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COLORED PERMUTATIONS WITH

NO MONOCHROMATIC CYCLES

Dongsu Kim, Jang Soo Kim, and Seunghyun Seo

Abstract. An (n1, n2, . . . , nk)-colored permutation is a permutation of
n1 + n2 + · · · + nk in which 1, 2, . . . , n1 have color 1, and n1 + 1, n1 + 2,

. . . , n1 + n2 have color 2, and so on. We give a bijective proof of Stein-

hardt’s result: the number of colored permutations with no monochro-
matic cycles is equal to the number of permutations with no fixed points

after reordering the first n1 elements, the next n2 element, and so on, in

ascending order. We then find the generating function for colored per-
mutations with no monochromatic cycles. As an application we give a

new proof of the well known generating function for colored permutations

with no fixed colors, also known as multi-derangements.

1. Introduction

Let Sn denote the set of permutations of [n] := {1, 2, . . . , n}. Let π =
π1π2 · · ·πn be a permutation in Sn. An integer i ∈ [n] is called a fixed point of
π if πi = i. A derangement is a permutation with no fixed points. An integer
i ∈ [n− 1] is called a descent of π if πi > πi+1, and an ascent of π if πi < πi+1.
If the set of descents of π is equal to {1, 3, 5, . . . } ∩ [n− 1], then π is called an
alternating permutation. There are many interesting properties of alternating
permutations, see [10].

More generally, if B = {b1, b2, . . . , bn} is an n-set with b1 < b2 < · · · < bn,
a rearrangement σ = s1s2 · · · sn of elements of B is called a permutation of B.
Let SB denote the set of all permutations of B. The statistics ascent in SB
can be defined as in Sn, i.e., i is an ascent of σ if si < si+1.

In [9, Conjecture 6.3] Stanley conjectured that for n ≥ 2, the number of
alternating permutations of [2n] with maximum number of fixed points, which is
n, is equal to the number of derangements of [n]. This conjecture was proved by
Chapman and Williams [2]. Han and Xin [6, Theorem 1] generalized Stanley’s
conjecture by enumerating the number of permutations π ∈ Sn such that the
set of descents is J and the number of fixed points is n−|J |, which is the largest
possible, for any set J ∈ [n− 1]. They showed that this number is equal to the
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number of derangements with a certain condition on descents. They also found
a formula for the generating function for the number of such derangements. To
be more precise, we need some definitions.

Let NFiA(n1, n2, . . . , nk) (respectively NFiD(n1, n2, . . . , nk)) be the set of
permutations π = π1π2 · · ·πn of n = n1 + n2 + · · · + nk such that if π′ is the
permutation obtained from π by rearranging the first n1 elements π1π2 · · ·πn1

,
the next n2 elements πn1+1πn1+2 · · ·πn1+n2

, and so on, in ascending order
(respectively in descending order), then π′ has no fixed points. Here, NFiA
stands for No Fixed points in Ascending order and NFiD stands for No Fixed
points in Descending order. Note that |NFiD(n1, n2, . . . , nk)|/n1! · · ·nk! is the
number of derangements of [n] such that the first n1 elements are in ascending
order, the next n2 elements are in ascending order, and so on.

Using symmetric functions, Han and Xin [6, Theorem 9] showed that

(1)

∑
n1,n2,...,nk≥0

|NFiD(n1, n2, . . . , nk)|
xn1

1 xn2
2 · · ·x

nk
k

n1!n2! · · ·nk!

=
1

(1 + x1) · · · (1 + xk)(1− x1 − · · · − xk)
.

Eriksen, Freij, and Wästlund [3, Section 2] found a combinatorial proof of (1).
Steinhardt [12, Corollary 4.2] proved the following analogous result of (1):

(2)

∑
n1,n2,...,nk≥0

|NFiA(n1, n2, . . . , nk)|
xn1

1 xn2
2 · · ·x

nk
k

n1!n2! · · ·nk!

=
(1− x1) · · · (1− xk)

1− x1 − · · · − xk
.

In this paper we show that the left hand side of (2) has a natural inter-
pretation in terms of colored permutations defined below. The key idea is the
compositional formula for multivariate exponential generating functions.

An (n1, n2, . . . , nk)-colored permutation is a permutation in Sn1+n2+···+nk
such that 1, 2, . . . , n1 have color 1, and n1 + 1, n1 + 2, . . . , n1 + n2 have color
2, and so on. A cycle of an (n1, n2, . . . , nk)-colored permutation is called
monochromatic if the elements of the cycle have the same color. We denote by
NMCy(n1, n2, . . . , nk) the set of (n1, n2, . . . , nk)-colored permutations with no
monochromatic cycles (NMCy stands for No Monochromatic Cycles).

In Section 2 we show that

(3)

∑
n1,n2,...,nk≥0

|NMCy(n1, n2, . . . , nk)|
xn1

1 xn2
2 · · ·x

nk
k

n1!n2! · · ·nk!

=
(1− x1) . . . (1− xk)

1− x1 − · · · − xk
.

In fact we will show a more general formula using permutation statistics, see
Theorem 2.1.
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For an application of (3) we consider the set NFCo(n1, n2, . . . , nk) of
(n1, n2, . . . , nk)-colored permutations π such that i and πi have different colors
for every i. Here, NFCo stands for No Fixed Colors. Such permutations are
also called multi-derangements. By finding a simple relation between the gen-
erating functions for |NMCy(n1, n2, . . . , nk)| and |NFCo(n1, n2, . . . , nk)|, we
obtain a new proof of the following well known formula

(4)

∑
n1,n2,...,nk≥0

|NFCo(n1, n2, . . . , nk)|
xn1

1 xn2
2 · · ·x

nk
k

n1!n2! · · ·nk!

=
1

1− e2 − 2e3 − · · · − (k − 1)ek
,

where ei is the i-th elementary symmetric function on x1, x2, . . . , xk, which is
defined by

ei :=
∑

1≤j1<···<ji≤k

xj1 · · ·xji .

We will show a more general formula using permutation statistics, see Theo-
rem 3.1.

Note that by (2) and (3) we have

(5) |NFiA(n1, n2, . . . , nk)| = |NMCy(n1, n2, . . . , nk)|.
Steinhardt [12, Theorem 6.2] also proved (5) but his proof is not bijective, see
Remark 1. In Section 4 we give a bijective proof of (5).

2. The generating function for NMCy(n1, n2, . . . , nk)

For a permutation π = π1π2 . . . πn of [n], an excedance of π is an integer
i ∈ {1, 2, . . . , n} such that πi > i. We will denote by exc(π) and cyc(π) the
number of excedances of π and the number of cycles of π respectively. Define
a generating function for NMCy(n1, n2, . . . , nk) by

fNMCy(x1, x2, . . . , xk; y, z)

:=
∑

n1,n2,...,nk≥0

 ∑
π∈NMCy(n1,n2,...,nk)

yexc(π)zcyc(π)

 xn1
1 xn2

2 · · ·x
nk
k

n1!n2! · · ·nk!
.

In this section we show the following theorem.

Theorem 2.1. We have

fNMCy(x1, x2, . . . , xk; y, z)

=

(
(1− y)1−k

(
1− ye(1−y)x1

)
· · ·
(
1− ye(1−y)xk

)
1− ye(1−y)(x1+···+xk)

)z
.

Note that if y → 1 and z → 1 in Theorem 2.1, we obtain (3).
Recall that for a permutation π = π1π2 · · ·πn, an ascent of π is an integer

i ∈ {1, 2, . . . , n − 1} such that πi < πi+1. Let asc(π) denote the number of
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ascent of π. It is well known that the two statistics exc(π) and asc(π) are
equidistributed in Sn, see [11, Proposition 1.4.3]. Let An(y) be the Eulerian
polynomial defined by

An(y) :=
∑
π∈Sn

yexc(π) =
∑
π∈Sn

yasc(π).

We denote by Cn the set of n-cycles formed with 1, 2, . . . , n.

Lemma 2.2. We have

(6)
∑
n≥0

An(y)
xn

n!
=

(1− y)e(1−y)x

1− ye(1−y)x
,

(7)
∑
n≥1

(∑
π∈Cn

yexc(π)

)
xn

n!
= log

1− y
1− ye(1−y)x

.

Proof. Equation (6) is well known, see [11, Proposition 1.4.5]. For (7), observe
that if we write an n-cycle π ∈ Cn as π = (n, a1, a2, . . . , an−1) then exc(π) =
1 + asc(a1a2 · · · an−1). Thus we have∑

π∈Cn

yexc(π) =
∑

σ∈Sn−1

y1+asc(σ) = yAn−1(y).

Integrating both sides of (6) with respect to x, we obtain∑
n≥1

An−1(y)
xn

n!
=

1

y
log

1− y
1− ye(1−y)x

,

which finishes the proof of (7). �

We now prove Theorem 2.1.

Proof of Theorem 2.1. We claim that

(8)

∑
n≥0

Xn

n!

∑
n1+···+nk=n

(
n

n1, . . . , nk

)
xn1

1 . . . xnkk

∑
π∈NMCy(n1,n2,...,nk)

yexc(π)zcyc(π)

= exp

∑
n≥1

Xn

n!
((x1 + · · ·+ xk)n − xn1 − · · · − xnk )

∑
π∈Cn

yexc(π)z

 .

A k-colored permutation is a permutation in which every integer has color i for
some i = 1, 2, . . . , k. Then the left hand side of (8) is equal to

(9)
∑
n≥0

Xn

n!

∑
π: a k-colored permutation of [n]
with no monochromatic cycles

wt(π),

where

wt(π) =

k∏
i=1

x
(# elements of color i in π)
i yexc(π)zcyc(π).
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Since a k-colored permutation π is divided into cycles, by the exponential
formula [8, Corollary 5.1.6], (9) is equal to

exp

∑
n≥1

Xn

n!

∑
π: a k-colored cycle of [n]
with at least two colors

wt(π)

 ,

which is equal to the right hand side of (8).
Setting X = 1 in (8) and using (7), we get the desired formula. �

3. The generating function for NFCo(n1, n2, . . . , nk)

Define a generating function for NFCo(n1, n2, . . . , nk) by

fNFCo(x1, x2, . . . , xk; y, z)

:=
∑

n1,n2,...,nk≥0

 ∑
π∈NFCo(n1,n2,...,nk)

yexc(π)zcyc(π)

 xn1
1 xn2

2 · · ·x
nk
k

n1!n2! · · ·nk!
.

In this section we will prove the following theorem.

Theorem 3.1. We have

(10)
fNFCo(x1, x2, . . . , xk; y, z)

=
(
1− ye2 − (y + y2)e3 − · · · − (y + y2 + · · ·+ yk−1)ek

)−z
.

Askey and Ismail [1] showed (10) when z = 1 using MacMahon’s master the-
orem. Foata and Zeilberger [4] showed (10) when y = 1 using the β-extension
of MacMahon’s master theorem. Kim and Zeng [7] found a combinatorial
proof of (10) when z = 1. Zeng [13] showed (10) without restriction using
the β-extension of MacMahon’s master theorem. Zeng [14] proved (10) by
decomposing multi-derangements into “wave segments”.

We will show (10) by finding a relation between fNMCy(x1, x2, . . . , xk) and
fNFCo(x1, x2, . . . , xk). We need a multivariate analog of the compositional for-
mula [8, Theorem 5.1.4].

Let Π(n) be the set of partitions of {1, 2, . . . , n}. For µ ∈ Π(n), the number of
blocks of µ is denoted by |µ|. We use the convention that the empty product is
1. For instance, if S = ∅, then

∏
i∈S g(i) = 1 for any function g. Lemma 3.2 is a

multivariate compositional formula. This can be shown by the same arguments
as in the proof of [8, Theorem 5.1.4].

Lemma 3.2 (A multivariate compositional formula). Suppose that

G(x1, x2, . . . , xk) =
∑

n1,n2,...,nk≥0

g(n1, n2, . . . , nk)
xn1

1 xn2
2 · · ·x

nk
k

n1!n2! · · ·nk!

is a multivariate formal power series, and for i = 1, 2, . . . , k,

Fi(x) =
∑
n≥1

fi(n)
xn

n!
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is a formal power series. Let

H(x1, x2, . . . , xk) =
∑

n1,n2,...,nk≥0

h(n1, n2, . . . , nk)
xn1

1 xn2
2 · · ·x

nk
k

n1!n2! · · ·nk!

be the multivariate formal power series, where

h(n1, n2, . . . , nk) =
∑

µi∈Π(ni)
i=1,2,...,k

g(|µ1|, |µ2|, . . . , |µk|)
∏
B∈µi

i=1,2,...,k

fi(|B|).

Then we have

H(x1, x2, . . . , xk) = G(F1(x1), F2(x2), . . . , Fk(xk)).

Proposition 3.3. We have

(11)

fNMCy(x1, x2, . . . , xk; y, z)

= fNFCo

(
e(1−y)x1 − 1

1− ye(1−y)x1
, . . . ,

e(1−y)xk − 1

1− ye(1−y)xk
; y, z

)
,

(12)

fNFCo(x1, x2, . . . , xk; y, z)

= fNMCy

(
1

1− y
log

1 + x1

1 + yx1
, . . . ,

1

1− y
log

1 + xk
1 + yxk

; y, z

)
.

Proof. The second identity is obtained from the first one by substituting x′i =
e(1−y)xi−1
1−ye(1−y)xi , which is equivalent to xi = 1

1−y log
1+x′i
1+yx′i

. Thus it suffices to show

(11).
Let π ∈ NMCy(n1, n2, . . . , nk), and consider a cycle γ of π. Since π has

no monochromatic cycles, the cycle γ contains more than one colors. We split
γ into intervals, σ1, σ2, . . . , σr, in such a way that γ is the concatenation of
σ1, σ2, . . . , σr, and each σi is monochromatic, and for each i the color of σi dif-
fers from that of σi+1 with convention σr+1 = σ1. We call each σi a maximal
monochromatic interval in γ, and regard it, being a sequence of distinct inte-
gers, as a permutation of its elements. Then γ can be regarded as an r-cycle
(σ1, σ2, . . . , σr) of permutations σ1, σ2, . . . , σr.

We now identify γ with the pair (T, τ), where T = {σ1, σ2, . . . , σr} is the
set of maximal monochromatic intervals defined above and τ is the r-cycle
(σ1, σ2, . . . , σr). It is easy to see that

(13) exc(γ) = exc(τ) +

r∑
i=1

asc(σi),

where exc(τ) is defined based on the linear order on σ1, . . . , σr by σi > σj if
the first element of σi is bigger than that of σj .

Let {γ1, γ2, . . . , γm} be the set of disjoint cycles of π ∈ NMCy(n1, n2, . . . , nk),
where each γi is identified with (Ti, τi). Then {τ1, τ2, . . . , τm}, regarded as a
disjoint cycle decomposition, is a permutation of T1 ∪ T2 ∪ · · · ∪ Tm.

Thus we can identify π as a pair (U, ρ) satisfying the following:
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• U := T1 ∪ T2 ∪ · · · ∪ Tm is the set of all monochromatic permutations,
i.e., maximal monochromatic intervals from disjoint cycles of π,
• every element j ∈ [n1 + · · ·+ nk] appears in exactly one σ in U and
• ρ := {τ1, τ2, . . . , τm} is a permutation of U such that σ and ρ(σ) have

different colors for every σ ∈ U , i.e., ρ is a permutation of no fixed
color.

Clearly cyc(π) = cyc(ρ). Also, from (13), we get

exc(π) = exc(ρ) +
∑
σ∈U

asc(σ).

Thus we have∑
π∈NMCy(n1,n2,...,nk)

yexc(π)zcyc(π)

=
∑

µi∈Π(ni)
i=1,2,...,k

 ∑
ρ∈NFCo(|µ1|,|µ2|,...,|µk|)

yexc(ρ)zcyc(ρ)

 ∏
B∈µi

i=1,2,...,k

∑
σ∈SB

yasc(σ).

Since ∑
σ∈SB

yasc(σ) =
∑

σ∈S|B|

yasc(σ),

by Lemma 3.2 and (6), we obtain (11). �

We are ready to give a new proof of Theorem 3.1.

Proof of Theorem 3.1. By Proposition 3.3 and Theorem 2.1 we have

fNFCo(x1, x2, . . . , xk; y, z)

= fNMCy

(
1

1− y
log

1 + x1

1 + yx1
, . . . ,

1

1− y
log

1 + xk
1 + yxk

; y, z

)

=

(1− y)1−k

∏k
i=1

(
1− y exp

[
(1− y) 1

1−y log 1+xi
1+yxi

])
1− y exp

[
(1− y)

∑k
i=1

1
1−y log 1+xi

1+yxi

]
z

=

(
1− y∏k

i=1(1 + yxi)− y
∏k
i=1(1 + xi)

)z
.

Using the fact
k∏
i=1

(1 + xiy) =

k∑
i=0

eiy
i,

one can easily see that

k∏
i=1

(1 + xiy)− y
k∏
i=1

(1 + xi)

= (1− y)
(
1− ye2 − (y + y2)e3 − · · · − (y + y2 + · · ·+ yk−1)ek

)
.
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Thus we get

fNFCo(x1, x2, . . . , xk; y, z)

=
(
1− ye2 − (y + y2)e3 − · · · − (y + y2 + · · ·+ yk−1)ek

)−z
,

which completes the proof. �

4. Bijections

In this section we give a bijective proof of (5). We will follow Steinhardt’s
approach [12] using Gessel and Reutenauer’s map.

Let A(n1, n2, . . . , nk) be the set of derangements π = π1π2 · · ·πn of n =
n1 + n2 + · · ·+ nk such that each of the k intervals

π1π2 . . . πn1
, πn1+1πn1+2 . . . πn1+n2

, and so on,

is in ascending order. Note that we can consider NFiA(n1, n2, . . . , nk) as the
set A(n1, n2, . . . , nk)× Sn1

× · · · × Snk .
For example, let (n1, n2, . . . , nk) = (8, 5, 1) and

π = | 8 7 9 12 6 5 11 10 | 2 3 4 1 14 | 13 | ∈ NFiA(n1, n2, . . . , nk),

where we put a bar ‘|’ between πn1+···+ni and πn1+···+ni+1 for each i = 1, 2, . . . ,
k − 1, and at the beginning and at the end for visibility. Then π′ is the per-
mutation obtained from π by rearranging the integers between two consecutive
bars in ascending order:

(14) π′ = | 5 6 7 8 9 10 11 12 | 1 2 3 4 14 | 13 | ∈ A(n1, n2, . . . , nk).

We divide π into the k subwords of lengths n1, n2, . . . , nk and then consider
them as permutations in Sn1

, Sn2
, . . . , Snk to get σ1, σ2, . . . , σk:

8 7 9 12 6 5 11 10 ∼= 4 3 5 8 2 1 7 6 = σ1,

2 3 4 1 14 ∼= 2 3 4 1 5 = σ2,

z = 13 ∼= 1 = σ3.

Here, for two words u = u1 · · ·un and v = v1 · · · vn of integers, we write u ∼= v
if ui < uj implies vi < vj and vice versa for all i, j. Then we identify π with
(π′, σ1, σ2, . . . , σk).

We now review Gessel and Reutenauer’s map [5].
A necklace is a cycle of integers with possible repetitions. An ornament

is a multiset of necklaces. Let Ω(n1, n2, . . . , nk) denote the set of ornaments
ω such that i appears ni times in the necklaces of ω for each i. Let η =
(b1, b2, . . . , bm) be a necklace. Define bi for all integers i so that bi = bj if
i ≡ j mod m. A period of η is an integer d such that bi+d = bi for all i. We
say that η is r-repeating if r = m/d, where d is the smallest period of η. A
primitive necklace is a 1-repeating necklace. An ornament is called primitive if
all of its necklaces are primitive. Let Ω0(n1, n2, . . . , nk) be the set of primitive
ornaments in Ω(n1, n2, . . . , nk) with no necklaces containing only one element.
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For a permutation π, we define φn1,n2,...,nk(π) ∈ Ω(n1, n2, . . . , nk) to be the
ornament obtained from the cycles of π by replacing j with i if

n1 + · · ·+ ni−1 + 1 ≤ j ≤ n1 + · · ·+ ni−1 + ni

for all j ∈ [n]. In other words, φn1,n2,...,nk(π) is the ornament obtained from
the cycles of π by replacing each element with its color. For example, the
permutation π′ in (14) has the cycles

(1, 5, 9), (2, 6, 10), (3, 7, 11), (4, 8, 12), (13, 14).

Thus the image of π′ under this map is

(15) φ8,5,1(π′) = {(1, 1, 2), (1, 1, 2), (1, 1, 2), (1, 1, 2), (2, 3)}.

Proposition 4.1 ([5, Lemma 3.4]). The map φn1,n2,...,nk is a bijection between
A(n1, n2, . . . , nk) and Ω0(n1, n2, . . . , nk).

By Proposition 4.1, (5) is equivalent to

(16) n1!n2! . . . nk!|Ω0(n1, n2, . . . , nk)| = |NMCy(n1, n2, . . . , nk)|.

Remark 1. In the sketch of proof of [12, Theorem 6.2] Steinhardt states (16)
without explanation. However, (16) is nontrivial since NMCy(n1, n2, . . . , nk)
has no obvious symmetries giving the factor n1!n2! · · ·nk!.

We will give a bijective proof of (16). We define the map

ψ : Ω0(n1, n2, . . . , nk)× Sn1
× · · · × Snk → NMCy(n1, n2, . . . , nk)

as follows.

(1) Let (ω, σ1, . . . , σk) ∈ Ω0(n1, n2, . . . , nk)×Sn1×· · ·×Snk . Any necklace
in ω can be represented by the word that is the smallest in lexicographic
order among the words read from it. Let γ1, . . . , γm be the sequence of
words obtained by reading the necklaces in ω such that each γi is the
smallest word which makes the corresponding necklace and γ1 ≤ · · · ≤
γm in lexicographic order.

(2) For a permutation σ and an integer j, let σ+j denote the word obtained
from σ by increasing each integer by j. For 1 ≤ i ≤ k, let σ′i =
σi + (n1 + · · ·+ ni−1), where n0 = 0.

(3) Note that, for each i, the integer i appears ni times in γ1, . . . , γm.
Let ρ1, . . . , ρm be the sequence of words obtained from the sequence
γ1, . . . , γm by replacing the ni i’s with the elements of σ′i for 1 ≤ i ≤ k.
More precisely, the j-th occurrence of i is replaced with the element in
the j-th position in σ′i.

(4) Let S ⊂ [m] be a maximal set subject to γi = γj for all i, j ∈ S. Then
S = {s+1, s+2, . . . , s+r} for some integers s and r. Let τ = τ1 · · · τr ∈
Sr be the permutation such that τi < τj if and only if ρs+i < ρs+j in
lexicographic order. In this case we say that τ and ρs+1, . . . , ρs+r are
order-isomorphic. Let CS be the set of cycles obtained from the cycles
of τ by replacing τi with ρsi for all i. We define ψ(ω, σ1, . . . , σk) to be
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the permutation whose cycles are the elements of the union of CS for
all S.

Example 1. Let (n1, n2, . . . , nk) = (8, 5, 1). Let

ω = {(1, 1, 2), (1, 1, 2), (1, 1, 2), (1, 1, 2), (2, 3)}

be the ornament in (15) and σ1 = 43582176, σ2 = 23415 and σ3 = 1 as before.
Note that

(17) γ1, . . . , γ5 = 112, 112, 112, 112, 23,

and

σ′1 = σ1 = 4 3 5 8 2 1 7 6,

σ′2 = σ2 + n1 = 10 11 12 9 13,

σ′3 = σ3 + (n1 + n2) = 14.

By replacing the eight 1’s with σ′1, the five 2’s with σ′2, and the one 3 with σ′3
in (17), we have

ρ1, . . . , ρ5 = 4 3 10, 5 8 11, 2 1 12, 7 6 9, 13 14,

where the elements of σ′1 are written in bold face. Since γ1 = · · · = γ4, we
consider ρ1, . . . , ρ4 which is order-isomorphic to 2314 = (123)(4) ∈ S4. Thus
we construct the cycles

(ρ1, ρ2, ρ3) = (4, 3, 10, 5, 8, 11, 2, 1, 12), (ρ4) = (7, 6, 9).

Thus,

ψ(ω, σ1, σ2, σ3) = (4, 3, 10, 5, 8, 11, 2, 1, 12)(7, 6, 9)(13, 14).

Theorem 4.2. The map

ψ : Ω0(n1, n2, . . . , nk)× Sn1
× · · · × Snk → NMCy(n1, n2, . . . , nk)

is a bijection.

Proof. We will show this theorem by constructing the inverse map of ψ.
Let π ∈ NMCy(n1, n2, . . . , nk). We define a map π 7→ (ω, σ1, . . . , σk) as

follows.

(1) Let H be the set of words γ on {1, 2, . . . , k} such that

• φn1,n2,...,nk(π) contains the necklace (

j︷ ︸︸ ︷
γ, . . . , γ) for some integer

j ≥ 1,
• (γ) is primitive and γ is the smallest word among all of its cyclic

shifts in lexicographic order,
where we regard a word γ as a sequence of integers in the natural way.
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(2) For γ ∈ H, we define Tγ to be the set of all words ρ satisfying that ρ is
a consecutive subsequence in some cycle of π and φn1,n2,...,nk(ρ) = γ.
Here, φn1,n2,...,nk(ρ) denotes the word obtained from ρ by replacing
each number in ρ, say j, with i if

n1 + · · ·+ ni−1 + 1 ≤ j ≤ n1 + · · ·+ ni−1 + ni.

(3) For γ ∈ H, let

ργ1 < ργ2 < · · · < ργmγ
be the elements of Tγ ordered by lexicographic order. Consider the
cycles of π containing the words in Tγ as consecutive subsequences. In
these cycles, if we replace the consecutive subsequence which forms ργi
by i for each i, we obtain cycles consisting of 1, 2, . . . ,mγ . The resulting
cycles form a permutation, which we denote by

τγ = τγ1 τ
γ
2 · · · τγmγ .

Then we define Wγ to be the sequence of the elements in Tγ according
to the permutation τγ , that is,

Wγ = ργ
τγ1
, ργ
τγ2
, . . . , ργ

τγmγ
.

(4) Let

W = ρ1, ρ2, . . . , ρm

be the concatenation of the sequence Wγ for all γ ∈ H where we start
with the lexicographically smallest γ and proceed with the next smallest
one, and so on.

(5) We now define ω to be the ornament {(γ1), . . . , (γm)} where γi =
φn1,n2,...,nk(ρi). Here, we consider γi as a sequence of integers as before.

(6) For 1 ≤ i ≤ k, we define σi to be the permutation in Sni which is
order-isomorphic to the word obtained from W by taking the integers
from n1 + · · ·+ ni−1 + 1 to n1 + · · ·+ ni−1 + ni.

It is easy to see that π 7→ (ω, σ1, . . . , σk) is the inverse map of ψ. �

Combining φn1,n2,...,nk and ψ, we obtain a bijective proof of (5).

Example 2. Let (n1, n2, . . . , nk) = (8, 5, 1) and consider

π = (4, 3, 10, 5, 8, 11, 2, 1, 12)(7, 6, 9)(13, 14) ∈ NMCy(n1, n2, . . . , nk).

The map π 7→ (ω, σ1, . . . , σk) in the proof of Theorem 4.2 is constructed as
follows. Since

φn1,n2,...,nk(π) = (1, 1, 2, 1, 1, 2, 1, 1, 2)(1, 1, 2)(2, 3) ∈ NMCy(n1, n2, . . . , nk),

we have H = {112, 23},

T112 = {ρ112
1 = 2 1 12, ρ112

2 = 4 3 10, ρ112
3 = 5 8 11, ρ112

4 = 7 6 9},

T23 = {13 14}.
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The cycles of π containing the elements in T112 are

(4, 3, 10, 5, 8, 11, 2, 1, 12), (7, 6, 9).

If we replace the consecutive subsequences “2,1,12”, “4,3,10”, “5,8,11”, “7,6,9”
with 1, 2, 3, 4 respectively in these cycles, we obtain (2, 3, 1) = (1, 2, 3) and (4).
Thus

τ112 = (1, 2, 3)(4) = 2314,

and

W112 = ρ112
2 , ρ112

3 , ρ112
1 , ρ112

4 = 4 3 10, 5 8 11, 2 1 12, 7 6 9.

Similarly, we have τ23 = (1) = 1 and W23 = 13 14. Thus,

W = W112,W23 = 4 3 10, 5 8 11, 2 1 12, 7 6 9, 13 14.

Finally we obtain that

ω = {(1, 1, 2), (1, 1, 2), (1, 1, 2), (1, 1, 2), (2, 3)}

and σ1 = 43582176, σ2 = 23415 and σ3 = 1.

5. Final remarks

As NFiA(n1, n2, . . . , nk) has a counterpart NMCy(n1, n2, . . . , nk), the set
NFiD(n1, n2, . . . , nk) has a combinatorial counterpart as follows.

Let EMCy(n1, n2, . . . , nk) be the set of (n1, n2, . . . , nk)-colored permutations
in which the sum of the lengths of the monochromatic cycles of each color is
even (EMCy stands for Evenly Monochromatic Cycles). Using the exponential
formula, one can show that

(18)

∑
n1,n2,...,nk≥0

|EMCy(n1, n2, . . . , nk)|
xn1

1 xn2
2 · · ·x

nk
k

n1!n2! · · ·nk!

=
1

(1 + x1) . . . (1 + xk)(1− x1 − · · · − xk)
.

Thus from (1) and (18) we get

(19) |NFiD(n1, n2, . . . , nk)| = |EMCy(n1, n2, . . . , nk)|.

We can also prove (19) bijectively, by using the same idea as in Theorem 4.2.
It will be interesting to find a refinement of (18) which is analogous to

Theorem 2.1.
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