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V� 2 *�×
Differentiation

V� 1 â�
 Geometry of real valued functions

Functions and Mappings

In this section, we study functions whose domain is Rn or its subset with

values in Rm.

Definition 1.1. If the domain of f is Rn or its subset and the range is R,

then f is called n-variable scalar-valued function. In particular, if n ≥ 2,

it is called functions of several variables. If the domain is A ⊂ Rn then

we write f : A ⊂ Rn → R. Sometimes x 7→ f(x) is used. If the range is Rm,

m ≥ 2 it is called vector-valued function. Use f : Rn → Rm, x ∈ Rn. We

denote f(x) = (f1, . . . , fm) ∈ Rm, where fi : Rn → R functions of n variables.

In other words, f(x) = (f1(x), . . . , fn(x)) each fi is called i-th component

(i-th component function) of f .

Definition 1.2. The graph of a functions of several variables f : A ⊂ Rn → R

is (graph) the following set.

graph(f) = {(x, f(x)) ∈ Rn+1 | x ∈ A ⊂ Rn}

Componentwise,

graph(f) = {(x1, · · · , xn, , f(x1, · · · , xn)) ∈ Rn+1 | x ∈ A ⊂ Rn}
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ÕªaË> 2.1: Graph of two variable function

ÕªaË> 2.2: Level set

Level sets, curves, surfaces

Definition 1.3. The level set of f : Rn → R is the set of all x where the

function f has constant value:

Sc = {x ∈ Rn | f(x) = c, c ∈ R}

If n = 2, it is level curve and if n = 3, level surface.

Example 1.4. The graph of f(x, y) = x2 + y2 is called paraboloid or

paraboloid of revolution. Draw the level sets.

sol. The level set of x2 + y2 = c is 0 if c = 0. For c > 0 it is a circle of radius
√

c. If c < 0, the level set is empty.

Example 1.5. Draw level sets of f(x, y) = x2 − y2. The graph is called

hyperbolic paraboloid or saddle.
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sol. The level sets of f(x, y) = x2 − y2 = c:

If c = 0, then it is y = ±x, two lines through origin. If c > 0, the

level set is a hyperbola meeting with x-axis, and if c < 0 level set is a

hyperbola meeting with y-axis. The intersection with xz-plane is the

parabola z = x2, and the intersection with yz-plane is the parabola

z = −y2. Hence the graph of f is as in Figure ??.
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Level surface of function of three variables

Example 1.6. Study the level surface of f(x, y, z) = x2 + y2 + z2.

sol. The set x2 + y2 + z2 = c becomes























origin if c = 0

circle of radius
√

c if c > 0

empty if if c < 0

To imagine the graph in R4, consider intersection with R3
z=0 =

{(x, y, z, w) | z = 0}. It is

{(x, y, z, w) | w = x2 + y2, z = 0}

Hence it is figure ??.

Example 1.7. Describe the graph of f(x, y, z) = x2 + y2 − z2.
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sol. The graph of f = x2 + y2 − z2 is a subset of 4-dim space. If we denote

point in this space by (x, y, z, t), then graph is given by

{(x, y, z, t)|t = x2 + y2 − z2}

The level surface is

Lc = {(x, y, z)|x2 + y2 − z2 = c}

For c = 0, it is a cone z = ±
√

x2 + y2. If c = −a2we obtain z =

±
√

x2 + y2 + a2. this is a hyperboloid of two sheets. If c = a2 > 0

we obtain z = ±
√

x2 + y2 − a2. This is hyperboloid of single sheet.

On the other hand, if we consider intersection with y = 0; Sy=0 =

{(x, y, z, t) | y = 0}, the intersection with graph of f is

Sy=0 ∩ graph of f = {(x, y, z, t) | y = 0, t = x2 − z2}

This is the set

{(x, y, z, t) | t = x2 − y2, y = 0}

This is considered to belong to (x, y, t) space and is a hyperbolic

paraboloid(saddle).
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V� 2 â�
 Limits and Continuity

Limits using Open Sets

Definition 2.1 (Open sets). Let x0 ∈ Rn. The open disk or ball of radius

r and center x0 is the set of all points x such that ‖x − x0‖ < r. This is

denoted by Dr(x0) or D(x0; r).

A set U ⊂ Rn is said to be open if for every point x0 ∈ U there exists

some r > 0 such that Dr(x0) is contained in U(in symbol, Dr(x0) ⊂ U).

Theorem 2.2. Dr(x0) itself is open.

Example 2.3. Half plane is open.

By a neighborhood of a point x0, we merely mean a set Dr(x0) for any

r > 0.

Definition 2.4 (Boundary). Let A ⊂ Rn. A point x ∈ Rn is called a bound-

ary point if every neighborhood of x0 contains at least a point in A and at

least a point not in A.

A set U ⊂ Rn is said to be open if for every point x0 ∈ U there exists

some r > 0 such that Dr(x0) is contained in U(in symbol, Dr(x0) ⊂ U).

Let us define the limit using open sets.

Definition 2.5 (Limit). Let f : A ⊂ Rn → Rm, where A ⊂ Rn and let x0 ∈ A

or boundary of A. Let N be an open neighborhood of b ∈ Rm. We say f is

eventually in N as x approaches x0 if there is a neighborhood N of x0

such that for all point x of U ∩A, x 6= x0, we have f(x) ∈ N . in this case, we

say f approaches b as x approaches x0, or in symbols we write

lim
x→x0

f(x) = b.

Example 2.6. Find limx→1 f(x) where

g(x) =
x − 1√
x − 1
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x0

δ

Dδ(x0)
ε

Dε(L)

image of
Dδ(x0)

f

ÕªaË> 2.3: Limit using neighborhood

sol.

Properties of Limits

Theorem 2.7. Let f, g : A ⊂ Rn → Rmand let x0 be a point of A or boundary.

b ∈ Rm and c a scalar.

Then the following hold:

(1) If lim
x→x0

(f)(x) = b then lim
x→cx0

(f)(x) = cb.

(2) If lim
x→x0

(f)(x) = b1 and lim
x→x0

(g)(x) = b2 then lim
x→x0

(f±g)(x) = L1±L2.

(3) If m = 1, then lim
x→x0

(fg)(x) = b1b2.

(4) Same with division.

(5) If f(x) = (f1(x), · · · , fm(x)) where fi : A → Rm, are components of f ,

then lim
x→x0

f(x) = b = (b1, · · · , bm), where bi = f(xi) for i = 1, · · · ,m.

Using this theorem, we can find limits of polynomials or rational functions.

Example 2.8. Find the limit.

(1) lim
(x,y)→(0,0)

x2 + xy3 − x2y + 2

(2) lim
(x,y)→(0,0)

x2 + xy3 − x2y + 2

xy + 3
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sol.

lim
(x,y)→(0,0)

x2 + xy3 − x2y + 2 = 0 + 0 + 0 + 2 = 2,

lim
(x,y)→(0,0)

x2 + xy3 − x2y + 2

xy + 3
=

2

3

Continuity

Definition 2.9. f : A ⊂ Rn → Rm continuous at x0 ∈ A if

lim
x→x0

f(x) = f(x0)

f is continuous on A if it is so at all points of A.

y

x

z

y

x

z

discontinuous

Graph of discontinuous function continuousÕªaË> 2.4: continuous, discontinuous function

Example 2.10. Show that the following function is continuous at (0, 0).

f(x, y) =











xy
√

x2 + y2
(x, y) 6= (0, 0) ,

0 (x, y) = (0, 0)

sol. We have seen in example 2.16 the limit of this function at (0, 0) is 0,

and this eqauls f(0, 0). Hence f is continuous there.
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The following results hold.

Theorem 2.11. Suppose two functions f, g : A ⊂ Rn → Rm are two functions

continuous at x0 ∈ A. then the followings are also continuous at x0 ∈ A.

(1) f ± g

(2) For any real k, the function kf

(3) When m = 1, the product fg

(4) When m = 1, g(x0) 6= 0, then f/g

(5) f is continuous iff each fi is continuous, for i = 1, · · · ,m.

Theorem 2.12 (Composit function). Suppose g : A ⊂ Rn → Rm and f : B ⊂
Rm → Rp are given Suppose g(A) ⊂ B so that f ◦ g is defined. If g is

continuous at x0 ∈ A and f(x0) ∈ B\� f is continuous at y0 = g(x0) then

f ◦ g is continuous at x0.

Example 2.13. Show f(x, y) = cos2((y + x3)/(1 + x2)) is continuous

Limit using ε-δ

Using ε-δ.

Definition 2.14 (Limit suing ε-δ ). Let f : A ⊂ Rn → Rm. We say limit of

f at x0 ∈ Rn is b, if for any ε > 0 there exists some positive δ such that for

all x ∈ A satisfying 0 < ‖x − x0‖ < δ we have ‖f(x) − b‖ < ε.

Example 2.15. The function is defined on all points except (0, 0).

f =
sin(x2 + y2)

x2 + y2

Find the limit as x → (0, 0).
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sol. We know in one variable calculus that

lim
x→0

sin x

x
= 1

So we guess

lim
(x,y)→(0,0)

sin(x2 + y2)

x2 + y2
= lim

(x,y)→(0,0)

sin ‖(x, y)‖2

‖(x, y)‖2
= 1

Since limx→0 sin x/x = 1 for any ε > 0 there exists δ > 0 such that

|x| < δ =⇒ |(sin x)/x − 1| < ε. Here we can assume 0 < δ < 1. Write

v = (x, y). Then if ‖v‖ < δ holds then

|f(x, y) − 1| =
∣

∣

∣

sin(‖v‖2)

‖v‖2

∣

∣

∣ < ε

Hence lim(x,y)→(0,0) f(x, y) = 1.

Example 2.16. Show

lim
(x,y)→(0,0)

xy
√

x2 + y2
= 0

sol. Watch

0 ≤ xy
√

x2 + y2
≤ x2 + y2

√

x2 + y2
=
√

x2 + y2.

For any ε choose δ = ε. Then for ‖(x, y)‖ < δ we have

∣

∣

∣

xy
√

x2 + y2
− 0

∣

∣

∣ =
xy

√

x2 + y2
≤
√

x2 + y2 = ‖(x, y)‖ < δ = ε

Thus limit is 0.

Example 2.17. How about

lim
(x,y)→(0,0)

x2

x2 + y2

and

lim
(x,y)→(0,0)

2x2y

x2 + y2
= 0
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sol. (a) Set y = 0 and let x → 0. Next set x = 0 let y → 0. The limit is

different!

(b) Note that

0 ≤ 2x2y

x2 + y2
≤ 2x2y

x2
= 2|y|.

For any ε choose δ = ε/2. Then for ‖(x, y)‖ < δ we have

∣

∣

∣

2x2y

x2 + y2
− 0

∣

∣

∣ < 2δ = ε

Thus limit is 0.

V� 3 â�
 Differentiation

Partial derivatives

Definition 3.1. Let f : U ⊂ Rn → R be a real valued function. Then the

partial derivative with respect to i-th variable xi denoted by ∂f/∂xi is:

∂f

∂xi
(x1, . . . , xn) = lim

h→0

f(x1, x2, . . . , xi + h, . . . , xn) − f(x1, . . . , xn)

h

= lim
h→0

f(x + hei) − f(x)

h

partial derivatives ∂f/∂xi at x0 ∈ Rn is called partial derivative.

∂f

∂xi
(x0), or

∂f

∂xi

∣

∣

∣

x0

For vector valued function f : U ⊂ Rn → Rm, the partial derivative is the

partial derivative of each component function fj where f = (f1, . . . , fm).

Example 3.2. Find partial derivatives of f(x, y) = (x2, x + y2).

sol. ∂f1/∂x = 2x, ∂f1/∂y = 0, ∂f2/∂x = 1, ∂f2/∂y = 2y.

Example 3.3. Find partial derivatives of f(x, y) = xy/
√

x2 + y2 at (1, 1).
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sol. First

∂f

∂x
(1, 1) =

y
√

x2 + y2 − xy(x/
√

x2 + y2)

x2 + y2

=
y(x2 + y2) − x2y

(x2 + y2)3/2

= 23/2

Linear approximation

Motive: Find equation of tangent plane to z = f(x, y) at (x0, y0). Suppose

the surface has a tangent plane

z = ax + by + c

at (x0, y0). The slope along x-direction is ∂f/∂x(x0, y0) and the slope along

y-direction is ∂f/∂y(x0, y0). Hence

a =
∂f

∂x
(x0, y0), b =

∂f

∂y
(x0, y0).

Also since the point (x0, y0, f(x0, y0)) lies in the plane, we see

z = f(x0, y0) +
∂f

∂x
(x0, y0)(x − x0) +

∂f

∂y
(x0, y0)(y − y0)

x

y

z

(x0, y0)

slope =
∂f

∂x
(x0, y0)

z = g(x)

z = f(x, y)

slope =
∂f

∂y
(x0, y0)

z = h(y)

ÕªaË> 2.5: Geometric meaning of partial derivative
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Example 3.4. Find partial derivative of f(x, y) = x1/3y1/3 by definition,

∂f

∂x
(0, 0) = lim

h→0

f(h, 0) − f(0, 0)

h
= lim

h→0

0 − 0

h
= 0

Similarly (∂f/∂y)(0, 0) = 0. But this is not differentiable. Graph of f is in

Fig ??.

x

y
z

ÕªaË> 2.6: Graph of f(x, y) = x1/3y1/3

Differentiation of function of several variable

For one variable differentiable function f , f(x) can be approximated near x0

by the value of tangent line at x: f(x0)+f ′(x0)(x−x0) this is called tangent

line approximation or linear approximation of f(x). It satisfies (figure

2.7)

lim
x→x0

f(x) − f(x0) − f ′(x0)(x − x0)

x − x0
= 0 (2.1)

of f(x)
approximation

f(x) error

y = f(x)

tangent line

x0 xÕªaË> 2.7: tangent approximation of a function of one variable
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For two variable function f : R2 → R which has partial derivative at (x0, y0)

and has tangent plane (x0, y0) then tangent plane is given by

z = f(x0, y0) +
∂f

∂x
(x0, y0)(x − x0) +

∂f

∂y
(x0, y0)(y − y0)

Definition 3.5. We say f : R2 → R differentiable at (x0, y0) if ∂f/∂x and

∂f/∂y exists and for (x, y) → (x0, y0)

f(x, y) − f(x0, y0) −
∂f

∂x
(x0, y0)(x − x0) −

∂f

∂y
(x0, y0)(y − y0)

‖(x, y) − (x0, y0)‖
→ 0

Definition 3.6. Suppose f : R2 → R is differentiable at (x0, y0). The tangent

plane at (x0, y0) is given by

z = f(x0, y0) +
∂f

∂x
(x0, y0)(x − x0) +

∂f

∂y
(x0, y0)(y − y0)

Example 3.7. Find the tangent plane of f(x, y) = x2 + y2 at (0, 0).

sol. We see (∂f/∂x)(0, 0) = (∂f/∂y)(0, 0) = 0.

lim
(x,y)→(0,0)

f(x, y) − f(0, 0) − ∂f

∂x
(0, 0)(x) − ∂f

∂y
(0, 0)(y)

‖(x, y) − (0, 0)‖

= lim
(x,y)→(0,0)

f(x, y)

‖(x, y)‖ = lim
(x,y)→(0,0)

√

x2 + y2

= 0.

Hence the equation of tangent plane is

f(x0, y0) +
∂f

∂x
(x0, y0)(x − x0) +

∂f

∂y
(x0, y0)(y − y0) = 0

Differentiability of vector valued function

Let f : Rn → Rm. If every component of f is differentiable, we say f is differ-

entiable. We can express the concept of differentiability of a vector function

in vector notation. As an example, let f : R2 → R and define the 1× 2 matrix
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Df(x0, y0) by

Df(x0, y0) =

[

∂f

∂x
(x0, y0)

∂f

∂y
(x0, y0)

]

Then f differentiable at (x0, y0) if

lim
(x,y)→(x0,y0)

f(x, y) − f(x0, y0) − Df(x0, y0)

[

x − x0

y − y0

]

‖(x, y) − (x0, y0)‖
= 0

Here Df(x0, y0) is called the derivative of f . In general we define as follows:

Definition 3.8. f = (f1, . . . , fm) : Rn → Rm is said to be differentiable at

x0 if partial derivatives of f exists at x0 and

lim
x→x0

‖f(x) − f(x0) − Df(x0)(x − x0)‖
‖x − x0‖

= 0

holds. Here Df(x0) is m × n matrix.

If m = 1, then
[

∂f

∂x1
· · · ∂f

∂xn

]

Also called a gradient of f and denoted by ∇f .

If we let h = x−x0, then real valued function f is differentiable at a point

x0 if

lim
x→x0

1

‖h‖

∣

∣

∣

∣

∣

∣

‖f(x0 + h) − f(x0) −
n
∑

j=1

∂f

∂xj
(x0)hj

∣

∣

∣

∣

∣

∣

= 0

In general, the derivative has the following form:

Df(x0) =















∂f1

∂x1
· · · ∂f1

∂xn
...

...
∂fm

∂x1
· · · ∂fm

∂xn















Df(x0)(x − x0) means the product of m × n matrix Df(x0) and the n × 1

vector x−x0. Df(x0)(x−x0) is called the derivative of f at x0. Sometimes

it is called the Jacobian matrix.

Example 3.9. Find the derivative of Df(x, y).

(1) f(x, y) = (xy, x + y)
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(2) f(x, y) = (exy, x2 + y2, xey)

sol. (1) f1 = xy, f2 = x + y. Hence

Df(x) =

[

y x

1 1

]

(2) f1 = ex+y, f2 = x2 + y2, f3 = xey. Hence

Df(x) =









ex+y ex+y

2x 2y

ey xey









Example 3.10. Show f(x, y) = (xy, x + y) is differentiable at (0, 0).

sol. From example 3.9

Df(0, 0) =

[

0 0

1 1

]

lim
(x,y)→(0,0)

∥

∥

∥

∥

∥

f(x, y) − f(0, 0) − Df(0, 0)

[

x

y

]
∥

∥

∥

∥

∥

‖(x, y) − (0, 0)‖

= lim
(x,y)→(0,0)

‖(xy, x + y) − (0, x + y)‖
‖(x, y)‖

= lim
(x,y)→(0,0)

|xy|
√

x2 + y2
= 0

Relation with continuity

Theorem 3.11. If f = (f1, . . . , fn) : Rn → Rm has all partial derivatives

∂fi/∂xj all exist and continuous in a neighborhood of x then f is x differen-

tiable.

Example 3.12. f(x, y) = (exy, x2 + y2, xey) is differentiable at all points of

R2.

sol. Since all the partial derivatives are continuous on R2 f is differentiable

by Theorem 3.11
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Example 3.13. Given

f(x, y) =











xy
√

x2 + y2
(x, y) 6= (0, 0)

0 (x, y) = (0, 0)

(1) partial derivatives at (0, 0) exist.

(2) partial derivatives at (0, 0) are not continuous

(3) f is not differentiable at (0, 0)

sol. (1) From definition

∂f

∂x
(0, 0) = lim

(x,y)→(0,0)

f(x, 0) − f(0, 0)

x
= 0

∂f

∂y
(0, 0) = lim

(x,y)→(0,0)

f(0, y) − f(0, 0)

y
= 0

For (x, y) 6= (0, 0)

∂f

∂x
=

y
√

x2 + y2 − 2x(xy)/2
√

x2 + y2

x2 + y2

=
y

√

x2 + y2
− x2y

(x2 + y2)3/2

this does not have limit at (0, 0).

(2) Suppose f is differentiable at (0, 0). Then

Df =

[

∂f

∂x

∂f

∂y

]

∣

∣

∣

(0,0)
=
[

0 0
]

hence we must have

lim
(x,y)→(0,0)

f(x, y) − f(0, 0)

‖(x, y)‖ = lim
(x,y)→(0,0)

xy

x2 + y2

But lim(x,y)→(0,0) xy/(x2 + y2) does not exists. Contradiction.
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x

y

z

ÕªaË> 2.8: Graph of example 3.13

Theorem 3.14. If f = (f1, . . . , fn) : Rn → Rm is differentiable at x0 then f��H
x0 is continuous.

Converse is not true.

Example 3.15. Suppose f : R2 → R is given as follows.

f(x, y) =







1 x = 0 or y = 0

0 otherwise

partial deriv. exist

�

��

em
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differentiable ks continuous partial derivative

continuous
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V� 4 â�
 Paths and Curves

Use parameter to express a curve c(t). Eq. of line

c(t) = x0 + tv



℄j 5 ℄X� CHAIN RULE 21

Eq. of Circle C : x2 + y2 = 1 c(r) : R → R2 is given by

c(t) = (cos t, sin t), 0 ≤ t ≤ 2π

Cycloid:

c(t) = (t − sin t, 1 − cos t)

Study more general cycloid described in the book.

Velocity and tangent to Paths

Definition 4.1. If c is a differentiable path, then the velocity is

c′(t) = lim
h→0

c(t + h) − c(t)

h

If c(t) = (x(t), y(t)) then c′(t) = (x′(t), y′(t)). The speed of the path is

s = ‖c′(t)‖.

Example 4.2. Find the velocity of the path c(t) = (t, t2, et) at t = 0.

Example 4.3 (Helix). c(t) = (cos t, sin t, t) at t = π/2.

Eq. of tangent line to c(t) when c′(t0) 6= 0:

ℓ(t) = c(t0) + (t − t0)c
′(t0)

Example 4.4. Find the velocity of the path c(t) = (et, e−t, cos t) at t = 1, 3.V� 5 â�
 Chain rule

Some rules

Proposition 5.1 (Rules). Suppose f : Rn → R and g : Rn → R is differen-

tiable at x0.

(1) [constant multiple rule] For all constant c, cf is differentiable at x0.

D(cf)(x0) = cDf(x0)

(2) [sum rule] Sum f + g differentiable at x0

D(f + g)(x0) = Df(x0) + Dg(x0)
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(3) [product rule] Product fg differentiable at x0.

D(fg)(x0) = g(x0)Df(x0) + f(x0)Dg(x0)

(4) [quotient rule] If g(x0) 6= 0, then f/g differentiable at x0.

D

(

f

g

)

(x0) =
g(x0)Df(x0) − f(x0)Dg(x0)

(g(x0))2

Rule (1) and (2) also hold when f and g are vector functions Rn → Rm.

Proof. (3) Suppose x → x0 and we need to show that

g(x)f(x) − g(x0)f(x0) − [g(x)Df(x) + g(x)Df(x)](x − x0)

‖x − x0‖
→ 0

Numerator is

g(x)f(x) − g(x)f(x0) + g(x)f(x0) − g(x0)f(x0)

− [g(x0)Df(x0) + g(x0)Df(x0)](x − x0)

= [g(x)f(x) − g(x)f(x0) − g(x0)Df(x0)(x − x0)]

+ [g(x)f(x0) − g(x0)f(x0) − f(x0)Dg(x0)(x − x0)]

Let A be the terms in the first bracket and B be the terms in the second

bracket. Then

A = g(x)f(x) − g(x)f(x0) − g(x0)Df(x0)(x − x0)

= g(x)f(x) − g(x)f(x0) − g(x)Df(x0)(x − x0)

+ g(x)Df(x0)(x − x0) − g(x0)Df(x0)(x − x0)

= g(x)[f(x) − f(x0) − Df(x0)(x − x0)]

+ [g(x) − g(x0)]Df(x0)(x − x0).

Similar expression for B. Now using the definition of derivative and continuity

we can show

lim
x→x0

A

‖x − x0‖
= 0, lim

x→x0

B

‖x − x0‖
= 0
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Chain rule

Theorem 5.2 (Chain rule-simple). (1) Suppose c(t) = (x(t), y(t)) : R →
R2 differentiable at t0 and f : R2 → R differentiable at x0 = c(t0) then

the composite h = f ◦ c : R → R ( h(t) = f(x(t), y(t))) is differentiable

at t0 and its derivative dh/dt(t0) is

dh

dt
(t0) =

∂f

∂x
(x0)

dx

dt
(t0) +

∂f

∂y
(x0)

dy

dt
(t0)

(2) Suppose g : R2 → R2, g(x, y) = (u(x, y), v(x, y)) differentiable at x0 and

f : R2 → R differentiable at g(x0) = y0, then the composite function

h = f ◦ g differentiable at x0 and Dh(x0) =
[

∂h/∂x(x0), ∂h/∂y(x0)
]

is given by

∂h

∂x
(x0) =

∂f

∂u
(y0)

∂u

∂x
(x0) +

∂f

∂v
(y0)

∂v

∂x
(x0)

∂h

∂y
(x0) =

∂f

∂u
(y0)

∂u

∂x
(x0) +

∂f

∂v
(y0)

∂v

∂y
(x0)

Wire it in matrix form, Dh = Df ◦Dg, where

Df = [
∂f

∂u
,
∂f

∂v
], and Dg =





∂u
∂x , ∂u

∂y
∂v
∂x , ∂v

∂y





Proof. (1) From
dh

dt
(t0) = lim

t→t0

h(t) − h(t0)

t − t0

we have

h(t) − h(t0)

t − t0
=

f(x(t), y(t)) − f(x(t0), y(t0))

t − t0

=
f(x(t), y(t)) − f(x(t0), y(t)) + f(x(t0), y(t)) − f(x(t0), y(t0))

t − t0

Since partial derivatives of f differentiable, we have by mean value theorem

there exists c between x(t) and x(t0) such that

f(x(t), y(t)) − f(x(t0), y(t)) =
(∂f

∂x
(c, y(t))

)

(x(t) − x(t0))
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holds. Similarly,

h(t) − h(t0)

t − t0
=
(∂f

∂x
(c, y(t))

)x(t) − x(t0)

t − t0
+
(∂f

∂y
(x(t0), d)

)y(t) − y(t0)

t − t0
.

Let t approach t0.

(2) Treat y as constant and ∂h/∂x as function of x only.

∂h

∂x
(x0) =

∂f

∂u
(y0)

∂u

∂x
(x0) +

∂f

∂v
(y0)

∂v

∂x
(x0)

Similarly
∂h

∂y
(x0) =

∂f

∂u
(y0)

∂u

∂x
(x0) +

∂f

∂v
(y0)

∂v

∂y
(x0)

Example 5.3. Show Chain rule holds for f(x, y) = exy and g(t) = (x(t), y(t)),

x(t) = t2, y(t) = 2t.

sol. Since h(t) = f ◦g(t) = f(x(t), y(t)) = e2t3 , we have dh/dt = 6t2e2t3 . On

the other hand, by chain rule, we have

dh

dt
= yexy · 2t + xexy · 2 = 6t2e2t3

Theorem 5.2 Chain rule. (1) becomes

dh

dt
=

[

∂f

∂x

∂f

∂y

]

(g(t0))







dx

dt
dy

dt






(t0)

= Df(f(t0)) ·Dg(t0)

is a product of matrix. For (2)

Dh(x0) =

[

∂f

∂u

∂f

∂v

]

(y0)





∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y



 (x0)

Example 5.4. Show Chain rule holds for f(u, v,w) = u2 + v2 − w, where

u(x, y, z) = x2y, v = y2, z = e−xz
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sol. Let

h(x, y, z) = f(u(x, y, z), v(x, y, z), w(x, y, z))

Chain rule

∂h

∂x
=

∂f

∂u

∂u

∂x
+

∂f

∂v

∂v

∂x
+

∂f

∂w

∂w

∂x
= 2u(2xy) + 2v · 0 + (−1)(−ze−xz)

Theorem 5.5 (Chain rule-General case). Suppose g : Rn → Rm differentiable

at x0 and f : Rm → Rp differentiable at g(x0) = y0 Then h = f◦g differentiable

at x0 and

Dh(x0) = Df(y0)Dg(x0)

Suppose g : Rn → Rm and f : Rm → Rp are given

g(x1, · · · , xn) = (y1(x1, · · · , xn), y2(x1, · · · , xn), · · · , ym(x1, · · · , xn))

f(u, v,w) = (f1(y1, · · · , ym), · · · , fp(y1, · · · , ym))

Let the composite of f and g as h

h(x1, · · · , xn) = f ◦ g(x1, · · · , xn)

Then applying simple case to each component of h = [f1◦g, · · · , fp◦g]T (Column

vector) so that hi = fi ◦ g. and

Dh1 = Df1 ◦ Dg

Dh2 = Df2 ◦ Dg

= · · ·
Dhp = Dfp ◦ Dg

Now just write in matrix form.

Example 5.6. Given the vector functions f , g consider composite function

h = (k, l) = f ◦ g. Find the partials ∂k/∂x and ∂l/∂y.

g(x, y, z) = (xyz, x2 + y2 + z2, exyz), f(u, v,w) = (u2 − uv, u + v + w)



26 ℄j 2 �©� DIFFERENTIATION

sol. Use chain rule

∂k

∂x
=

∂k

∂u

∂u

∂x
+

∂k

∂v

∂v

∂x
+

∂k

∂w

∂w

∂x

= (2u − v)(yz) + (−u)(2x) + 0

= (2xyz − x2 − y2 − z2)(yz) − (xyz)(2x)

= 2xyz − 3x2yz − y3 − yz2,

∂l

∂y
=

∂l

∂u

∂u

∂y
+

∂l

∂v

∂v

∂y
+

∂l

∂w

∂w

∂y

= 1 · ∂u

∂y
+ 1 · ∂u

∂y
+ 1 · ∂w

∂y

= xz + 2y + xzexyz

Check it using matrix product.

Example 5.7. Use Chain rule to find the derivative of composite function

h(t) = (h1(t), h2(t), h2(t)) = f ◦ g(t)

where g(t) = (x(t), y(t), z(t)) and f : = (f1(x, y, z), f2(x, y, z), f3(x, y, z)).

Note that hi(t) = fi(g(t)). Use Chain rule for special case(to each compo-

nent)
dhi

dt
=

∂fi

∂x

dx

dt
+

∂fi

∂y

dy

dt
+

∂fi

∂z

dz

dt

Use Chain rule as a whole

Df =









∂f1

∂x , ∂f1

∂y , ∂f1

∂z
∂f2

∂x , ∂f2

∂y , ∂f2

∂z
∂f3

∂x , ∂f3

∂y , ∂f3

∂z









while Dg =









x′(t)

y′(t)

z′(t)









Hence Df ◦ Dg =









∂f1

∂x x′(t) + ∂f1

∂y y′(t) + ∂f1

∂z z′(t)
∂f2

∂x x′(t) + ∂f2

∂y y′(t) + ∂f2

∂z z′(t)
∂f3

∂x x′(t) + ∂f3

∂y y′(t) + ∂f3

∂z z′(t)









Example 5.8. Let f : U ⊂ Rn → Rm be given by f = (f1, · · · , fm) and

g(x) = sin[f(x) · f(x)]. Compute Dg(x).
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sol.

Dg(x) = cos[f(x) · f(x)]D[f(x) · f(x)]

We compute D[f(x) · f(x)] which is

Dh =
[

2f1
∂f1

∂x1
+ · · · + 2fm

∂fm

∂x1
, · · · , 2f1

∂f1

∂xn
+ · · · + 2fm

∂fm

∂xn

]

= 2f(x)Df(x)

where Df(x) is the derivative of f , Finally, we see Dg(x) = 2[cos[f(x) ·
f(x)]f(x)Df(x)

Geometric meaning of derivative

For a curve c = (x(t), y(t), z(t)) : R → R3 and function f : R3 → R3, the

composite function p(t) := f ◦ c(t) = f(x(t), y(t), z(t)) = (h1(t), h2(t), h2(t))

is another curve D in R3 mapped by f , i.e, f(C) = D. Then c′(t) =

(x′(t), y′(t), z′(t)) is a velocity vector(tangent vector) of C and p′(t) is a ve-

locity vector(tangent vector) at D. Here the chain rule

p′(t) = Df(c(t))c′(t)

shows the derivative Df(c(t)) maps the tangent vector c′(t) at C to the tan-

gent vector p′(t) at D. (Figure 2.9 )

c′(t)

c(t0)
c(t)

C

p′(t)

p(t)D

Df maps

to a tangent

ÕªaË> 2.9: a tangent vector is mapped to another by derivative

Example 5.9. Given f(x, y) =
√

1 − x2 − y2.
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(1) Find the tangent vector at

α(t) =

(

cos t,
1

2
sin t,

√

1 − cos2 t − 1

4
sin2 t

)

at t = π/2 and show this vector lies on the tangent plane at α(π/2) =

(0, 1/2,
√

3/2) of the graph G.

Continuation z = f(x, y) =
√

1 − x2 − y2. Let S = Φ(G) be the image of G under

the mapping Φ(x, y, z) = (x, y, z/2). Then it is the graph of g(x, y, z) =

(1/2)
√

1 − x2 − y2. Now do

(a) Find a tangent to S along the curve β(t) = Φ ◦ α(t) at t = π/2.

(b) Show this vector lies in a tangent plane of S at β(π/2).
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sol. (1) tangent vector to the curve α is

α′(t)|π/2 =

(

− sin t, (1/2) cos t,
(3/4) cos t sin t

√

1 − cos2 t − (1/4) sin2 t

)
∣

∣

∣

∣

∣

π/2

= (−1, 0, 0)

The tangent plane of G at α(π/2) = (0, 1/2,
√

3/2) is

z =

√
3

2
−

√
3

3
(y − 1

2
)

This plane is perpendicular to the vector (0,
√

3/3, 1) and the vector

(0,
√

3/3, 1) is perpendicular to (−1, 0, 0). Hence the vector (−1, 0, 0) is

parallel to tangent plane.

(2) The tangent vector to the curve β is

β′(π/2) = DΦ|(0,1/2,
√

3/2)α
′(π/2)

=











1 0 0

0 1 0

0 0
1

2



















−1

0

0









Hence β′(π/2) = (−1, 0, 0). The tangent plane of g(x, y, z) at β(π/2) =

(0, 1/2,
√

3/4) is

z =

√
3

4
−

√
3

6
(y − 1

2
)

Hence by similar argument as before β′(π/2) = (−1, 0, 0) lies in the

tangent plane.

Example 5.10. g(x, y) = (x2 + 1, y2), f(u, v) = (u + v, u, v2). Find f ◦ g at

(1, 1).

sol.

Df =









1 1

1 0

1 2v









, Dg =

[

2x 0

0 2y

]

Example 5.11. f(x, y) = (x2 + 1, y2), x = r cos θ, y = r sin θ. Find ∂f
∂θ .
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sol.
∂f

∂θ
= −r

∂f

∂x
sin θ + r

∂f

∂y
cos θ

Example 5.12. f(x, y) = (cos y + x2, ex+y), g(u, v) = (eu2

, u − sin v). Find

f ◦ g at (0, 0).

sol. f ◦ g(u, v) = (cos(u − sin v) + e2u2

, e(eu
2

+u−sin v)).

Df =

[

2x − sin y

ex+y ex+y

]

, Dg =

[

2ueu2

, 0

1 − cos y

]

g(0, 0) = (1, 0), Df =

[

2 0

e e

]

, Dg =

[

0, 0

1 −1

]

V� 6 â�
 Gradient and directional derivatives

Gradient

Definition 6.1. Let f : U ⊂ Rn → R be differentiable. The gradient of at

x0 is

∇f =

(

∂f

∂x
,
∂f

∂y
,
∂f

∂z

)

x0

c(t)

S

c′(t)

∇f(x0)

Level surface
f(x, y, z) = c

ÕªaË> 2.10: gradient at x0 is perpendicular to tangent plane through x0
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directional derivative

Definition 6.2. For a given vector v ∈ Rn and x0 ∈ Rn, the directional

derivative) of f : Rn → R at x0 along v is Dvf(x) defined by (Fig 2.11)

d

dt
f(x + tv)

∣

∣

∣

t=0

Usually we take unit vector v ∈ Rn ( ‖v‖ = 1)

x

y

z

v
x

slope of this tangent line
is directional derivative

f(x + tv)

ÕªaË> 2.11: Directional Derivative

Theorem 6.3. If f(x) : R3 → R, the directional derivative of fat x along v

is given by

Df(x)v = grad f(x) · v = ∇f · v

Proof. Let c(t) = x + tv so that f(x + tv) = f(c(t)). Then by the chain rule
d
dtf(c(t)) = ∇f(c(t)) · c′(t). Hence

d

dt
f(x + tv)

∣

∣

∣

∣

0
= ∇f · v = D(f)c′(t) =

( ∂f

∂x1
,

∂f

∂x2
, . . . ,

∂f

∂xn

)

· v (2.2)

This is the rate of change of f along v. The rate of change of f along a

curve is given as

d

dt
f(c(t))

∣

∣

∣

∣

0
= ∇f · c′(t)

∣

∣

0 = ∇f(x) · v (2.3)

Example 6.4. Compute the rate of change of f(x, y, z) = xy − z2 at (1, 0, 1)

along (1, 1, 1).
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sol. The unit vector to (1, 1, 1) is v = (1/
√

3)(1, 1, 1). The gradient of f at

(1, 0, 1) is

∇f(1, 0, 1) = (fz, fy, fz)|(1,0,1) = (y, x, 2z)|(1,0,1)

= (0, 1,−2) ·
( 1√

3
,

1√
3
,

1√
3

)

= − 1√
3

Direction of fastest increase

∇f · v is the rate of change of f along the direction v Then

Dvf = ‖v‖‖∇f‖ cos θ

Here θ is the angle between v and ∇f . Hence if θ = 0 the directional derivative

∇f has maximum value ‖∇f‖, and if θ = π has minimum −‖∇f‖. Also, if

θ = π/2 then the directional derivative is 0. Hence

Theorem 6.5. Suppose f : Rn → R is differentiable at x0. Then f in-

creases(decreases) fastest at x0 along ∇f(x0)( −∇f(x0)). Also, f does not

change along the perpendicular direction to ∇f(x0)

Example 6.6. In what direction from (0, 1) does f(x, y) = x2 − y2 increases

fastest?

Gradient is normal to the level set

(x3, y3)

f(x, y) = c3

(x2, y2)

f(x, y) = c2

(x1, y1)

f(x, y) = c1

∇f(x2, y2)

∇f(x3, y3)
∇f(x1, y1)

ÕªaË> 2.12: gradient is perpendicular to level curve.

See the graph (2.10) in 3D case. Also see the book.
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Consider the level set(Surface) S = {(x, y, z) ∈ R3 | f(x, y, z) = k} of

f(x, y, z). Suppose a curve c passes the point x0 = (x0, y0, z0) lies on the

surface S Then f(c(t)) = k holds. Then we have by chain rule

0 =
d

dt
f(c(t)) = ∇f(c(t)) · c′(t)

(Fig 2.10 ) Hence the tangent vector c′(t0) at x0 is normal to the gradient

∇f(x0).

Theorem 6.7. Suppose f(x, y, z) is differentiable and ∇f(x0) 6= 0. Then

∇f(x0) is normal to the level surface S = {(x, y, z) ∈ R3 | f(x, y, z) = k}.

We can also define

Definition 6.8. The plane S in Theorem 6.7 at x0 = (x0, y0, z0) is tangent

plane. In other words, if S is a level surface f(x, y, z) = k and x0 is on S,

then the tangent plane to S at x0 is given by

∇f(x0) · (x − x0) = 0, or

∂f

∂x
(x0)(x − x0) +

∂f

∂y
(x0)(y − y0) +

∂f

∂z
(x0)(z − z0) = 0.

Example 6.9. Find equation of tangent plane to 3xy + z2 + 4 at (1, 1, 1).

sol. −∇f = (3y, 3x, 2z) at (1, 1, 1), it is (3, 3, 2). Thus tangent plane is

(3, 3, 2) · (x − 1, y − 1, z − 1) = 0.

We often speak of vector field. ∇f(x). (A vector function is often called a

vector fields Draw graph of a vector field.

Example 6.10. The gravitational force of a mass m at (x, y, z) produced by

a mass M at origin is

F =
GmM

r2
n

G is gravitational constant, r = (x, y, z), r = ‖r‖, n = r/r. Note F =

−∇GmM/r. Here V = −GmM/r is called potential.

∇V = ∇
(

− GmM
√

x2 + y2 + z2

)

=
(

− GmM

2
√

x2 + y2 + z2
(2x, 2y, 2z)

)

= −F
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