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Chapter 1

Functions and Limits

1.4 Limit of Functions

Limit of function values
Example 1.4.1. ff

Theorem 1.4.2. If f(z), g(x) has limit at x = a and values are L, M Then
the following hold.

(1) ilg}t(f(w) +g(z)) =L+ M ( sum rule)
(2) iliré (f(z) —g(x)) = L — M ( Difference rule)

(8) lim (kf(x)) = kL ( Constant multiple)

(4) lim f(z)-g(x) = LM ( Product rule)

(5) ;12%% = %, M # 0 ( Quotient rule).

Poly and rational function

Theorem 1.4.3. For any polynomial f(z) = agx™ + a1z ' 4 --- + an,

lim f(z) = apa™ + a1a™ " + - + an = f(a).

r—a

Example 1.4.4. Use Theorem 1.4.2 (3), (4) we see

lim 222 = 2 lim 2° = 2 lim z lim = 2a - a = 24>
r—a r—a r—a r—a

Theorem 1.4.5. If f(z), g(z) are polynomials and g(a) # 0 then
I S

a—ag(x)  gla)
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Example 1.4.6. Find

o34z +2
lim ——.
x—2 r+1
[sol.)
2 Hr+2 224242
lim = =4
z—2 x+1 2+1
[]
Eliminating zero denominator
Example 1.4.7.
R - |
lim 5
z—1gx4—1
Now denominator is zero. But as long as x # 1 it holds that
-1 (@-D@*+z+1) 2*+az+1
-1 (z-D(x+1) z+1
3 2
ooz —1 o +x+1 3
L ey N S -
[]
Example 1.4.8. lim,_.g in;;l_l
[sol.)
i Vaz+1-1 2 +1-1 1
im = =
2—0 z? 2?2(Va?+1+4+1) Va?+1+1
[]

Example 1.4.9.
B4z 1

lim ——— = —.
z—o0 203 +3 2

Factor out z3
2+ 1+ 22

203 +3 24 3/x3
As x — oo Theorem 1.4.2 (5) limit is 1/2.
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Sandwich Theorem

Theorem 1.4.10 (Sandwich Theorem). If, for an interval (o, 3) containing
a, it holds g(x) < f(x) < h(x)

lim g(z) = lim h(x) = L

r—a r—a

then
lim f(z) =1L

This hold for left or right limit also.

Example 1.4.11. Suppose that
v(z) — 2% < u(z) < v(z) + 322
holds for all  # a. Then

lim u(z) = lim v(z)

provided the limit of the r.h.s term exists.

Example 1.4.12. We will later see that
—10] <sinf < |0]
for all 6. Hence lim,_,¢sin# = 0 by Sandwich theorem.
Example 1.4.13. Similarly, from the inequality
0<1-—cosf <|0]
for all 6. Hence lim,_,gcosf = 1.

Theorem 1.4.14 (Sandwich Theorem, inequality). If f(z) < g(z) holds for
all x in an interval (o, B) containing ¢ except possibly c, then

lim f(z) < lim g(x)

r—c r—c

This hold for left- right limit also.
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When limit do not exist ?

Three cases: Jump, infinity, oscillation:

Figure 1.1: Broken graph or undefined(infinity)

AL
7| | [hve

1
Figure 1.2: y = sin —
x

1.5 Precise definition

Definition 1.5.1. Let f(z) be defined on an open interval containing a except
possibly a. If there is a number L such that for any positive ¢, there exists
0 > 0 such that

O<|r—al<d=|f(x)—L|l<e
we say f(z) has limit L at x = a and write

lim f(z) =1L

r—a

Remark 1.5.2. In general, 6 depends on z, f,e. Also, note that we do not
check at z = a. 0 < |z — al.



1.5. PRECISE DEFINITION 7

Figure 1.3: How to control arrow well to hit bull’s eye within € tolerance?

Figure 1.4: Linear case, y = 3z

Remark 1.5.3. L is unique

Example 1.5.4 (Linear case). Show y = 3z + 1 has limit 7 at z = 2.
Suppose the following holds.
ly—7=1Bz+1-7<e

Then we take
3z —2|<e, |z —2|<e/3

£
80(5—5

Finding 0 algebraically when ¢ is given

Example 1.5.5. For the limit limz — 2v/z + 7 = 3, find a § > 0 that works
for e = 1. Repeat with e = 0.1, 0.001, etc.
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Figure 1.5: Choosing ¢

Step 1) Solve the inequality |v/z + 7 — 3| < 2:

—1<Vz+7-3<1
2<Vr+7<4
4<x+7<16
—-3<xr<9

Step 2). Find a value 6 > 0 to place the centered interval (2 — 6,2 + )
inside the interval —3 < 2 < 9. A choice of delta is § = 5. Any value smaller
than that works.

]
Example 1.5.6. Limit of f(z) = (2> —1)/(z — 1) is 2 at = = 1.
lt+1—-2|<e
0 < |z — 1| < e. Hence we may ¢ = e.
]
Example 1.5.7. Show that y = 22 has limit 4 at = = 2.
(Method 1) We try to solve the exact values of x where
2% — 4| = |(z — 2)(x +2)| < ¢ (1.1)

holds. Thus we see
—e<at—4d<e
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NW e Ot

Figure 1.6: The graph of y = 2

from which we get

Vi—e<x<\i4d+e

Now for any x in the interval (2 — 01,2 4 d2), (1.1) holds. But the interval is
not an symmetric interval. Thus the idea is to choose § := min{d;, d2} so that

2 -2/ <d=a2€(2-01,2+0)=|2? -4 <e¢
(Method 2) Choose certain interval near x = 2 where the following holds:
22 — 4| =|(z - 2)(z +2)| < ¢ (1.2)
Suppose § < 1. So 0 < |z — 2| < 1 and Since |z + 2| between 3 and 5 we have

|22 — 4] = |(z — 2)(z 4+ 2)| < |z — 2| - max |z + 2| < 5|z — 2|
1<a<3

xT

To satisfy (1.2) we take |z — 2| < /5. Since § was chosen to satisfy § < 1, we
may choose § = min{l,e/5}.

O

Example 1.5.8. Show y = vz — 1 has limit 2 at x = 5.

We need to find an interval near z = 5 where the inequality is true:
Wr—1-2|<e¢
(Method 1) Just solve the inequality exactly.

—e<Vr—1-2<c¢
2—e<Vr—1<2+¢
2—eP<z—-1<(2+¢)?
e+ <r—5<de+¢e?
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610 ¢

Figure 1.7: Choose smaller §

We may assume 0 < € < 1. Hence we can choose

§ = min{de — 2, 4e + £} = 4 — &%

(Method 2)
WA WE1+2)
Ve-1-2 = VT —1+2
r—9
T Vo142

Taking absolute values

i
B ﬁ‘
3:—5'

IN

2

This will be less than € if |[x — 5| < 2e. Hence § = 2e.

Proving theorems with definitions

Example 1.5.9. Assume lim,_., f(x) = L, lim,_,g(x) = M. Prove lim (f(z)+ g(x)) =
L+ M.

Let € be given.

[f (@) +g(x) = (L+ M)| = |f(z) = L+ g(z) = M| < [f(x) = L| +|g(z) — M]|.
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We want to show this term is less than ¢ when z lies within certain interval.
From the definitions we see there exists two deltas d1,d2 > 0 such that

O0<|r—al<dr=|f(x)—L| <e/2
0<|z—al <d=lg(x) — L] <e/2.

Thus for those x with 0 < |z — a| < min(d1,d2), we see the desired inequality
holds.

O

1.6 One sided limit

Limit as x approaches oo
f(z) =1/x — 0 as x grows. -0

Definition 1.6.1. We say f(x) has limit L as x approaches oo, if for every
positive &, there is M such that for all

x>M=|f(z)—L| <e.

We write
lim f(z) =1L
r— 00
Example 1.6.2. Explain
. orx+2
lim =
z—oo x + 1

f®)=14+1/(x+ 1) We want to know when the following holds:

1

’f(ﬂf)—l\:m

Thus we solve |z + 1| > 1/e for z. It will holds when = > M where

1
M==--1
e

Useful limits:

Theorem 1.6.3. (1) éirr(l)sinﬁ =0

li =1
(2) Lim cos 0
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T(1,tan 6’

Ol * =cosf Q  A(1,0)

Figure 1.8:
sin 0
lim — =1
(3) 600 0

Proof. (1) Referring to Fig 1.8, let P be the point on the unit circle so that ¢
is the angle between the x-axis and line OP. Then the length of segment PQ
is sin#. The arc from (1,0) to P has length s = 6. Hence

0<PQ<PA<

and it holds that
0<sinf < 6.

As 0 approaches 0, we see

lim sinf =0
0—0t

Since sin(—#) = —sin@
—6 < sin(—0) < 0
Hence

lim sinf =0
0—0—

(2) Comparing QA and PA, we see
0<QA<PA<H
0<1—cosf<b

Also, as # approaches to 0 1 — cos 6 approaches to 0.
(3) We note that

PQ < 0 < TA
sinf < 0 < tanf
1 < 6/sinf < 1/cosf

As 6 approaches 0, 1/ cos 6 approaches 1 by (2). Hence limy_ Si’ge =1. 0O
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in 26 in 260 i
Example 1.6.4. lim St = lim 2sm =2 lim ST 2.
6—0 6—0 20 r—0 T
Example 1.6.5.
. tanfsin 6 1
im —— =
6—0 92

Thm 1.4.2 (4)

. tan @ sin 6 . sin2 0 1
im —— = lim —— -
60 02 650 602  cosf

= lim sind\” lim 1
=0\ 0 0—0 cos 0

~ lim sin 6 lim sin 6
=0\ 0 6—0\ 0

=1.

1.7 Continuity

Definition 1.7.1. If a function f(x) is continuous at an interior point z = ¢
if f
lim f(z) = f(c)

r—cC

A function f(x) is continuous at a left end point x = a (resp. right end
point x = b) if

lim f(z) = f(a), (vesp. lim f(x) = f(b))

z—at T—b—

If f is continuous at all points of its domain, we say f is a continuous
function.

Consider f on (¢,d). For a in ¢,d y = f(x) is continuous at z = a iff
(1) f(a) exists
(2) ilg}lf(ac) exists.
(3) ilg}lf(ac) = f(a) holds.

Theorem 1.7.2. If f, g are continuous at x = a then

(1) f+g is continuous at x = a.
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(2) For any constant k, the function kf is continuous at x = a
(3) fg is continuous at x = a
(4) When g(a) #0, f/g is continuous at x = a

Corollary 1.7.3. Polynomials f(x) = anz" + ap_12" "' + - + a12 + ag are
continuous at all points.

Corollary 1.7.4. For two polynomials f(x) = apz"+an_12" ' +---+arz+ag
and () = bpx™ 4 byy_12™ L+ - - -+ by + by, the rational function f(x)/g(x)
is continuous where g(a) is nonzero 0.

Composite function

Theorem 1.7.5. Suppose f is continuous at a and g continuous at f(a) then
go f is continuous at a.

Proof. Since g is conti at f(a) and lim,_, f(z) = f(a)

lim g(f(z)) = g(lim f(x)) = g(f(a))

O

Theorem 1.7.6 (Intermediate Value theorem). Suppose f is continuous on
[a,b]. Then for any value yo between f(a) and f(b) there is a point ¢ € [a,b]
such that f(c) = yo.

When does this breaks down?

1.8 Limit Involving Infinite and vertical asymptote

Example 1.8.1.

Sandwich theorem revisited

Sandwich theorem holds when z — oo.

Vertical Asymptotes
Oblique asymptote?



Chapter 2

Differentiation

2.1 Tangents and Derivatives at a point

Finding tangent to the graph of a function
Definition 2.1.1. The slope of the curve y = f(z) at a point P = (z9, f(x0))

is the number "

lim f(@o +h) — f(z0)

h—0 h
provided it exists. The tangent line to the curve at the point P is the line
through P with this slope.

The rate of change of y = f(x) between P(xg,yo) and Q(x1,y1) is
f(@1) = f(20)

Tr1 — X

sec —

In the limit, it is the slope of tangent line.

Tangent

Zo Z1

Figure 2.1: Tangent and secant

Hence the slope of tangent line at P is

Mgy = lim M — lim f(l'o + h) — f(xO)
xT1—T0 1 — T P .

15
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Rate of change:Derivative at a point

Definition 2.1.2. The derivative of a function f(x) at a point is given by

F(20) = lim f(zo+h) — f(=0)

h—0 h

exists, it is called derivative at z = xg.

Example 2.1.3. dd

2.2 Derivative as a function
Definition 2.2.1. If the derivative of a function f(z) at a

Fe) — i L)~ @)

h—0 h

exists, it is called the derivative (function) of f(x). (Treated as a function) f
is said to be differentiable at x. If f is differentiable at all points of domain
we say f is differentiable. We also use the notation df /dx, (d/dxz)f for f’.

One sided derivative

Definition 2.2.2. Suppose f is defined on [a,b]. Then at each end point the
one sided derivative is defined by

fla+h) - f(a)

fa®) = hhj(r)l+ h ’
=y _ 1o () = f(b—h)
Fo7) = hlgtr)l+ h '

Example 2.2.3. Using definition, find (d/dz)z3.
Set f(x) = a3

f(x+h) — f(x) = h{(z + h)? + z(z + h) + 2°}

lim (4 h) — f(@)} = i ((z + )’ + (a4 h) + 0%} = 32

So f!(x) = 322
n

Example 2.2.4. The one sided derivatives of f(z) = |z| at x = 0 are f/(07)
= —1 and f/(0") = 1. Hence f is not differentiable at =z = 0. (Figure 2.2)
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Figure 2.2: y = |z

Example 2.2.5. The function defined by

flz) = {xsin(l/:ﬂ), x#0

0, z=0
is conti at x = 0 but not differentiable.

Since —|z| < f(z) < and lim,_,o|z| = limy—o = 0 by theorem f is
conti. at x = 0. But the limit

.1 .1 o1
%Lnbﬁ{hsmﬁ_o}_;lgbsmﬁ

does not exist, f is not differentiable z = 0.

]
Differentiable functions are continuous
Theorem 2.2.6. If f is differentiable at x = a, then f is conti. at x = a.
Proof. By definition of derivative we have
. .1 .
fim (F(a+ 1)~ @} = (Jim 3 {7+ )~ f(@)}) - (Jimn) =o.
Hence f(x) is conti. at z = a. O

Intermediate Value property of derivatives(Darboux’s theorem)

Theorem 2.2.7. If a,b are any two points in an interval where f is differen-
tiable, then f' takes any value between f'(a) and f'(b).
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2.3 Differentiation Rules

Proposition 2.3.1. Suppose f, g are differentiable functions. Then
(1) For any constant C, % = 0 for any constant C.
(2) When n is positive integer , Z-x™ = na" ™.

(8) For any constant C, % = Cgll_g_

(4) Lutov)=dLd

(5) d(czcv) = vzll—; —I—Ug—z.

du dv

(0) # (2) - k.

(7) When n is negative integer, %w” =nz" L.
Proof. (4)
%(uv) _ }Lli% u(xz + h)v(x —i—hh) —u(x)v(x)
_ }llig%){u(w—kh}z—u(x) (z+h) +u($)v(x —i—h]z —v(ac)}
=/ (z)v(z) + u(z)v' ()
Figure for product rule. O

Higher order derivative

d%y d (dy
1" _ay _ ¢ [y
fil) = dz?  dx <dm>
w _ WY _d'y
dx dx™

Y

2.4 The Derivative as a Rate of change
Definition 2.4.1. The instantaneous rate of change of f at g is

F/(w0) = lim f(zo+h) — f(=0)

h—0 h

provided the limit exists.
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Definition 2.4.2. (Velocity) is the derivative of a position function w.r.t time.
If a moving object position is given by s = f(¢), then the velocity at ¢ is

() = i HER =10

provided the limit exists.

Definition 2.4.3. (Speed) Speed is

o (2)]

Acceleration is
Cdt a2

Third derivative is called a Jerk

2.5 Derivative of Trig functions

Use definition to find the derivative of f(x) = sinz.

sin(z + h) —sinx
= lim
h—0 h
sinz cosh + cosxsinh — sinx

= lim
h—0 h
) . cosh—1 . sinh
=ginz lim ——— + cosz lim
h—0 h h—0

=gsinx-0+cosz-1=cosx.

Hence % sin x = cos z. Similarly, we have

—cosz = —sinx
dx
Other trigonometric functions are defined by the following relation and their
derivatives can be found using differentiation rules:
sin 1 1 COs T

tanz = , secx = , Cscx =-——, cotx=—
Ccos T cos T sinx sinx

The derivative of tan x is

(sinz) cosz — (cosx) sinx 1 9
—tanx = 5 = 5 =secT T
dx cos? cos?x

Summarizing, we have

d
Proposition 2.5.1. (1) d—sinaz = Ccosx
x
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A

d
(2) o CosT = —sinz

d
(3) %tanw =sec’x

(4) %seex = secx tan

d
(5) — cscx = —cscx cot x

dx

d
(6) %cotw: —csc?w

2.6 Exponential functions
We define for any ¢ > 0 and any real x
a® =lima", rational
r—a

Rules for exponentiation. For a,b > 0 we have

(1) a* - a¥ = a*tv

(2) G =a""

(3) (a®)¥ = (a¥) = a™¥
(4) a®b* = (ab)*

() g =(§)"

The natural exponential function e”

We define e to be the number such that the slope of tangent line to f(z) = e®
at 0 is 1. e is a irrational number e = 2.78182--.. Why do we use this strange
number? This simplifies computation in later sections(diff. integration)
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Differentiation of exponential function

Let us compute the derivative of f(x) = a”.

) ax-‘,—h —a® ) a:cah —a®
lim —— = lim
h—0 h h—0 h
h
. a —1
= lim d”
h—0
e at—1
= d% lim
h—0 h

Note that when x = 0 this limit lim,_.¢ %(ah — 1) is the slope of tangent line
to a® at x = 0. As a special case, if @ = e, then we know

-1
f1(0) = Jim ——=1
by definition of the number e! So we have
d T T
e =

In Chapter 3 we will see this number is obtained from (1 + 1) as x ap-

proaches unboundedly.

Exponential growth

Example 2.6.1 (exponential growth). It is used to model the amount of
money to grow when the interest is compounded. Say P dollar is initially
invested in the bank with interest rate of r per year, t is the time in years,
then the total amount of money after ¢ years is

y = PeTt

Example 2.6.2 (exponential decay). It is used to model the amount of ra-
dioactive material. e.g, Carbon 14 case, If A is initial original amount of
carbon 14.

y = Ae—1:2x107%

Carbon 14 is used to detect how old is the dead organisms such as shells,
wooden artifacts.

2.7 Chain rule

Chain Rule

Theorem 2.7.1. (1) If f(u) is differentiable at uw = g(x) and g is differ-
entiable at x, then the composite function f o g is differentiable at x
and

(fog)(x)=fg(x))d (x)
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Figure 2.3: Chain rule

Ify = f(u), w = g(z) then

dy
dx

du

_dy du
u=f(z)

T du

xT

xT

Proof. (Intuitive) Let Au = g(x+Ax)—g(x) be the change of u corresponding
to the change of Az. (We assume g(z + Ax) # g(x)) We might consider

Ay Ay Au
Ae ~ Auig (Au #0)
lim % = lim %&
Az—0 Az Az—0 Au Az
= lim % lim &
Au—0 Au Az—0 Ax
_ dydu
" dudzx

Repeated Use
Example 2.7.2. y = cos(1 + z%)°
Given function is the composite of y = cosu and u = (1+ z%)5. Hence

dy . du
— = —sinu—.
du dx
On the other hand, since (1 + z*)® is a composite function of u = v® and
v =1+ 2%, use Chain rule again
du
— = 5vt 423,
Tn vt - Ax
@y _ 45 4y4,.3
e sin(1 4 z%)° - 20(1 4+ %) z°. O
x
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Outside-Inside Rule

Example 2.7.3. The derivative of |z| can be computed as follows: Notice

that |z| = V2. Hence
d 1 x
—Va? = 2r=—, x#£0.
e T

Example 2.7.4. Find slope of tangent line to y = (1 —22)3 at x = 1.

Derivatives of Power function

Find derivative of f(z) = u"(z) for any real r and z > 0.

Theorem 2.7.5. Since u" = e" v
d ., ,dmnu  ldu . idu
dr” T Tar T Y ude Y dn

2.8 Implicit differentiation

Suppose z, y satisfy y° +sinzy = 23y. Assuming y is a differentiable function
of z, take derivative w.r.t x. This procedure is called an Implicit differenti-
ation.

d d, . d
. (y5) + %(sm Ty) = . (:L"gy)
dy dy dy
40y L 34y
5y dm—l—(cos:py) <y+:ndx> 3y +x e

Hence
dy 322y — y cos xy

dr 5yt + zcosxy — 3
Example 2.8.1. (1) 2% + > = 3zy. Find dy/dz and d?y/dx?
(2) Find equation of tangent line to 23 + y3 = 3xy at (3/2,3/2)

(1) Taking derivative
dy

2 _a a2
(3y* — 3x) T 3y — 3z
Chain rule
dy dy 2 Py L dy
<6ydx 3> Tr + (3y 3w)dw2 = 3dw 6.
Hence
dy _y—a?
de 2 —z’
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one-to-one Not bne-to-one

Figure 2.4: Horizontal line test

(2) At (3/2,3/2), dy/dx = —1 The tangent line is

2.9 Inverse functions and Their Derivatives

Definition 2.9.1. A function f is one-to-one on a domain D if f(z1) # f(x2)
whenever 1 # xs.

Definition 2.9.2. Suppose a function f is one-to-one on a domain D with
range R. The inverse function f~! exists and is defined by

f7Yb) = aif f(a) =b.

The domain of f~! is R and range is D.

Horizontal line test
Derivatives of inverse function

Theorem 2.9.3. Suppose f is one-to-one and differentiable in I. If f'(x)
exists and is never zero, then f~1 exists, differentiable. Furthermore fora € I,

f(a) =0b, then
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Figure 2.5: Slope of inverse function

Set y = f(x). Then the inverse function is x = f~'(y), and its derivative is

dzx 1

o -~ ael
dy y=f(a) dy/dw‘m:a

Proof. Differentiate x = (f~! o f)(x) w.r.t z using the Chain rule

1= (71 (f(a)f'(a)

(') = 1/f'(a)
O

Usually, we use the notation y = f~!(z). The graph of y = f(z) and that
of y = f~!(x) are symmetric w.r.t the line y = z.

Example 2.9.4. (1) f(z)=2%—2. Find (f~1) at f(2) =6
(2) f(z) =2" + 823 + 4z — 2. Find (f~1)(-2).
(1) Since f' = 72% + 2422 + 4 > 4 inverse f~! exists. Since f(0) = —2

we have

=1\ _o\ _ (£—1V/ — L = 1
() (=2) = () ((0) = 70)
(2) y =sin"!x, z = siny. Hence
d .4 dy 1 1
de ™" T T A dr/dy — (d/dy)siny
1 1 1

cosy V1 —sin’y V122
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Figure 2.6: Graph of inverse function is symmetric about y = x

2.10 Logarithmic functions

Definition 2.10.1. The logarithmic function with base a, y = log, x is the
inverse function of y = a”(a > 0,a # 1)

log, x is written as Ilnx and called natural logarithmic function

log, « is written as logz and called common logarithmic function

hr=yse!=x
Properties
(1) Product rule: log, zy = log, = + log, y
x

(2) Quotient rule: log, ¥ = log, = —log, y

(3) Product rule: loga% = —log, y
(4) Power rule: log, z¥ = ylog, =
Example 2.10.2. f
Inverse properties
(1) Base a: a'°%® = z, log,(a®) = z(a > 0,a # 1,z > 0)

(2) Base e: €% =z, In(e?) = x(z > 0)
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Hence (by substituting a® for x)

x
at = eln a

— 7 Ina

e(ln a)x

Every exponential function can be written as

a® = exlna

Exponential growth

Example 2.10.3 (exponential growth). It is used to model the amount of
money to grow when the interest is compounded. Say P dollar is initially
invested in the bank with interest rate of r per year, t is the time in years,
then the total amount of money after ¢ years is

y = Pe"
Example 2.10.4 (exponential decay). It is used to model the amount of

radioactive material. e.g, Carbon 14 case, If A is initial original amount of

carbon 14.

y = Ae—1:2x107%

Carbon 14 is used to detect how old is the dead organisms such as shells,
wooden artifacts.

Change of base

Inx

log, x = (a>0,a# 1,2 >0)

Ina

Derivatives of log function

Recall f(z) = e® iff f~!(z) =Inz.

—1y\/ _ 1
U@ = )
= Pw=uw
_ 1
T elnz
_ 1

Alternative way: y = Inx is written as e¥ = x. Hence

d

Sy — 1
dxe
dy
v _ 9
edl‘
dy

dx ey x
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Example 2.10.5.

d 1 du
elig| _ "
dm(nu) u dx
— In(z? +2) = ;-4"5’
x x4+ 2

Derivatives of In |z|

In|z|=1/x

Derivatives of a

a® = e*ne, So

(a®) =M% ng = a"Ina

In general,
—a"=a"In ad—u
de dx
Derivatives of log, u
Inzx
log, z = —
Ina
So
—log, x = 1
dz 8% Tl
and
—log,u = L du
dz 8e" T Yna dz

Logarithmic Differentiation

Find dy/dz if y = W

Derivatives of Power function

We prove the following theorem which was stated earlier.

Theorem 2.10.6. Since u’ = "0

d
—u" =

dx dx Y udr

Example 2.10.7. Differentiate f(z) =% 2 >0

pdInu o ldu . _jdu
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Write f(z) = 2% = *™®. So

d
fla) = )
d
= (exlnx)%(:nlnzn)
1
zlnx
= 1 L
e (ne+x :13)
= z%(lnz+1)
L]
The number ¢
In section 2.6 we saw e was defined so that it satisfies
lim et 1 =lne=1
h—0 h -
An important property is the following.
Theorem 2.10.8. The number e satisfies
e= limo(l + )/,
Proof. If f(z) =Inz. Then f/(1) = 2|,—; = 1. By definition,
In(1+xz)—1Inl ) 1
0=t nL g (Lt o]

Now exponentiate. O

2.11 Inverse trig functions

Example 2.11.1. Half life of Polonium 210. The time for radioactive sub-
stance required to decay by half is independent of the initial quantity. y =
yoe ¥, So t = In2/k. For Polonium 210, k = 5-1073.

Inverse sine

Restrict the function sinx on [—m/2,7/2]. Then sinz: [—7/2,7/2] — [-1,1]
is one-to - one function. So the inverse exists. Define

sintz: [-1,1] — [-7/2,7/2].
whenever x = siny for x € [~7/2,7/2]. Graph is as in figure 2.7. sin~!z is
sometimes written as arcsin z.

Example 2.11.2. (1) sin™(1/2) = /6
(2) sin™'1=7/2



30 CHAPTER 2. DIFFERENTIATION

Y Y

. y=sintz Foy=cos 'z

\:k
1 1 =
T 2

1

-1

NIE]

Figure 2.7: y =sin" 'z Figure 2.8: y = cos™ '
Inverse cosine
Restrict cosz to [0, 7], we obtain cos™! z.
cos 'z [~1,1] — [0, 7]

If cosz = y for any z € [0, 7] then cos™!y = z is defined and figure is in 2.8

written as cos~!x or arccos x.

Example 2.11.3. (1) cos™1(1/2) = 7/3
(2) cos7t0=m/2

Example 2.11.4.

sin'z4costz ==, coslz4cosH(—z)=7

b | 3

Figure 2.9: sin~!x
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v
N4

Figure 2.10: = cos™ x

Inverse of tanx
On (—m/2,7/2) tanz has inverse tan™! x
tanlz: R — (—7/2,7/2)

for any € R, tanz = « iff tan~' o = . See figure 2.11. It is written as
tan~! 2 or arctan .

tan'1=rm/4tan"'0=0

)
y=m/2
Y= tan~!
Il Il Il Il Il Il x
-3 -2 -1 1 2 3
y=-m/2

Figure 2.11: y = tan~ !z

Example 2.11.5. Find the derivative of tan™! .
From y = f(z) = tanz, we see

1

f'(x)
1
1+ tan?z

) =

1+y?
-1 _ 1
Thus (f ),(ZL') = 1322
Example 2.11.6. Find derivatives
(1) y=sinlz, (|2 <1).

(2) y=seclxz, (Jz|>1).
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(3) Let y = sec™! 2. Then z = secy. Taking derivative w.r.t = we get
1 =secytany(dy/dz). Thus

dy 1
dr  secytany’

We need to change it to expression in z.
For x > 1, tany = v2% — 1. Hence, we have

dy 1
Y~ a1
R
For z < —1, use (r — —x) to get
d 1
L S
dr  —zv/2?2 -1
Hence
¢ secm ! 2] > 1
—sec w ,
d lz|va? —1

Proposition 2.11.7. Similarly, we get the derivatives of inverse trig. func-

tion
(1) %sin_lx = ﬁ
(2) % cos tax = —ﬁ
(3) %tan_la: = 1+1$2
(1) s =~ e 51
(5) %see‘laj = Wﬁ, |z| > 1
(6) % cot™lx = 1 +1x2



2.11. INVERSE TRIG FUNCTIONS 33

Figure 2.12:

Other inverse trig function

Inverses of cscz, secz, cot x
csclo R~ (—=1,1) — [-7/2,7/2] — {0}
sec 'z :R—(—1,1) — [0,7] — {7/2}
cot™tz: R — (0,7)
We see the following relation hold
Proposition 2.11.8. (1) cot ™'z = (7/2) —tan~'2z
(2) sec™ta = cos™!(1/x)
(8) csc™lx =sin~!(1/x2)
Example 2.11.9. (1) Find sin(cos™%(3/5))

(2) Simplify tan(sin™! a)
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(1) Let # = cos™!(3/5). Then cosf =3/5and 0 <O <7

sinf =4/1—— =—-.

(2) Let @ = sin~!a. Then sinf = a and —7/2 < 0 < /2

cosf = /1 —a?.
Hence
tanf = sinf/cosf = a/\/1 — a?. O

2.12 Related rates

Related rates

y is a function of x and z(z = z(t)) is a function of time ¢ the rate of change
dy/dx and dy/dt satisfies dy/dt = (dy/dx)(dx/dt).

5 ft

Figure 2.13: Conic Tank

Example 2.12.1. Figure 2.13. Water is being poured into a conical tank at
the rate of 9ft3/min. Find rate of rising water level when depth of water is
6ft.

(1) V' : Volume of water at ¢
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(2) x: Radius of water surface at ¢

(3) y: Depth of water at ¢
We have = = y/2

1 T
V = omaty = —¢°,

3 12
VT
a 27w

Substitute dV/dt = 9, y = 6. Then from 9 = 7/436 - dx/dt|,—¢, we get
dl‘/dt|y:6 = 1m.

]

Example 2.12.2. Rocket is rising at the speed of 300m/sec vertically. At
1000m above the ground, a camera man is watch 1000m away. Find the rate
of change of this camera angle 6.

Y
1000 m ———

Figure 2.14: A camera following the tip of a rising rocket

From figure 2.14 we see the angle of elevation 6 and the height v is

related by
Y

tan@z m

Differentiating w.r.t ¢
c? Hd—e L dy

SV T 1000 dt

When

y = 1000, 6 =45°, %:300

db 300 1 180
= = —— . — . — =~ 859(degree/sec)
dt|, g0 1000 2 7
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2.13 Linearization and differential

Definition 2.13.1.
L(z) = f(a) + f'(a)(z — a)
is called the linearization of f at a.
Example 2.13.2. (1) Find linearization of cosx at /2

(2) Find appro value of v/1.003 using linearization of v/1 + z x = 0.

(3) Find linearization of ﬁ at c =0

(4) Find appro value of v/4.8
(5) Find linearization of cosz at m/2. Ans —x + /2.

(6) Find linearization of (14 z)¥. 1+ kx

Differential

Definition 2.13.3. Let y = f(z) be differentiable. The differential dz is an
independent variable. The quantity dy defined by

dy := f'(x)dx
is called the differential of f.
The geometric meaning of differential is given in Figure 3.8.
Ay = fla+dz) - f(a), fla+dr)=f(a)+ Ay~ f(a)+dy

We see that dy is precisely the change of the tangent line as x changes by an
amount of dr = Az. In other words, dy is an approximation of exact change
Ay.

Example 2.13.4. Find differential of
(1) y=2%—sinz

(2) y=sinu(z)

(3) tan(3z)

(4) d(t5z)-

Estimating with differentials

Radius of a circle is enlarged from 10 to 10.1. Use dA to estimate the increase
in area. Compare with exact increase.
A =mr?,

dA = 2rrdr = 2w(10)(0.1) = 27rm?
Actual increase is A(10.1) — A(10) = 27((10.1)?> — 100) = 2.017.
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Ay

Figure 2.15: Differential dy = f’(a)dz and Ay

Error in differential approximation

We estimate the change in y in more detail.
Theorem 2.13.5. We have
Af = f'(a)Ar + eAx

where € — 0 as Az — 0.

Proof.

approximation error = Af —df
= Af— fl(a)Ax
= fla+Az)— f(a) - f'(a)Az

Az) —
= eAx
Since f is differentiable, we know € := (W —f (a)) approaches 0 as
Ax approaches 0. Thus
true estimated
change change error

Af =f'(a)Azx + eAx
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Proof of Chain rule

Assume y = f(u) is a diff’ble function of u and u = g(z) is a diff’ble function
of . Then the composite function y = f(g(x)) is diff’ble and by theorem
there exist €1, €y which approaches 0 as Au, Ax approaches 0 in such a way
that

Ay = f(ug)Au+ eAu
Au = ¢'(x0)Az + Az

Hence
Ay = (f'(uo) + e2)(g' (o) + 1) Ax
Ay
Ax
Let Ax — 0. Then we obtain the Chain rule.

(f'(uo) + €2)(g'(w0) + €1)

Example 2.13.6. Converting mass to energy: The Newton’s law

dv
F = — =
m i ma

is not exactly true when an object is moving at very high speed, because the
mass increases with velocity. In Einstein’s correction, the mass is

mo (Y
:7%7710
V1 —0v2/c?

So the new mass is

By multiplying c¢?
(m —mg)c” ~

Thus the change in the mass corresponds to the change in the Kinetic Energy.

Power function
Derivative of a power functiony = u"(z) for rational number r.
Theorem 2.13.7. For any rational number r

U —rur_ld—u
de dz’
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Proof. Assume r > 0. We have r = p/q for some positive integer p and gq.
Hence y = u” = rP/9 can be written as y? = uP. Taking derivative w.r.t. = we

obtain
1% — P!t d_u

dx dx
dy puP~ldu pydu 1 du
- = = =ru’" —

qy?”

dr ~ quildr qudzx dz
O

Example 2.13.8. Find the equation of tangent and normal line to the curve
y = (1+23)%3 at (=8,1).

1

Figure 2.16: Tangent and normal

2 1 1
Mo =214 V3B 228 -
Tangent line is y = —1/18(x +8) + 1 = —z/18 + 5/9 normal line is y =

18(x + 8) + 1 = 18z + 145,
O

Example 2.13.9 (Slope of tangent in Polar coordinate). Express dy/dz for
the equation given in polar coordinate r = f(6) in 6.

Using the relation x = rcosf,y = rsinf, we see x = f(f)cosb,y =
f(@)sinf. Hence the slope of tangent is

dy  dy/do  f'(0)sin6+ f(0)sind
dr — dz/dd ~ f(0)cosf — f(A)sinf
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Chapter 3

Applications of Derivatives

3.1 Absolute Maximum, Minimum

Definition 3.1.1. Let f be defined on a domain D. Then f has abso-
lute(global) maximum at c if

flz) < f(e), forallze D.
It has absolute(global) minimum at c if
f(x) > f(e), forallze D.

Theorem 3.1.2. [Extreme Value Theorem] If f is continuous on a closed
interval [a,b]. Then f assumes both absolute mazimum M and absolute min-
imum m in |a,b]. In other words, there are numbers x1,xy in |a,b] such that
f(z1) =m and f(z2) = M, and m < f(x) < M for all z € [a,b].

Maximum or minimum are called extreme values.

Definition 3.1.3. Let f be defined on a domain D. Then f has rela-
tive(local) maximum at c if

f(z) < f(e), for all z in some interval containing c.
It has relative(local) minimum at c if
f(z) > f(e), for all z in some interval containing c.

Theorem 3.1.4 (First derivative theorem). Suppose f is differentiable and if
f has local maz(min) at an interior point ¢ then f'(c) = 0.

Proof. Suppose f’(¢) > 0 there is an interval near ¢ such that for all z in

I'=(c—0d,c+9)
fx) = fle)

r —cC

>0

41
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hold. If z € I,z > ¢

r—cC

f(z) > f(c) Hence f cannot have maximum at c. If z < ¢

f(z) = f(c)

Tr —cC

<0

f(x) = fle) = (x —c)

f cannot have minimum at ¢. So f cannot have local extreme at ¢ The case
f'(c) <0 is similar. Hence f’(c) = 0. H

Remark 3.1.5. This is not a necessary condition for a function to have a local
extreme. Often, a function has an extreme value where f is not differentiable!
So the points where f is not differentiable is also point of interest. Thus, we
define

Definition 3.1.6. If f/(¢) = 0 or f/(¢) does not exists, we say c is critical
point of f.

Remark 3.1.7. How to find Absolute max(min) on
(1) Evaluate f at all critical points

(2) Check all end points and compare

Example 3.1.8. Find max(min) of f(z) = [4 — 2| on [-3,3].

;3 —2
Figure 3.1: y = |4 — 22|

By Theorem 3.1.2 f has absolute minimum and maximum. Its graph
is as in Figure 3.1The critical points of f are —2, 0, 2. f(—=2) = f(2) = 0,
f(0) = 4 while at end points f assumes f(—3) = f(3) = 5. Hence maximum
is 5 (at £ = —3 or z = 3) and minimum is 0 (at z = —2 or z = 2).

O
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Example 3.1.9. Find absolute extrema of f(z) = 10x(2 — Inx) on [1,€2].

f'(x) =10(1 — Inz). So critical point is e. Fig 3.1 Check end points
1,e?. We see maximum is

]

Example 3.1.10. Find absolute extrema of f(z) = 2% on [-2,3].

Derivative at 0 does not exist. By drawing graph we see x = 0 is cusp
but local and absolute minimum.

]

Example 3.1.11. Find exrtema of f(x) = 2%/3(1 — 2)%/? (z < 1).

Since

2 _ 2
flz) = ~o U3(1 — )32 — g332/3(1 )12
2 3
— B2 (22
x 21— x) (3( x) 2:17>
 V1—2z(4-132)
N 6a:1/3

Extreme points are x = 0, x = 4/13. Here f(0) = 0 is local min and f(4/13) =
(4/13)%/3(9/13)3/? is local max. (Refer to Fig 3.2 )

O

y= :E2/3(1 _ 1’)3/2

Gl

Figure 3.2: y = 2%/3(1 — z)3/2
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Remark 3.1.12. In above example the point (0,0) satisfies

lim f'(x) = 400, lim f'(z) = —o0

z—07F z—0~
This kind of point is called a cusp .

Example 3.1.13. Piping from Oil hole from the see to the refinery on the
shore.

Underwater pipe cost 500,000 per mile while land pipe cost 300,000 per
mile

12 Sea

Refinery

20 Py o7l
= Y J

20
Figure 3.3: Refinery and hole in the sea

cost is ¢ = 500,000z + 300,000y. But x? = 122 + (20 — 3)2. Thus
R(y) -107° = 5,/144 + (20 — y)?

520 y)
/144 + (20 — )2

R'(y)

3.2 Mean Value Theorem

Theorem 3.2.1 (Rolle’s Theorem). If f is continuous on [a,b] and differen-
tiable on (a,b). Suppose f(a) = f(b) holds then there exists a ¢ € (a,b) such
that f'(c) = 0.

Proof. By theorem 3.1.2, f must attain maximum and minimum at some point
c. Then there are two possibilities:

(1) max or min occurs at interior point.

(2) both max or min occur at end points.
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Figure 3.4:

In the first case, by theorem 3.1.4 there is a point where f’(¢) = 0. In the
second case, the maximum is equal to minimum since f(a) = f(b). Hence f
is constant and f'(c) = 0 for any ¢ € (a, b). O

Theorem 3.2.2 (Mean Value Theorem). If f is continuous on [a,b] and dif-

ferentiable on
(a,b). Then there exists a ¢ € (a,b) such that
iy J(b)— fla)
f (C) - b —a

Proof. Consider the line given by the equation

o) = (1) + FE=L0 0 )

Then ( 3.4 .)

he) = £0) = 9(o) = (o)~ (@) + L L0 0 - )

h continuous on [a,b] diff’ble in (a,b) and h(a) = h(b). Hence by Thm 3.3.9
(Rolle’s) there exists ¢ € (a,b) such that h'(c) = 0. That is

f(6) — f(a)

W) = (o) - T2

Application of MVT

Theorem 3.2.3. (1) If f satisfies f'(x) = 0 on an interval I, then f is
constant on I.
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(2) If f'(x) = ¢'(x) on I, then f(z) =g(z)+C,xz €1

Proof. (1) By Mean Value Theorem 3.2.2, we have for any x,z € I,

for some ¢ € (x,z) C I. Since f'(c¢) =0, we have f(z) = f(x). This holds for
any x, z, hence f is constant.
]

Definition 3.2.4. Suppose F' defined on I. satisfies F'(z) = f(z), F is and
anti-derivative of f.

Example 3.2.5. Show that 7/4 +3/25 < tan™'4/3 < 7/4 + 1/6 holds.
Apply Thm 3.2.2(MVT) to

f(z) =tan™! on [1,4/3]
Since f/(z) = 1/(1 + 2?), there is a point ¢ € (1,4/3) such that

tan~!(4/3) —w/4 1
4/3 -1 142

holds. Hence
1

4 1
— <3t -1 )« —
1+ (4/3)2 3 4 1+12

3 1 4
— < tan

™ 1
% 37156 -
O
Proof of Log rule Inbx =Inb+ Inx
Consider p
1
%ln(b:p) == —xlnaj

So by above result,

1
In(br) =—=Inz+C
x

Place z =1 to see C' = Inb.
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Proof of Log rule In"z =rlnz

Consider

Thus In" z and r In z have same derivative.

3.3 Monotonic function and derivative

(<0 U0 L U<0 [ U">0

[

(>0 (f'<0)  (f'>0  (f'<0) (f'>0)

Figure 3.5:

Definition 3.3.1. f is said to be a increasing function if f(x) < f(z) holds
for all all z, z (z < z).

First derivative test
Theorem 3.3.2. (1) Suppose f'(x) > 0 for all x, then f is increasing on I.
(2) Suppose f'(x) <0 for all z, then f is decreasing.
Proof.
f/(C) - M
z2—x

for some ¢ € (z,z). Since f'(¢) > 0 and z > x we see f(z) > f(x). If fis
not one-to-one, there exists two point v,w € I, v < w such that f(v) = f(w).
Then f'(z) =0 on (v,w). This contradicts to f’(z) = 0 at finite points. O

Example 3.3.3. Investigate the increase and decrease of f(z) = 2° — 5a* +
53 + 1.
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f'(x) = 5z* — 2023 4 1522 = 52%(x — 1)(x — 3) We obtain the following
table.

;E‘ 1 0 3 ...
17+ 0 — 0 — 0 +
flr72 N 1 N\ -2 7

Hence f is mon. inc. on x < 1 and mon. dec on 1 < z < 3, mon. inc. on
3 <z

O

First derivative test for local extrema

Theorem 3.3.4. (1) If f' changes from negative to positive at ¢ then f has
local minimum at ¢

(2) If f' changes from positive to negative at ¢ then f has local mazimum at
c

Proof. f is decreasing on [c — ¢, ¢] and increasing on [¢,c+ 0]. Hence, f(z) has
local minimum at c. O

Example 3.3.5. (1) f(z) = (2? — 3)e®

(2) '3z~ 4)

Second derivative test for extreme values

Theorem 3.3.6. Suppose f'(¢) =0. Then
(1) f(c) is local maximum if f"(c) <O0.
(2) f(c) is local minimum if f"(c) > 0.
Proof. (1) Since

f"(c) = lim f@)

r—cl — C

<0

there is a § such that
f'(z)
x—c
for all x € (¢ — d,¢+9) (z # ¢). Hence if c —§ < x < ¢ then f/(x) > 0, and if
¢ <x<c+dthen f'(x) <0. Hence f' change from positive to negative at c.
By theorem 3.3.4, f(c) is a local maximum. O

<0
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Figure 3.6: y = (2% — 3)e”

3.4 Concavity and sketching

Definition 3.4.1. Graph of y = f(z) is
(1) concave up if f’ is increasing on I,
(2) concave down if f’ is decreasing on I,
(3) a inflection point if the concavity of f changes across a point c.
Theorem 3.4.2. Suppose f" exists on I. Then
(1) f is concave up, if f"(x) >0 for all z € I,
(2) f is concave down if f"(x) <0 for all x € I.
Example 3.4.3. Sketch f(z) =z +sinz.
f(x)=1+cosz, f'(x) = —sinx

:n‘ —T 0 T 2c .-+ 3w
1 0 + 4+ + 0 + 4+ 4+ 0
f{-~- 0+ 0 — 0 + 0 — 0
fl / / / /

Hence f is increasing for all x and for integer n concave down on (2nm, 2nm+)
concave up on (2nm + m,2nm + 27). Points of inflection are (nw,n7). (n is
integer)
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Figure 3.7: y = 2'/3(z — 4)

y==z Y=

\ / oc. max
0 0 0
loc. min inflection point

4

Figure 3.8: y =24, y =23, y = —x

4

Example 3.4.4. Show f(7/4) is a local maximum when f(z) = sin® z sin 4z +

cos* z cos 4x.

Compute f and f” at z = 7 /4.

3

f'(x) = 4(sin® z — cos® z) sin 5z,
=1

(@)
Since f'(m/4) =0 and f”(7w/4) = —6 < 0. Hence f(7/4) is local maximum.
O

2sin x cos x(sin x + cos ) sin 5z + 20 cos 5z (sin® x — cos® 2)
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Yy =T + sin g

Figure 3.9: y =z +sinx

Example 3.4.5. y = 2* An inflection point may not exists when 3" = 0.

3

Example 3.4.6. For y = /3 an inflection point may exist even if y” does

not exist.

Example 3.4.7. Sketch f(x) = (fiif Check inflection point and horizontal
asymptote.

Example 3.4.8. Sketch f(z) = e!/?®. Check inflection point and horizontal
asymptote.

Since f is not defined at x = 0, we investigate the behavior as 2 —*.

.. . 1 .
Next we compute the derivative of f = e3z. Since f/ = —%2'621 we see f is

decreasing function where it is defined. Now check second derivative:

1 441 1
n_ L T iL
1= 253 21
Thus x = —1/4 is a point of inflection.

Theorem 3.4.9. Suppose f" continuous on I.
(1) If f'(¢) =0 and f"(c) < 0 then f has local mazimum
(2) If f'(¢c) =0 and f"(c) > 0 then f has local minimum

(3) If f'(¢) = 0 and f"(c) = 0 then the test fails. We need more information.
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(z+1)2

1
T and y = e2

Figure 3.10: y =

3.5 Parametrization

parametric equation

Suppose z, y are given by parametric equations x = f(t), y = g(t) for t € I.
Furthermore, f and g are differentiable and f’ # 0. Then t = f~!(x) exists
and y(z) = (go f~1)(x) is well defined. By implicit function theorem, the
derivative of y w.r.t x is given by

dy _dg dt _ dg/dt
dr  dt dr  dfjdt

Example 3.5.1. Sketch the path traced by the point P(x,y) where
xzt—i-%,y:t—%.

Second derivative
If 2 = f(t), y = g(t) define y as a twice differentiable function of x at the
point where dy/dx # 0, then

d?y _d (dy dt
&2 @ <a> &
_dy'/dt
© dx/dt

Example 3.5.2. Compute dy/dr and d?y/dx? when z =t — %, y =t — 3.

Remark: Do not attempt to find - (4).
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Chain rule and implicit differentiation

dy _ dy/dt 13t
dr  dr/dt 1—2t

Py _d (dy) dt
dz?  dt \dz ) dx

d <1—3t2>_(1_2t)

T dt \ 1—2t
26t + 6t -
o (1—2t)3

]

3.6 Applied Optimziation

Skip

3.7 Intermediate form aand L’Hopital’s Rule

L’Hopital’s Rule
When f(a) = g(a) =0 or f(a) = g(a) = oo, tshe limit

im M
2 9(a)

cannot be found by substituting a

Theorem 3.7.1 (L’Hopital’s Rule: First form). Suppose that f(a) = g(a) = 0,
that f'(a), ¢'(a) exist, then

@) _ )
e—a g(xz) ¢'(a)
Cf@) lmea(f(@) — f@))@—a) _ f(a)
Proof- I @) = Tmp—alg(@) —g(@)/(@ —a) ~ gla)’ -

!

\/1+—x—1<g> _ 1/2y1+z

z—0 x 1 =0 2
2 _
2 hmw ! 9 :2_x = 2.
z—1 £z —1 \0 1],
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Example 3.7.3. (1) lim ST 0y _ lim — % o,
z—(n/2)- sinx — 1 \ 0 x—(n/2)~ COST

1 1 z —sinx [0
2) 1 - — — = lim —— | =

. 1 —cosx 0 . sinx 0
=lim—— | = | = lim - =-=0
z—0sinx + xcosxz \ 0 z—02cosx — xrsinx 2

Theorem 3.7.4 (L’Hopital’s Rule: Stronger form ). Suppose that f(a) =

gla) =0 and f,g are differentiable on (a,b). (The case f'(c) = ¢'(¢) = 0 is

allowed) and that ¢'(x) # 0 for x # a. Then
!/

lim _f(:n) = lim f/(:E)

v—a g(x)  a—ag'(x)

as long as the rhs limit exists.
The proof is based on

Theorem 3.7.5 (Cauchy’s Mean value theorem ). Suppose f and g are conti
in [a,b], diff ble in (a,b). If ¢ # 0 on (a,b) then g(b) # g(a) and there exist
c € (a,b) such that

f(0) = fla) _ [f'(c)

g9(b) —g(a)  g'(c)

Proof. Suppose g(b) = g(a) then by thm 3.2.2

1y 9(0) —g(a)
g(c) = T b—a

=0

for some ¢ € (a,b). This contradict to ¢’ # 0. So, g(b) # g(a). Next consider
the function F defined by

f(0) — f(a)
9(b) — g(a)

We apply Rolle’s theorem 3.2.1 to F'. F' satisfies the condition of Rolle’s thm.
Hence there exist ¢ € (a,b) such that F’(c) = 0. Since

F) = @) - ) - ) o) - sta)

we have




3.7.

Proof. First show

INTERMEDIATE FORM AAND L’HOPITAL’S RULE

95

- f(=) f'(@)
lim ——= =
z—ct g(m) z—ct g’(a:)
When ¢ < z < b use thm 3.7.5(Cauchy’ MVT) on [¢,z]. Then there is
d € (c,z) s.t.
fld) _ flz) = flo) _ f(z)
g'(d)  g(x) —glc) g(=)
and d — ¢ as as x — ¢
o fle) L f(d)
A glo) e g (d)
o f(®)
gt g'(z)
The following can be shown the same way.
o fl@) (o)
lim ——= = lim
T—cC™ g(x) T—cC™ g’(x)

Intermediate form oo/oo0, 0o -0, 0o — 0o

Example 3.7.6.

1
1) li in —
(1) lim zsin

z—0
(2) xlg&ﬁlnx
B lim (), sec’w _
e—(n/2)- 1+ tanz \oo/  w—(n/2)- sec2x
. w/2—tan"lz [0 . —1/(1+2?)
4) lim — | = | = lim —————~=
( ) xl_)II;O 1/x (O) x1—>nc}o —1/x2
. x? 00 . 2z
= dim s () = dm =L
(5) lim V9r +1 (g) B 9/(2v/9z + 1) <9>
z—oo \/Ax + 1 \oo/  w—o04/(2/4x + 1) \0
sec

(6) x—1>I7Irl/2 1+tanax

r—00

—(81/4)(9z +1)~3/2

—A4(4x + 1)73/2

(

0

0

).
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Wrong use of L’hopital’s rule

2 — tan™! —-1/(1 + 2?
lim —W/ tan_ x (0 = lim 7/( + )
T—00 1/3} Z—00 —1/1’2
T 00 2z
= lim <—) = lim — =
Z—00 1—|—g;2 00 r—00 201

In this case we can find limit as follows:

oA/ +1 . 9 +1 9 3
lim — = im —— —4/—- = —.
. 1 —cosx . sinx
hmizzlm =
z—0 T+ x z—01+ 2z

But do not continue.

Intermediate form 0>, oc’, co — co

Example 3.7.7. Use continuity
If limIn f(z) = L then f(z) = lim e™f(®) = ¢l Here a may be either finite
or infinite.

(1) lim (1+z)"/*

z—0t

(2) lim z'/®

Tr—00

(3) hmm_,() (51r11:(: - %)

3.8 Newton’s Methods

3.9 Hyperbolic functions

Definitions

For any function f(z) we have

PR (R (G (R (G

Even function Odd function

In particular, e” has the form




3.9. HYPERBOLIC FUNCTIONS

Definition 3.9.1. A (hyperbolic function) is defined as

hyperbolic cosine coshxz =
hyperbolic sine sinhx =

hyperbolic tangent tanhz =
hyperbolic cotangent cothx =
hyperbolic secant sechxz =

hyperbolic cosecant cschx =

See Fig 3.11.

y = coshx

y = sechx

ef + e *

)

T

)

sinh z et —

e—l‘

coshr e*+

e’

1 et +e "

tanh z

2

er — e—x’

cosh z

er 4 =%’

1 2

sinh x

er — e’

N

\

Figure 3.11: hyperbolic functions

Proposition 3.9.2.
(1) sinh 2x = 2sinh z cosh

(2) cosh 2z = cosh?  + sinh? &

—1Yy = CsC

h x

o7
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cosh2z — 1
inh?z = ————
(8) sinh®z 5
h2x +1
2y = 08
(4) cosh” z —

(5) cosh?z —sinh?z =1
(6) tanh? z = 1 — sech? z

(7) coth?z =1 + csch? x

Derivatives of hyperbolic functions

Proposition 3.9.3.

d du
1) L (sinhw) = coshu™™
(1) dm(sm u) = cos U

d 5 du
(2) %(cothu) = —csch U

d . du
(3) %(cosh u) = smhu%

d du
(4) %(sech u) = —sechutanhu%

d 5 du
(5) %(tanhu) = sech u—

d du
2 (cschu) = — csch ucoth s
(6) d:n(CSC ) csch u cot u—

Proposition 3.9.4.

(1) /sinhudu:coshu—l-C
(2) /coshudu:sinhu—l—C
(3) /sechzudu:tanhu—FC

(4) /Cschzudu:—cothu+0
(5) /Sechutanhudu:—sechu+0

(6) /csch ucothudu = —cschu + C
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Example 3.9.5. (1) The integral of sinh? z is obtained in a similar method

to that of sin?z .
/1sinh2xda:: /1%@6
0 0 2

1| sinh 2z !

5[ 2 _x]

_ sinh?2
4

0

1
5
(2) By definition of sinhx

In2 In2 et — 7% In2
/ 4e” sinh x dx = / 4e* ——— dx = / (2% — 2) dx
0 0 2 0

_ [egx . 2.Z':| In2

0
=3—2In2.

Inverse hyperbolic functions

y = sinhz is a one-to -one function from (—oo,c0) onto (—oo,00). Thus its
inverse function y = sinh™!z is well defined on all of (—c0,00). Thus the
inverse hyperbolic sine is

sinh™! z : (—00,00) — (—00, ).

For y = cosh z, we restrict the domain to 2 > 0. Then y = cosh™! z exists
on [1,00). Thus the inverse hyperbolic cosine is

y = cosh™!: [1,00) — [0,00).

Likewise if we restricted y = sechx to x > 0, then inverse function y =
sech™! 2 exists on (0,1]. y =tanhx, y = cothz, y = cschx are all one-to-one
on (—o0,00). Hence inverse functions

y = tanh'z:(—1,1) = (—00,00),
y = coth™lz:|z|>1— (—o0,00)
y = csch !z (—00,00)\ {0} — (—00,00).

Proposition 3.9.6.

(1) sinh 'z =In(z + Va2 +1), -oco<az<oo
(2) cosh™ 'z =In(z+Va2-1), z>1
1. 1+

(8) tanh™!z = Eln T

lz] <1
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Y Y
y =sinhx y = coshz
y=z
y = sinh
T
Y
Y y =cschz
y = sech . Y=z
Y= }
o
y=-csch™ "z
y=sechz,z >0 S
x
Yy y=tanh 'z Y
N y = cothzx _
y==x — y=x
y = tanhx
T —
y=coth 'z

Figure 3.12: Inverse hyperbolic functions

(4) sech™ <+ 1_33), 0<z<1
1 2
(5) csch™'z < e ), x#0
]
1 1
(6)coth_1x:§ln§i_1, |z| > 1

Proof. We prove for sinh™! z only.
e’ —e”
2 )
e —e ' =2y,
2 _9ye® —1=0.

y =sinhz =

Solving this equation for e* we have

T=y+Vyr+ 1L

Since y — y/y% + 1 is negative, we only choose positive sign. So x = In(y +
V424 1) hence y = In(z + V22 + 1) is the inverse of sinh™! z. O
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Properties of inverse hyperbolic functions

Proposition 3.9.7.
1
(1) sech 'z = cosh™* =
T

1
(2) csch™' 2 = sinh™* -

1
(8) coth™' z = tanh™! =~

x
Proposition 3.9.8.
(1) d(sinh'w) 1 du
dx V1t uZde

d(cosh™'u) 1 du
(2) o = o idn u>1

(tanh w) 1 du

= — 1

(3) 0 <

(coth u) 1 du

= — 1

4 LB s

(sech w) —du/dx
5 = , O<ux<l1
& uv1 —u?

(csch ) —du/dx
6 , u#0
(6) S VITe #

Proposition 3.9.9.
du

1 ——— =sinh lu+C
1) / V14 u?

=coshtu+C, u>1

du
2
()/\/uz—l

du tanh'u4+C, |ul<1 ,
(3)/m:{ ] |u|

coth™tu+C, |ul >1

(4) /ui fu__uz = —sech™ |u| + C' = — cosh™! <i> +C

|ul
du 1

5 — = —csch |+ C = —sinh_1<—> +C
0 [ = u o
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Exercise 3.9.10. (1) Show

(a) sinh(x 4 y) = sinh z cosh y 4 cosh z sinh y
(b) cosh(z + y) = cosh z cosh y + sinh z sinh y

(2) Find derivatives

)
)
(c) 3In|tanhz|
(d) tan~!(sinhz)
(e) (z%+1)sech(Inz)
(f) (1 —2)tanh~ta
(g) sinh™!(tanz)
(h) (1 —2?)coth™ 2
)

(
tan~l(sinz), —7/2 <z < /2
(j) sech~Y(sinz), 0 < z < 7/2

(3) Find the following integrals
0
(a) / cosh(2z + 1) dx
—1

(b) / tanh 2z dz

—T

1/2
(c) / 4de” ¥ sinhz dx
0

() /cosh(lna:) e

X

In2
(e) / tanh? z dz
0

(f) /1 feosh v

N3
In3
(g) / cosh? z dx
In2
In2
(h) v/ cosh(2x — 1) dx
—In2

(1) / sech® 5 tanh 5z dx

() /tanh3 xdx
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(4) Prove theorem 3.9.6.

(5) Find the integral.
! dz
o [
0o V1+2x
12/13 g
o [
45 xVl—=x
5/3 dr
© [
5/4 Vas—1

12 gy
(@) /O L

2 dx
© [ T

2V3 gy
® /0 V4 + x2

2 dx
(&) /1 V4 + 22

(h) T coszdx
0 V1+sin?z

(6) Find the volume of the region when the graph y = sechz is rotated
about z axis between —Inv/3 < z < In+/3.

(7) Find the centroid of the volume obtained when the region between y =
tanhz, y =1, x =0, z = In /199 is rotated about y = 1.

(8) Find the solution of differential equation.

4y dy\? dy
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Chapter 4

Integration

4.1 Anti-derivatives

If F'(z) = f(x) then F is an anti-derivative. In general, F(z) + C is an
anti-derivative.
D.E. Find the solution of 3/ = z?

Definition 4.1.1. Indefinite integral. The set of all anti-derivative of f is

denoted by
/ f(x)dx

4.2 Estimating with finite sums
4.3 Sigma and limit

4.4 Definite integral

Suppose f(x) is a positive(temporarily) continuous function on [a,b]. Let A
be the region under the graph of y = f(z), between z = a, x = b To find
area, we divide [a,b] into small subintervals. ( 4.1). For example, uniform
n-subintervals are {zg,z1,...,2,}

zi=a+ilb—a)/n, 1=0,1,---,n

The area A is approximated by

i
L

Sn =) flxi)(wiy1 — x;)

%

Il
o

In general, nonuniform intervals allowed except that max; |x;11 — ;| — 0
as n — oo.

65
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Figure 4.1: Sg

f(z;) can be replaced by f(c;). A partition of [a,b] is a set of points

T, T1,...,Ty such that a = 29 < 1 < -+ < zpp1 < T, = b. P =
{zo,x1,..., 2y} is a partition of [a,b] and f(x) is defined on [a,b]. For any se-
quence {c1,c,...,c,} satisfying x;_1 < ¢; < z; The Riemann sum R(f, P)

of f(z) wr.t P.(4.2)
R(f,P) = fle)(wit1 — ;)
=1

Y (cns flen))

(e, fck))

Cc1 C2 Ck Cn
Olro=a| 1 T2 Tk Th+l Tn=>0

(e1, |f(c1))

(c2, f(e2))
Figure 4.2: R(f,P)

Definition 4.4.1. ||P||: norm of P = {xg,1,...,2,} is defined by

Pl = 11— X
” ” Olgi}%(xz—i-l xZ)
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Suppose the Riemann sum R(f, P) of f(z) approaches some number I as
the norm || P|| of partition P approaches 0 then this number is defined as the
area under the graph.

Definition 4.4.2 (Definite Integral as limit of Riemann Sum). Let f(x) be
defined on [a,b]. We say a number [ is the definite integral of f over [a,b]
if the following holds:

For any € > 0 there corresponds a 6 > 0 such that for any
partition and any choice of points ¢ in zp < ¢ < zpy1 such
that for any [|P|| < ¢ and points in [a,b] and for partition P =
{z0,x1,...,zy} for any choice of {cg, c1,...,cn_1Hx; < ¢ < Tig),
we have |R(f,P) —I|| <.

This number I is denoted by f; f(z)dx and called the definite integral of
f(x) on [a,b]. We say f(x) is integrable on [a,b].

We write it as

b
| t@iz = im chz (a1~ 1)

Non-integrable function

0, x rational number
flx) = {

1, « irrational number

€ (1,2]

[
—~

Theorem 4.4.3 (Definite integral). The following holds:

(1)/ x) +g(x dﬂc—/f d:z:—l—/b()d:n
(2) /abkf(a:)dx:k/abf(a:)dx

c b c
(3) / f(:v)dxz/ f(a:)d:n+/b f(z)dz, (a <b<c)
b
(4) If f(x) = 0 on [a,b], then / F@)dz > 0

(5) min f(z)-(b—a) /f )dr < max f(z)-(b—a)

z€la,b] z€la,b]
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/abf(:n)dx

Definition 4.4.4.

/aaf(a:)dxzo, /baf(a:)dx:—/abf(a:)dx.

Example 4.4.5. Find [}’ 2? dz by definition.

b
(6) g/ﬁﬂme

Suppose P = {xg,x1,..., 2y} is a uniform partition of [0,a]. x; =ia/n

- " li-a\?a
) )

> wiwi—wia) = ) <T> -

i=1 i=1

a3 & 2

= —321
ne 4
=1

a*(n+1)(2n+1)
6n?

So

a n
2 . 2
/ x*dr = lim g x5 (x; — xi—1)
n—oo

0 i=1
~ lm a®(ny1)(2n + 1)
n—00 6n2
3
_ O
3
[]

Theorem 4.4.6 (Mean value theorem for integral). Let a < b. If f(z) is
conti. on closed interval [a,b] then there is a ¢ in |a,b]

b
10 = 5 [ f@rdo

This value is called the average of f on |a,b] denoted by av(f)

Proof. Since f(x) is continuous on [a, b] there are min and max;

f(wo) = min f(z), f(x1) = max f(z)

z€[a,b] x€[a,b]

for some xg, 1 in [a, b].
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First, if 29 = 1 then f(z) is constant and the equality holds for all ¢ €
[a,b]. Suppose zp < x;. Then by intermediate value theorem, f(x) assumes
all values between f(xo) and f(z1) in [zg,z1]. Since

b
fao) £ g2 [ 1) d < fo)

So there is a ¢ such that

for some ¢ € [xg, x1].

The case xg < x1 is the same. O
Y
y=f(z)
f(C T
\
|
|
\
|
|
l
o] a c b v
: ;

Figure 4.3: MVT for Integral

4.5 Fundamental theorem of Calculus

If f is integrable on I, the integral from a fixed point a to another point x
defines a new function F(z) = [ f(t)dt. If f is conti, this new function is
differentiable, and

Theorem 4.5.1 (Fundamental theorem of Calculus I). Suppose f(x) is conti
on [a,b]. Then the function F(x) defined by

Flz) = / " dt

is differentiable on (a,b) and

széfﬂwhﬂ@
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Proof. By definition,

Now f(c) approaches f(z) as h — 0. Hence

F(z+h)— F(z)

F'(z) = lim

h—0 h
1 t+h
= lim = t) dt
imy f(t)
= f(z)

Figure 4.4: A'(z) = f(x)

Theorem 4.5.2 (Fundamental theorem of Calculus IT). Suppose f(x) is conti
on [a,b]. If F(x) is the anti-derivative of f(x), then

b
/ F(z)dz = F(b) — F(a).
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Proof. Set G(z) = [ f(t)dt. Then by (1), G(z) is anti-derivative of f(x) on
[a,b]. Since F'(x) is also an anti-derivative of f(z), we have

G(x) = F(x) + C.
But G(a) = F(a) + C = [ f(t)dt = 0, hence C = —F(a). Hence G(b) =
JPft)dt = F(b) — F(a). =

2

Example 4.5.3. (1) i/ costdt.
dx 1
d (7 1

— ——dt.
dz J3,.2 1+ €

Example 4.5.4. Find derivative of A(z) when h(t) is continuous and u(x),
v(z) are differentiable. Find the derivative of

A(z) = / :(?) h(t) dt

Let H(t) be an antiderivative of h(t). Then A(z) = H(v(x))— H(u(z))
and A'(z) = h(v(x))v' (x) — h(u(x))u'(z).

[l

In other words,

d (" : :
. /u(x) h(t) dt = h(v(x))v' (x) — h(u(x))u' (x).
Example 4.5.5. /b e dr = e’ — e

a

Total area.

4.6 Indefinite integrals and substitution

d(wt
dr \n+1)  dx

un+1
/u"du = +C
n+1

Recall

So we have

Example 4.6.1. [V/1+ 222zdz = [u!/?du =
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chain rule

d d d
Proposition 4.6.2. /f(g(w))g’(w) dx = /f(u) du.

Proof. Let F(u) be an anti-derivative of f(u).

——F(g(z)) = f(9(2)) ' (x)

dzx
[ o @ds = [ sl

/2 1
Example 4.6.3. / e cosxdr = / e" du.
0 0

/Secaz dx

The idea is to multiply sec xz 4+ tanz both the numerator and denominator:

secx + tanx
secrdx = secr - ——— dx
secx + tanx
sec? x + secxtan z
= dx
secx + tanx
du
u
= In|secx +tanz|+ C

Example 4.6.4. Find

Similarly, we obtain

/csca:da: = —Inl|cscz + cotz| +C

/sinzwdw:/%dx

Example 4.6.5.
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4.7 Area between curves
If f(z) >0, f;f(ac) dx is the area defined by
y=/f(z), a<z<b

In general, when f(z) < g(z) on [a,b], the area defined by
b
[ o)~ s o

Use of symmetry

If there is any symmetry it is useful to take advantage of it.

Proposition 4.7.1.
For even function, flx)dx = 2/ f(z)dx
—a 0
For odd function, flx)de=0
Integration w.r.t y

When the region is determined by functions of y, we need to integrate w.r.t.
V.

Figure 4.5: Region by between functions of y
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