Colored Prüfer codes for k-edge colored trees

Manwon Cho, Dongsu Kim^{*}, Seunghyun Seo and Heesung Shin Department of Mathematics, KAIST, Daejeon 305-701, Korea

Submitted: Dec 31, 2002; Accepted: Oct 15, 2003; Published: Jul 19, 2004 MR Subject Classifications: 05C05, 05C30

Abstract

A combinatorial bijection between k-edge colored trees and colored Prüfer codes for labelled trees is established. This bijection gives a simple combinatorial proof for the number $k(n-2)!\binom{nk-n}{n-2}$ of k-edge colored trees with n vertices.

1 Introduction

A k-edge colored tree is a labelled tree whose edges are colored from a set of k colors such that any two edges with a common vertex have different colors [2, p81, 5.28]. For a pair (n, k) of positive integers, let $C_{n,k}$ denote the set of all k-edge colored trees on vertex set $[n] = \{1, 2, ..., n\}$, with color set [k]. The number of k-edge colored trees in $C_{n,k}$ is already known:

Theorem 1. The number of k-edge colored trees on vertex set [n], $n \ge 2$, is

$$k(nk-n)(nk-n-1)\cdots(nk-2n+3) = k(n-2)!\binom{nk-n}{n-2}.$$

Stanley in [2, p124] introduces a proof of the above formula and asks whether there is a simple bijective proof. In this paper we provide a combinatorial bijection between k-edge colored trees and 'colored Prüfer codes', thus establishing a simple bijective proof of the above formula.

The Prüfer code $\varphi(T) = (a_1, \ldots, a_{n-2}, 1)$ of a labelled tree T with vertex set [n] is obtained from the tree by successively pruning the leaf with the largest label. To obtain the code from T, we remove the largest leaf in each step, recording its neighbor a_i , from the tree, until the single vertex 1 is left. The inverse of φ can be described easily. Let $\sigma = (a_1, \ldots, a_{n-2}, 1)$ be a sequence of positive integers with $a_i \in [n]$ for all i. We can find the tree T whose code is σ as follows:

 $^{\ ^*} Corresponding \ author: \ dskim@math.kaist.ac.kr$

[†]Partially supported by the Korea Research Foundation Grant(KRF-2001-015-DP0055).

- Let $V = \{1\}$ and $E = \emptyset$.
- For each i from n-2 to 1,
 - if $a_i \notin V$, then set $b_{i+1} = a_i$,
 - otherwise set $b_{i+1} = \min\{x : x \in [n] \setminus V\};$
 - set $V := V \cup \{b_{i+1}\}$ and $E := E \cup \{\{a_{i+1}, b_{i+1}\}\}.$
- Let b_1 be the unique element in $[n] \setminus V$.
- Finally, set $V := V \cup \{b_1\}$ and $E := E \cup \{\{a_1, b_1\}\}.$
- Let T be the tree with vertex set V and edge set E.

Example. Let T be the tree in Figure 1. The Prüfer code of T is (1, 6, 1, 3, 3, 1). We

Figure 1: The tree T corresponding to (1, 6, 1, 3, 3, 1)

can recover T from its Prüfer code by the above algorithm.

Clearly, Prüfer codes are in one-to-one correspondence with labelled trees. The following is a well known result. See [1, 2].

Theorem 2. The number of the tree on [n] vertices is n^{n-2} .

Proof. Any sequence $(a_1, a_2, \ldots, a_{n-2}) \in [n]^{n-2}$ of integers corresponds to a Prüfer code $(a_1, a_2, \ldots, a_{n-2}, 1)$ which in turn determines a unique labelled tree with vertex set [n]. \Box

2 Colored Prüfer code

Let $\mathcal{P}_{n,k}$ denote the set of all arrays of the form

$$\left(\begin{array}{cccc} a_1 & a_2 & \cdots & a_{n-2} & 1 \\ c_1 & c_2 & \cdots & c_{n-2} & c_{n-1} \end{array}\right)$$

such that $(a_1, c_1), (a_2, c_2), \ldots, (a_{n-2}, c_{n-2}) \in [n] \times [k-1]$ are distinct and $c_{n-1} \in [k]$. An array like the above is called a *colored Prüfer code*, since its first row is a Prüfer code and its second row can be interpreted as an edge-coloring.

Lemma 3. The cardinality of $\mathcal{P}_{n,k}$ is

$$k(n-2)! \begin{pmatrix} nk-n\\ n-2 \end{pmatrix}.$$

Proof. Consider an element $\sigma \in \mathcal{P}_{n,k}$:

$$\sigma = \left(\begin{array}{cccc} a_1 & a_2 & \cdots & a_{n-2} & 1 \\ c_1 & c_2 & \cdots & c_{n-2} & c_{n-1} \end{array}\right).$$

The conditions for σ are: $(a_i, c_i) \in [n] \times [k-1]$ for $1 \leq i \leq n-2$, $c_{n-1} \in [k]$ and the first n-2 columns of σ are distinct. So the number of possible σ is

$$k(nk-n)(nk-n-1)(nk-n-2)\cdots(nk-2n+3) = k(n-2)! \binom{nk-n}{n-2}.$$

Recall that $\mathcal{C}_{n,k}$ is the set of all k-edge colored trees on vertex set [n] with color set [k]. Let T be a k-edge colored tree in $\mathcal{C}_{n,k}$ with vertex set V(T) and edge set E(T). Let $C_T : E(T) \to [k]$ denote the edge-coloring of T, i.e. $C_T(e)$ is the color of edge e in T.

For each pair of distinct edges e and e' in T, define the *distance* between e and e', denoted by d(e, e'), to be l - 1 when l is the shortest length of paths containing e and e'. Note that the distance between edges sharing a vertex is one.

When x is the smallest neighbor of 1 in T, we call the edge $\alpha = \{1, x\}$ the root edge of T. For any two edges e, e' in T with a common vertex, we call e the parent edge of e' and e' the child edge of e, if $d(e, \alpha) + 1 = d(e', \alpha)$.

Let $C_{n,k}$ denote the set of labelled trees with vertex set [n] whose edges are colored from a set of k colors, say [k], in such a way that

- 1. the root edge is colored from [k],
- 2. any pair of edges sharing a vertex with a common parent edge have distinct colors, and
- 3. edges which are not the root edge are colored from [k-1].

For a tree T in $\widetilde{\mathcal{C}}_{n,k}$, let $\widetilde{\mathcal{C}}_T$ denote the edge-coloring of T, i.e. $\widetilde{\mathcal{C}}_T(e)$ is the color of edge e in T.

Bijection ϕ

We define a mapping $\phi : \widetilde{\mathcal{C}}_{n,k} \to \mathcal{P}_{n,k}$ through the following steps:

• Set $T_0 := T$.

- For any $i, 1 \leq i \leq n-1$, assuming that T_{i-1} is defined already, define a_i, b_i, c_i and T_i : b_i is the largest leaf in T_{i-1}, a_i is the vertex adjacent to b_i, T_i is the tree obtained by removing the vertex b_i and the edge $\{a_i, b_i\}$ from T_{i-1} , and $c_i = \widetilde{C}_T(\{a_i, b_i\})$.
- Define $\phi(T)$ by

$$\phi(T) = \begin{pmatrix} a_1 & a_2 & \cdots & a_{n-2} & 1 \\ c_1 & c_2 & \cdots & c_{n-2} & c_{n-1} \end{pmatrix}$$

Note that the first row of $\phi(T)$ is the Prüfer code of T, so ϕ is one-to-one.

Clearly, the first n-2 columns of $\phi(T)$ are distinct, and $c_i \in [k-1]$ for $1 \le i \le n-2$, $c_{n-1} \in [k]$. So $\phi(T)$ is an element in $\mathcal{P}_{n,k}$.

Bijection ψ

We now define a mapping $\psi : \mathcal{P}_{n,k} \to \widetilde{\mathcal{C}}_{n,k}$, which is the inverse of ϕ . Let σ be an element in $\mathcal{P}_{n,k}$:

$$\sigma = \left(\begin{array}{cccc} a_1 & a_2 & \cdots & a_{n-2} & 1 \\ c_1 & c_2 & \cdots & c_{n-2} & c_{n-1} \end{array}\right).$$

We construct, by the following algorithm, a labelled tree whose Prüfer code is the first row of σ , with an edge-coloring \widetilde{C}_T :

- Let $V = \{1\}$ and $E = \emptyset$.
- For each i from n-2 to 1,
 - if $a_i \notin V$, then set $b_{i+1} = a_i$,
 - otherwise set $b_{i+1} = \min\{x : x \in [n] \setminus V\};$
 - set $V := V \cup \{b_{i+1}\}$ and $E := E \cup \{\{a_{i+1}, b_{i+1}\}\}.$
- Let b_1 be the unique element in $[n] \setminus V$.
- Finally, set $V := V \cup \{b_1\}$ and $E := E \cup \{\{a_1, b_1\}\}.$
- Let T be the tree with vertex set V and edge set E.
- Set $\tilde{C}_T(\{a_i, b_i\}) = c_i$ for $i \in [n-2]$ and $\tilde{C}_T(\{1, b_{n-1}\}) = c_{n-1}$.

Let $\psi(\sigma)$ be the resulting tree with edge-coloring \widetilde{C}_T . Clearly $\psi(\sigma)$ is in $\widetilde{C}_{n,k}$ and ψ is the inverse of ϕ . So we have the following.

Lemma 4. The mapping $\phi : \widetilde{\mathcal{C}}_{n,k} \to \mathcal{P}_{n,k}$ is a bijection and thus the cardinality of $\widetilde{\mathcal{C}}_{n,k}$ is

$$k(n-2)! \left(\begin{array}{c} nk-n\\ n-2 \end{array}\right).$$

Main result

We now define a mapping Δ from $\mathcal{C}_{n,k}$ to $\widetilde{\mathcal{C}}_{n,k}$. For any $T \in \mathcal{C}_{n,k}$, define $\widetilde{\mathcal{C}}_T : E(T) \to [k]$ as follows:

- Let x be the smallest neighbor of 1 and α denote edge $\{1, x\}$. Set $\widetilde{C}_T(\alpha) = C_T(\alpha)$.
- Assume that C
 _T(f) is defined for all edges f such that d(α, f) < i. For an edge g with d(α, g) = i, let h be the unique edge such that d(α, h) = i − 1 and d(h, g) = 1. Define C
 _T(g) by

$$\widetilde{C}_T(g) = \begin{cases} C_T(g), & \text{if } C_T(g) \le \widetilde{C}_T(h), \\ C_T(g) - 1, & \text{otherwise.} \end{cases}$$

Note that $\widetilde{C}_T(f) \leq k-1$ for all $f \neq \alpha$. Let $\Delta(T)$ be the tree T with its edge-coloring C_T replaced by \widetilde{C}_T . Clearly $\Delta(T)$ is an element in $\widetilde{C}_{n,k}$.

We next define a mapping Λ from $\widetilde{\mathcal{C}}_{n,k}$ to $\mathcal{C}_{n,k}$. For any $T \in \widetilde{\mathcal{C}}_{n,k}$, define $C_T : E(T) \to [k]$ as follows:

- Let x be the smallest neighbor of 1 and α denote the edge $\{1, x\}$. Set $C_T(\alpha) = \widetilde{C}_T(\alpha)$.
- Assume that $C_T(f)$ is defined for all edges f such that $d(\alpha, f) < i$. For an edge g with $d(\alpha, g) = i$, let h be the unique edge such that $d(\alpha, h) = i 1$ and d(h, g) = 1. Define $C_T(g)$ by

$$C_T(g) = \begin{cases} \widetilde{C}_T(g), & \text{if } \widetilde{C}_T(g) < C_T(h), \\ \widetilde{C}_T(g) + 1, & \text{otherwise.} \end{cases}$$

Note that $C_T(f) \leq k$ for all f and no pair of two edges with a common vertex have the same color. Let $\Lambda(T)$ be the tree T with its edge-coloring \widetilde{C}_T replaced by C_T . Clearly $\Lambda(T)$ is an element in $\mathcal{C}_{n,k}$.

Clearly, Λ is the inverse of Δ . Hence we have the following crucial lemma:

Lemma 5. The mapping $\Delta : \mathcal{C}_{n,k} \to \widetilde{\mathcal{C}}_{n,k}$ is a bijection.

Example. A k-edge colored tree T in $C_{10,5}$ and its $\Delta(T)$ are in Figures 2 and 3. The edge $\{1,3\}$ is the root edge.

We can now count the number of the k-edge colored trees with n vertices. The following is the restatement of Theorem 1.

Theorem 6 (Main theorem). The number of k-edge colored trees on [n] is

$$k(n-2)! \left(\begin{array}{c} nk-n\\ n-2 \end{array}
ight).$$

Figure 2: A k-edge colored tree T in $C_{10,5}$

Figure 3: $\Delta(T)$ in $\widetilde{\mathcal{C}}_{10,5}$, i.e. T with \widetilde{C}_T

Proof. Since $\Delta : \mathcal{C}_{n,k} \to \widetilde{\mathcal{C}}_{n,k}$ and $\phi : \widetilde{\mathcal{C}}_{n,k} \to \mathcal{P}_{n,k}$ are bijections, it follows from Lemma 3 or 4.

The colored Prüfer codes can be used to count certain sets of labelled trees with edgecoloring. Recall that a k-edge colored tree is a labelled tree whose edges are colored from a set of k colors such that any two edges with a common vertex have different colors. We now consider slightly different edge-colorings of labelled trees.

Theorem 7. The number of different labelled trees with vertex set [n] whose edges are colored from a set of k colors in such a way that the color of each edge is different from that of its parent edge is

$$k(nk-n)^{n-2}.$$

Proof. Let T be a tree with the property in the statement. Following the steps for the definition of ϕ , we can obtain an array σ corresponding to T:

$$\sigma = \left(\begin{array}{cccc} a_1 & a_2 & \cdots & a_{n-2} & 1 \\ c_1 & c_2 & \cdots & c_{n-2} & c_{n-1} \end{array}\right).$$

There are k possible ways to choose the c_{n-1} . Next, the number of possible ways to choose the (n-2)-th column of σ is n(k-1), since the color of an edge is different from that of its parent edge. The *i*-th column of σ has always n(k-1) choices. Hence the number of such trees is $k(nk-n)^{n-2}$.

Note that the above theorem can be proved by using a generalization of Δ . The mapping Δ can be defined as long as the colors of children edges are different from that of their parent edge. Then the image of Δ of a tree considered in the theorem just satisfies that non-root edges are colored with [k-1], so that each of the first n-2 columns of its colored Prüfer code is an arbitrary element in $[n] \times [k-1]$.

Theorem 8. The number of different labelled trees with vertex set [n] whose edges are colored from a set of k colors in such a way that any pair of edges sharing a vertex with a common parent edge have distinct colors is

$$k(n-2)! \left(\begin{array}{c} nk\\ n-2 \end{array}\right).$$

Proof. Let T be a tree with the property in the statement. Following the steps for the definition of ϕ , we can obtain an array σ corresponding to T:

$$\sigma = \left(\begin{array}{cccc} a_1 & a_2 & \cdots & a_{n-2} & 1 \\ c_1 & c_2 & \cdots & c_{n-2} & c_{n-1} \end{array}\right).$$

There are k possible ways to choose c_{n-1} . Since the c_{n-2} may be identical with c_{n-1} , the number of possible ways to choose the (n-2)-th column of σ is nk. Since the *i*-th column of T is different from the columns from the (i + 1)-th to the (n - 2)-th for $1 \le i \le n - 3$, the number of possible ways to choose the *i*-th column decreases by 1 when *i* changes from n - 2 to 1. So the number of such trees is

$$k(nk)(nk-1)(nk-2)\cdots(nk-n+3) = k(n-2)!\binom{nk}{n-2}.$$

References

- J. H. van Lint and R. M. Wilson, A Course in Combinatorics, Cambridge University Press (1992).
- [2] R. P. Stanley, *Enumerative Combinatorics vol.* 2, Cambridge University Press (1999)