabla^{2} f$.
sol. First compute $\partial f / \partial x, \partial f / \partial y$ and $\partial f / \partial z$.

$$
\frac{\partial f}{\partial x}=3 x^{2}-3 y^{2}, \quad \frac{\partial f}{\partial y}=-6 x y, \quad \frac{\partial f}{\partial z}=7 .
$$

Hence

$$
\frac{\partial^{2} f}{\partial x^{2}}=6 x, \quad \frac{\partial^{2} f}{\partial y^{2}}=-6 x, \quad \frac{\partial^{2} f}{\partial z^{2}}=0 .
$$

and

$$
\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}=6 x+(-6 x)+0=0 .
$$

## Vector differential identities

$\qquad$ Vector differential identities
(1) $\nabla(f+g)=\nabla f+\nabla g$
(2) $\nabla(c f)=c \nabla f$, for constant $c$.
(3) $\nabla(f g)=f \nabla g+g \nabla f$
(4) $\nabla(f / g)=(g \nabla f-f \nabla g) / g^{2}, \quad g \neq 0$
(5) $\operatorname{div}(\mathbf{F}+\mathbf{G})=\operatorname{div} \mathbf{F}+\operatorname{div} \mathbf{G}$
(6) $\operatorname{curl}(\mathbf{F}+\mathbf{G})=\operatorname{curl} \mathbf{F}+\operatorname{curl} \mathbf{G}$
(7) $\operatorname{div}(f \mathbf{F})=f \operatorname{div} \mathbf{F}+\mathbf{F} \cdot \nabla f$
(8) $\operatorname{div}(\mathbf{F} \times \mathbf{G})=\mathbf{G} \cdot \operatorname{curl} \mathbf{F}-\mathbf{F} \cdot \operatorname{curl} \mathbf{G}$
(9) $\operatorname{div} \operatorname{curl} \mathbf{F}=0$
(10) $\operatorname{curl}(f \mathbf{F})=f \operatorname{curl} \mathbf{F}+\nabla f \times \mathbf{F}$
(11) $\operatorname{curl}(\mathbf{F} \times \mathbf{G})=\mathbf{F} \operatorname{div} \mathbf{G}-\mathbf{G} \operatorname{div} \mathbf{F}+(\mathbf{G} \cdot \nabla) \mathbf{F}-(\mathbf{F} \cdot \nabla) \mathbf{G}$
(12) curl curl $\mathbf{F}=\operatorname{grad} \operatorname{div} \mathbf{F}-\nabla^{2} \mathbf{F}$
(13) $\operatorname{curl} \nabla f=\mathbf{0}$
(14) $\nabla(\mathbf{F} \cdot \mathbf{F})=2(\mathbf{F} \cdot \nabla) \mathbf{F}+2 \mathbf{F} \times(\operatorname{curl} \mathbf{F})$
(15) $\nabla^{2}(f g)=f \nabla^{2} g+g \nabla^{2} f+2(\nabla f \cdot \nabla g)$
(16) $\nabla(\mathbf{F} \cdot \mathbf{G})=(\mathbf{F} \cdot \nabla) \mathbf{G}+(\mathbf{G} \cdot \nabla) \mathbf{F}+\mathbf{F} \times \operatorname{curl} \mathbf{G}+\mathbf{G} \times \operatorname{curl} \mathbf{F}$
(17) $\operatorname{div}(\nabla f \times \nabla g)=0$
(18) $\nabla \cdot(f \nabla g-g \nabla f)=f \nabla^{2} g-g \nabla^{2} f$
(19) $\mathbf{H} \cdot(\mathbf{F} \times \mathbf{G})=\mathbf{G} \cdot(\mathbf{H} \times \mathbf{F})=\mathbf{F} \cdot(\mathbf{G} \times \mathbf{H})$
(20) $\mathbf{H} \cdot((\mathbf{F} \times \nabla) \times \mathbf{G})=((\mathbf{H} \cdot \nabla) \mathbf{G}) \cdot \mathbf{F}-(\mathbf{H} \cdot \mathbf{F})(\nabla \cdot \mathbf{G})$
(21) $\mathbf{F} \times(\mathbf{G} \times \mathbf{H})=(\mathbf{F} \cdot \mathbf{H}) \mathbf{G}-\mathbf{H}(\mathbf{F} \cdot \mathbf{G})$

Example 4.19. Prove (7).
sol.

$$
\operatorname{div}(f \mathbf{F})=\frac{\partial}{\partial x}\left(f F_{1}\right)+\frac{\partial}{\partial y}\left(f F_{2}\right)+\frac{\partial}{\partial z}\left(f F_{3}\right)
$$

By product rule,

$$
\begin{aligned}
\operatorname{div}(f \mathbf{F}) & =f\left(\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}\right)+F_{1} \frac{\partial f}{\partial x}+F_{2} \frac{\partial f}{\partial y}+F_{3} \frac{\partial f}{\partial z} \\
& =f(\nabla \cdot \mathbf{F})+\mathbf{F} \cdot \nabla f .
\end{aligned}
$$

Example 4.20. Show $\nabla^{2}(1 / r)=0$ for $\mathbf{r} \neq 0$.
sol. As before $\nabla(1 / r)=-\mathbf{r} / r^{3}$. In general, $\nabla\left(r^{n}\right)=n r^{n-2} \mathbf{r}$. By (7),

$$
\begin{aligned}
-\nabla^{2}(1 / r) & =\nabla \cdot\left(\mathbf{r} / r^{3}\right)=\frac{1}{r^{3}} \nabla \cdot \mathbf{r}+\mathbf{r} \cdot \nabla\left(\frac{1}{r^{3}}\right) \\
& =\frac{3}{r^{3}}+\mathbf{r} \cdot\left(\frac{-3 \mathbf{r}}{r^{5}}\right)=0 .
\end{aligned}
$$


[^0]:    ${ }^{1}$ The norm of partition $P=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}\|P\|$ is defined as $\max _{0 \leq i<n}\left(t_{i+1}-t_{i}\right)$.

