
Contents

1 Functions and Limits 3

1.4 Limit of Functions . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Precise definition . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 One sided limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.7 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.8 Limit Involving Infinite and vertical asymptote . . . . . . . . . 14

2 Differentiation 15

2.1 Tangents and Derivatives at a point . . . . . . . . . . . . . . . 15

2.2 Derivative as a function . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Differentiation Rules . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 The Derivative as a Rate of change . . . . . . . . . . . . . . . . 18

2.5 Derivative of Trig functions . . . . . . . . . . . . . . . . . . . . 19

2.6 Exponential functions . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 Chain rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.8 Implicit differentiation . . . . . . . . . . . . . . . . . . . . . . . 23

2.9 Inverse functions and Their Derivatives . . . . . . . . . . . . . 24

2.10 Logarithmic functions . . . . . . . . . . . . . . . . . . . . . . . 26

2.11 Inverse trig functions . . . . . . . . . . . . . . . . . . . . . . . . 29

2.12 Related rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.13 Linearization and differential . . . . . . . . . . . . . . . . . . . 36

3 Applications of Derivatives 41

3.1 Absolute Maximum, Minimum . . . . . . . . . . . . . . . . . . 41

3.2 Mean Value Theorem . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Monotonic function and derivative . . . . . . . . . . . . . . . . 47

3.4 Concavity and sketching . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Applied Optimziation . . . . . . . . . . . . . . . . . . . . . . . 53

3.7 Intermediate form aand L’Hopital’s Rule . . . . . . . . . . . . . 53

3.8 Newton’s Methods . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.9 Hyperbolic functions . . . . . . . . . . . . . . . . . . . . . . . . 56

1



2 CONTENTS

4 Integration 65
4.1 Anti-derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Estimating with finite sums . . . . . . . . . . . . . . . . . . . . 65
4.3 Sigma and limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4 Definite integral . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.5 Fundamental theorem of Calculus . . . . . . . . . . . . . . . . . 69
4.6 Indefinite integrals and substitution . . . . . . . . . . . . . . . 71
4.7 Area between curves . . . . . . . . . . . . . . . . . . . . . . . . 73



Chapter 1

Functions and Limits

1.4 Limit of Functions

Limit of function values

Example 1.4.1. ff

Theorem 1.4.2. If f(x), g(x) has limit at x = a and values are L, M Then
the following hold.

(1) lim
x→a

(f(x) + g(x)) = L + M ( sum rule)

(2) lim
x→a

(f(x) − g(x)) = L − M ( Difference rule)

(3) lim
x→a

(kf(x)) = kL ( Constant multiple)

(4) lim
x→a

f(x) · g(x) = LM ( Product rule)

(5) lim
x→a

f(x)

g(x)
=

L

M
, M 6= 0 ( Quotient rule).

Poly and rational function

Theorem 1.4.3. For any polynomial f(x) = a0x
n + a1x

n−1 + · · · + an,

lim
x→a

f(x) = a0a
n + a1a

n−1 + · · · + an = f(a).

Example 1.4.4. Use Theorem 1.4.2 (3), (4) we see

lim
x→a

2x2 = 2 lim
x→a

x2 = 2 lim
x→a

x lim
x→a

x = 2a · a = 2a2

Theorem 1.4.5. If f(x), g(x) are polynomials and g(a) 6= 0 then

lim
x→a

f(x)

g(x)
=

f(a)

g(a)
.

3



4 CHAPTER 1. FUNCTIONS AND LIMITS

Example 1.4.6. Find

lim
x→2

x3 + x + 2

x + 1
.

sol.

lim
x→2

x3 + x + 2

x + 1
=

23 + 2 + 2

2 + 1
= 4

Eliminating zero denominator

Example 1.4.7.

lim
x→1

x3 − 1

x2 − 1
.

sol. Now denominator is zero. But as long as x 6= 1 it holds that

x3 − 1

x2 − 1
=

(x − 1)(x2 + x + 1)

(x − 1)(x + 1)
=

x2 + x + 1

x + 1

lim
x→1

x3 − 1

x2 − 1
= lim

x→1

x2 + x + 1

x + 1
=

3

2
.

Example 1.4.8. limx→0

√
x2+1−1

x2

sol.

lim
x→0

√
x2 + 1 − 1

x2
=

x2 + 1 − 1

x2(
√

x2 + 1 + 1)
=

1√
x2 + 1 + 1

Example 1.4.9.

lim
x→∞

x3 + x

2x3 + 3
=

1

2
.

sol. Factor out x3

x3 + x

2x3 + 3
=

1 + x2

2 + 3/x3

As x → ∞ Theorem 1.4.2 (5) limit is 1/2.
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Sandwich Theorem

Theorem 1.4.10 (Sandwich Theorem). If, for an interval (α, β) containing
a, it holds g(x) ≤ f(x) ≤ h(x)

lim
x→a

g(x) = lim
x→a

h(x) = L

then
lim
x→a

f(x) = L

This hold for left or right limit also.

Example 1.4.11. Suppose that

v(x) − x2 ≤ u(x) ≤ v(x) + 3x2

holds for all x 6= a. Then

lim
x→a

u(x) = lim
x→a

v(x)

provided the limit of the r.h.s term exists.

Example 1.4.12. We will later see that

−|θ| ≤ sin θ ≤ |θ|

for all θ. Hence limx→0 sin θ = 0 by Sandwich theorem.

Example 1.4.13. Similarly, from the inequality

0 ≤ 1 − cos θ ≤ |θ|

for all θ. Hence limx→0 cos θ = 1.

Theorem 1.4.14 (Sandwich Theorem, inequality). If f(x) ≤ g(x) holds for
all x in an interval (α, β) containing c except possibly c, then

lim
x→c

f(x) ≤ lim
x→c

g(x)

This hold for left- right limit also.
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When limit do not exist ?

Three cases: Jump, infinity, oscillation:

Figure 1.1: Broken graph or undefined(infinity)

0

1

−1

x

y

y = sin(1/x)

Figure 1.2: y = sin
1

x

1.5 Precise definition

Definition 1.5.1. Let f(x) be defined on an open interval containing a except
possibly a. If there is a number L such that for any positive ε, there exists
δ > 0 such that

0 < |x − a| < δ ⇒ |f(x) − L| < ε

we say f(x) has limit L at x = a and write

lim
x→a

f(x) = L

Remark 1.5.2. In general, δ depends on x, f, ε. Also, note that we do not
check at x = a. 0 < |x − a|.
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ǫ
δ

Figure 1.3: How to control arrow well to hit bull’s eye within ǫ tolerance?

1 2

1

2

3

4

x

y

y = 3x

δ δ

ε

ε

Figure 1.4: Linear case, y = 3x

Remark 1.5.3. L is unique

Example 1.5.4 (Linear case). Show y = 3x + 1 has limit 7 at x = 2.

sol. Suppose the following holds.

|y − 7| = |3x + 1 − 7| < ε

Then we take
3|x − 2| < ε, |x − 2| < ε/3

So δ =
ε

3
.

Finding δ algebraically when ǫ is given

Example 1.5.5. For the limit limx → 2
√

x + 7 = 3, find a δ > 0 that works
for ǫ = 1. Repeat with ǫ = 0.1, 0.001, etc.
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Figure 1.5: Choosing δ

sol. Step 1) Solve the inequality |
√

x + 7 − 3| < 2:

−1 <
√

x + 7 − 3 < 1

2 <
√

x + 7 < 4

4 < x + 7 < 16

−3 < x < 9

Step 2). Find a value δ > 0 to place the centered interval (2 − δ, 2 + δ)
inside the interval −3 < x < 9. A choice of delta is δ = 5. Any value smaller
than that works.

Example 1.5.6. Limit of f(x) = (x2 − 1)/(x − 1) is 2 at x = 1.

sol.

|x + 1 − 2| < ε

0 < |x − 1| < ε. Hence we may δ = ε.

Example 1.5.7. Show that y = x2 has limit 4 at x = 2.

sol. (Method 1) We try to solve the exact values of x where

|x2 − 4| = |(x − 2)(x + 2)| < ε (1.1)

holds. Thus we see

−ε < x2 − 4 < ε
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1 2−1−2

1

2

3

4

5
y = x2ε

ε

δ δ

Figure 1.6: The graph of y = x2

from which we get √
4 − ε < x <

√
4 + ε

Now for any x in the interval (2 − δ1, 2 + δ2), (1.1) holds. But the interval is
not an symmetric interval.Thus the idea is to choose δ := min{δ1, δ2} so that

|x − 2| < δ ⇒ x ∈ (2 − δ1, 2 + δ2) ⇒ |x2 − 4| < ε

(Method 2) Choose certain interval near x = 2 where the following holds:

|x2 − 4| = |(x − 2)(x + 2)| < ε (1.2)

Suppose δ < 1. So 0 < |x − 2| < 1 and Since |x + 2| between 3 and 5 we have

|x2 − 4| = |(x − 2)(x + 2)| ≤ |x − 2| · max
1≤x≤3

|x + 2| ≤ 5|x − 2|

To satisfy (1.2) we take |x− 2| < ε/5. Since δ was chosen to satisfy δ < 1, we
may choose δ = min{1, ε/5}.

Example 1.5.8. Show y =
√

x − 1 has limit 2 at x = 5.

sol. We need to find an interval near x = 5 where the inequality is true:

|
√

x − 1 − 2| < ε

(Method 1) Just solve the inequality exactly.

−ε <
√

x − 1 − 2 < ε

2 − ε <
√

x − 1 < 2 + ε

(2 − ε)2 < x − 1 < (2 + ε)2

−4ε + ε2 < x − 5 < 4ε + ε2
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10

y = 1

x

δ δ

Figure 1.7: Choose smaller δ

We may assume 0 < ε < 1. Hence we can choose

δ = min{4ε − ε2, 4ε + ε2} = 4ε − ε2.

(Method 2)

√
x − 1 − 2 =

(
√

x − 1 − 2)(
√

x − 1 + 2)√
x − 1 + 2

=
x − 5√

x − 1 + 2

Taking absolute values

∣
∣
√

x − 1 − 2
∣
∣ =

∣
∣
∣
∣

(
√

x − 1 − 2)(
√

x − 1 + 2)√
x − 1 + 2

∣
∣
∣
∣

=

∣
∣
∣
∣

x − 5√
x − 1 + 2

∣
∣
∣
∣

≤
∣
∣
∣
∣

x − 5

2

∣
∣
∣
∣

This will be less than ǫ if |x − 5| < 2ǫ. Hence δ = 2ε.

Proving theorems with definitions

Example 1.5.9. Assume limx→a f(x) = L, limx→a g(x) = M . Prove lim
x→a

(f(x) + g(x)) =

L + M .

sol. Let ǫ be given.

|f(x) + g(x) − (L + M)| = |f(x) − L + g(x) − M | ≤ |f(x) − L| + |g(x) − M |.
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We want to show this term is less than ǫ when x lies within certain interval.
From the definitions we see there exists two deltas δ1, δ2 > 0 such that

0 < |x − a| < δ1 ⇒ |f(x) − L| < ǫ/2

0 < |x − a| < δ2 ⇒ |g(x) − L| < ǫ/2.

Thus for those x with 0 < |x − a| < min(δ1, δ2), we see the desired inequality
holds.

1.6 One sided limit

Limit as x approaches ∞
f(x) = 1/x → 0 as x grows. ε-δ

Definition 1.6.1. We say f(x) has limit L as x approaches ∞, if for every
positive ε, there is M such that for all

x > M ⇒ |f(x) − L| < ε.

We write
lim

x→∞
f(x) = L

Example 1.6.2. Explain

lim
x→∞

x + 2

x + 1
= 1

sol. f(x) = 1 + 1/(x + 1) We want to know when the following holds:

|f(x) − 1| =
1

|x + 1|

Thus we solve |x + 1| > 1/ε for x. It will holds when x > M where

M =
1

ε
− 1

Useful limits:

Theorem 1.6.3. (1) lim
θ→0

sin θ = 0

(2) lim
θ→0

cos θ = 1
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θ

A(1, 0)QO x = cos θ

y = sin θ

P (x, y)

1

T (1, tan θ)

x

y

s

Figure 1.8:

(3) lim
θ→0

sin θ

θ
= 1

Proof. (1) Referring to Fig 1.8, let P be the point on the unit circle so that θ
is the angle between the x-axis and line OP. Then the length of segment PQ
is sin θ. The arc from (1, 0) to P has length s = θ. Hence

0 < PQ < PA < θ

and it holds that
0 < sin θ < θ.

As θ approaches 0, we see
lim

θ→0+
sin θ = 0

Since sin(−θ) = − sin θ
−θ < sin(−θ) < 0

Hence
lim

θ→0−
sin θ = 0

(2) Comparing QA and PA, we see

0 < QA < PA < θ

0 < 1 − cos θ < θ

Also, as θ approaches to 0 1 − cos θ approaches to 0.
(3) We note that

PQ ≤ θ ≤ TA
sin θ ≤ θ ≤ tan θ

1 ≤ θ/ sin θ ≤ 1/ cos θ

As θ approaches 0, 1/ cos θ approaches 1 by (2). Hence limθ→0
sin θ

θ = 1.
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Example 1.6.4. lim
θ→0

sin 2θ

θ
= lim

θ→0
2
sin 2θ

2θ
= 2 lim

x→0

sin x

x
= 2.

Example 1.6.5.

lim
θ→0

tan θ sin θ

θ2
= 1.

sol. Thm 1.4.2 (4)

lim
θ→0

tan θ sin θ

θ2
= lim

θ→0

sin2 θ

θ2
· 1

cos θ

= lim
θ→0

(
sin θ

θ

)2

· lim
θ→0

1

cos θ

= lim
θ→0

(
sin θ

θ

)

· lim
θ→0

(
sin θ

θ

)

= 1.

1.7 Continuity

Definition 1.7.1. If a function f(x) is continuous at an interior point x = c
if f

lim
x→c

f(x) = f(c)

A function f(x) is continuous at a left end point x = a (resp. right end
point x = b) if

lim
x→a+

f(x) = f(a), (resp. lim
x→b−

f(x) = f(b))

If f is continuous at all points of its domain, we say f is a continuous
function.

Consider f on (c, d). For a in c, d y = f(x) is continuous at x = a iff

(1) f(a) exists

(2) lim
x→a

f(x) exists.

(3) lim
x→a

f(x) = f(a) holds.

Theorem 1.7.2. If f , g are continuous at x = a then

(1) f ± g is continuous at x = a.
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(2) For any constant k, the function kf is continuous at x = a

(3) fg is continuous at x = a

(4) When g(a) 6= 0, f/g is continuous at x = a

Corollary 1.7.3. Polynomials f(x) = anxn + an−1x
n−1 + · · · + a1x + a0 are

continuous at all points.

Corollary 1.7.4. For two polynomials f(x) = anxn+an−1x
n−1+· · ·+a1x+a0

and g(x) = bmxm + bm−1x
m−1 + · · ·+ b1x+ b0, the rational function f(x)/g(x)

is continuous where g(a) is nonzero 0.

Composite function

Theorem 1.7.5. Suppose f is continuous at a and g continuous at f(a) then
g ◦ f is continuous at a.

Proof. Since g is conti at f(a) and limx→a f(x) = f(a)

lim
x→a

g(f(x)) = g( lim
x→a

f(x)) = g(f(a))

Theorem 1.7.6 (Intermediate Value theorem). Suppose f is continuous on
[a, b]. Then for any value y0 between f(a) and f(b) there is a point c ∈ [a, b]
such that f(c) = y0.

When does this breaks down?

1.8 Limit Involving Infinite and vertical asymptote

Example 1.8.1.

lim
x→0

1

x

lim
x→∞

(

x +
1

x

)

Sandwich theorem revisited

Sandwich theorem holds when x → ∞.

Vertical Asymptotes

Oblique asymptote?



Chapter 2

Differentiation

2.1 Tangents and Derivatives at a point

Finding tangent to the graph of a function

Definition 2.1.1. The slope of the curve y = f(x) at a point P = (x0, f(x0))
is the number

lim
h→0

f(x0 + h) − f(x0)

h
provided it exists. The tangent line to the curve at the point P is the line
through P with this slope.

The rate of change of y = f(x) between P (x0, y0) and Q(x1, y1) is

msec =
f(x1) − f(x0)

x1 − x0

In the limit, it is the slope of tangent line.

x0 x1

f(x0)

f(x1)

P
Q

Tangent

Secant

y = f(x)

Figure 2.1: Tangent and secant

Hence the slope of tangent line at P is

mtan = lim
x1→x0

f(x1) − f(x0)

x1 − x0
= lim

h→0

f(x0 + h) − f(x0)

h

15
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Rate of change:Derivative at a point

Definition 2.1.2. The derivative of a function f(x) at a point is given by

f ′(x0) = lim
h→0

f(x0 + h) − f(x0)

h

exists, it is called derivative at x = x0.

Example 2.1.3. dd

2.2 Derivative as a function

Definition 2.2.1. If the derivative of a function f(x) at a

f ′(x) = lim
h→0

f(x + h) − f(x)

h

exists, it is called the derivative (function) of f(x). (Treated as a function) f
is said to be differentiable at x. If f is differentiable at all points of domain
we say f is differentiable. We also use the notation df/dx, (d/dx)f for f ′.

One sided derivative

Definition 2.2.2. Suppose f is defined on [a, b]. Then at each end point the
one sided derivative is defined by

f ′(a+) = lim
h→0+

f(a + h) − f(a)

h
,

f ′(b−) = lim
h→0+

f(b) − f(b − h)

h
.

Example 2.2.3. Using definition, find (d/dx)x3.

sol. Set f(x) = x3

f(x + h) − f(x) = h{(x + h)2 + x(x + h) + x2}

lim
h→0

1

h
{f(x + h) − f(x)} = lim

h→0
{(x + h)2 + x(x + h) + x2} = 3x2

So f ′(x) = 3x2

Example 2.2.4. The one sided derivatives of f(x) = |x| at x = 0 are f ′(0−)
= −1 and f ′(0+) = 1. Hence f is not differentiable at x = 0. (Figure 2.2)



2.2. DERIVATIVE AS A FUNCTION 17

y = |x|

Figure 2.2: y = |x|

Example 2.2.5. The function defined by

f(x) =

{

x sin(1/x), x 6= 0

0, x = 0

is conti at x = 0 but not differentiable.

sol. Since −|x| ≤ f(x) ≤ and limx→0 |x| = limx→0 = 0 by theorem f is
conti. at x = 0. But the limit

lim
h→0

1

h

{

h sin
1

h
− 0

}

= lim
h→0

sin
1

h

does not exist, f is not differentiable x = 0.

Differentiable functions are continuous

Theorem 2.2.6. If f is differentiable at x = a, then f is conti. at x = a.

Proof. By definition of derivative we have

lim
h→0

{f(a + h) − f(a)} =

(

lim
h→0

1

h
{f(a + h) − f(a)}

)

·
(

lim
h→0

h

)

= 0.

Hence f(x) is conti. at x = a.

Intermediate Value property of derivatives(Darboux’s theorem)

Theorem 2.2.7. If a, b are any two points in an interval where f is differen-
tiable, then f ′ takes any value between f ′(a) and f ′(b).
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2.3 Differentiation Rules

Proposition 2.3.1. Suppose f , g are differentiable functions. Then

(1) For any constant C, dC
dx = 0 for any constant C.

(2) When n is positive integer , d
dxxn = nxn−1.

(3) For any constant C, d(Cu)
dx = C du

dx .

(4) d
dx(u ± v) = du

dx ± dv
dx .

(5) d(uv)
dx = v du

dx + u dv
dx .

(6) d
dx

(
u
v

)
=

v du
dx

−u dv
dx

v2 .

(7) When n is negative integer, d
dxxn = nxn−1.

Proof. (4)

d

dx
(uv) = lim

h→0

u(x + h)v(x + h) − u(x)v(x)

h

= lim
h→0

{
u(x + h) − u(x)

h
v(x + h) + u(x)

v(x + h) − v(x)

h

}

= u′(x)v(x) + u(x)v′(x).

Figure for product rule.

Higher order derivative

f ′′(x) =
d2y

dx2
=

d

dx

(
dy

dx

)

y(n) =
dy(n−1)

dx
=

dny

dxn

2.4 The Derivative as a Rate of change

Definition 2.4.1. The instantaneous rate of change of f at x0 is

f ′(x0) = lim
h→0

f(x0 + h) − f(x0)

h

provided the limit exists.
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Definition 2.4.2. (Velocity) is the derivative of a position function w.r.t time.
If a moving object position is given by s = f(t), then the velocity at t is

v(t) = lim
h→0

f(t + h) − f(t)

h

provided the limit exists.

Definition 2.4.3. (Speed) Speed is

|v(t)|

Acceleration is

a(t) =
dv

dt
=

d2s

dt2

Third derivative is called a Jerk

2.5 Derivative of Trig functions

Use definition to find the derivative of f(x) = sin x.

= lim
h→0

sin(x + h) − sin x

h

= lim
h→0

sin x cos h + cos x sin h − sinx

h

= sin x lim
h→0

cos h − 1

h
+ cos x lim

h→0

sin h

h

= sin x · 0 + cos x · 1 = cos x.

Hence d
dx sin x = cos x. Similarly, we have

d

dx
cos x = − sin x

Other trigonometric functions are defined by the following relation and their
derivatives can be found using differentiation rules:

tan x =
sin x

cos x
, sec x =

1

cos x
, csc x =

1

sin x
, cot x =

cos x

sinx

The derivative of tan x is

d

dx
tan x =

(sin x)′ cos x − (cos x)′ sin x

cos2 x
=

1

cos2 x
= sec2 x

Summarizing, we have

Proposition 2.5.1. (1)
d

dx
sin x = cos x
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1 2

y = 2x

m ≈ 0.7

1 2

y = ex

m = 1

1 2

y = 3x

m ≈ 1.1

(2)
d

dx
cos x = − sinx

(3)
d

dx
tan x = sec2 x

(4)
d

dx
secx = secx tan x

(5)
d

dx
cscx = − cscx cot x

(6)
d

dx
cot x = − csc2 x

2.6 Exponential functions

We define for any a > 0 and any real x

ax = lim
r→a

ar, rational

Rules for exponentiation. For a, b > 0 we have

(1) ax · ay = ax+y

(2) ax

ay = ax−y

(3) (ax)y = (ay)x = axy

(4) axbx = (ab)x

(5) ax

bx =
(

a
b

)x

The natural exponential function ex

We define e to be the number such that the slope of tangent line to f(x) = ex

at 0 is 1. e is a irrational number e = 2.78182 · · · . Why do we use this strange
number? This simplifies computation in later sections(diff. integration)
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Differentiation of exponential function

Let us compute the derivative of f(x) = ax.

lim
h→0

ax+h − ax

h
= lim

h→0

axah − ax

h

= lim
h→0

ax

(
ah − 1

h

)

= ax lim
h→0

ah − 1

h

Note that when x = 0 this limit limh→0
1
h(ah − 1) is the slope of tangent line

to ax at x = 0. As a special case, if a = e, then we know

f ′(0) = lim
h→0

eh − 1

h
= 1

by definition of the number e! So we have

d

dx
ex = ex.

In Chapter 3 we will see this number is obtained from (1 + 1
x)x as x ap-

proaches unboundedly.

Exponential growth

Example 2.6.1 (exponential growth). It is used to model the amount of
money to grow when the interest is compounded. Say P dollar is initially
invested in the bank with interest rate of r per year, t is the time in years,
then the total amount of money after t years is

y = Pert

Example 2.6.2 (exponential decay). It is used to model the amount of ra-
dioactive material. e.g, Carbon 14 case, If A is initial original amount of
carbon 14.

y = Ae−1.2×10−4t

Carbon 14 is used to detect how old is the dead organisms such as shells,
wooden artifacts.

2.7 Chain rule

Chain Rule

Theorem 2.7.1. (1) If f(u) is differentiable at u = g(x) and g is differ-
entiable at x, then the composite function f ◦ g is differentiable at x
and

(f ◦ g)′(x) = f ′(g(x))g′(x)
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◦
x

◦
u = g(x)

◦
y = f(u)

y = f(g(x))

Figure 2.3: Chain rule

If y = f(u), u = g(x) then

dy

dx

∣
∣
∣
∣
x

=
dy

du

∣
∣
∣
∣
u=f(x)

· du

dx

∣
∣
∣
∣
x

Proof. (Intuitive) Let ∆u = g(x+∆x)−g(x) be the change of u corresponding
to the change of ∆x. (We assume g(x + ∆x) 6= g(x)) We might consider

∆y

∆x
=

∆y

∆u

∆u

∆x
, (∆u 6= 0)

lim
∆x→0

∆y

∆x
= lim

∆x→0

∆y

∆u

∆u

∆x

= lim
∆u→0

∆y

∆u
lim

∆x→0

∆u

∆x

=
dy

du

du

dx

Repeated Use

Example 2.7.2. y = cos(1 + x4)5

sol. Given function is the composite of y = cos u and u = (1 + x4)5. Hence

dy

du
= − sin u

du

dx
.

On the other hand, since (1 + x4)5 is a composite function of u = v5 and
v = 1 + x4, use Chain rule again

du

dx
= 5v4 · 4x3.

dy

dx
= − sin(1 + x4)5 · 20(1 + x4)4x3.
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Outside-Inside Rule

Example 2.7.3. The derivative of |x| can be computed as follows: Notice
that |x| =

√
x2. Hence

d

dx

√
x2 =

1

2
√

x2
· 2x =

x

|x| , x 6= 0.

Example 2.7.4. Find slope of tangent line to y = (1 − 2x)3 at x = 1.

Derivatives of Power function

Find derivative of f(x) = ur(x) for any real r and x > 0.

Theorem 2.7.5. Since ur = er ln u

d

dx
ur = ur d ln u

dx
= ur 1

u

du

dx
= ur−1 du

dx
.

2.8 Implicit differentiation

Suppose x, y satisfy y5 +sinxy = x3y. Assuming y is a differentiable function
of x, take derivative w.r.t x. This procedure is called an Implicit differenti-
ation.

d

dx

(
y5

)
+

d

dx
(sin xy) =

d

dx

(
x3y

)

5y4 dy

dx
+ (cos xy)

(

y + x
dy

dx

)

= 3x2y + x3 dy

dx
.

Hence
dy

dx
=

3x2y − y cos xy

5y4 + x cos xy − x3

Example 2.8.1. (1) x3 + y3 = 3xy. Find dy/dx and d2y/dx2

(2) Find equation of tangent line to x3 + y3 = 3xy at (3/2, 3/2)

sol.

(1) Taking derivative

(3y2 − 3x)
dy

dx
= 3y − 3x2

Chain rule
(

6y
dy

dx
− 3

)
dy

dx
+ (3y2 − 3x)

d2y

dx2
= 3

dy

dx
− 6x.

Hence
dy

dx
=

y − x2

y2 − x
,

d2y

dx2
=

−2
(
(y − x2)/(y2 − x)

)2
y + 2(y − x2)/(y2 − x) − 2x

y2 − x
.
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one-to-one Not one-to-one

Figure 2.4: Horizontal line test

(2) At (3/2, 3/2), dy/dx = −1 The tangent line is

y = −
(

x − 3

2

)

+
3

2
= −x + 3.

2.9 Inverse functions and Their Derivatives

Definition 2.9.1. A function f is one-to-one on a domain D if f(x1) 6= f(x2)
whenever x1 6= x2.

Definition 2.9.2. Suppose a function f is one-to-one on a domain D with
range R. The inverse function f−1 exists and is defined by

f−1(b) = a if f(a) = b.

The domain of f−1 is R and range is D.

(f−1 ◦ f)(x) = x, x ∈ D

(f ◦ f−1)(y) = y, y ∈ R

Horizontal line test

Derivatives of inverse function

Theorem 2.9.3. Suppose f is one-to-one and differentiable in I. If f ′(x)
exists and is never zero, then f−1 exists, differentiable. Furthermore for a ∈ I,
f(a) = b, then

(f−1)′(b) =
1

f ′(a)
.
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f(x)

f−1(x)

Figure 2.5: Slope of inverse function

Set y = f(x). Then the inverse function is x = f−1(y), and its derivative is

dx

dy

∣
∣
∣
∣
y=f(a)

=
1

dy/dx|x=a

, a ∈ I

Proof. Differentiate x = (f−1 ◦ f)(x) w.r.t x using the Chain rule

1 = (f−1)′(f(a))f ′(a)

or
(f−1)′(b) = 1/f ′(a)

Usually, we use the notation y = f−1(x). The graph of y = f(x) and that
of y = f−1(x) are symmetric w.r.t the line y = x.

Example 2.9.4. (1) f(x) = x3 − 2. Find (f−1)′ at f(2) = 6

(2) f(x) = x7 + 8x3 + 4x − 2. Find (f−1)′(−2).

sol. (1) Since f ′ = 7x6 + 24x2 + 4 ≥ 4 inverse f−1 exists. Since f(0) = −2
we have

(f−1)′(−2) = (f−1)′(f(0)) =
1

f ′(0)
=

1

4
.

(2) y = sin−1 x, x = sin y. Hence

d

dx
sin−1 x =

dy

dx
=

1

dx/dy
=

1

(d/dy) sin y

=
1

cos y
=

1
√

1 − sin2 y
=

1√
1 − x2

.
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f(x)

f−1(x)

Figure 2.6: Graph of inverse function is symmetric about y = x

2.10 Logarithmic functions

Definition 2.10.1. The logarithmic function with base a, y = loga x is the
inverse function of y = ax(a > 0, a 6= 1)

loge x is written as ln x and called natural logarithmic function

log10 x is written as log x and called common logarithmic function

ln x = y ⇔ ey = x

Properties

(1) Product rule: loga xy = loga x + loga y

(2) Quotient rule: loga
x
y = loga x − loga y

(3) Product rule: loga
1
y = − loga y

(4) Power rule: loga xy = y loga x

Example 2.10.2. f

Inverse properties

(1) Base a: aloga x = x, loga(a
x) = x(a > 0, a 6= 1, x > 0)

(2) Base e: eln x = x, ln(ex) = x(x > 0)
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Hence (by substituting ax for x)

ax = eln ax

= ex ln a

= e(ln a)x

Every exponential function can be written as

ax = ex lna

Exponential growth

Example 2.10.3 (exponential growth). It is used to model the amount of
money to grow when the interest is compounded. Say P dollar is initially
invested in the bank with interest rate of r per year, t is the time in years,
then the total amount of money after t years is

y = Pert

Example 2.10.4 (exponential decay). It is used to model the amount of
radioactive material. e.g, Carbon 14 case, If A is initial original amount of
carbon 14.

y = Ae−1.2×10−4t

Carbon 14 is used to detect how old is the dead organisms such as shells,
wooden artifacts.

Change of base

loga x =
ln x

ln a
(a > 0, a 6= 1, x > 0)

Derivatives of log function

Recall f(x) = ex iff f−1(x) = ln x.

(f−1)′(x) =
1

f ′(f−1(x))

=
1

ef−1(x)
(f ′(u) = u)

=
1

eln x

=
1

x

Alternative way: y = ln x is written as ey = x. Hence

d

dx
ey = 1

ey dy

dx
= 1

dy

dx
=

1

ey
=

1

x
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Example 2.10.5.
d

dx
(ln u) =

1

u

du

dx

d

dx
ln(x4 + 2) =

1

x4 + 2
· 4x3

Derivatives of ln |x|
ln |x| = 1/x

Derivatives of au

ax = ex ln a. So

(ax)′ = ex ln a ln a = ax ln a

In general,
d

dx
au = au ln a

du

dx

Derivatives of loga u

loga x =
ln x

ln a

So
d

dx
loga x =

1

x ln a

and
d

dx
loga u =

1

u ln a

du

dx

Logarithmic Differentiation

Find dy/dx if y = (x2+1)1/3(x−3)1/2

x+5

Derivatives of Power function

We prove the following theorem which was stated earlier.

Theorem 2.10.6. Since ur = er ln u

d

dx
ur = ur d ln u

dx
= ur 1

u

du

dx
= ur−1 du

dx
.

Example 2.10.7. Differentiate f(x) = xx, x > 0
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sol. Write f(x) = xx = ex lnx. So

f ′(x) =
d

dx
(ex ln x)

= (ex lnx)
d

dx
(x ln x)

= ex lnx(ln x + x · 1

x
)

= xx(ln x + 1)

The number e

In section 2.6 we saw e was defined so that it satisfies

lim
h→0

eh − 1

h
= ln e = 1.

An important property is the following.

Theorem 2.10.8. The number e satisfies

e = lim
x→0

(1 + x)1/x.

Proof. If f(x) = ln x. Then f ′(1) = 1
x |x=1 = 1. By definition,

1 = f ′(1) = lim
x→0+

ln(1 + x) − ln 1

x
= ln[ lim

x→0+
(1 + x)

1

x ].

Now exponentiate.

2.11 Inverse trig functions

Example 2.11.1. Half life of Polonium 210. The time for radioactive sub-
stance required to decay by half is independent of the initial quantity. y =
y0e

−kt. So t = ln 2/k. For Polonium 210, k = 5 · 10−3.

Inverse sine

Restrict the function sin x on [−π/2, π/2]. Then sinx : [−π/2, π/2] → [−1, 1]
is one-to - one function. So the inverse exists. Define

sin−1 x : [−1, 1] −→ [−π/2, π/2].

whenever x = sin y for x ∈ [−π/2, π/2]. Graph is as in figure 2.7. sin−1 x is
sometimes written as arcsin x.

Example 2.11.2. (1) sin−1(1/2) = π/6

(2) sin−1 1 = π/2
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b

b

1−1

y = sin−1 x

x

y

−π
2

π
2

Figure 2.7: y = sin−1 x

b

b

1−1

y = cos−1 x

x

y

π
2

π

Figure 2.8: y = cos−1 x

Inverse cosine

Restrict cos x to [0, π], we obtain cos−1 x.

cos−1 x : [−1, 1] −→ [0, π]

If cos x = y for any x ∈ [0, π] then cos−1 y = x is defined and figure is in 2.8
written as cos−1 x or arccos x.

Example 2.11.3. (1) cos−1(1/2) = π/3

(2) cos−1 0 = π/2

Example 2.11.4.

sin−1 x + cos−1 x =
π

2
, cos−1 x + cos−1(−x) = π

cos−1 x

1
x

sin−1 x

Figure 2.9: sin−1 x
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x

θ

1

1

Figure 2.10: θ = cos−1 x

Inverse of tan x

On (−π/2, π/2) tan x has inverse tan−1 x

tan−1 x : R −→ (−π/2, π/2)

for any x ∈ R, tan x = α iff tan−1 α = x. See figure 2.11. It is written as
tan−1 x or arctan x.

tan−1 1 = π/4 tan−1 0 = 0

1 2 3−1−2−3

y = tan−1 x
x

y
y = π/2

y = −π/2

Figure 2.11: y = tan−1 x

Example 2.11.5. Find the derivative of tan−1 x.
From y = f(x) = tan x, we see

(f−1)′(y) =
1

f ′(x)

=
1

1 + tan2 x

=
1

1 + y2

Thus (f−1)′(x) = 1
1+x2 .

Example 2.11.6. Find derivatives

(1) y = sin−1 x, (|x| ≤ 1).

(2) y = sec−1 x, (|x| ≥ 1).
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sol. (3) Let y = sec−1 x. Then x = sec y. Taking derivative w.r.t x we get
1 = sec y tan y(dy/dx). Thus

dy

dx
=

1

sec y tan y
.

We need to change it to expression in x.

For x > 1, tan y =
√

x2 − 1. Hence, we have

dy

dx
=

1

x
√

x2 − 1
, x > 1.

For x < −1, use (x → −x) to get

dy

dx
=

1

−x
√

x2 − 1
, x < −1

Hence
d

dx
sec−1 x =

1

|x|
√

x2 − 1
, |x| > 1

Proposition 2.11.7. Similarly, we get the derivatives of inverse trig. func-
tion

(1)
d

dx
sin−1 x =

1√
1 − x2

(2)
d

dx
cos−1 x = − 1√

1 − x2

(3)
d

dx
tan−1 x =

1

1 + x2

(4)
d

dx
csc−1 x = − 1

|x|
√

x2 − 1
, |x| > 1

(5)
d

dx
sec−1 x =

1

|x|
√

x2 − 1
, |x| > 1

(6)
d

dx
cot−1 x = − 1

1 + x2
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1 2 3−1−2−3

y = cot−1 x

x

y
y = π

π
2

1 2 3−1−2−3

y = csc−1 x

x

y
π
2

−π
2

1 2 3−1−2−3

π

−π

A

B

y = sec−1 x

x

y

Figure 2.12:

Other inverse trig function

Inverses of csc x, secx, cot x

csc−1 x : R − (−1, 1) → [−π/2, π/2] − {0}

sec−1 x : R − (−1, 1) → [0, π] − {π/2}

cot−1 x : R → (0, π)

We see the following relation hold

Proposition 2.11.8. (1) cot−1 x = (π/2) − tan−1 x

(2) sec−1 x = cos−1(1/x)

(3) csc−1 x = sin−1(1/x)

Example 2.11.9. (1) Find sin(cos−1(3/5))

(2) Simplify tan(sin−1 a)
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sol. (1) Let θ = cos−1(3/5). Then cos θ = 3/5 and 0 ≤ θ ≤ π

sin θ =

√

1 − 9

25
=

4

5
.

(2) Let θ = sin−1 a. Then sin θ = a and −π/2 ≤ θ ≤ π/2

cos θ =
√

1 − a2.

Hence

tan θ = sin θ/ cos θ = a/
√

1 − a2.

2.12 Related rates

Related rates

y is a function of x and x(x = x(t)) is a function of time t the rate of change
dy/dx and dy/dt satisfies dy/dt = (dy/dx)(dx/dt).

y

10 ftx

5 ft

Figure 2.13: Conic Tank

Example 2.12.1. Figure 2.13. Water is being poured into a conical tank at
the rate of 9ft3/min. Find rate of rising water level when depth of water is
6ft.

sol.

(1) V : Volume of water at t
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(2) x: Radius of water surface at t

(3) y: Depth of water at t

We have x = y/2

V =
1

3
πx2y =

π

12
y3,

dV

dt
=

π

4
y2 dy

dt

Substitute dV/dt = 9, y = 6. Then from 9 = π/436 · dx/dt|y=6, we get
dx/dt|y=6 = 1π.

Example 2.12.2. Rocket is rising at the speed of 300m/sec vertically. At
1000m above the ground, a camera man is watch 1000m away. Find the rate
of change of this camera angle θ.

1000 m

y m

θ
b

b

Figure 2.14: A camera following the tip of a rising rocket

sol. From figure 2.14 we see the angle of elevation θ and the height y is
related by

tan θ =
y

1000
Differentiating w.r.t t

sec2 θ
dθ

dt
=

1

1000

dy

dt
When

y = 1000, θ = 45◦,
dy

dt
= 300

dθ

dt

∣
∣
∣
∣
y=1000

=
300

1000
· 1

2
· 180

π
≈ 8.59(degree/sec)
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2.13 Linearization and differential

Definition 2.13.1.
L(x) = f(a) + f ′(a)(x − a)

is called the linearization of f at a.

Example 2.13.2. (1) Find linearization of cosx at π/2

(2) Find appro value of
√

1.003 using linearization of
√

1 + x x = 0.

(3) Find linearization of 1
3
√

x4+1
at x = 0

(4) Find appro value of
√

4.8

(5) Find linearization of cos x at π/2. Ans −x + π/2.

(6) Find linearization of (1 + x)k. 1 + kx

Differential

Definition 2.13.3. Let y = f(x) be differentiable. The differential dx is an
independent variable. The quantity dy defined by

dy := f ′(x)dx

is called the differential of f.

The geometric meaning of differential is given in Figure 3.8.

∆y = f(a + dx) − f(a), f(a + dx) = f(a) + ∆y ≈ f(a) + dy

We see that dy is precisely the change of the tangent line as x changes by an
amount of dx = ∆x. In other words, dy is an approximation of exact change
∆y.

Example 2.13.4. Find differential of

(1) y = x3 − sin x

(2) y = sin u(x)

(3) tan(3x)

(4) d( x
1+x ).

Estimating with differentials

Radius of a circle is enlarged from 10 to 10.1. Use dA to estimate the increase
in area. Compare with exact increase.

A = πr2,
dA = 2πrdr = 2π(10)(0.1) = 2πm2

Actual increase is A(10.1) − A(10) = 2π((10.1)2 − 100) = 2.01π.
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dx = ∆x

f ′(a)dx
∆y

Figure 2.15: Differential dy = f ′(a)dx and ∆y

Error in differential approximation

We estimate the change in y in more detail.

Theorem 2.13.5. We have

∆f = f ′(a)∆x + ǫ∆x

where ǫ → 0 as ∆x → 0.

Proof.

approximation error = ∆f − df

= ∆f − f ′(a)∆x

= f(a + ∆x) − f(a) − f ′(a)∆x

=

(
f(a + ∆x) − f(a)

∆x
− f ′(a)

)

∆x

= ǫ∆x

Since f is differentiable, we know ǫ :=
(

f(a+∆x)−f(a)
∆x − f ′(a)

)

approaches 0 as

∆x approaches 0. Thus

true

change

∆f =

estimated

change

f ′(a)∆x +
error
ǫ∆x
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Proof of Chain rule

Assume y = f(u) is a diff’ble function of u and u = g(x) is a diff’ble function
of x. Then the composite function y = f(g(x)) is diff’ble and by theorem
there exist ǫ1, ǫ2 which approaches 0 as ∆u,∆x approaches 0 in such a way
that

∆y = f ′(u0)∆u + ǫ2∆u

∆u = g′(x0)∆x + ǫ1∆x

Hence

∆y = (f ′(u0) + ǫ2)(g
′(x0) + ǫ1)∆x

∆y

∆x
= (f ′(u0) + ǫ2)(g

′(x0) + ǫ1)

Let ∆x → 0. Then we obtain the Chain rule.

Example 2.13.6. Converting mass to energy: The Newton’s law

F = m
dv

dt
= ma

is not exactly true when an object is moving at very high speed, because the
mass increases with velocity. In Einstein’s correction, the mass is

m =
m0

√

1 − v2/c2
≈ m0(1 +

v2

2c2
)

So the new mass is

m ≈ m0 +
mv2

2c2

By multiplying c2

(m − m0)c
2 ≈ 1

2
mv2 − 1

2
m02 = ∆(KE)

Thus the change in the mass corresponds to the change in the Kinetic Energy.

Power function

Derivative of a power functiony = ur(x) for rational number r.

Theorem 2.13.7. For any rational number r

d

dx
ur = rur−1du

dx
.



2.13. LINEARIZATION AND DIFFERENTIAL 39

Proof. Assume r > 0. We have r = p/q for some positive integer p and q.
Hence y = ur = rp/q can be written as yq = up. Taking derivative w.r.t. x we
obtain

qyq−1 dy

dx
= pup−1 du

dx

dy

dx
=

pup−1

qyq−1

du

dx
=

p

q

y

u

du

dx
= rur−1 du

dx

Example 2.13.8. Find the equation of tangent and normal line to the curve
y = (1 + x1/3)2/3 at (−8, 1).

b

0

1

−1

(−8, 1)

Figure 2.16: Tangent and normal

sol.

y′
∣
∣
∣
∣x=−8 =

2

3
(1 + x1/3)−1/3 · 1

3
x−2/3

∣
∣
∣
∣
x=−8

= − 1

18

Tangent line is y = −1/18(x + 8) + 1 = −x/18 + 5/9 normal line is y =
18(x + 8) + 1 = 18x + 145.

Example 2.13.9 (Slope of tangent in Polar coordinate). Express dy/dx for
the equation given in polar coordinate r = f(θ) in θ.

sol. Using the relation x = r cos θ, y = r sin θ, we see x = f(θ) cos θ, y =
f(θ) sin θ. Hence the slope of tangent is

dy

dx
=

dy/dθ

dx/dθ
=

f ′(θ) sin θ + f(θ) sin θ

f ′(θ) cos θ − f(θ) sin θ
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Chapter 3

Applications of Derivatives

3.1 Absolute Maximum, Minimum

Definition 3.1.1. Let f be defined on a domain D. Then f has abso-
lute(global) maximum at c if

f(x) ≤ f(c), for all x ∈ D.

It has absolute(global) minimum at c if

f(x) ≥ f(c), for all x ∈ D.

Theorem 3.1.2. [Extreme Value Theorem] If f is continuous on a closed
interval [a, b]. Then f assumes both absolute maximum M and absolute min-
imum m in [a, b]. In other words, there are numbers x1, x2 in [a, b] such that
f(x1) = m and f(x2) = M , and m ≤ f(x) ≤ M for all x ∈ [a, b].

Maximum or minimum are called extreme values.

Definition 3.1.3. Let f be defined on a domain D. Then f has rela-
tive(local) maximum at c if

f(x) ≤ f(c), for all x in some interval containing c.

It has relative(local) minimum at c if

f(x) ≥ f(c), for all x in some interval containing c.

Theorem 3.1.4 (First derivative theorem). Suppose f is differentiable and if
f has local max(min) at an interior point c then f ′(c) = 0.

Proof. Suppose f ′(c) > 0 there is an interval near c such that for all x in
I = (c − δ, c + δ)

f(x) − f(c)

x − c
> 0

41
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hold. If x ∈ I, x > c

f(x) − f(c) = (x − c)
f(x) − f(c)

x − c
> 0

f(x) > f(c) Hence f cannot have maximum at c. If x < c

f(x) − f(c) = (x − c)
f(x) − f(c)

x − c
< 0

f cannot have minimum at c. So f cannot have local extreme at c The case
f ′(c) < 0 is similar. Hence f ′(c) = 0.

Remark 3.1.5. This is not a necessary condition for a function to have a local
extreme. Often, a function has an extreme value where f is not differentiable!
So the points where f is not differentiable is also point of interest. Thus, we
define

Definition 3.1.6. If f ′(c) = 0 or f ′(c) does not exists, we say c is critical
point of f .

Remark 3.1.7. How to find Absolute max(min) on I

(1) Evaluate f at all critical points

(2) Check all end points and compare

Example 3.1.8. Find max(min) of f(x) =
∣
∣4 − x2

∣
∣ on [−3, 3].

b b

−3 −2 2 3

4

5
y = |4 − x2|

Figure 3.1: y = |4 − x2|

sol. By Theorem 3.1.2 f has absolute minimum and maximum. Its graph
is as in Figure 3.1The critical points of f are −2, 0, 2. f(−2) = f(2) = 0,
f(0) = 4 while at end points f assumes f(−3) = f(3) = 5. Hence maximum
is 5 (at x = −3 or x = 3) and minimum is 0 (at x = −2 or x = 2).
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Example 3.1.9. Find absolute extrema of f(x) = 10x(2 − ln x) on [1, e2].

sol. f ′(x) = 10(1 − ln x). So critical point is e. Fig 3.1 Check end points
1, e2. We see maximum is

Example 3.1.10. Find absolute extrema of f(x) = x2/3 on [−2, 3].

sol. Derivative at 0 does not exist. By drawing graph we see x = 0 is cusp
but local and absolute minimum.

Example 3.1.11. Find exrtema of f(x) = x2/3(1 − x)3/2 (x ≤ 1).

sol. Since

f ′(x) =
2

3
x−1/3(1 − x)3/2 − 2

3
x2/3(1 − x)1/2

= x−1/3(1 − x)1/2

(
2

3
(1 − x) − 3

2
x

)

=

√
1 − x(4 − 13x)

6x1/3

Extreme points are x = 0, x = 4/13. Here f(0) = 0 is local min and f(4/13) =
(4/13)2/3(9/13)3/2 is local max. (Refer to Fig 3.2 )

0 4

13
1

y = x2/3(1 − x)3/2

Figure 3.2: y = x2/3(1 − x)3/2
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Remark 3.1.12. In above example the point (0, 0) satisfies

lim
x→0+

f ′(x) = +∞, lim
x→0−

f ′(x) = −∞

This kind of point is called a cusp .

Example 3.1.13. Piping from Oil hole from the see to the refinery on the
shore.

Underwater pipe cost 500,000 per mile while land pipe cost 300,000 per
mile

x

b

b

Sea

20 − y y

Refinery

Hole

20

12

Figure 3.3: Refinery and hole in the sea

sol. cost is c = 500, 000x + 300, 000y. But x2 = 122 + (20 − y)2. Thus
R(y) · 10−5 = 5

√

144 + (20 − y)2

R′(y) =
−5(20 − y)

√

144 + (20 − y)2
+ 3

y = 11.

3.2 Mean Value Theorem

Theorem 3.2.1 (Rolle’s Theorem). If f is continuous on [a, b] and differen-
tiable on (a, b). Suppose f(a) = f(b) holds then there exists a c ∈ (a, b) such
that f ′(c) = 0.

Proof. By theorem 3.1.2, f must attain maximum and minimum at some point
c. Then there are two possibilities:

(1) max or min occurs at interior point.

(2) both max or min occur at end points.
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a x bc

f(a)

f(b)

g(x)

y = f(x)

Figure 3.4:

In the first case, by theorem 3.1.4 there is a point where f ′(c) = 0. In the
second case, the maximum is equal to minimum since f(a) = f(b). Hence f
is constant and f ′(c) = 0 for any c ∈ (a, b).

Theorem 3.2.2 (Mean Value Theorem). If f is continuous on [a, b] and dif-
ferentiable on
(a, b). Then there exists a c ∈ (a, b) such that

f ′(c) =
f(b) − f(a)

b − a

Proof. Consider the line given by the equation

g(x) =

(

f(a) +
f(b) − f(a)

b − a
(x − a)

)

Then ( 3.4 .)

h(x) = f(x) − g(x) = f(x) −
(

f(a) +
f(b) − f(a)

b − a
(x − a)

)

h continuous on [a, b] diff’ble in (a, b) and h(a) = h(b). Hence by Thm 3.3.9
(Rolle’s) there exists c ∈ (a, b) such that h′(c) = 0. That is

h′(c) = f ′(c) − f(b) − f(a)

b − a

Application of MVT

Theorem 3.2.3. (1) If f satisfies f ′(x) = 0 on an interval I, then f is
constant on I.
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(2) If f ′(x) = g′(x) on I, then f(x) = g(x) + C, x ∈ I

Proof. (1) By Mean Value Theorem 3.2.2, we have for any x, z ∈ I,

f(z) − f(x)

z − x
= f ′(c)

for some c ∈ (x, z) ⊂ I. Since f ′(c) = 0, we have f(z) = f(x). This holds for
any x, z, hence f is constant.

Definition 3.2.4. Suppose F defined on I. satisfies F ′(x) = f(x), F is and
anti-derivative of f .

Example 3.2.5. Show that π/4 + 3/25 < tan−1 4/3 < π/4 + 1/6 holds.

sol. Apply Thm 3.2.2(MVT) to

f(x) = tan−1 on [1, 4/3]

Since f ′(x) = 1/(1 + x2), there is a point c ∈ (1, 4/3) such that

tan−1(4/3) − π/4

4/3 − 1
=

1

1 + c2

holds. Hence
1

1 + (4/3)2
< 3

(

tan−1 4

3
− π

4

)

<
1

1 + 12

3

25
< tan−1 4

3
− π

4
<

1

6
.

Proof of Log rule ln bx = ln b + ln x

Consider
d

dx
ln(bx) =

1

x
=

d

dx
ln x

So by above result,

ln(bx) =
1

x
= lnx + C

Place x = 1 to see C = ln b.
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Proof of Log rule lnr x = r ln x

Consider
d

dx
lnr x =

1

xr

d

dx
(xr) =

1

xr
rxr−1 =

r

x
=

d

dx
(r ln x)

Thus lnr x and r ln x have same derivative.

3.3 Monotonic function and derivative

b

b

b

b
b

b
b

(f ′ > 0) (f ′ < 0) (f ′ > 0) (f ′ < 0) (f ′ > 0)

(f ′′ < 0) (f ′′ > 0) (f ′′ < 0) (f ′′ > 0)

y = f(x)

Figure 3.5: · ·

Definition 3.3.1. f is said to be a increasing function if f(x) ≤ f(z) holds
for all all x, z (x < z).

First derivative test

Theorem 3.3.2. (1) Suppose f ′(x) > 0 for all x, then f is increasing on I.

(2) Suppose f ′(x) < 0 for all x, then f is decreasing.

Proof.

f ′(c) =
f(z) − f(x)

z − x

for some c ∈ (x, z). Since f ′(c) ≥ 0 and z > x we see f(z) ≥ f(x). If f is
not one-to-one, there exists two point v,w ∈ I, v < w such that f(v) = f(w).
Then f ′(x) = 0 on (v,w). This contradicts to f ′(x) = 0 at finite points.

Example 3.3.3. Investigate the increase and decrease of f(x) = x5 − 5x4 +
5x3 + 1.
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sol. f ′(x) = 5x4 − 20x3 +15x2 = 5x2(x− 1)(x− 3) We obtain the following
table.

x · · · 1 · · · 0 · · · 3 · · ·
f ′ + 0 − 0 − 0 +
f ր 2 ց 1 ց −26 ր

Hence f is mon. inc. on x ≤ 1 and mon. dec on 1 ≤ x ≤ 3, mon. inc. on
3 ≤ x.

First derivative test for local extrema

Theorem 3.3.4. (1) If f ′ changes from negative to positive at c then f has
local minimum at c

(2) If f ′ changes from positive to negative at c then f has local maximum at
c

Proof. f is decreasing on [c− δ, c] and increasing on [c, c+ δ]. Hence, f(x) has
local minimum at c.

Example 3.3.5. (1) f(x) = (x2 − 3)ex

(2) x1/3(x − 4)

Second derivative test for extreme values

Theorem 3.3.6. Suppose f ′(c) = 0. Then

(1) f(c) is local maximum if f ′′(c) < 0.

(2) f(c) is local minimum if f ′′(c) > 0.

Proof. (1) Since

f ′′(c) = lim
x→c

f ′(x)

x − c
< 0

there is a δ such that
f ′(x)

x − c
< 0

for all x ∈ (c − δ, c + δ) (x 6= c). Hence if c − δ < x < c then f ′(x) > 0, and if
c < x < c + δ then f ′(x) < 0. Hence f ′ change from positive to negative at c.
By theorem 3.3.4, f(c) is a local maximum.
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(x2 − 3)ex

Figure 3.6: y = (x2 − 3)ex

3.4 Concavity and sketching

Definition 3.4.1. Graph of y = f(x) is

(1) concave up if f ′ is increasing on I,

(2) concave down if f ′ is decreasing on I,

(3) a inflection point if the concavity of f changes across a point c.

Theorem 3.4.2. Suppose f ′′ exists on I. Then

(1) f is concave up, if f ′′(x) > 0 for all x ∈ I,

(2) f is concave down if f ′′(x) < 0 for all x ∈ I.

Example 3.4.3. Sketch f(x) = x + sin x.

sol. f ′(x) = 1 + cos x, f ′′(x) = − sinx

x · · · −π · · · 0 · · · π · · · 2π · · · 3π · · ·
f ′ · · · 0 + + + 0 + + + 0 · · ·
f ′′ · · · 0 + 0 − 0 + 0 − 0 · · ·
f · · · ր ր ր ր · · ·

Hence f is increasing for all x and for integer n concave down on (2nπ, 2nπ+π)
concave up on (2nπ + π, 2nπ + 2π). Points of inflection are (nπ, nπ). (n is
integer)
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x1/3(x − 4)

Figure 3.7: y = x1/3(x − 4)

0
loc. min

y = x4

0
inflection point

y = x3

0
loc. max

y = −x4

Figure 3.8: y = x4, y = x3, y = −x4

Example 3.4.4. Show f(π/4) is a local maximum when f(x) = sin4 x sin 4x+
cos4 x cos 4x.

sol. Compute f ′ and f ′′ at x = π/4.

f ′(x) = 4(sin3 x − cos3 x) sin 5x,

f ′′(x) = 12 sin x cos x(sin x + cos x) sin 5x + 20 cos 5x(sin3 x − cos3 x)

Since f ′(π/4) = 0 and f ′′(π/4) = −6 < 0. Hence f(π/4) is local maximum.
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y = x + sin x

π 2π

Figure 3.9: y = x + sin x

Example 3.4.5. y = x4 An inflection point may not exists when y′′ = 0.

Example 3.4.6. For y = x1/3 an inflection point may exist even if y′′ does
not exist.

Example 3.4.7. Sketch f(x) = (x+1)2

1+x2 . Check inflection point and horizontal
asymptote.

Example 3.4.8. Sketch f(x) = e1/2x. Check inflection point and horizontal
asymptote.

sol. Since f is not defined at x = 0, we investigate the behavior as x →±.
Next we compute the derivative of f = e

1

2x . Since f ′ = − 1
2x2 e

1

2x we see f is
decreasing function where it is defined. Now check second derivative:

f ′′ =
1

2x3

4x + 1

2x
e

1

2x

Thus x = −1/4 is a point of inflection.

Theorem 3.4.9. Suppose f ′′ continuous on I.

(1) If f ′(c) = 0 and f ′′(c) < 0 then f has local maximum

(2) If f ′(c) = 0 and f ′′(c) > 0 then f has local minimum

(3) If f ′(c) = 0 and f ′′(c) = 0 then the test fails. We need more information.
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Figure 3.10: y = (x+1)2

1+x2 and y = e
1

2x

3.5 Parametrization

parametric equation

Suppose x, y are given by parametric equations x = f(t), y = g(t) for t ∈ I.
Furthermore, f and g are differentiable and f ′ 6= 0. Then t = f−1(x) exists
and y(x) = (g ◦ f−1)(x) is well defined. By implicit function theorem, the
derivative of y w.r.t x is given by

dy

dx
=

dg

dt
· dt

dx
=

dg/dt

df/dt

Example 3.5.1. Sketch the path traced by the point P (x, y) where

x = t + 1
t , y = t − 1

t .

Second derivative

If x = f(t), y = g(t) define y as a twice differentiable function of x at the
point where dy/dx 6= 0, then

d2y

dx2
=

d

dt

(
dy

dx

)

/
dt

dx

=
dy′/dt

dx/dt

Example 3.5.2. Compute dy/dx and d2y/dx2 when x = t − t2, y = t − t3.

Remark: Do not attempt to find d
dx( dt

dx).
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sol. Chain rule and implicit differentiation

dy

dx
=

dy/dt

dx/dt
=

1 − 3t2

1 − 2t

d2y

dx2
=

d

dt

(
dy

dx

)
dt

dx

=
d

dt

(
1 − 3t2

1 − 2t

)

· (1 − 2t)

=
2 − 6t + 6t2

(1 − 2t)3
.

3.6 Applied Optimziation

Skip

3.7 Intermediate form aand L’Hopital’s Rule

L’Hopital’s Rule

When f(a) = g(a) = 0 or f(a) = g(a) = ∞, tshe limit

lim
x→a

f(x)

g(x)

cannot be found by substituting a

Theorem 3.7.1 (L’Hopital’s Rule: First form). Suppose that f(a) = g(a) = 0,
that f ′(a), g′(a) exist, then

lim
x→a

f(x)

g(x)
=

f ′(a)

g′(a)
.

Proof. lim
x→a

f(x)

g(x)
=

limx→a(f(x) − f(a))/(x − a)

limx→a(g(x) − g(a))/(x − a)
=

f ′(a)

g′(a)
.

Example 3.7.2. (1) lim
x→0

√
1 + x − 1

x

(
0

0

)

=
1/2

√
1 + x

1

∣
∣
∣
∣
x=0

=
1

2
.

(2) lim
x→1

x2 − 1

x − 1

(
0

0

)

=
2x

1

∣
∣
∣
∣
x=1

= 2.
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Example 3.7.3. (1) lim
x→(π/2)−

cos x

sin x − 1

(
0

0

)

= lim
x→(π/2)−

− sin x

cos x
= −∞.

(2) lim
x→0

(
1

sin x
− 1

x

)

(∞−∞) = lim
x→∞

x − sinx

x sin x

(
0

0

)

= lim
x→0

1 − cos x

sin x + x cos x

(
0

0

)

= lim
x→0

sinx

2 cos x − x sin x
=

0

2
= 0

Theorem 3.7.4 (L’Hopital’s Rule: Stronger form ). Suppose that f(a) =
g(a) = 0 and f, g are differentiable on (a, b). (The case f ′(c) = g′(c) = 0 is
allowed) and that g′(x) 6= 0 for x 6= a. Then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)

as long as the rhs limit exists.

The proof is based on

Theorem 3.7.5 (Cauchy’s Mean value theorem ). Suppose f and g are conti
in [a, b], diff’ble in (a, b). If g′ 6= 0 on (a, b) then g(b) 6= g(a) and there exist
c ∈ (a, b) such that

f(b) − f(a)

g(b) − g(a)
=

f ′(c)
g′(c)

Proof. Suppose g(b) = g(a) then by thm 3.2.2

g′(c) =
g(b) − g(a)

b − a
= 0

for some c ∈ (a, b). This contradict to g′ 6= 0. So, g(b) 6= g(a). Next consider
the function F defined by

F (x) = f(x) − f(a) −
(

f(b) − f(a)

g(b) − g(a)

)

(g(x) − g(a))

We apply Rolle’s theorem 3.2.1 to F . F satisfies the condition of Rolle’s thm.
Hence there exist c ∈ (a, b) such that F ′(c) = 0. Since

F ′(c) = f ′(c) −
(

f(b) − f(a)

g(b) − g(a)

)

g′(c) = 0

we have
f ′(c)
g′(c)

=
f(b) − f(a)

g(b) − g(a)
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Proof. First show

lim
x→c+

f(x)

g(x)
= lim

x→c+

f ′(x)

g′(x)

When c < x < b use thm 3.7.5(Cauchy’ MVT) on [c, x]. Then there is
d ∈ (c, x) s.t.

f ′(d)

g′(d)
=

f(x) − f(c)

g(x) − g(c)
=

f(x)

g(x)

and d → c+ as as x → c+

lim
x→c+

f(x)

g(x)
= lim

d→c+

f ′(d)

g′(d)

= lim
x→c+

f ′(x)

g′(x)

The following can be shown the same way.

lim
x→c−

f(x)

g(x)
= lim

x→c−

f ′(x)

g′(x)

Intermediate form ∞/∞, ∞ · 0, ∞−∞
Example 3.7.6.

(1) lim
x→0

x sin
1

x

(2) lim
x→0+

√
x ln x

(3) lim
x→(π/2)−

tan x

1 + tan x

(∞
∞

)

= lim
x→(π/2)−

sec2 x

sec2 x
= 1.

(4) lim
x→∞

π/2 − tan−1 x

1/x

(
0

0

)

= lim
x→∞

−1/(1 + x2)

−1/x2

= lim
x→∞

x2

1 + x2

(∞
∞

)

= lim
x→∞

2x

2x
= 1.

(5) lim
x→∞

√
9x + 1√
4x + 1

(∞
∞

)

= lim
x→∞

9/(2
√

9x + 1)

4/(2
√

4x + 1)

(
0

0

)

= lim
x→∞

−(81/4)(9x + 1)−3/2

−4(4x + 1)−3/2

(
0

0

)

.

(6) lim
x→π/2

sec x

1 + tan x

(7) lim
x→∞

ln x

2
√

x
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Wrong use of L’hopital’s rule

lim
x→∞

π/2 − tan−1 x

1/x

(
0

0

)

= lim
x→∞

−1/(1 + x2)

−1/x2

= lim
x→∞

x2

1 + x2

(∞
∞

)

= lim
x→∞

2x

2x
= 1.

In this case we can find limit as follows:

lim
x→∞

√
9x + 1√
4x + 1

=

√

lim
x→∞

9x + 1

4x + 1
=

√

9

4
=

3

2
.

lim
x→0

1 − cos x

x + x2
= lim

x→0

sinx

1 + 2x
= 0

But do not continue.

Intermediate form 0∞, ∞0, ∞−∞
Example 3.7.7. Use continuity

If lim ln f(x) = L then f(x) = lim eln f(x) = eL. Here a may be either finite
or infinite.

(1) lim
x→0+

(1 + x)1/x

(2) lim
x→∞

x1/x

(3) limx→0

(
1

sinx − 1
x

)

3.8 Newton’s Methods

3.9 Hyperbolic functions

Definitions

For any function f(x) we have

f(x) =
f(x) + f(−x)

2
︸ ︷︷ ︸

Even function

+
f(x) − f(−x)

2
︸ ︷︷ ︸

Odd function

In particular, ex has the form

ex =
ex + e−x

2
+

ex − e−x

2
(3.1)
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Definition 3.9.1. A (hyperbolic function) is defined as

hyperbolic cosine cosh x =
ex + e−x

2
,

hyperbolic sine sinhx =
ex − e−x

2
,

hyperbolic tangent tanh x =
sinhx

cosh x
=

ex − e−x

ex + e−x
,

hyperbolic cotangent coth x =
1

tanh x
=

ex + e−x

ex − e−x
,

hyperbolic secant sech x =
1

cosh x
=

2

ex + e−x
,

hyperbolic cosecant csch x =
1

sinh x
=

2

ex − e−x
.

See Fig 3.11.

1−1

1

−1

x

y

0

y = cosh x

y = sinh x

y = ex

2
y = e−x

2

y = − e−x

2

x

y

0

y = 1

y = −1

y = coth x

y = coth x

y = tanh x

x

y

0

y = 1

y = cosh x

y = sech x
x

y

0

y = csch x

y = sinh x

Figure 3.11: hyperbolic functions

Proposition 3.9.2.

(1) sinh 2x = 2 sinh x cosh x

(2) cosh 2x = cosh2 x + sinh2 x
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(3) sinh2 x =
cosh 2x − 1

2

(4) cosh2 x =
cosh 2x + 1

2

(5) cosh2 x − sinh2 x = 1

(6) tanh2 x = 1 − sech2 x

(7) coth2 x = 1 + csch2 x

Derivatives of hyperbolic functions

Proposition 3.9.3.

(1)
d

dx
(sinh u) = cosh u

du

dx

(2)
d

dx
(coth u) = − csch2 u

du

dx

(3)
d

dx
(cosh u) = sinhu

du

dx

(4)
d

dx
(sech u) = − sech u tanh u

du

dx

(5)
d

dx
(tanh u) = sech2 u

du

dx

(6)
d

dx
(csch u) = − csch u coth u

du

dx

Proposition 3.9.4.

(1)

∫

sinh u du = cosh u + C

(2)

∫

cosh u du = sinh u + C

(3)

∫

sech2 u du = tanh u + C

(4)

∫

csch2 u du = − coth u + C

(5)

∫

sech u tanh u du = − sech u + C

(6)

∫

csch u coth udu = − csch u + C
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Example 3.9.5. (1) The integral of sinh2 x is obtained in a similar method
to that of sin2 x .

∫ 1

0
sinh2 x dx =

∫ 1

0

cosh 2x − 1

2
dx

=
1

2

[
sinh 2x

2
− x

]1

0

=
sinh 2

4
− 1

2
.

(2) By definition of sinhx

∫ ln 2

0
4ex sinh x dx =

∫ ln 2

0
4ex ex − e−x

2
dx =

∫ ln 2

0
(2e2x − 2) dx

=
[
e2x − 2x

]ln 2

0

= 3 − 2 ln 2.

Inverse hyperbolic functions

y = sinh x is a one-to -one function from (−∞,∞) onto (−∞,∞). Thus its
inverse function y = sinh−1 x is well defined on all of (−∞,∞). Thus the
inverse hyperbolic sine is

sinh−1 x : (−∞,∞) → (−∞,∞).

For y = cosh x, we restrict the domain to x ≥ 0. Then y = cosh−1 x exists
on [1,∞). Thus the inverse hyperbolic cosine is

y = cosh−1 : [1,∞) → [0,∞).

Likewise if we restricted y = sech x to x ≥ 0, then inverse function y =
sech−1 x exists on (0, 1]. y = tanh x, y = coth x, y = csch x are all one-to-one
on (−∞,∞). Hence inverse functions

y = tanh−1 x : (−1, 1) → (−∞,∞),

y = coth−1 x : |x| > 1 → (−∞,∞)

y = csch−1 x : (−∞,∞) \ {0} → (−∞,∞).

Proposition 3.9.6.

(1) sinh−1 x = ln
(
x +

√

x2 + 1
)
, −∞ < x < ∞

(2) cosh−1 x = ln
(
x +

√

x2 − 1
)
, x ≥ 1

(3) tanh−1 x =
1

2
ln

1 + x

1 − x
, |x| < 1
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x

y

y = sinh x

y = sinh−1 x

y = x

x

y

y = cosh x

y = cosh−1 x

y = x

x

y

y = sech−1 x

y = sech x, x ≥ 0

y = x

x

y

y = csch x

y = csch−1 x

y = x

x

y
y = tanh−1 x

y = tanhx

y = x

x

y

y = cothx

y = coth−1 x

y = x

Figure 3.12: Inverse hyperbolic functions

(4) sech−1 x = ln

(
1 +

√
1 − x2

x

)

, 0 < x ≤ 1

(5) csch−1 x = ln

(
1

x
+

√
1 + x2

|x|

)

, x 6= 0

(6) coth−1 x =
1

2
ln

x + 1

x − 1
, |x| > 1

Proof. We prove for sinh−1 x only.

y = sinhx =
ex − e−x

2
,

ex − e−x = 2y,

e2x − 2yex − 1 = 0.

Solving this equation for ex we have

ex = y +
√

y2 + 1.

Since y −
√

y2 + 1 is negative, we only choose positive sign. So x = ln(y +
√

y2 + 1) hence y = ln(x +
√

x2 + 1) is the inverse of sinh−1 x.
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Properties of inverse hyperbolic functions

Proposition 3.9.7.

(1) sech−1 x = cosh−1 1

x

(2) csch−1 x = sinh−1 1

x

(3) coth−1 x = tanh−1 1

x

Proposition 3.9.8.

(1)
d(sinh−1 u)

dx
=

1√
1 + u2

du

dx

(2)
d(cosh−1 u)

dx
=

1√
u2 − 1

du

dx
, u > 1

(3)
d(tanh−1 u)

dx
=

1

1 − u2

du

dx
, |u| < 1

(4)
d(coth−1 u)

dx
=

1

1 − u2

du

dx
, |u| > 1

(5)
d(sech−1 u)

dx
=

−du/dx

u
√

1 − u2
, 0 < u < 1

(6)
d(csch−1 u)

dx
=

−du/dx

|u|
√

1 + u2
, u 6= 0

Proposition 3.9.9.

(1)

∫
du√

1 + u2
= sinh−1 u + C

(2)

∫
du√

u2 − 1
= cosh−1 u + C, u > 1

(3)

∫
du

1 − u2
=

{

tanh−1 u + C, |u| < 1 ,

coth−1 u + C, |u| > 1

(4)

∫
du

u
√

1 − u2
= − sech−1 |u| + C = − cosh−1

(
1

|u|

)

+ C

(5)

∫
du

u
√

1 + u2
= − csch−1 |u| + C = − sinh−1

(
1

|u|

)

+ C
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Exercise 3.9.10. (1) Show

(a) sinh(x + y) = sinhx cosh y + cosh x sinh y

(b) cosh(x + y) = cosh x cosh y + sinhx sinh y

(2) Find derivatives

(a) x − tanh x2

(b) ln(sech x)

(c) 1
2 ln | tanh x|

(d) tan−1(sinh x)

(e) (x2 + 1) sech(ln x)

(f) (1 − x) tanh−1 x

(g) sinh−1(tan x)

(h) (1 − x2) coth−1 x

(i) tan−1(sin x), −π/2 < x < π/2

(j) sech−1(sin x), 0 < x < π/2

(3) Find the following integrals

(a)

∫ 0

−1
cosh(2x + 1) dx

(b)

∫ π

−π
tanh 2x dx

(c)

∫ 1/2

0
4e−x sinhx dx

(d)

∫
cosh(ln x)

x
dx

(e)

∫ ln 2

0
tanh2 x dx

(f)

∫ 4

1

cosh
√

x√
x

dx

(g)

∫ ln 3

ln 2
cosh2 x dx

(h)

∫ ln 2

− ln 2

√

cosh(2x − 1) dx

(i)

∫

sech3 5x tanh 5x dx

(j)

∫

tanh3 x dx
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(4) Prove theorem 3.9.6.

(5) Find the integral.

(a)

∫ 1

0

dx√
1 + 2x2

(b)

∫ 12/13

4/5

dx

x
√

1 − x2

(c)

∫ 5/3

5/4

dx√
x2 − 1

(d)

∫ 1/2

0

dx√
1 − x2

(e)

∫ 2

5/4

dx√
1 − x2

(f)

∫ 2
√

3

0

dx√
4 + x2

(g)

∫ 2

1

dx

x
√

4 + x2

(h)

∫ π

0

cos xdx
√

1 + sin2 x

(6) Find the volume of the region when the graph y = sech x is rotated
about x axis between − ln

√
3 ≤ x ≤ ln

√
3.

(7) Find the centroid of the volume obtained when the region between y =
tanh x, y = 1, x = 0, x = ln

√
199 is rotated about y = 1.

(8) Find the solution of differential equation.

x
d2y

dx2
=

√

1 +

(
dy

dx

)2

, y(1) = 0,
dy

dx
(1) = 0
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Chapter 4

Integration

4.1 Anti-derivatives

If F ′(x) = f(x) then F is an anti-derivative. In general, F (x) + C is an
anti-derivative.

D.E. Find the solution of y′ = x2

Definition 4.1.1. Indefinite integral. The set of all anti-derivative of f is
denoted by

∫

f(x) dx

4.2 Estimating with finite sums

4.3 Sigma and limit

4.4 Definite integral

Suppose f(x) is a positive(temporarily) continuous function on [a, b]. Let A
be the region under the graph of y = f(x), between x = a, x = b To find
area, we divide [a, b] into small subintervals. ( 4.1). For example, uniform
n-subintervals are {x0, x1, . . . , xn}

xi = a + i(b − a)/n, i = 0, 1, · · · , n

The area A is approximated by

Sn =
n−1∑

i=0

f(xi)(xi+1 − xi)

In general, nonuniform intervals allowed except that maxi |xi+1 − xi| → 0
as n → ∞.

65
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x

y

O a b

y = f(x)

Figure 4.1: S6

f(xi) can be replaced by f(ci). A partition of [a, b] is a set of points
x0, x1, . . . , xn such that a = x0 < x1 < · · · < xn−1 < xn = b. P =
{x0, x1, . . . , xn} is a partition of [a, b] and f(x) is defined on [a, b]. For any se-
quence {c1, c2, . . . , cn} satisfying xi−1 ≤ ci ≤ xi The Riemann sum R(f, P )
of f(x) w.r.t P .( 4.2)

R(f, P ) =

n∑

i=1

f(ci)(xi+1 − xi)

x

y

O
b

b

b

b

b

b

b

b

x0 =a x1 x2 xk xk+1 xn =b

c1 c2 ck cn

(c1, f(c1))

(c2, f(c2))

(ck, f(ck))

(cn, f(cn))

y = f(x)

Figure 4.2: R(f, P )

Definition 4.4.1. ‖P‖: norm of P = {x0, x1, . . . , xn} is defined by

‖P‖ = max
0≤i<n

(xi+1 − xi)
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Suppose the Riemann sum R(f, P ) of f(x) approaches some number I as
the norm ‖P‖ of partition P approaches 0 then this number is defined as the
area under the graph.

Definition 4.4.2 (Definite Integral as limit of Riemann Sum). Let f(x) be
defined on [a, b]. We say a number I is the definite integral of f over [a, b]
if the following holds:

For any ǫ > 0 there corresponds a δ > 0 such that for any
partition and any choice of points ck in xk ≤ ck ≤ xk+1 such
that for any ‖P‖ < δ and points in [a, b] and for partition P =
{x0, x1, . . . , xn} for any choice of {c0, c1, . . . , cn−1}(xi ≤ ci ≤ xi+1),
we have ‖R(f, P ) − I‖ < ǫ.

This number I is denoted by
∫ b
a f(x) dx and called the definite integral of

f(x) on [a, b]. We say f(x) is integrable on [a, b].

We write it as

∫ b

a
f(x) dx = lim

‖P‖→0

n−1∑

i=0

f(ci)(xi − xi−1)

Non-integrable function

f(x) =

{

0, x rational number

1, x irrational number

g(x) =

{

0, x ∈ [0, 1]

1, x ∈ (1, 2]

Theorem 4.4.3 (Definite integral). The following holds:

(1)

∫ b

a
(f(x) + g(x)) dx =

∫ b

a
f(x) dx +

∫ b

a
g(x) dx

(2)

∫ b

a
kf(x) dx = k

∫ b

a
f(x) dx

(3)

∫ c

a
f(x) dx =

∫ b

a
f(x) dx +

∫ c

b
f(x) dx, (a ≤ b ≤ c)

(4) If f(x) ≥ 0 on [a, b], then

∫ b

a
f(x) dx ≥ 0

(5) min
x∈[a,b]

f(x) · (b − a) ≤
∫ b

a
f(x) dx ≤ max

x∈[a,b]
f(x) · (b − a)
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(6)

∣
∣
∣
∣

∫ b

a
f(x) dx

∣
∣
∣
∣
≤

∫ b

a
|f(x)| dx

Definition 4.4.4.

∫ a

a
f(x) dx = 0,

∫ a

b
f(x) dx = −

∫ b

a
f(x) dx.

Example 4.4.5. Find
∫ a
0 x2 dx by definition.

sol. Suppose P = {x0, x1, . . . , xn} is a uniform partition of [0, a]. xi = i a/n

n∑

i=1

x2
i (xi − xi−1) =

n∑

i=1

(
i · a
n

)2 a

n

=
a3

n3

n∑

i=1

i2

=
a3(n + 1)(2n + 1)

6n2

So

∫ a

0
x2 dx = lim

n→∞

n∑

i=1

x2
i (xi − xi−1)

= lim
n→∞

a3(n+1)(2n + 1)

6n2

=
a3

3

Theorem 4.4.6 (Mean value theorem for integral). Let a < b. If f(x) is
conti. on closed interval [a, b] then there is a c in [a, b]

f(c) =
1

b − a

∫ b

a
f(x) dx

This value is called the average of f on [a, b] denoted by av(f)

Proof. Since f(x) is continuous on [a, b] there are min and max;

f(x0) = min
x∈[a,b]

f(x), f(x1) = max
x∈[a,b]

f(x)

for some x0, x1 in [a, b].
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First, if x0 = x1 then f(x) is constant and the equality holds for all c ∈
[a, b]. Suppose x0 < x1. Then by intermediate value theorem, f(x) assumes
all values between f(x0) and f(x1) in [x0, x1]. Since

f(x0) ≤
1

b − a

∫ b

a
f(x) dx ≤ f(x1)

So there is a c such that

f(c) =
1

b − a

∫ b

a
f(x) dx

for some c ∈ [x0, x1].

The case x0 < x1 is the same.

x

y

O

f(c)

a bc

y = f(x)

Figure 4.3: MVT for Integral

4.5 Fundamental theorem of Calculus

If f is integrable on I, the integral from a fixed point a to another point x
defines a new function F (x) =

∫ x
a f(t) dt. If f is conti, this new function is

differentiable, and

Theorem 4.5.1 (Fundamental theorem of Calculus I). Suppose f(x) is conti
on [a, b]. Then the function F (x) defined by

F (x) =

∫ x

a
f(t) dt

is differentiable on (a, b) and

F ′(x) =
d

dx

∫ x

a
f(t) dt = f(x)
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Proof. By definition,

F ′(x) = lim
h→0

F (x + h) − F (x)

h

F (x + h) − F (x)

h
=

1

h

(∫ x+h

a
f(t) dt −

∫ x

a
f(t) dt

)

=
1

h

∫ t+h

x
f(t) dt

By MVT there is c between x and x + h s.t.

1

h

∫ x+h

x
f(t) dt = f(c).

Now f(c) approaches f(x) as h → 0. Hence

F ′(x) = lim
h→0

F (x + h) − F (x)

h

= lim
h→0

1

h

∫ t+h

x
f(t) dt

= f(x)

t

y

O

A(x) =
∫ x

a
f(t) dt

y = f(t)

a x

Figure 4.4: A′(x) = f(x)

Theorem 4.5.2 (Fundamental theorem of Calculus II). Suppose f(x) is conti
on [a, b]. If F (x) is the anti-derivative of f(x), then

∫ b

a
f(x) dx = F (b) − F (a).
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Proof. Set G(x) =
∫ x
a f(t) dt. Then by (1), G(x) is anti-derivative of f(x) on

[a, b]. Since F (x) is also an anti-derivative of f(x), we have

G(x) = F (x) + C.

But G(a) = F (a) + C =
∫ a
a f(t) dt = 0, hence C = −F (a). Hence G(b) =

∫ b
a f(t) dt = F (b) − F (a).

Example 4.5.3. (1)
d

dx

∫ x2

1
cos t dt.

(2)
d

dx

∫ 9

3+x2

1

1 + et
dt.

Example 4.5.4. Find derivative of A(x) when h(t) is continuous and u(x),
v(x) are differentiable. Find the derivative of

A(x) =

∫ v(x)

u(x)
h(t) dt

sol. Let H(t) be an antiderivative of h(t). Then A(x) = H(v(x))−H(u(x))
and A′(x) = h(v(x))v′(x) − h(u(x))u′(x).

In other words,

d

dx

∫ v(x)

u(x)
h(t) dt = h(v(x))v′(x) − h(u(x))u′(x).

Example 4.5.5.

∫ b

a
ex dx = eb − ea.

Total area.

4.6 Indefinite integrals and substitution

Recall
d

dx

(
un+1

n + 1

)

= un du

dx

So we have ∫

undu =
un+1

n + 1
+ C

Example 4.6.1.
∫ √

1 + x22xdx =
∫

u1/2du =
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chain rule
d

dx
F (u(x)) =

d

du
F (u)

d

dx
u(x)

∫
d

du
F (u)

d

dx
u(x) dx = F (u(x)) + C

∫
d

du
F (u) du = F (u) + C

∫
d

du
F (u)

d

dx
u(x) dx =

∫
d

du
F (u) du

Proposition 4.6.2.

∫

f(g(x)) · g′(x) dx =

∫

f(u) du.

Proof. Let F (u) be an anti-derivative of f(u).

d

dx
F (g(x)) = f(g(x)) g′(x)

∫

f(g(x)) g′(x) dx =

∫

f(u) du

Example 4.6.3.

∫ π/2

0
esin x cos x dx =

∫ 1

0
eu du.

Example 4.6.4. Find ∫

sec x dx

The idea is to multiply sec x + tan x both the numerator and denominator:
∫

sec x dx =

∫

sec x · sec x + tan x

sec x + tan x
dx

=

∫
sec2 x + sec x tan x

secx + tan x
dx

=

∫
du

u

= ln | sec x + tan x| + C

Similarly, we obtain
∫

csc x dx = − ln | csc x + cot x| + C

Example 4.6.5. ∫

sin2 x dx =

∫
1 − cos 2x

2
dx
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4.7 Area between curves

If f(x) > 0,
∫ b
a f(x) dx is the area defined by

y = f(x), a ≤ x ≤ b

In general, when f(x) ≤ g(x) on [a, b], the area defined by

∫ b

a
(g(x) − f(x)) dx

Use of symmetry

If there is any symmetry it is useful to take advantage of it.

Proposition 4.7.1.

For even function,

∫ a

−a
f(x) dx = 2

∫ a

0
f(x) dx

For odd function,

∫ a

−a
f(x) dx = 0

Integration w.r.t y

When the region is determined by functions of y, we need to integrate w.r.t.
y.

x = g

x = f(y)

c

y

d

Figure 4.5: Region by between functions of y

A =

∫ d

c
(g(y) − f(y)) dy


