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1. Background

Gradient descent (GD) and strict saddle

o GD: xp11 = a1 — nVf(xk)

@ Strict saddle point: its Hessian V2 f(x) has a strictly negative eigenvalue

@ By stable manifold theorem, for any strict saddle &, GD satisfies?
P(liin:ck =z)=0.

If GD converges, then it is almost surely not a strict saddle point.

1Lee, Simchowitz, Jordan and Recht, Gradient descent only converges to minimizers,
COLT, 2016.
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1. Background

Minimax and gradient descent ascent (GDA)

@ Minimax optimization:

minmax f(x,y)
z oy

e GDA:
11 =Tk — NVaf(Tr, Yr)
Yet1 = Yk + 1V f(Tk, Yr)
o Let z:= (x,y) and F := (Vo f, =V f):

Zk+1 = Rk — ﬁF(Zk)
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1. Background

Standard optimality in minimax optimization

@ Nash equilibrium:

f(@e,y) < flza,ys) < f(z,ys), Vo, .
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1. Background

Standard optimality in minimax optimization

@ Nash equilibrium:

f(@e,y) < flza,ys) < f(z,ys), Vo, .

@ Local Nash equilibrium:
f(@e,y) < f(xs,ys) < f(,y+), Va,y in a neighborhood of (z.,y.).
@ Second-order necessary condition:

Vf(z)=0, Vi,f(z)=0, and Vi f(z.)=0
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1. Background

Standard optimality in minimax optimization

@ Nash equilibrium:

f(@e,y) < flza,ys) < f(z,ys), Vo, .

@ Local Nash equilibrium:
f(@e,y) < f(xs,ys) < f(,y+), Va,y in a neighborhood of (z.,y.).
@ Second-order necessary condition:

Vf(z)=0, Vi,f(z)=0, and Vi f(z.)=0

@ Strict non-Nash point: (analogous to strict saddle)
at least one of V2 f(2) or =V}, f(z) has a strictly negative eigenvalue
(Are we done?)
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1. Background

GDA can converge to non-Nash points

@ Stability of a dynamic @41 = w(xy) is determined by its Jacobian Dw.
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1. Background

GDA can converge to non-Nash points

@ Stability of a dynamic @41 = w(xy) is determined by its Jacobian Dw.

e GD: x4 = wi(xk) = xx — NV f(xzr), Dw; =1I—nV>3f
GDA: zp11 = wa(zg) = zx — nF(2z1), Dws =1 —-nDF
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1. Background

GDA can converge to non-Nash points

@ Stability of a dynamic @41 = w(xy) is determined by its Jacobian Dw.

e GD: x4 = wi(xk) = xx — NV f(xzr), Dw; =1I—nV>3f
GDA: zp11 = wa(zg) = zx — nF(2z1), Dws =1 —-nDF

@ GD almost surely escapes strict saddle, while

GDA has no such guarantee?, since

v2 f VZ f
DF = T Ty

has no direct connection to VZ_ f and Vflyf in general.

?Daskalakis and Panageas, The limit points of (optimistic) gradient descent in min-max
optimization, NeurlPS, 2018.
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2. Strict Non-Optimality in Minimax Optimization

Stackelberg equilibrium

@ Nash may not even exist.3* Any broader alternative?

3Jin, Netrapalli and Jordan, What is local optimality in nonconvex-nonconcave minimax
optimization?, ICML, 2020.
4Farnia and Ozdaglar, Do GANs always have Nash equilibria?, ICML, 2020.
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2. Strict Non-Optimality in Minimax Optimization

Stackelberg equilibrium

@ Nash may not even exist.3* Any broader alternative?

@ Stackelberg equilibrium:

[, y) < flxa,ys) < g}gf(m,y’), V(z,y) € X x Y

3Jin, Netrapalli and Jordan, What is local optimality in nonconvex-nonconcave minimax
optimization?, ICML, 2020.
4Farnia and Ozdaglar, Do GANs always have Nash equilibria?, ICML, 2020.
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2. Strict Non-Optimality in Minimax Optimization

Stackelberg equilibrium

@ Nash may not even exist.3* Any broader alternative?

@ Stackelberg equilibrium:

[, y) < flxa,ys) < g}gf(m,y’), V(z,y) € X x Y

A point (x*,y*) is said to be a local minimax point if there exists §y > 0
and a function h satisfying h(0) — 0 as 6 — 0 such that, for any ¢ € (0, o]
and any (x,y) satisfying || — x.|| < d and ||y — y«|| < J, we have

T, Y) < f(Th,ys) < max z,y).
f(@,y) < fl@a,ys) y,:”y_y*‘lgh(é)f( y')

3Jin, Netrapalli and Jordan, What is local optimality in nonconvex-nonconcave minimax
optimization?, ICML, 2020.

4Farnia and Ozdaglar, Do GANs always have Nash equilibria?, ICML, 2020.
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2. Strict Non-Optimality in Minimax Optimization

Loose second-order necessary condition

@ Second-order necessary condition: (Jin-Netrapalli-Jordan, ICML, '20)
_ 2
Vf(z*) - 03 vyyf(z*) j 07

and if V3, f(z.) < 0, then in addition,

Schur complement of DF

(Loose when V2 f(z.) is not invertible...)
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2. Strict Non-Optimality in Minimax Optimization

Restricted Schur Complement

@ By similarity transform, we may assume that Viyf is diagonal such that

Vasf Vayf
B :

DF = :
_Vzwf ............. ............

o Let I' be the submatrix in the shaded part above.
@ Let U be a matrix whose columns form an orthonormal basis of R(T') .

Sies =U T (V2,f =V, f(Va,)Vif) U

(Generalized Schur complement of DF)=:S

Chae-Kim-K., Two-timescale extragradient for finding local minimax points, ICLR, 2024.
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2. Strict Non-Optimality in Minimax Optimization

Improved necessary condition and strict non-minimax point

Syes = 0 if and only if v Sv > 0 for any v € RU),
or equivalently, for any (V2. f)v € R(V2, f)

v
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2. Strict Non-Optimality in Minimax Optimization

Improved necessary condition and strict non-minimax point

Sies = 0 if and only if v Sv > 0 for any v € R(U),
or equivalently, for any (V. f)v € R(V2,, f).

Any local minimax point satisfies V2 yf(2) 20 and if h(0) satisfies
lim sups_, (o) < 00, ? then Sies(z) = 0.

?Ma, Yao, Ye and Zhang, Calm local optimality for nonconvex-nonconcave minimax
problems, Set-Valued and Variational Analysis, 2025
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2. Strict Non-Optimality in Minimax Optimization

Improved necessary condition and strict non-minimax point

Sies = 0 if and only if v Sv > 0 for any v € R(U),
or equivalently, for any (V. f)v € R(V2,, f).

Any local minimax point satisfies V2yf(z) =0 and if h(0) satisfies
lim sups_, (o) < 00, ? then Sies(z) = 0.

?Ma, Yao, Ye and Zhang, Calm local optimality for nonconvex-nonconcave minimax
problems, Set-Valued and Variational Analysis, 2025

A stationary point z is said to be a strict non-minimax point if at least one
of Sies(2z) or —sz f(2) has a strictly negative eigenvalue.
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2. Two-Timescale Methods

Two-timescale GDA

o Two-timescale 7-GDA?® for 7 > 1:

Tpt1 = T — gvmf(mkvyk)v

Yrt1 = Yk + Vg f(Tr, Yr)

5Heusel, Ramsauer, Unterthiner, Nessler and Hochreiter, GANs trained by a two
time-scale update rule converge to a local Nash equilibrium, NeurlPS, 2017.
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2. Two-Timescale Methods

Two-timescale GDA

o Two-timescale 7-GDA?® for 7 > 1:

Tpt1 = T — gvmf(mkvyk)v

Yrt1 = Yk + Vg f(Tr, Yr)

@ In a compact form:

1
Zk+1 = 2k — nATF(zk)7 where A, = |:TI I:|

@ Two-timescaled Jacobian:

12 f 1y2 f]
A, DF = T_Tx T _2Y

(But why two-timescale?)

5Heusel, Ramsauer, Unterthiner, Nessler and Hochreiter, GANs trained by a two
time-scale update rule converge to a local Nash equilibrium, NeurlPS, 2017.
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2. Two-Timescale Methods

Spectrum of two-timescaled Jacobian

If V2, f is invertible, the d; + da complex eigenvalues {)\;} of A, DF have
one of the following asymptotics as € = % — 0+

A — eps| = ofe),
A — vl = o(1),

where {y1;} and {v;} are the eigenvalues of S and —V f, respectively.

(Invertibility of Vi, f is too restrictive.)
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2. Two-Timescale Methods

Spectrum of two-timescaled Jacobian (cont'd)

If at least one of S,.; and Vflyf is invertible, the di + ds complex
eigenvalues {\;} of A.DF have one of the following asymptotics as

1 :

€=z = 0+ (i) [N £iveo;| = o(Ve),
(i) | — enyl = ole),
(i) |\ — | = o(1),

where {o;} are the singular values of T", {y;} are the eigenvalues of S,cs, and
{v;} are the nonzero eigenvalues of -V f.

) Strict Non-Optimality in Minimax Optimization



2. Two-Timescale Methods

Spectrum of two-timescaled Jacobian (cont'd)

If at least one of S,.; and Vflyf is invertible, the di + ds complex
eigenvalues {\;} of A.DF have one of the following asymptotics as

1 :

€=z = 0+ (i) A £iveo;| = o(Ve),
(i) | — enyl = ole),
(i) |\ — | = o(1),

where {o;} are the singular values of T", {y;} are the eigenvalues of S,cs, and
{v;} are the nonzero eigenvalues of -V f.

)\(i) (F) GDA stable region

(type (i) makes GDA unstable)
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2. Two-Timescale Methods

Extragradient

o Extragradient (EG): zp11 = w(zg) = 25 — nF (2 — nF(2))

EG stable region
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2. Two-Timescale Methods

Extragradient

o 7-EG: zpy1 = w(zg) = 2z, — A F(z, — A\, F(zp))

A0 (e)

EG stable region
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2. Two-Timescale Methods

Extragradient

o 7-EG: zpy1 = w(zg) = 2z, — A F(z, — A\, F(zp))

) EG stable region
(i) N
AW (e) - .
¢ N
i SN
§ n _- ~o
(@) > \ ~
A0 () \
, ]
/ |
/ |
£ /
[ /
! 1
1
1
\
1 1
bl \ 7
r‘\ |
A |
{ \ 1
[ \ !
1 o ]
. ~ y _
i S -
N y
AN -7

@ Kyuwon Kim®, Wed 10:30am - 11:45am
(Alternating update + Chambolle-Pock extrapolation helps!)

6Kim-K., Double-step alternating extragradient with increasing timescale separation for
finding local minimax points: Provable improvements, ICML, 2024
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2. Two-Timescale Methods

Two-timescale method avoids strict non-minimax points

@ By the stable manifold theorem, if at least of one of S)es and Vflyf is
invertible, for any strict non-minimax point z, 7-EG satisfies
(Chae-Kim-K., ICLR '24)

P(lim z, = 2) = 0,

for sufficiently large 7

If -EG (and 7-GDA) converges to a point, then it is almost surely not a
strict non-minimax point.

(But 7-GDA also escapes some optimal points)
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4. Application: GAN

Generative models and GAN

@ Pyue and Py: True and generated data distributions

o Generative models aim to train 6 so that Py ue =~ Py.

@ GAN: minimizes the distance between them via minimax optimization
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4. Application: GAN

Woasserstein GAN

@ Wasserstein GAN”: minimizes the Wasserstein-1 distance

i WPruc,P = i f ]E ~ B
min W(Pirue, Po) I llle ==l

min (fﬁlr??fglzmm [/(@)] ~ Eone, [f(Z)]> |

0

7Arjovsky, Chintala and Bottou, Wasserstein generative adversarial networks, ICML, 2017
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4. Application: GAN

Woasserstein GAN

@ Wasserstein GAN”: minimizes the Wasserstein-1 distance

i WPruc,P = i f ]E ~ B
min W(Pirue, Po) I llle ==l

min (fﬁlr??fglzmm [/(@)] ~ Eone, [f(Z)]> |

0

@ Since this is informative even when P, and Py have disjoint supports,
it is considered well-suited for gradient-based training.

7Arjovsky, Chintala and Bottou, Wasserstein generative adversarial networks, ICML, 2017
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4. Application: GAN

Woasserstein GAN

@ Wasserstein GAN”: minimizes the Wasserstein-1 distance

i WPruc,P = i f ]E ~ B
min W(Pirue, Po) I llle ==l

- (NrﬁfglEmm [/(@)] ~ Eone, [f(Z)]> |

@ Since this is informative even when P, and Py have disjoint supports,
it is considered well-suited for gradient-based training.

@ Yet enforcing the constraint required heuristics, and optimization
remained difficult, leading the community to favor diffusion models for
their stable training.

7Arjovsky, Chintala and Bottou, Wasserstein generative adversarial networks, ICML, 2017
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4. Application: GAN

Woasserstein GAN

@ Wasserstein GAN”: minimizes the Wasserstein-1 distance

i WPrucaP = i f E ~ B
min W(Pirue, Po) I llle ==l

min (fﬁlr??fglxmm [/(@)] ~ Eone, [f(Z)]> |

0

@ Since this is informative even when P, and Py have disjoint supports,
it is considered well-suited for gradient-based training.

@ Yet enforcing the constraint required heuristics, and optimization
remained difficult, leading the community to favor diffusion models for
their stable training.

@ Avoidance in constrained problem?: projected GD may converge to a
strict saddle even when there is only a single linear constraint.®

7Arjovsky, Chintala and Bottou, Wasserstein generative adversarial networks, ICML, 2017
8Nouiehed, Lee and Razaviyayn, Convergence to second-order stationarity for constrained
non-convex optimization, arXiv, 2018.
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4. Application: GAN

Jensen-Shannon GAN

e Original GAN®: minimizes the Jensen-Shannon (JS) divergence:

]Ptrue + P@) + %KL (PQHPtrue + PO) 7

1
JS(PtrueaPG) = §KL <Ptrue 9 D)

which is
0 (238 Prne, Fo) — 21082) = 0 (0 B /()] ~ Eune, 1 (2)])

where [(t) = log(1 + exp(—t)) is the logistic loss.

9Goodfellow et al., Generative adversarial nets, NeurlPS, 2014.
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4. Application: GAN
Jensen-Shannon GAN

e Original GAN®: minimizes the Jensen-Shannon (JS) divergence:

I[Dtrue + P@) + %KL (PQHPtrue + PO) 7

1
JS(PtrueaPG) = §KL <Ptrue 9 D)

which is
min (205(Brrue. B) — 210g2) = min (m?x Eppon [ ()] — B, [l(f(Z))])
where [(t) = log(1 + exp(—t)) is the logistic loss.

@ This is unconstrained, but suffers from a vanishing gradient issue,
since for each 6, near-optimal f stays in the tail of the logistic loss.

9Goodfellow et al., Generative adversarial nets, NeurlPS, 2014.
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4. Application: GAN

Jensen-Shannon GAN

o Can we design a loss (or distance) that mitigates vanishing gradients
without imposing constraints?

Donghwan Kim (KAIST) Strict Non-Optimality in Minimax Optimization



4. Application: GAN

Zero-Infinity GAN

@ Zero-Infinity distance:

0, Ptrue = Pf)a

ZI(P rue Py) = .
(P: 0) o0, otherwise.

Donghwan Kim (KAIST) Strict Non-Optimality in Minimax Optimization



4. Application: GAN

Zero-Infinity GAN

@ Zero-Infinity distance:

0, Ptrue = Pf)a

Z1(Pyrue, Py) = .
(P: 0) o0, otherwise.

e Zero-Infinity (ZI) GAN:10 (= WGAN w/o constraint)

i (B, By) = min (mgx Evpon [f(2)] — Eones [f(z)])

0L ee-K., Zero-Infinity GAN and implicit bias of extragradient (anchored at zero), 2025
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4. Application: GAN

Zero-Infinity GAN

@ Zero-Infinity distance:

0, Ptrue = Pf)a

o0, otherwise.

ZI(PtrueaP9> = {

e Zero-Infinity (ZI) GAN:10 (= WGAN w/o constraint)

i (B, By) = min (mgx Evpon [f(2)] — Eones [f(z)])

@ We argue that this least informative distance yields the simplest minimax
loss, one that is potentially solvable by gradient methods. (But... really?)

0L ee-K., Zero-Infinity GAN and implicit bias of extragradient (anchored at zero), 2025
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4. Application: GAN

Toy Example: Dirac GAN

e Consider the following simple setting:!!
True and generated data: 0 and 6 in R (Linear generator)
True and generated data distributions: Py, = g and Py = dg

Linear discriminator: f(z) = wa

1 Mescheder, Geiger and Nowozin. Which training methods for GANs do actually
converge?, ICML, 2018.
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4. Application: GAN
Toy Example: Dirac GAN

e Consider the following simple setting:!!
True and generated data: 0 and 6 in R (Linear generator)
True and generated data distributions: Py, = g and Py = dg

Linear discriminator: f(z) = wa

@ Dirac GAN:
min min —{(0) — I(—wb)

0 wew
W:i(t) = —t and W = {|w| < 1}
JS: I(t) = log(1 + exp(—t)) and W =R
ZI:l(t) =—-tand W=R (Unconstrained bilinear)

1 Mescheder, Geiger and Nowozin. Which training methods for GANs do actually
converge?, ICML, 2018.
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4. Application: GAN

Toy Example: Dirac GAN (cont'd)

Figure: EG trajectories for Dirac GAN: (L) JS divergence and (R) ZI distance
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4. Application: GAN

Strict Non-Optimality in Zero-Infinity GAN

@ We investigated the loss landscape of the ZIGAN for a linear generator
and a two-layer neural network discriminator f. (Lee-K., 2025)
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4. Application: GAN

Strict Non-Optimality in Zero-Infinity GAN

@ We investigated the loss landscape of the ZIGAN for a linear generator
and a two-layer neural network discriminator f. (Lee-K., 2025)

@ There are strict non-minimax points in ZIGAN, which two-timescale
methods (7-GDA and 7-EG) can almost surely escape.
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4. Application: GAN

Strict Non-Optimality in Zero-Infinity GAN

@ We investigated the loss landscape of the ZIGAN for a linear generator
and a two-layer neural network discriminator f. (Lee-K., 2025)

@ There are strict non-minimax points in ZIGAN, which two-timescale
methods (7-GDA and 7-EG) can almost surely escape.

o 7-GDA vs. 7-EG?: the latter locally converges to global solutions, while
the former does not.
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4. Application: GAN

Conclusion

1. We defined a new strict non-optimality in minimax optimization, named
strict non-minimax points, which the two-timescale gradient methods can
almost surely escape.

2. We introduced the Zero-Infinity (ZI) GAN that neither requires Lipschitz
contraint nor suffers from gradient vanishing.

3. We showed that the ZIGAN has strict non-minimax points.
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