Colored Prüfer codes for k-edge colored trees

Manwon Cho, Dongsu Kim* ${ }^{*}$ Seunghyun Seo and Heesung Shin
Department of Mathematics, KAIST, Daejeon 305-701, Korea

Submitted: Dec 31, 2002; Accepted: Oct 15, 2003; Published: Jul 19, 2004
MR Subject Classifications: 05C05, 05C30

Abstract

A combinatorial bijection between k-edge colored trees and colored Prüfer codes for labelled trees is established. This bijection gives a simple combinatorial proof for the number $k(n-2)$! $\binom{n k-n}{n-2}$ of k-edge colored trees with n vertices.

1 Introduction

A k-edge colored tree is a labelled tree whose edges are colored from a set of k colors such that any two edges with a common vertex have different colors [2, p81, 5.28]. For a pair (n, k) of positive integers, let $\mathcal{C}_{n, k}$ denote the set of all k-edge colored trees on vertex set $[n]=\{1,2, \ldots, n\}$, with color set $[k]$. The number of k-edge colored trees in $\mathcal{C}_{n, k}$ is already known:

Theorem 1. The number of k-edge colored trees on vertex set $[n], n \geq 2$, is

$$
k(n k-n)(n k-n-1) \cdots(n k-2 n+3)=k(n-2)!\binom{n k-n}{n-2}
$$

Stanley in [2, p124] introduces a proof of the above formula and asks whether there is a simple bijective proof. In this paper we provide a combinatorial bijection between k-edge colored trees and 'colored Prüfer codes', thus establishing a simple bijective proof of the above formula.

The Prüfer code $\varphi(T)=\left(a_{1}, \ldots, a_{n-2}, 1\right)$ of a labelled tree T with vertex set $[n]$ is obtained from the tree by successively pruning the leaf with the largest label. To obtain the code from T, we remove the largest leaf in each step, recording its neighbor a_{i}, from the tree, until the single vertex 1 is left. The inverse of φ can be described easily. Let $\sigma=\left(a_{1}, \ldots, a_{n-2}, 1\right)$ be a sequence of positive integers with $a_{i} \in[n]$ for all i. We can find the tree T whose code is σ as follows:

[^0]- Let $V=\{1\}$ and $E=\emptyset$.
- For each i from $n-2$ to 1 ,
- if $a_{i} \notin V$, then set $b_{i+1}=a_{i}$,
- otherwise set $b_{i+1}=\min \{x: x \in[n] \backslash V\} ;$
- set $V:=V \cup\left\{b_{i+1}\right\}$ and $E:=E \cup\left\{\left\{a_{i+1}, b_{i+1}\right\}\right\}$.
- Let b_{1} be the unique element in $[n] \backslash V$.
- Finally, set $V:=V \cup\left\{b_{1}\right\}$ and $E:=E \cup\left\{\left\{a_{1}, b_{1}\right\}\right\}$.
- Let T be the tree with vertex set V and edge set E.

Example. Let T be the tree in Figure 1. The Prüfer code of T is $(1,6,1,3,3,1)$. We

Figure 1: The tree T corresponding to $(1,6,1,3,3,1)$
can recover T from its Prüfer code by the above algorithm.
Clearly, Prüfer codes are in one-to-one correspondence with labelled trees. The following is a well known result. See [1, 2].

Theorem 2. The number of the tree on $[n]$ vertices is n^{n-2}.
Proof. Any sequence $\left(a_{1}, a_{2}, \ldots, a_{n-2}\right) \in[n]^{n-2}$ of integers corresponds to a Prüfer code $\left(a_{1}, a_{2}, \ldots, a_{n-2}, 1\right)$ which in turn determines a unique labelled tree with vertex set $[n]$.

2 Colored Prüfer code

Let $\mathcal{P}_{n, k}$ denote the set of all arrays of the form

$$
\left(\begin{array}{ccccc}
a_{1} & a_{2} & \cdots & a_{n-2} & 1 \\
c_{1} & c_{2} & \cdots & c_{n-2} & c_{n-1}
\end{array}\right),
$$

such that $\left(a_{1}, c_{1}\right),\left(a_{2}, c_{2}\right), \ldots,\left(a_{n-2}, c_{n-2}\right) \in[n] \times[k-1]$ are distinct and $c_{n-1} \in[k]$. An array like the above is called a colored Prüfer code, since its first row is a Prüfer code and its second row can be interpreted as an edge-coloring.

Lemma 3. The cardinality of $\mathcal{P}_{n, k}$ is

$$
k(n-2)!\binom{n k-n}{n-2} .
$$

Proof. Consider an element $\sigma \in \mathcal{P}_{n, k}$:

$$
\sigma=\left(\begin{array}{ccccc}
a_{1} & a_{2} & \cdots & a_{n-2} & 1 \\
c_{1} & c_{2} & \cdots & c_{n-2} & c_{n-1}
\end{array}\right) .
$$

The conditions for σ are: $\left(a_{i}, c_{i}\right) \in[n] \times[k-1]$ for $1 \leq i \leq n-2, c_{n-1} \in[k]$ and the first $n-2$ columns of σ are distinct. So the number of possible σ is

$$
k(n k-n)(n k-n-1)(n k-n-2) \cdots(n k-2 n+3)=k(n-2)!\binom{n k-n}{n-2} .
$$

Recall that $\mathcal{C}_{n, k}$ is the set of all k-edge colored trees on vertex set $[n]$ with color set [k]. Let T be a k-edge colored tree in $\mathcal{C}_{n, k}$ with vertex set $V(T)$ and edge set $E(T)$. Let $C_{T}: E(T) \rightarrow[k]$ denote the edge-coloring of T, i.e. $C_{T}(e)$ is the color of edge e in T.

For each pair of distinct edges e and e^{\prime} in T, define the distance between e and e^{\prime}, denoted by $d\left(e, e^{\prime}\right)$, to be $l-1$ when l is the shortest length of paths containing e and e^{\prime}. Note that the distance between edges sharing a vertex is one.

When x is the smallest neighbor of 1 in T, we call the edge $\alpha=\{1, x\}$ the root edge of T. For any two edges e, e^{\prime} in T with a common vertex, we call e the parent edge of e^{\prime} and e^{\prime} the child edge of e, if $d(e, \alpha)+1=d\left(e^{\prime}, \alpha\right)$.

Let $\widetilde{\mathcal{C}}_{n, k}$ denote the set of labelled trees with vertex set $[n]$ whose edges are colored from a set of k colors, say $[k]$, in such a way that

1. the root edge is colored from $[k]$,
2. any pair of edges sharing a vertex with a common parent edge have distinct colors, and
3. edges which are not the root edge are colored from $[k-1]$.

For a tree T in $\widetilde{\mathcal{C}}_{n, k}$, let \widetilde{C}_{T} denote the edge-coloring of T, i.e. $\widetilde{C}_{T}(e)$ is the color of edge e in T.

Bijection ϕ

We define a mapping $\phi: \widetilde{\mathcal{C}}_{n, k} \rightarrow \mathcal{P}_{n, k}$ through the following steps:

- Set $T_{0}:=T$.
- For any $i, 1 \leq i \leq n-1$, assuming that T_{i-1} is defined already, define a_{i}, b_{i}, c_{i} and $T_{i}: b_{i}$ is the largest leaf in T_{i-1}, a_{i} is the vertex adjacent to b_{i}, T_{i} is the tree obtained by removing the vertex b_{i} and the edge $\left\{a_{i}, b_{i}\right\}$ from T_{i-1}, and $c_{i}=\widetilde{C}_{T}\left(\left\{a_{i}, b_{i}\right\}\right)$.
- Define $\phi(T)$ by

$$
\phi(T)=\left(\begin{array}{ccccc}
a_{1} & a_{2} & \cdots & a_{n-2} & 1 \\
c_{1} & c_{2} & \cdots & c_{n-2} & c_{n-1}
\end{array}\right)
$$

Note that the first row of $\phi(T)$ is the Prüfer code of T, so ϕ is one-to-one.
Clearly, the first $n-2$ columns of $\phi(T)$ are distinct, and $c_{i} \in[k-1]$ for $1 \leq i \leq n-2$, $c_{n-1} \in[k]$. So $\phi(T)$ is an element in $\mathcal{P}_{n, k}$.

Bijection ψ

We now define a mapping $\psi: \mathcal{P}_{n, k} \rightarrow \widetilde{\mathcal{C}}_{n, k}$, which is the inverse of ϕ. Let σ be an element in $\mathcal{P}_{n, k}$:

$$
\sigma=\left(\begin{array}{ccccc}
a_{1} & a_{2} & \cdots & a_{n-2} & 1 \\
c_{1} & c_{2} & \cdots & c_{n-2} & c_{n-1}
\end{array}\right) .
$$

We construct, by the following algorithm, a labelled tree whose Prüfer code is the first row of σ, with an edge-coloring \widetilde{C}_{T} :

- Let $V=\{1\}$ and $E=\emptyset$.
- For each i from $n-2$ to 1 ,
- if $a_{i} \notin V$, then set $b_{i+1}=a_{i}$,
- otherwise set $b_{i+1}=\min \{x: x \in[n] \backslash V\}$;
- set $V:=V \cup\left\{b_{i+1}\right\}$ and $E:=E \cup\left\{\left\{a_{i+1}, b_{i+1}\right\}\right\}$.
- Let b_{1} be the unique element in $[n] \backslash V$.
- Finally, set $V:=V \cup\left\{b_{1}\right\}$ and $E:=E \cup\left\{\left\{a_{1}, b_{1}\right\}\right\}$.
- Let T be the tree with vertex set V and edge set E.
- Set $\widetilde{C}_{T}\left(\left\{a_{i}, b_{i}\right\}\right)=c_{i}$ for $i \in[n-2]$ and $\widetilde{C}_{T}\left(\left\{1, b_{n-1}\right\}\right)=c_{n-1}$.

Let $\psi(\sigma)$ be the resulting tree with edge-coloring \widetilde{C}_{T}. Clearly $\psi(\sigma)$ is in $\widetilde{\mathcal{C}}_{n, k}$ and ψ is the inverse of ϕ. So we have the following.

Lemma 4. The mapping $\phi: \widetilde{\mathcal{C}}_{n, k} \rightarrow \mathcal{P}_{n, k}$ is a bijection and thus the cardinality of $\widetilde{\mathcal{C}}_{n, k}$ is

$$
k(n-2)!\binom{n k-n}{n-2}
$$

Main result

We now define a mapping Δ from $\mathcal{C}_{n, k}$ to $\widetilde{\mathcal{C}}_{n, k}$. For any $T \in \mathcal{C}_{n, k}$, define $\widetilde{C}_{T}: E(T) \rightarrow[k]$ as follows:

- Let x be the smallest neighbor of 1 and α denote edge $\{1, x\}$. Set $\widetilde{C}_{T}(\alpha)=C_{T}(\alpha)$.
- Assume that $\widetilde{C}_{T}(f)$ is defined for all edges f such that $d(\alpha, f)<i$. For an edge g with $d(\alpha, g)=i$, let h be the unique edge such that $d(\alpha, h)=i-1$ and $d(h, g)=1$. Define $\widetilde{C}_{T}(g)$ by

$$
\widetilde{C}_{T}(g)= \begin{cases}C_{T}(g), & \text { if } C_{T}(g) \leq \widetilde{C}_{T}(h) \\ C_{T}(g)-1, & \text { otherwise }\end{cases}
$$

Note that $\widetilde{C}_{T}(f) \leq k-1$ for all $f \neq \alpha$. Let $\Delta(T)$ be the tree T with its edge-coloring C_{T} replaced by \widetilde{C}_{T}. Clearly $\Delta(T)$ is an element in $\widetilde{\mathcal{C}}_{n, k}$.

We next define a mapping Λ from $\widetilde{\mathcal{C}}_{n, k}$ to $\mathcal{C}_{n, k}$. For any $T \in \widetilde{\mathcal{C}}_{n, k}$, define $C_{T}: E(T) \rightarrow[k]$ as follows:

- Let x be the smallest neighbor of 1 and α denote the edge $\{1, x\}$. Set $C_{T}(\alpha)=$ $\widetilde{C}_{T}(\alpha)$.
- Assume that $C_{T}(f)$ is defined for all edges f such that $d(\alpha, f)<i$. For an edge g with $d(\alpha, g)=i$, let h be the unique edge such that $d(\alpha, h)=i-1$ and $d(h, g)=1$. Define $C_{T}(g)$ by

$$
C_{T}(g)= \begin{cases}\widetilde{C}_{T}(g), & \text { if } \widetilde{C}_{T}(g)<C_{T}(h) \\ \widetilde{C}_{T}(g)+1, & \text { otherwise }\end{cases}
$$

Note that $C_{T}(f) \leq k$ for all f and no pair of two edges with a common vertex have the same color. Let $\Lambda(T)$ be the tree T with its edge-coloring \widetilde{C}_{T} replaced by C_{T}. Clearly $\Lambda(T)$ is an element in $\mathcal{C}_{n, k}$.

Clearly, Λ is the inverse of Δ. Hence we have the following crucial lemma:
Lemma 5. The mapping $\Delta: \mathcal{C}_{n, k} \rightarrow \widetilde{\mathcal{C}}_{n, k}$ is a bijection.
Example. A k-edge colored tree T in $\mathcal{C}_{10,5}$ and its $\Delta(T)$ are in Figures 2 and 3. The edge $\{1,3\}$ is the root edge.

We can now count the number of the k-edge colored trees with n vertices. The following is the restatement of Theorem 1 .

Theorem 6 (Main theorem). The number of k-edge colored trees on $[n]$ is

$$
k(n-2)!\binom{n k-n}{n-2} .
$$

Figure 2: A k-edge colored tree T in $\mathcal{C}_{10,5}$

Figure 3: $\Delta(T)$ in $\widetilde{\mathcal{C}}_{10,5}$, i.e. T with \widetilde{C}_{T}
Proof. Since $\Delta: \mathcal{C}_{n, k} \rightarrow \widetilde{\mathcal{C}}_{n, k}$ and $\phi: \widetilde{\mathcal{C}}_{n, k} \rightarrow \mathcal{P}_{n, k}$ are bijections, it follows from Lemma 3 or 4.

The colored Prüfer codes can be used to count certain sets of labelled trees with edgecoloring. Recall that a k-edge colored tree is a labelled tree whose edges are colored from a set of k colors such that any two edges with a common vertex have different colors. We now consider slightly different edge-colorings of labelled trees.

Theorem 7. The number of different labelled trees with vertex set $[n]$ whose edges are colored from a set of k colors in such a way that the color of each edge is different from that of its parent edge is

$$
k(n k-n)^{n-2} .
$$

Proof. Let T be a tree with the property in the statement. Following the steps for the definition of ϕ, we can obtain an array σ corresponding to T :

$$
\sigma=\left(\begin{array}{ccccc}
a_{1} & a_{2} & \cdots & a_{n-2} & 1 \\
c_{1} & c_{2} & \cdots & c_{n-2} & c_{n-1}
\end{array}\right)
$$

There are k possible ways to choose the c_{n-1}. Next, the number of possible ways to choose the $(n-2)$-th column of σ is $n(k-1)$, since the color of an edge is different from that of its parent edge. The i-th column of σ has always $n(k-1)$ choices. Hence the number of such trees is $k(n k-n)^{n-2}$.

Note that the above theorem can be proved by using a generalization of Δ. The mapping Δ can be defined as long as the colors of children edges are different from that of their parent edge. Then the image of Δ of a tree considered in the theorem just satisfies that non-root edges are colored with $[k-1]$, so that each of the first $n-2$ columns of its colored Prüfer code is an arbitrary element in $[n] \times[k-1]$.

Theorem 8. The number of different labelled trees with vertex set $[n]$ whose edges are colored from a set of k colors in such a way that any pair of edges sharing a vertex with a common parent edge have distinct colors is

$$
k(n-2)!\binom{n k}{n-2} .
$$

Proof. Let T be a tree with the property in the statement. Following the steps for the definition of ϕ, we can obtain an array σ corresponding to T :

$$
\sigma=\left(\begin{array}{ccccc}
a_{1} & a_{2} & \cdots & a_{n-2} & 1 \\
c_{1} & c_{2} & \cdots & c_{n-2} & c_{n-1}
\end{array}\right)
$$

There are k possible ways to choose c_{n-1}. Since the c_{n-2} may be identical with c_{n-1}, the number of possible ways to choose the $(n-2)$-th column of σ is $n k$. Since the i-th column of T is different from the columns from the $(i+1)$-th to the $(n-2)$-th for $1 \leq i \leq n-3$, the number of possible ways to choose the i-th column decreases by 1 when i changes from $n-2$ to 1 . So the number of such trees is

$$
k(n k)(n k-1)(n k-2) \cdots(n k-n+3)=k(n-2)!\binom{n k}{n-2} .
$$

References

[1] J. H. van Lint and R. M. Wilson, A Course in Combinatorics, Cambridge University Press (1992).
[2] R. P. Stanley, Enumerative Combinatorics vol. 2, Cambridge University Press (1999)

[^0]: *Corresponding author: dskim@math.kaist.ac.kr
 ${ }^{\dagger}$ Partially supported by the Korea Research Foundation Grant(KRF-2001-015-DP0055).

