Vector Calculus

2008년 9월 4일

Much of the material presented here and some figures are copied from Vector Calculus of J. Marsden and A. Tromba for teaching purpose only.
Please do not distribute
This is for KAIST internal use only

제 2 장

Differentiation

제 1 절 Geometry of real valued functions

Functions and Mappings

In this section, we study functions whose domain is \mathbb{R}^{n} or its subset with values in \mathbb{R}^{m}.

Definition 1.1. If the domain of f is \mathbb{R}^{n} or its subset and the range is \mathbb{R}, then f is called n-variable scalar-valued function. In particular, if $n \geq 2$, it is called functions of several variables. If the domain is $A \subset \mathbb{R}^{n}$ then we write $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$. Sometimes $\mathbf{x} \mapsto f(\mathbf{x})$ is used. If the range is \mathbb{R}^{m}, $m \geq 2$ it is called vector-valued function. Use $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \mathbf{x} \in \mathbb{R}^{n}$. We denote $f(\mathbf{x})=\left(f_{1}, \ldots, f_{m}\right) \in \mathbb{R}^{m}$, where $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ functions of n variables. In other words, $f(\mathbf{x})=\left(f_{1}(\mathbf{x}), \ldots, f_{n}(\mathbf{x})\right)$ each f_{i} is called i-th component (i-th component function) of f.

Definition 1.2. The graph of a functions of several variables $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is (graph) the following set.

$$
\operatorname{graph}(f)=\left\{(\mathbf{x}, f(\mathbf{x})) \in \mathbb{R}^{n+1} \mid \mathbf{x} \in A \subset \mathbb{R}^{n}\right\}
$$

Componentwise,

$$
\operatorname{graph}(f)=\left\{\left(x_{1}, \cdots, x_{n},, f\left(x_{1}, \cdots, x_{n}\right)\right) \in \mathbb{R}^{n+1} \mid \mathbf{x} \in A \subset \mathbb{R}^{n}\right\}
$$

그림 2.1: Graph of two variable function

그림 2.2: Level set

Level sets, curves, surfaces

Definition 1.3. The level set of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is the set of all \mathbf{x} where the function f has constant value:

$$
S_{c}=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid f(\mathbf{x})=c, c \in \mathbb{R}\right\}
$$

If $n=2$, it is level curve and if $n=3$, level surface.

Example 1.4. The graph of $f(x, y)=x^{2}+y^{2}$ is called paraboloid or paraboloid of revolution. Draw the level sets.
sol. The level set of $x^{2}+y^{2}=c$ is 0 if $c=0$. For $c>0$ it is a circle of radius \sqrt{c}. If $c<0$, the level set is empty.

Example 1.5. Draw level sets of $f(x, y)=x^{2}-y^{2}$. The graph is called hyperbolic paraboloid or saddle.
sol. The level sets of $f(x, y)=x^{2}-y^{2}=c$:
If $c=0$, then it is $y= \pm x$, two lines through origin. If $c>0$, the level set is a hyperbola meeting with x-axis, and if $c<0$ level set is a hyperbola meeting with y-axis. The intersection with $x z$-plane is the parabola $z=x^{2}$, and the intersection with $y z$-plane is the parabola $z=-y^{2}$. Hence the graph of f is as in Figure ??.

Level surface of function of three variables

Example 1.6. Study the level surface of $f(x, y, z)=x^{2}+y^{2}+z^{2}$.
sol. The set $x^{2}+y^{2}+z^{2}=c$ becomes

$$
\begin{cases}\text { origin } & \text { if } c=0 \\ \text { circle of radius } \sqrt{c} & \text { if } c>0 \\ \text { empty if } & \text { if } c<0\end{cases}
$$

To imagine the graph in \mathbb{R}^{4}, consider intersection with $\mathbb{R}_{z=0}^{3}=$ $\{(x, y, z, w) \mid z=0\}$. It is

$$
\left\{(x, y, z, w) \mid w=x^{2}+y^{2}, z=0\right\}
$$

Hence it is figure ??

Example 1.7. Describe the graph of $f(x, y, z)=x^{2}+y^{2}-z^{2}$.

sol. The graph of $f=x^{2}+y^{2}-z^{2}$ is a subset of 4 -dim space. If we denote point in this space by (x, y, z, t), then graph is given by

$$
\left\{(x, y, z, t) \mid t=x^{2}+y^{2}-z^{2}\right\}
$$

The level surface is

$$
L_{c}=\left\{(x, y, z) \mid x^{2}+y^{2}-z^{2}=c\right\}
$$

For $c=0$, it is a cone $z= \pm \sqrt{x^{2}+y^{2}}$. If $c=-a^{2}$ we obtain $z=$ $\pm \sqrt{x^{2}+y^{2}+a^{2}}$. this is a hyperboloid of two sheets. If $c=a^{2}>0$ we obtain $z= \pm \sqrt{x^{2}+y^{2}-a^{2}}$. This is hyperboloid of single sheet. On the other hand, if we consider intersection with $y=0 ; S_{y=0}=$ $\{(x, y, z, t) \mid y=0\}$, the intersection with graph of f is

$$
S_{y=0} \cap \text { graph of } f=\left\{(x, y, z, t) \mid y=0, t=x^{2}-z^{2}\right\}
$$

This is the set

$$
\left\{(x, y, z, t) \mid t=x^{2}-y^{2}, y=0\right\}
$$

This is considered to belong to (x, y, t) space and is a hyperbolic paraboloid(saddle).

제 2 절 Limits and Continuity

Limits using Open Sets

Definition 2.1 (Open sets). Let $\mathrm{x}_{0} \in \mathbb{R}^{n}$. The open disk or ball of radius r and center \mathbf{x}_{0} is the set of all points \mathbf{x} such that $\left\|\mathbf{x}-\mathbf{x}_{0}\right\|<r$. This is denoted by $D_{r}\left(\mathbf{x}_{0}\right)$ or $D\left(\mathrm{x}_{0} ; r\right)$.

A set $U \subset \mathbb{R}^{n}$ is said to be open if for every point $\mathbf{x}_{0} \in U$ there exists some $r>0$ such that $D_{r}\left(\mathrm{x}_{0}\right)$ is contained in $U\left(\right.$ in symbol, $\left.D_{r}\left(\mathrm{x}_{0}\right) \subset U\right)$.

Theorem 2.2. $D_{r}\left(\mathrm{x}_{0}\right)$ itself is open.
Example 2.3. Half plane is open.
By a neighborhood of a point \mathbf{x}_{0}, we merely mean a set $D_{r}\left(\mathbf{x}_{0}\right)$ for any $r>0$.

Definition 2.4 (Boundary). Let $A \subset \mathbb{R}^{n}$. A point $\mathrm{x} \in \mathbb{R}^{n}$ is called a boundary point if every neighborhood of \mathbf{x}_{0} contains at least a point in A and at least a point not in A.

A set $U \subset \mathbb{R}^{n}$ is said to be open if for every point $\mathbf{x}_{0} \in U$ there exists some $r>0$ such that $D_{r}\left(\mathbf{x}_{0}\right)$ is contained in $U\left(\right.$ in symbol, $\left.D_{r}\left(\mathbf{x}_{0}\right) \subset U\right)$.

Let us define the limit using open sets.
Definition 2.5 (Limit). Let $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, where $A \subset \mathbb{R}^{n}$ and let $\mathbf{x}_{0} \in A$ or boundary of A. Let N be an open neighborhood of $\mathbf{b} \in \mathbb{R}^{m}$. We say f is eventually in N as \mathbf{x} approaches x_{0} if there is a neighborhood N of \mathbf{x}_{0} such that for all point \mathbf{x} of $U \cap A, \mathbf{x} \neq \mathbf{x}_{0}$, we have $f(\mathbf{x}) \in N$. in this case, we say f approaches \mathbf{b} as \mathbf{x} approaches \mathbf{x}_{0}, or in symbols we write

$$
\lim _{\mathbf{x} \rightarrow \mathbf{x}_{0}} f(\mathbf{x})=\mathbf{b}
$$

Example 2.6. Find $\lim _{x \rightarrow 1} f(x)$ where

$$
g(x)=\frac{x-1}{\sqrt{x}-1}
$$

그림 2.3: Limit using neighborhood
sol.

Properties of Limits

Theorem 2.7. Let $f, g: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and let \mathbf{x}_{0} be a point of A or boundary. $\mathbf{b} \in \mathbb{R}^{m}$ and c a scalar.

Then the following hold:
(1) If $\lim _{\mathbf{x} \rightarrow \mathbf{x}_{0}}(f)(\mathbf{x})=\mathbf{b}$ then $\lim _{\mathbf{x} \rightarrow c \mathbf{x}_{0}}(f)(\mathbf{x})=c \mathbf{b}$.
(2) If $\lim _{\mathbf{x} \rightarrow \mathbf{x}_{0}}(f)(\mathbf{x})=\mathbf{b}_{1}$ and $\lim _{\mathbf{x} \rightarrow \mathbf{x}_{0}}(g)(\mathbf{x})=\mathbf{b}_{2}$ then $\lim _{\mathbf{x} \rightarrow \mathbf{x}_{0}}(f \pm g)(\mathbf{x})=L_{1} \pm L_{2}$.
(3) If $m=1$, then $\lim _{\mathbf{x} \rightarrow \mathbf{x}_{0}}(f g)(\mathbf{x})=b_{1} b_{2}$.
(4) Same with division.
(5) If $\mathbf{f}(\mathbf{x})=\left(f_{1}(\mathbf{x}), \cdots, f_{m}(\mathbf{x})\right)$ where $f_{i}: A \rightarrow \mathbb{R}^{m}$, are components of \mathbf{f}, then $\lim _{\mathbf{x} \rightarrow \mathbf{x}_{0}} \mathbf{f}(\mathbf{x})=\mathbf{b}=\left(b_{1}, \cdots, b_{m}\right)$, where $b_{i}=f\left(\mathbf{x}_{i}\right)$ for $i=1, \cdots, m$.

Using this theorem, we can find limits of polynomials or rational functions.
Example 2.8. Find the limit.
(1) $\lim _{(x, y) \rightarrow(0,0)} x^{2}+x y^{3}-x^{2} y+2$
(2) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+x y^{3}-x^{2} y+2}{x y+3}$
sol.

$$
\begin{gathered}
\lim _{(x, y) \rightarrow(0,0)} x^{2}+x y^{3}-x^{2} y+2=0+0+0+2=2, \\
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+x y^{3}-x^{2} y+2}{x y+3}=\frac{2}{3}
\end{gathered}
$$

Continuity

Definition 2.9. $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ continuous at $\mathbf{x}_{0} \in A$ if

$$
\lim _{\mathbf{x} \rightarrow \mathbf{x}_{0}} f(\mathbf{x})=f\left(\mathbf{x}_{0}\right)
$$

f is continuous on A if it is so at all points of A.

그림 2.4: continuous, discontinuous function

Example 2.10. Show that the following function is continuous at $(0,0)$.

$$
f(x, y)= \begin{cases}\frac{x y}{\sqrt{x^{2}+y^{2}}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

sol. We have seen in example 2.16 the limit of this function at $(0,0)$ is 0 , and this eqauls $f(0,0)$. Hence f is continuous there.

The following results hold.

Theorem 2.11. Suppose two functions $f, g: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are two functions continuous at $\mathbf{x}_{0} \in A$. then the followings are also continuous at $\mathbf{x}_{0} \in A$.
(1) $f \pm g$
(2) For any real k, the function $k f$
(3) When $m=1$, the product fg
(4) When $m=1, g\left(\mathbf{x}_{0}\right) \neq 0$, then f / g
(5) \mathbf{f} is continuous iff each f_{i} is continuous, for $i=1, \cdots, m$.

Theorem 2.12 (Composit function). Suppose $g: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $f: B \subset$ $\mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ are given Suppose $g(A) \subset B$ so that $f \circ g$ is defined. If g is continuous at $\mathbf{x}_{0} \in A$ and $f\left(\mathbf{x}_{0}\right) \in B$ 에 f is continuous at $\mathbf{y}_{0}=g\left(\mathbf{x}_{0}\right)$ then $f \circ g$ is continuous at \mathbf{x}_{0}.

Example 2.13. Show $f(x, y)=\cos ^{2}\left(\left(y+x^{3}\right) /\left(1+x^{2}\right)\right)$ is continuous

Limit using $\varepsilon-\delta$

Using $\varepsilon-\delta$.

Definition 2.14 (Limit suing $\varepsilon-\delta$). Let $\mathbf{f}: \mathbf{A} \subset \mathbb{R}^{\mathbf{n}} \rightarrow \mathbb{R}^{\mathbf{m}}$. We say limit of f at $\mathbf{x}_{0} \in \mathbb{R}^{n}$ is \mathbf{b}, if for any $\varepsilon>0$ there exists some positive δ such that for all $\mathbf{x} \in A$ satisfying $0<\left\|\mathbf{x}-\mathbf{x}_{0}\right\|<\delta$ we have $\|\mathbf{f}(\mathbf{x})-\mathbf{b}\|<\varepsilon$.

Example 2.15. The function is defined on all points except $(0,0)$.

$$
f=\frac{\sin \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}
$$

Find the limit as $\mathbf{x} \rightarrow(0,0)$.
sol. We know in one variable calculus that

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

So we guess

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{\sin \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}=\lim _{(x, y) \rightarrow(0,0)} \frac{\sin \|(x, y)\|^{2}}{\|(x, y)\|^{2}}=1
$$

Since $\lim _{x \rightarrow 0} \sin x / x=1$ for any $\varepsilon>0$ there exists $\delta>0$ such that $|x|<\delta \Longrightarrow|(\sin x) / x-1|<\varepsilon$. Here we can assume $0<\delta<1$. Write $\mathbf{v}=(x, y)$. Then if $\|\mathbf{v}\|<\delta$ holds then

$$
|f(x, y)-1|=\left|\frac{\sin \left(\|\mathbf{v}\|^{2}\right)}{\|\mathbf{v}\|^{2}}\right|<\varepsilon
$$

Hence $\lim _{(x, y) \rightarrow(0,0)} f(x, y)=1$.

Example 2.16. Show

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{\sqrt{x^{2}+y^{2}}}=0
$$

sol. Watch

$$
0 \leq \frac{x y}{\sqrt{x^{2}+y^{2}}} \leq \frac{x^{2}+y^{2}}{\sqrt{x^{2}+y^{2}}}=\sqrt{x^{2}+y^{2}} .
$$

For any ε choose $\delta=\varepsilon$. Then for $\|(x, y)\|<\delta$ we have

$$
\left|\frac{x y}{\sqrt{x^{2}+y^{2}}}-0\right|=\frac{x y}{\sqrt{x^{2}+y^{2}}} \leq \sqrt{x^{2}+y^{2}}=\|(x, y)\|<\delta=\varepsilon
$$

Thus limit is 0 .

Example 2.17. How about

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}}{x^{2}+y^{2}}
$$

and

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{2} y}{x^{2}+y^{2}}=0
$$

sol. (a) Set $y=0$ and let $x \rightarrow 0$. Next set $x=0$ let $y \rightarrow 0$. The limit is different!
(b) Note that

$$
0 \leq \frac{2 x^{2} y}{x^{2}+y^{2}} \leq \frac{2 x^{2} y}{x^{2}}=2|y| .
$$

For any ε choose $\delta=\varepsilon / 2$. Then for $\|(x, y)\|<\delta$ we have

$$
\left|\frac{2 x^{2} y}{x^{2}+y^{2}}-0\right|<2 \delta=\varepsilon
$$

Thus limit is 0 .

제 3 절 Differentiation

Partial derivatives

Definition 3.1. Let $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a real valued function. Then the partial derivative with respect to i-th variable x_{i} denoted by $\partial f / \partial x_{i}$ is:

$$
\begin{aligned}
\frac{\partial f}{\partial x_{i}}\left(x_{1}, \ldots, x_{n}\right) & =\lim _{h \rightarrow 0} \frac{f\left(x_{1}, x_{2}, \ldots, x_{i}+h, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{n}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f\left(\mathbf{x}+h \mathbf{e}_{i}\right)-f(\mathbf{x})}{h}
\end{aligned}
$$

partial derivatives $\partial f / \partial x_{i}$ at $\mathbf{x}_{0} \in \mathbb{R}^{n}$ is called partial derivative.

$$
\frac{\partial f}{\partial x_{i}}\left(\mathbf{x}_{0}\right), \quad \text { or }\left.\quad \frac{\partial f}{\partial x_{i}}\right|_{\mathbf{x}_{0}}
$$

For vector valued function $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, the partial derivative is the partial derivative of each component function f_{j} where $f=\left(f_{1}, \ldots, f_{m}\right)$.

Example 3.2. Find partial derivatives of $f(x, y)=\left(x^{2}, x+y^{2}\right)$.
sol. $\partial f_{1} / \partial x=2 x, \partial f_{1} / \partial y=0, \partial f_{2} / \partial x=1, \partial f_{2} / \partial y=2 y$.

Example 3.3. Find partial derivatives of $f(x, y)=x y / \sqrt{x^{2}+y^{2}}$ at $(1,1)$.
sol. First

$$
\begin{aligned}
\frac{\partial f}{\partial x}(1,1) & =\frac{y \sqrt{x^{2}+y^{2}}-x y\left(x / \sqrt{x^{2}+y^{2}}\right)}{x^{2}+y^{2}} \\
& =\frac{y\left(x^{2}+y^{2}\right)-x^{2} y}{\left(x^{2}+y^{2}\right)^{3 / 2}} \\
& =2^{3 / 2}
\end{aligned}
$$

Linear approximation

Motive: Find equation of tangent plane to $z=f(x, y)$ at $\left(x_{0}, y_{0}\right)$. Suppose the surface has a tangent plane

$$
z=a x+b y+c
$$

at $\left(x_{0}, y_{0}\right)$. The slope along x-direction is $\partial f / \partial x\left(x_{0}, y_{0}\right)$ and the slope along y-direction is $\partial f / \partial y\left(x_{0}, y_{0}\right)$. Hence

$$
a=\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right), \quad b=\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) .
$$

Also since the point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ lies in the plane, we see

$$
z=f\left(x_{0}, y_{0}\right)+\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

그림 2.5: Geometric meaning of partial derivative

Example 3.4. Find partial derivative of $f(x, y)=x^{1 / 3} y^{1 / 3}$ by definition,

$$
\frac{\partial f}{\partial x}(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0-0}{h}=0
$$

Similarly $(\partial f / \partial y)(0,0)=0$. But this is not differentiable. Graph of f is in Fig ??.

그림 2.6: Graph of $f(x, y)=x^{1 / 3} y^{1 / 3}$

Differentiation of function of several variable

For one variable differentiable function $f, f(x)$ can be approximated near x_{0} by the value of tangent line at $x: f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$ this is called tangent line approximation or linear approximation of $f(x)$. It satisfies (figure 2.7)

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)}{x-x_{0}}=0 \tag{2.1}
\end{equation*}
$$

그림 2.7: tangent approximation of a function of one variable

For two variable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ which has partial derivative at $\left(x_{0}, y_{0}\right)$ and has tangent plane $\left(x_{0}, y_{0}\right)$ then tangent plane is given by

$$
z=f\left(x_{0}, y_{0}\right)+\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

Definition 3.5. We say $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ differentiable at $\left(x_{0}, y_{0}\right)$ if $\partial f / \partial x$ and $\partial f / \partial y$ exists and for $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$

$$
\frac{f(x, y)-f\left(x_{0}, y_{0}\right)-\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)-\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)}{\left\|(x, y)-\left(x_{0}, y_{0}\right)\right\|} \rightarrow 0
$$

Definition 3.6. Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is differentiable at $\left(x_{0}, y_{0}\right)$. The tangent plane at $\left(x_{0}, y_{0}\right)$ is given by

$$
z=f\left(x_{0}, y_{0}\right)+\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

Example 3.7. Find the tangent plane of $f(x, y)=x^{2}+y^{2}$ at $(0,0)$.
sol. We see $(\partial f / \partial x)(0,0)=(\partial f / \partial y)(0,0)=0$.

$$
\begin{aligned}
& \lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)-f(0,0)-\frac{\partial f}{\partial x}(0,0)(x)-\frac{\partial f}{\partial y}(0,0)(y)}{\|(x, y)-(0,0)\|} \\
& \quad=\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)}{\|(x, y)\|}=\lim _{(x, y) \rightarrow(0,0)} \sqrt{x^{2}+y^{2}} \\
& \quad=0 .
\end{aligned}
$$

Hence the equation of tangent plane is

$$
f\left(x_{0}, y_{0}\right)+\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)=0
$$

Differentiability of vector valued function

Let $\mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. If every component of \mathbf{f} is differentiable, we say \mathbf{f} is differentiable. We can express the concept of differentiability of a vector function in vector notation. As an example, let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and define the 1×2 matrix

D $f\left(x_{0}, y_{0}\right)$ by

$$
\mathbf{D} f\left(x_{0}, y_{0}\right)=\left[\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \quad \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\right]
$$

Then f differentiable at $\left(x_{0}, y_{0}\right)$ if

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \frac{f(x, y)-f\left(x_{0}, y_{0}\right)-\mathbf{D} f\left(x_{0}, y_{0}\right)\left[\begin{array}{l}
x-x_{0} \\
y-y_{0}
\end{array}\right]}{\left\|(x, y)-\left(x_{0}, y_{0}\right)\right\|}=0
$$

Here $\mathbf{D} f\left(x_{0}, y_{0}\right)$ is called the derivative of f. In general we define as follows:
Definition 3.8. $\mathbf{f}=\left(f_{1}, \ldots, f_{m}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be differentiable at \mathbf{x}_{0} if partial derivatives of \mathbf{f} exists at \mathbf{x}_{0} and

$$
\lim _{\mathrm{x} \rightarrow \mathbf{x}_{0}} \frac{\left\|\mathbf{f}(\mathbf{x})-\mathbf{f}\left(\mathbf{x}_{0}\right)-\mathbf{D} \mathbf{f}\left(\mathbf{x}_{0}\right)\left(\mathbf{x}-\mathbf{x}_{0}\right)\right\|}{\left\|\mathbf{x}-\mathbf{x}_{0}\right\|}=0
$$

holds. Here $\mathbf{D f}\left(\mathbf{x}_{0}\right)$ is $m \times n$ matrix.
If $m=1$, then

$$
\left[\begin{array}{lll}
\frac{\partial f}{\partial x_{1}} & \cdots & \frac{\partial f}{\partial x_{n}}
\end{array}\right]
$$

Also called a gradient of f and denoted by ∇f.
If we let $\mathbf{h}=\mathbf{x}-\mathbf{x}_{0}$, then real valued function f is differentiable at a point x_{0} if

$$
\lim _{\mathbf{x} \rightarrow \mathbf{x}_{0}} \frac{1}{\|\mathbf{h}\|}\left|\| f\left(\mathbf{x}_{0}+\mathbf{h}\right)-f\left(\mathbf{x}_{0}\right)-\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}\left(\mathbf{x}_{0}\right) h_{j}\right|=0
$$

In general, the derivative has the following form:

$$
D \mathbf{f}\left(\mathbf{x}_{0}\right)=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right]
$$

$\mathbf{D f}\left(\mathbf{x}_{0}\right)\left(\mathbf{x}-\mathbf{x}_{0}\right)$ means the product of $m \times n$ matrix $\mathbf{D} f\left(\mathbf{x}_{0}\right)$ and the $n \times 1$ vector $\mathbf{x}-\mathbf{x}_{0}$. $\mathbf{D f}\left(\mathbf{x}_{0}\right)\left(\mathbf{x}-\mathbf{x}_{0}\right)$ is called the derivative of f at \mathbf{x}_{0}. Sometimes it is called the Jacobian matrix.

Example 3.9. Find the derivative of $\mathbf{D f}(x, y)$.
(1) $\mathbf{f}(x, y)=(x y, x+y)$
(2) $\mathbf{f}(x, y)=\left(e^{x y}, x^{2}+y^{2}, x e^{y}\right)$
sol. (1) $f_{1}=x y, f_{2}=x+y$. Hence

$$
\mathbf{D} \mathbf{f}(\mathbf{x})=\left[\begin{array}{ll}
y & x \\
1 & 1
\end{array}\right]
$$

(2) $f_{1}=e^{x+y}, f_{2}=x^{2}+y^{2}, f_{3}=x e^{y}$. Hence

$$
\mathbf{D f}(\mathbf{x})=\left[\begin{array}{cc}
e^{x+y} & e^{x+y} \\
2 x & 2 y \\
e^{y} & x e^{y}
\end{array}\right]
$$

Example 3.10. Show $f(x, y)=(x y, x+y)$ is differentiable at $(0,0)$.
sol. From example 3.9

$$
\begin{gathered}
\mathbf{D f}(0,0)=\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right] \\
\lim _{(x, y) \rightarrow(0,0)} \frac{\left\|\mathbf{f}(x, y)-\mathbf{f}(0,0)-\mathbf{D f}(0,0)\left[\begin{array}{l}
x \\
y
\end{array}\right]\right\|}{\|(x, y)-(0,0)\|} \\
=\lim _{(x, y) \rightarrow(0,0)} \frac{\|(x y, x+y)-(0, x+y)\|}{\|(x, y)\|} \\
=\lim _{(x, y) \rightarrow(0,0)} \frac{|x y|}{\sqrt{x^{2}+y^{2}}}=0
\end{gathered}
$$

Relation with continuity

Theorem 3.11. If $\mathbf{f}=\left(f_{1}, \ldots, f_{n}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ has all partial derivatives $\partial f_{i} / \partial x_{j}$ all exist and continuous in a neighborhood of \mathbf{x} then \mathbf{f} is \mathbf{x} differentiable.

Example 3.12. $\mathbf{f}(x, y)=\left(e^{x y}, x^{2}+y^{2}, x e^{y}\right)$ is differentiable at all points of \mathbb{R}^{2}.
sol. Since all the partial derivatives are continuous on $\mathbb{R}^{2} f$ is differentiable by Theorem 3.11

Example 3.13. Given

$$
f(x, y)= \begin{cases}\frac{x y}{\sqrt{x^{2}+y^{2}}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

(1) partial derivatives at $(0,0)$ exist.
(2) partial derivatives at $(0,0)$ are not continuous
(3) f is not differentiable at $(0,0)$
sol. (1) From definition

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(0,0)=\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, 0)-f(0,0)}{x}=0 \\
& \frac{\partial f}{\partial y}(0,0)=\lim _{(x, y) \rightarrow(0,0)} \frac{f(0, y)-f(0,0)}{y}=0
\end{aligned}
$$

For $(x, y) \neq(0,0)$

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =\frac{y \sqrt{x^{2}+y^{2}}-2 x(x y) / 2 \sqrt{x^{2}+y^{2}}}{x^{2}+y^{2}} \\
& =\frac{y}{\sqrt{x^{2}+y^{2}}}-\frac{x^{2} y}{\left(x^{2}+y^{2}\right)^{3 / 2}}
\end{aligned}
$$

this does not have limit at $(0,0)$.
(2) Suppose f is differentiable at $(0,0)$. Then

$$
\mathbf{D} f=\left.\left[\begin{array}{ll}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y}
\end{array}\right]\right|_{(0,0)}=\left[\begin{array}{ll}
0 & 0
\end{array}\right]
$$

hence we must have

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)-f(0,0)}{\|(x, y)\|}=\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}
$$

But $\lim _{(x, y) \rightarrow(0,0)} x y /\left(x^{2}+y^{2}\right)$ does not exists. Contradiction.

그림 2.8: Graph of example 3.13

Theorem 3.14. If $\mathbf{f}=\left(f_{1}, \ldots, f_{n}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable at \mathbf{x}_{0} then f 는 x_{0} is continuous.

Converse is not true.

Example 3.15. Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is given as follows.

$$
f(x, y)= \begin{cases}1 & x=0 \text { or } y=0 \\ 0 & \text { otherwise }\end{cases}
$$

partial deriv. exist

제 4 절 Paths and Curves

Use parameter to express a curve $\mathbf{c}(t)$. Eq. of line

$$
\mathbf{c}(t)=\mathbf{x}_{0}+t \mathbf{v}
$$

Eq. of Circle $C: x^{2}+y^{2}=1 \mathbf{c}(r): \mathbb{R} \rightarrow \mathbb{R}^{2}$ is given by

$$
\mathbf{c}(t)=(\cos t, \sin t), 0 \leq t \leq 2 \pi
$$

Cycloid:

$$
\mathbf{c}(t)=(t-\sin t, 1-\cos t)
$$

Study more general cycloid described in the book.

Velocity and tangent to Paths

Definition 4.1. If \mathbf{c} is a differentiable path, then the velocity is

$$
\mathbf{c}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\mathbf{c}(t+h)-\mathbf{c}(t)}{h}
$$

If $\mathbf{c}(t)=(x(t), y(t))$ then $\mathbf{c}^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t)\right)$. The speed of the path is $s=\left\|\mathbf{c}^{\prime}(t)\right\|$.

Example 4.2. Find the velocity of the path $\mathbf{c}(t)=\left(t, t^{2}, e^{t}\right)$ at $t=0$.
Example 4.3 (Helix). $\mathbf{c}(t)=(\cos t, \sin t, t)$ at $t=\pi / 2$.
Eq. of tangent line to $\mathbf{c}(t)$ when $\mathbf{c}^{\prime}\left(t_{0}\right) \neq 0$:

$$
\ell(t)=\mathbf{c}\left(t_{0}\right)+\left(t-t_{0}\right) \mathbf{c}^{\prime}\left(t_{0}\right)
$$

Example 4.4. Find the velocity of the path $\mathbf{c}(t)=\left(e^{t}, e^{-t}, \cos t\right)$ at $t=1,3$.

제 5 절 Chain rule

Some rules

Proposition 5.1 (Rules). Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable at \mathbf{x}_{0}.
(1) [constant multiple rule] For all constant c, $c f$ is differentiable at \mathbf{x}_{0}.

$$
\mathbf{D}(c f)\left(\mathbf{x}_{0}\right)=c \mathbf{D} f\left(\mathbf{x}_{0}\right)
$$

(2) [sum rule] Sum $f+g$ differentiable at \mathbf{x}_{0}

$$
\mathbf{D}(f+g)\left(\mathbf{x}_{0}\right)=\mathbf{D} f\left(\mathbf{x}_{0}\right)+\mathbf{D} g\left(\mathbf{x}_{0}\right)
$$

(3) [product rule] Product $f g$ differentiable at \mathbf{x}_{0}.

$$
\mathbf{D}(f g)\left(\mathbf{x}_{0}\right)=g\left(\mathbf{x}_{0}\right) \mathbf{D} f\left(\mathbf{x}_{0}\right)+f\left(\mathbf{x}_{0}\right) \mathbf{D} g\left(\mathbf{x}_{0}\right)
$$

(4) [quotient rule] If $g\left(\mathrm{x}_{0}\right) \neq 0$, then f / g differentiable at x_{0}.

$$
\mathbf{D}\left(\frac{f}{g}\right)\left(\mathbf{x}_{0}\right)=\frac{g\left(\mathbf{x}_{0}\right) \mathbf{D} f\left(\mathbf{x}_{0}\right)-f\left(\mathbf{x}_{0}\right) \mathbf{D} g\left(\mathbf{x}_{0}\right)}{\left(g\left(\mathbf{x}_{0}\right)\right)^{2}}
$$

Rule (1) and (2) also hold when f and g are vector functions $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.

Proof. (3) Suppose $\mathbf{x} \rightarrow \mathbf{x}_{0}$ and we need to show that

$$
\frac{g(\mathbf{x}) f(\mathbf{x})-g\left(\mathbf{x}_{0}\right) f\left(\mathbf{x}_{0}\right)-[g(\mathbf{x}) \mathbf{D} f(\mathbf{x})+g(\mathbf{x}) \mathbf{D} f(\mathbf{x})]\left(\mathbf{x}-\mathbf{x}_{0}\right)}{\left\|\mathbf{x}-\mathbf{x}_{0}\right\|} \rightarrow 0
$$

Numerator is

$$
\begin{aligned}
& g(\mathbf{x}) f(\mathbf{x})-g(\mathbf{x}) f\left(\mathbf{x}_{0}\right)+g(\mathbf{x}) f\left(\mathbf{x}_{0}\right)-g\left(\mathbf{x}_{0}\right) f\left(\mathbf{x}_{0}\right) \\
& \quad-\left[g\left(\mathbf{x}_{0}\right) \mathbf{D} f\left(\mathbf{x}_{0}\right)+g\left(\mathbf{x}_{0}\right) \mathbf{D} f\left(\mathbf{x}_{0}\right)\right]\left(\mathbf{x}-\mathbf{x}_{0}\right) \\
& =\left[g(\mathbf{x}) f(\mathbf{x})-g(\mathbf{x}) f\left(\mathbf{x}_{0}\right)-g\left(\mathbf{x}_{0}\right) \mathbf{D} f\left(\mathbf{x}_{0}\right)\left(\mathbf{x}-\mathbf{x}_{0}\right)\right] \\
& \quad+\left[g(\mathbf{x}) f\left(\mathbf{x}_{0}\right)-g\left(\mathbf{x}_{0}\right) f\left(\mathbf{x}_{0}\right)-f\left(\mathbf{x}_{0}\right) \mathbf{D} g\left(\mathbf{x}_{0}\right)\left(\mathbf{x}-\mathbf{x}_{0}\right)\right]
\end{aligned}
$$

Let A be the terms in the first bracket and B be the terms in the second bracket. Then

$$
\begin{aligned}
& A= g(\mathbf{x}) f(\mathbf{x})-g(\mathbf{x}) f\left(\mathbf{x}_{0}\right)-g\left(\mathbf{x}_{0}\right) \mathbf{D} f\left(\mathbf{x}_{0}\right)\left(\mathbf{x}-\mathbf{x}_{0}\right) \\
&=g(\mathbf{x}) f(\mathbf{x})-g(\mathbf{x}) f\left(\mathbf{x}_{0}\right)-g(\mathbf{x}) \mathbf{D} f\left(\mathbf{x}_{0}\right)\left(\mathbf{x}-\mathbf{x}_{0}\right) \\
& \quad+g(\mathbf{x}) \mathbf{D} f\left(\mathbf{x}_{0}\right)\left(\mathbf{x}-\mathbf{x}_{0}\right)-g\left(\mathbf{x}_{0}\right) \mathbf{D} f\left(\mathbf{x}_{0}\right)\left(\mathbf{x}-\mathbf{x}_{0}\right) \\
&=g(\mathbf{x})\left[f(\mathbf{x})-f\left(\mathbf{x}_{0}\right)\right.\left.-\mathbf{D} f\left(\mathbf{x}_{0}\right)\left(\mathbf{x}-\mathbf{x}_{0}\right)\right] \\
& \quad+\left[g(\mathbf{x})-g\left(\mathbf{x}_{0}\right)\right] \mathbf{D} f\left(\mathbf{x}_{0}\right)\left(\mathbf{x}-\mathbf{x}_{0}\right) .
\end{aligned}
$$

Similar expression for B. Now using the definition of derivative and continuity we can show

$$
\lim _{\mathrm{x} \rightarrow \mathrm{x}_{0}} \frac{A}{\left\|\mathrm{x}-\mathrm{x}_{0}\right\|}=0, \quad \lim _{\mathrm{x} \rightarrow \mathrm{x}_{0}} \frac{B}{\left\|\mathrm{x}-\mathbf{x}_{0}\right\|}=0
$$

Chain rule

Theorem 5.2 (Chain rule-simple). (1) Suppose $\mathbf{c}(t)=(x(t), y(t)): \mathbb{R} \rightarrow$ \mathbb{R}^{2} differentiable at t_{0} and $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ differentiable at $\mathbf{x}_{0}=\mathbf{c}\left(t_{0}\right)$ then the composite $h=f \circ \mathbf{c}: \mathbb{R} \rightarrow \mathbb{R}(h(t)=f(x(t), y(t)))$ is differentiable at t_{0} and its derivative $d h / d t\left(t_{0}\right)$ is

$$
\frac{d h}{d t}\left(t_{0}\right)=\frac{\partial f}{\partial x}\left(\mathbf{x}_{0}\right) \frac{d x}{d t}\left(t_{0}\right)+\frac{\partial f}{\partial y}\left(\mathbf{x}_{0}\right) \frac{d y}{d t}\left(t_{0}\right)
$$

(2) Suppose $\mathbf{g}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \mathbf{g}(x, y)=(u(x, y), v(x, y))$ differentiable at \mathbf{x}_{0} and $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ differentiable at $g\left(\mathbf{x}_{0}\right)=\mathbf{y}_{0}$, then the composite function $h=f \circ \mathbf{g}$ differentiable at \mathbf{x}_{0} and $\mathbf{D} h\left(\mathbf{x}_{0}\right)=\left[\partial h / \partial x\left(\mathbf{x}_{0}\right), \quad \partial h / \partial y\left(\mathbf{x}_{0}\right)\right]$ is given by

$$
\begin{aligned}
& \frac{\partial h}{\partial x}\left(\mathbf{x}_{0}\right)=\frac{\partial f}{\partial u}\left(\mathbf{y}_{0}\right) \frac{\partial u}{\partial x}\left(\mathbf{x}_{0}\right)+\frac{\partial f}{\partial v}\left(\mathbf{y}_{0}\right) \frac{\partial v}{\partial x}\left(\mathbf{x}_{0}\right) \\
& \frac{\partial h}{\partial y}\left(\mathbf{x}_{0}\right)=\frac{\partial f}{\partial u}\left(\mathbf{y}_{0}\right) \frac{\partial u}{\partial x}\left(\mathbf{x}_{0}\right)+\frac{\partial f}{\partial v}\left(\mathbf{y}_{0}\right) \frac{\partial v}{\partial y}\left(\mathbf{x}_{0}\right)
\end{aligned}
$$

Wire it in matrix form, $\mathbf{D} h=\mathbf{D} f \circ \mathbf{D} g$, where

$$
\mathbf{D} f=\left[\frac{\partial f}{\partial u}, \frac{\partial f}{\partial v}\right], \quad \text { and } \mathbf{D} g=\left[\begin{array}{l}
\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}
\end{array}\right]
$$

Proof. (1) From

$$
\frac{d h}{d t}\left(t_{0}\right)=\lim _{t \rightarrow t_{0}} \frac{h(t)-h\left(t_{0}\right)}{t-t_{0}}
$$

we have

$$
\begin{aligned}
\frac{h(t)-h\left(t_{0}\right)}{t-t_{0}} & =\frac{f(x(t), y(t))-f\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)}{t-t_{0}} \\
& =\frac{f(x(t), y(t))-f\left(x\left(t_{0}\right), y(t)\right)+f\left(x\left(t_{0}\right), y(t)\right)-f\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)}{t-t_{0}}
\end{aligned}
$$

Since partial derivatives of f differentiable, we have by mean value theorem there exists c between $x(t)$ and $x\left(t_{0}\right)$ such that

$$
f(x(t), y(t))-f\left(x\left(t_{0}\right), y(t)\right)=\left(\frac{\partial f}{\partial x}(c, y(t))\right)\left(x(t)-x\left(t_{0}\right)\right)
$$

holds. Similarly,

$$
\frac{h(t)-h\left(t_{0}\right)}{t-t_{0}}=\left(\frac{\partial f}{\partial x}(c, y(t))\right) \frac{x(t)-x\left(t_{0}\right)}{t-t_{0}}+\left(\frac{\partial f}{\partial y}\left(x\left(t_{0}\right), d\right)\right) \frac{y(t)-y\left(t_{0}\right)}{t-t_{0}} .
$$

Let t approach t_{0}.
(2) Treat y as constant and $\partial h / \partial x$ as function of x only.

$$
\frac{\partial h}{\partial x}\left(\mathbf{x}_{0}\right)=\frac{\partial f}{\partial u}\left(\mathbf{y}_{0}\right) \frac{\partial u}{\partial x}\left(\mathbf{x}_{0}\right)+\frac{\partial f}{\partial v}\left(\mathbf{y}_{0}\right) \frac{\partial v}{\partial x}\left(\mathbf{x}_{0}\right)
$$

Similarly

$$
\frac{\partial h}{\partial y}\left(\mathbf{x}_{0}\right)=\frac{\partial f}{\partial u}\left(\mathbf{y}_{0}\right) \frac{\partial u}{\partial x}\left(\mathbf{x}_{0}\right)+\frac{\partial f}{\partial v}\left(\mathbf{y}_{0}\right) \frac{\partial v}{\partial y}\left(\mathbf{x}_{0}\right)
$$

Example 5.3. Show Chain rule holds for $f(x, y)=e^{x y}$ and $\mathbf{g}(t)=(x(t), y(t))$, $x(t)=t^{2}, y(t)=2 t$.
sol. Since $h(t)=f \circ \mathbf{g}(t)=f(x(t), y(t))=e^{2 t^{3}}$, we have $d h / d t=6 t^{2} e^{2 t^{3}}$. On the other hand, by chain rule, we have

$$
\frac{d h}{d t}=y e^{x y} \cdot 2 t+x e^{x y} \cdot 2=6 t^{2} e^{2 t^{3}}
$$

Theorem 5.2 Chain rule. (1) becomes

$$
\begin{aligned}
\frac{d h}{d t} & =\left[\begin{array}{ll}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y}
\end{array}\right]\left(\mathbf{g}\left(t_{0}\right)\right)\left[\begin{array}{l}
\frac{d x}{d t} \\
\frac{d y}{d t}
\end{array}\right]\left(t_{0}\right) \\
& =\mathbf{D} f\left(f\left(t_{0}\right)\right) \cdot \mathbf{D g}\left(t_{0}\right)
\end{aligned}
$$

is a product of matrix. For (2)

$$
\mathbf{D} h\left(\mathbf{x}_{0}\right)=\left[\begin{array}{ll}
\frac{\partial f}{\partial u} & \frac{\partial f}{\partial v}
\end{array}\right]\left(\mathbf{y}_{0}\right)\left[\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right]\left(\mathbf{x}_{0}\right)
$$

Example 5.4. Show Chain rule holds for $f(u, v, w)=u^{2}+v^{2}-w$, where

$$
u(x, y, z)=x^{2} y, \quad v=y^{2}, \quad z=e^{-x z}
$$

sol. Let

$$
h(x, y, z)=f(u(x, y, z), v(x, y, z), w(x, y, z))
$$

Chain rule

$$
\begin{aligned}
\frac{\partial h}{\partial x} & =\frac{\partial f}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial f}{\partial v} \frac{\partial v}{\partial x}+\frac{\partial f}{\partial w} \frac{\partial w}{\partial x} \\
& =2 u(2 x y)+2 v \cdot 0+(-1)\left(-z e^{-x z}\right)
\end{aligned}
$$

Theorem 5.5 (Chain rule-General case). Suppose $\mathbf{g}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ differentiable at \mathbf{x}_{0} and $\mathbf{f}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ differentiable at $\mathbf{g}\left(\mathbf{x}_{0}\right)=\mathbf{y}_{0}$ Then $\mathbf{h}=\mathbf{f} \circ \mathbf{g}$ differentiable at \mathbf{x}_{0} and

$$
\operatorname{Dh}\left(\mathbf{x}_{0}\right)=\mathbf{D f}\left(\mathbf{y}_{0}\right) \mathbf{D g}\left(\mathbf{x}_{0}\right)
$$

Suppose $\mathbf{g}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $\mathbf{f}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ are given

$$
\begin{aligned}
\mathbf{g}\left(x_{1}, \cdots, x_{n}\right) & =\left(y_{1}\left(x_{1}, \cdots, x_{n}\right), y_{2}\left(x_{1}, \cdots, x_{n}\right), \cdots, y_{m}\left(x_{1}, \cdots, x_{n}\right)\right) \\
\mathbf{f}(u, v, w) & =\left(f_{1}\left(y_{1}, \cdots, y_{m}\right), \cdots, f_{p}\left(y_{1}, \cdots, y_{m}\right)\right)
\end{aligned}
$$

Let the composite of \mathbf{f} and \mathbf{g} as h

$$
\mathbf{h}\left(x_{1}, \cdots, x_{n}\right)=\mathbf{f} \circ \mathbf{g}\left(x_{1}, \cdots, x_{n}\right)
$$

Then applying simple case to each component of $\mathbf{h}=\left[f_{1} \circ \mathbf{g}, \cdots, f_{p} \circ \mathbf{g}\right]^{T}$ (Column vector) so that $h_{i}=f_{i} \circ \mathbf{g}$. and

$$
\begin{aligned}
D h_{1} & =D f_{1} \circ D \mathbf{g} \\
D h_{2} & =D f_{2} \circ D \mathbf{g} \\
& =\cdots \\
D h_{p} & =D f_{p} \circ D \mathbf{g}
\end{aligned}
$$

Now just write in matrix form.
Example 5.6. Given the vector functions \mathbf{f}, \mathbf{g} consider composite function $\mathbf{h}=(k, l)=\mathbf{f} \circ \mathbf{g}$. Find the partials $\partial k / \partial x$ and $\partial l / \partial y$.

$$
\mathbf{g}(x, y, z)=\left(x y z, x^{2}+y^{2}+z^{2}, e^{x y z}\right), \quad \mathbf{f}(u, v, w)=\left(u^{2}-u v, u+v+w\right)
$$

sol. Use chain rule

$$
\begin{aligned}
\frac{\partial k}{\partial x} & =\frac{\partial k}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial k}{\partial v} \frac{\partial v}{\partial x}+\frac{\partial k}{\partial w} \frac{\partial w}{\partial x} \\
& =(2 u-v)(y z)+(-u)(2 x)+0 \\
& =\left(2 x y z-x^{2}-y^{2}-z^{2}\right)(y z)-(x y z)(2 x) \\
& =2 x y z-3 x^{2} y z-y^{3}-y z^{2}, \\
\frac{\partial l}{\partial y} & =\frac{\partial l}{\partial u} \frac{\partial u}{\partial y}+\frac{\partial l}{\partial v} \frac{\partial v}{\partial y}+\frac{\partial l}{\partial w} \frac{\partial w}{\partial y} \\
& =1 \cdot \frac{\partial u}{\partial y}+1 \cdot \frac{\partial u}{\partial y}+1 \cdot \frac{\partial w}{\partial y} \\
& =x z+2 y+x z e^{x y z}
\end{aligned}
$$

Check it using matrix product.

Example 5.7. Use Chain rule to find the derivative of composite function

$$
\mathbf{h}(t)=\left(h_{1}(t), h_{2}(t), h_{2}(t)\right)=\mathbf{f} \circ \mathbf{g}(t)
$$

where $\mathbf{g}(t)=(x(t), y(t), z(t))$ and $\mathbf{f}:=\left(f_{1}(x, y, z), f_{2}(x, y, z), f_{3}(x, y, z)\right)$.
Note that $h_{i}(t)=f_{i}(\mathbf{g}(t))$. Use Chain rule for special case(to each component)

$$
\frac{d h_{i}}{d t}=\frac{\partial f_{i}}{\partial x} \frac{d x}{d t}+\frac{\partial f_{i}}{\partial y} \frac{d y}{d t}+\frac{\partial f_{i}}{\partial z} \frac{d z}{d t}
$$

Use Chain rule as a whole

$$
\begin{gathered}
D \mathbf{f}=\left[\begin{array}{lll}
\frac{\partial f_{1}}{\partial x}, & \frac{\partial f_{1}}{\partial y}, & \frac{\partial f_{1}}{\partial z} \\
\frac{\partial f_{2}}{\partial x}, & \frac{\partial f_{2}}{\partial y}, & \frac{\partial f_{2}}{\partial z} \\
\frac{\partial f_{3}}{\partial x}, & \frac{\partial f_{3}}{\partial y}, & \frac{\partial f_{3}}{\partial z}
\end{array}\right] \text { while } D \mathbf{g}=\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t) \\
z^{\prime}(t)
\end{array}\right] \\
\text { Hence } D \mathbf{f} \circ D \mathbf{g}=\left[\begin{array}{l}
\frac{\partial f_{1}}{\partial x} x^{\prime}(t)+\frac{\partial f_{1}}{\partial y} y^{\prime}(t)+\frac{\partial f_{1}}{\partial z} z^{\prime}(t) \\
\frac{\partial f_{2}}{\partial x} x^{\prime}(t)+\frac{\partial f_{2}}{\partial y} y^{\prime}(t)+\frac{\partial f_{2}}{\partial z} z^{\prime}(t) \\
\frac{\partial f_{3}}{\partial x} x^{\prime}(t)+\frac{\partial f_{3}}{\partial y} y^{\prime}(t)+\frac{\partial f_{3}}{\partial z} z^{\prime}(t)
\end{array}\right]
\end{gathered}
$$

Example 5.8. Let $\mathbf{f}: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be given by $\mathbf{f}=\left(f_{1}, \cdots, f_{m}\right)$ and $g(\mathbf{x})=\sin [\mathbf{f}(\mathbf{x}) \cdot \mathbf{f}(\mathbf{x})]$. Compute $D g(\mathbf{x})$.
sol.

$$
D g(\mathbf{x})=\cos [\mathbf{f}(\mathbf{x}) \cdot \mathbf{f}(\mathbf{x})] D[\mathbf{f}(\mathbf{x}) \cdot \mathbf{f}(\mathbf{x})]
$$

We compute $D[\mathbf{f}(\mathbf{x}) \cdot \mathbf{f}(\mathbf{x})]$ which is

$$
\begin{aligned}
D h & =\left[2 f_{1} \frac{\partial f_{1}}{\partial x_{1}}+\cdots+2 f_{m} \frac{\partial f_{m}}{\partial x_{1}}, \cdots, 2 f_{1} \frac{\partial f_{1}}{\partial x_{n}}+\cdots+2 f_{m} \frac{\partial f_{m}}{\partial x_{n}}\right] \\
& =2 \mathbf{f}(\mathbf{x}) D \mathbf{f}(\mathbf{x})
\end{aligned}
$$

where $D \mathbf{f}(\mathbf{x})$ is the derivative of \mathbf{f}, Finally, we see $D g(\mathbf{x})=2[\cos [\mathbf{f}(\mathbf{x})$. $\mathbf{f}(\mathbf{x})] \mathbf{f}(\mathbf{x}) D \mathbf{f}(\mathbf{x})$

Geometric meaning of derivative

For a curve $\mathbf{c}=(x(t), y(t), z(t)): \mathbb{R} \rightarrow \mathbb{R}^{3}$ and function $\mathbf{f}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, the composite function $\mathbf{p}(t):=\mathbf{f} \circ \mathbf{c}(t)=\mathbf{f}(x(t), y(t), z(t))=\left(h_{1}(t), h_{2}(t), h_{2}(t)\right)$ is another curve D in \mathbb{R}^{3} mapped by f, i.e, $f(C)=D$. Then $\mathbf{c}^{\prime}(t)=$ $\left(x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right)$ is a velocity vector(tangent vector) of C and $\mathbf{p}^{\prime}(t)$ is a velocity vector(tangent vector) at D. Here the chain rule

$$
\mathbf{p}^{\prime}(t)=\mathbf{D} f(\mathbf{c}(t)) \mathbf{c}^{\prime}(t)
$$

shows the derivative $\mathbf{D} f(\mathbf{c}(t))$ maps the tangent vector $\mathbf{c}^{\prime}(t)$ at C to the tangent vector $\mathbf{p}^{\prime}(t)$ at D. (Figure 2.9)

그림 2.9: a tangent vector is mapped to another by derivative

Example 5.9. Given $f(x, y)=\sqrt{1-x^{2}-y^{2}}$.
(1) Find the tangent vector at

$$
\alpha(t)=\left(\cos t, \frac{1}{2} \sin t, \sqrt{1-\cos ^{2} t-\frac{1}{4} \sin ^{2} t}\right)
$$

at $t=\pi / 2$ and show this vector lies on the tangent plane at $\alpha(\pi / 2)=$ $(0,1 / 2, \sqrt{3} / 2)$ of the graph G.

Continuation $z=f(x, y)=\sqrt{1-x^{2}-y^{2}}$. Let $S=\Phi(G)$ be the image of G under the mapping $\Phi(x, y, z)=(x, y, z / 2)$. Then it is the graph of $g(x, y, z)=$ $(1 / 2) \sqrt{1-x^{2}-y^{2}}$. Now do
(a) Find a tangent to S along the curve $\beta(t)=\Phi \circ \alpha(t)$ at $t=\pi / 2$.
(b) Show this vector lies in a tangent plane of S at $\beta(\pi / 2)$.
sol. (1) tangent vector to the curve α is

$$
\begin{aligned}
\left.\alpha^{\prime}(t)\right|_{\pi / 2} & =\left.\left(-\sin t,(1 / 2) \cos t, \frac{(3 / 4) \cos t \sin t}{\sqrt{1-\cos ^{2} t-(1 / 4) \sin ^{2} t}}\right)\right|_{\pi / 2} \\
& =(-1,0,0)
\end{aligned}
$$

The tangent plane of G at $\alpha(\pi / 2)=(0,1 / 2, \sqrt{3} / 2)$ is

$$
z=\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{3}\left(y-\frac{1}{2}\right)
$$

This plane is perpendicular to the vector $(0, \sqrt{3} / 3,1)$ and the vector $(0, \sqrt{3} / 3,1)$ is perpendicular to $(-1,0,0)$. Hence the vector $(-1,0,0)$ is parallel to tangent plane.
(2) The tangent vector to the curve β is

$$
\begin{aligned}
\beta^{\prime}(\pi / 2) & =\left.\mathbf{D} \Phi\right|_{(0,1 / 2, \sqrt{3} / 2)} \alpha^{\prime}(\pi / 2) \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \frac{1}{2}
\end{array}\right]\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Hence $\beta^{\prime}(\pi / 2)=(-1,0,0)$. The tangent plane of $g(x, y, z)$ at $\beta(\pi / 2)=$ $(0,1 / 2, \sqrt{3} / 4)$ is

$$
z=\frac{\sqrt{3}}{4}-\frac{\sqrt{3}}{6}\left(y-\frac{1}{2}\right)
$$

Hence by similar argument as before $\beta^{\prime}(\pi / 2)=(-1,0,0)$ lies in the tangent plane.

Example 5.10. $g(x, y)=\left(x^{2}+1, y^{2}\right), \quad f(u, v)=\left(u+v, u, v^{2}\right)$. Find $f \circ g$ at $(1,1)$.
sol.

$$
D f=\left[\begin{array}{cc}
1 & 1 \\
1 & 0 \\
1 & 2 v
\end{array}\right], \quad D g=\left[\begin{array}{cc}
2 x & 0 \\
0 & 2 y
\end{array}\right]
$$

Example 5.11. $f(x, y)=\left(x^{2}+1, y^{2}\right), \quad x=r \cos \theta, y=r \sin \theta$. Find $\frac{\partial f}{\partial \theta}$.
sol.

$$
\frac{\partial f}{\partial \theta}=-r \frac{\partial f}{\partial x} \sin \theta+r \frac{\partial f}{\partial y} \cos \theta
$$

Example 5.12. $f(x, y)=\left(\cos y+x^{2}, e^{x+y}\right), \quad g(u, v)=\left(e^{u^{2}}, u-\sin v\right)$. Find $f \circ g$ at $(0,0)$.
sol. $f \circ g(u, v)=\left(\cos (u-\sin v)+e^{2 u^{2}}, e^{\left(e^{u^{2}}+u-\sin v\right)}\right)$.

$$
\begin{aligned}
& D f=\left[\begin{array}{cc}
2 x & -\sin y \\
e^{x+y} & e^{x+y}
\end{array}\right], \quad D g=\left[\begin{array}{cc}
2 u e^{u^{2}}, & 0 \\
1 & -\cos y
\end{array}\right] \\
& g(0,0)=(1,0), \quad D f=\left[\begin{array}{ll}
2 & 0 \\
e & e
\end{array}\right], \quad D g=\left[\begin{array}{cc}
0, & 0 \\
1 & -1
\end{array}\right]
\end{aligned}
$$

제 6 절 Gradient and directional derivatives

Gradient

Definition 6.1. Let $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable. The gradient of at x_{0} is

$$
\nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)
$$

그림 2.10: gradient at \mathbf{x}_{0} is perpendicular to tangent plane through \mathbf{x}_{0}

directional derivative

Definition 6.2. For a given vector $\mathbf{v} \in \mathbf{R}^{n}$ and $\mathbf{x}_{0} \in \mathbf{R}^{n}$, the directional derivative) of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ at \mathbf{x}_{0} along \mathbf{v} is $\mathbf{D}_{\mathbf{v}} f(\mathbf{x})$ defined by (Fig 2.11)

$$
\left.\frac{d}{d t} f(\mathbf{x}+t \mathbf{v})\right|_{t=0}
$$

Usually we take unit vector $\mathbf{v} \in \mathbf{R}^{n}(\|\mathbf{v}\|=1)$

그림 2.11: Directional Derivative

Theorem 6.3. If $f(\mathbf{x}): \mathbb{R}^{3} \rightarrow \mathbb{R}$, the directional derivative of f at \mathbf{x} along \mathbf{v} is given by

$$
D f(\mathbf{x}) \mathbf{v}=\operatorname{grad} f(\mathbf{x}) \cdot \mathbf{v}=\nabla f \cdot \mathbf{v}
$$

Proof. Let $c(t)=\mathbf{x}+t \mathbf{v}$ so that $f(\mathbf{x}+t \mathbf{v})=f(\mathbf{c}(t))$. Then by the chain rule $\frac{d}{d t} f(\mathbf{c}(t))=\nabla f(\mathbf{c}(t)) \cdot \mathbf{c}^{\prime}(t)$. Hence

$$
\begin{equation*}
\left.\frac{d}{d t} f(\mathbf{x}+t \mathbf{v})\right|_{0}=\nabla f \cdot \mathbf{v}=\mathbf{D}(f) \mathbf{c}^{\prime}(t)=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right) \cdot \mathbf{v} \tag{2.2}
\end{equation*}
$$

This is the rate of change of f along \mathbf{v}. The rate of change of f along a curve is given as

$$
\begin{equation*}
\left.\frac{d}{d t} f(\mathbf{c}(t))\right|_{0}=\left.\nabla f \cdot \mathbf{c}^{\prime}(t)\right|_{0}=\nabla f(\mathbf{x}) \cdot \mathbf{v} \tag{2.3}
\end{equation*}
$$

Example 6.4. Compute the rate of change of $f(x, y, z)=x y-z^{2}$ at $(1,0,1)$ along ($1,1,1$).
sol. The unit vector to $(1,1,1)$ is $\mathbf{v}=(1 / \sqrt{3})(1,1,1)$. The gradient of f at $(1,0,1)$ is

$$
\begin{aligned}
\nabla f(1,0,1) & =\left.\left(f_{z}, f_{y}, f_{z}\right)\right|_{(1,0,1)}=\left.(y, x, 2 z)\right|_{(1,0,1)} \\
& =(0,1,-2) \cdot\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)=-\frac{1}{\sqrt{3}}
\end{aligned}
$$

Direction of fastest increase

$\nabla f \cdot \mathbf{v}$ is the rate of change of f along the direction \mathbf{v} Then

$$
\mathbf{D}_{\mathbf{v}} f=\|\mathbf{v}\|\|\nabla f\| \cos \theta
$$

Here θ is the angle between \mathbf{v} and ∇f. Hence if $\theta=0$ the directional derivative ∇f has maximum value $\|\nabla f\|$, and if $\theta=\pi$ has minimum $-\|\nabla f\|$. Also, if $\theta=\pi / 2$ then the directional derivative is 0 . Hence

Theorem 6.5. Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable at \mathbf{x}_{0}. Then f increases(decreases) fastest at \mathbf{x}_{0} along $\nabla f\left(\mathbf{x}_{0}\right)\left(-\nabla f\left(\mathbf{x}_{0}\right)\right)$. Also, f does not change along the perpendicular direction to $\nabla f\left(\mathbf{x}_{0}\right)$

Example 6.6. In what direction from $(0,1)$ does $f(x, y)=x^{2}-y^{2}$ increases fastest?

Gradient is normal to the level set

그림 2.12: gradient is perpendicular to level curve.

See the graph (2.10) in 3D case. Also see the book.

Consider the level set (Surface) $S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid f(x, y, z)=k\right\}$ of $f(x, y, z)$. Suppose a curve \mathbf{c} passes the point $\mathbf{x}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ lies on the surface S Then $f(\mathbf{c}(t))=k$ holds. Then we have by chain rule

$$
0=\frac{d}{d t} f(\mathbf{c}(t))=\nabla f(\mathbf{c}(t)) \cdot \mathbf{c}^{\prime}(t)
$$

(Fig 2.10) Hence the tangent vector $\mathbf{c}^{\prime}\left(t_{0}\right)$ at \mathbf{x}_{0} is normal to the gradient $\nabla f\left(\mathbf{x}_{0}\right)$.

Theorem 6.7. Suppose $f(x, y, z)$ is differentiable and $\nabla f\left(\mathbf{x}_{0}\right) \neq 0$. Then $\nabla f\left(\mathbf{x}_{0}\right)$ is normal to the level surface $S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid f(x, y, z)=k\right\}$.

We can also define
Definition 6.8. The plane S in Theorem 6.7 at $\mathbf{x}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ is tangent plane. In other words, if S is a level surface $f(x, y, z)=k$ and \mathbf{x}_{0} is on S, then the tangent plane to S at \mathbf{x}_{0} is given by

$$
\begin{gathered}
\nabla f\left(\mathbf{x}_{0}\right) \cdot\left(\mathbf{x}-\mathbf{x}_{0}\right)=0, \quad \text { or } \\
\frac{\partial f}{\partial x}\left(\mathbf{x}_{0}\right)\left(x-x_{0}\right)+\frac{\partial f}{\partial y}\left(\mathbf{x}_{0}\right)\left(y-y_{0}\right)+\frac{\partial f}{\partial z}\left(\mathbf{x}_{0}\right)\left(z-z_{0}\right)=0 .
\end{gathered}
$$

Example 6.9. Find equation of tangent plane to $3 x y+z^{2}+4$ at $(1,1,1)$. sol. $-\nabla f=(3 y, 3 x, 2 z)$ at $(1,1,1)$, it is $(3,3,2)$. Thus tangent plane is

$$
(3,3,2) \cdot(x-1, y-1, z-1)=0 .
$$

We often speak of vector field. $\nabla f(\mathbf{x})$. (A vector function is often called a vector fields Draw graph of a vector field.

Example 6.10. The gravitational force of a mass m at (x, y, z) produced by a mass M at origin is

$$
\mathbf{F}=\frac{G m M}{r^{2}} \mathbf{n}
$$

G is gravitational constant, $\mathbf{r}=(x, y, z), r=\|\mathbf{r}\|, \mathbf{n}=\mathbf{r} / r$. Note $\mathbf{F}=$ $-\nabla G m M / r$. Here $V=-G m M / r$ is called potential.

$$
\begin{aligned}
\nabla V & =\nabla\left(-\frac{G m M}{\sqrt{x^{2}+y^{2}+z^{2}}}\right) \\
& =\left(-\frac{G m M}{2 \sqrt{x^{2}+y^{2}+z^{2}}}(2 x, 2 y, 2 z)\right)=-\mathbf{F}
\end{aligned}
$$

