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1. Background

Gradient descent (GD) and strict saddle

GD: xk+1 = xk − η∇f(xk)

Strict saddle point: its Hessian ∇2f(x) has a strictly negative eigenvalue

By stable manifold theorem, for any strict saddle x̃, GD satisfies1

P (lim
k

xk = x̃) = 0.

If GD converges, then it is almost surely not a strict saddle point.
1Lee, Simchowitz, Jordan and Recht, Gradient descent only converges to minimizers,

COLT, 2016.
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1. Background

Minimax and gradient descent ascent (GDA)

Minimax optimization:

min
x

max
y

f(x,y)

GDA:

xk+1 = xk − η∇xf(xk,yk)

yk+1 = yk + η∇yf(xk,yk)

Let z := (x,y) and F := (∇xf,−∇yf):

zk+1 = zk − ηF (zk)

Donghwan Kim (KAIST) Strict Non-Optimality in Minimax Optimization 2 / 21



1. Background

Standard optimality in minimax optimization

Nash equilibrium:

f(x∗,y) ≤ f(x∗,y∗) ≤ f(x,y∗), ∀x,y.

Local Nash equilibrium:

f(x∗,y) ≤ f(x∗,y∗) ≤ f(x,y∗), ∀x,y in a neighborhood of (x∗,y∗).

Second-order necessary condition:

∇f(z∗) = 0, ∇2
xxf(z∗) ⪰ 0, and ∇2

yyf(z∗) ⪯ 0

Strict non-Nash point: (analogous to strict saddle)

at least one of ∇2
xxf(z) or −∇2

yyf(z) has a strictly negative eigenvalue

(Are we done?)
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1. Background

GDA can converge to non-Nash points

Stability of a dynamic xk+1 = w(xk) is determined by its Jacobian Dw.

GD: xk+1 = w1(xk) = xk − η∇f(xk), Dw1 = I − η∇2f

GDA: zk+1 = w2(zk) = zk − ηF (zk), Dw2 = I − ηDF

GD almost surely escapes strict saddle, while

GDA has no such guarantee2, since

DF =

[
∇2

xxf ∇2
xyf

−∇2
yxf −∇2

yyf

]
has no direct connection to ∇2

xxf and ∇2
yyf in general.

2Daskalakis and Panageas, The limit points of (optimistic) gradient descent in min-max
optimization, NeurIPS, 2018.
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2. Strict Non-Optimality in Minimax Optimization

Stackelberg equilibrium

Nash may not even exist.34 Any broader alternative?

Stackelberg equilibrium:

f(x∗,y) ≤ f(x∗,y∗) ≤ max
y′∈Y

f(x,y′), ∀(x,y) ∈ X × Y

Definition 1 (Jin-Netrapalli-Jordan, ICML,’20)

A point (x∗,y∗) is said to be a local minimax point if there exists δ0 > 0
and a function h satisfying h(δ) → 0 as δ → 0 such that, for any δ ∈ (0, δ0]
and any (x,y) satisfying ∥x− x∗∥ ≤ δ and ∥y − y∗∥ ≤ δ, we have

f(x∗,y) ≤ f(x∗,y∗) ≤ max
y′ : ∥y′−y∗∥≤h(δ)

f(x,y′).

3Jin, Netrapalli and Jordan, What is local optimality in nonconvex-nonconcave minimax
optimization?, ICML, 2020.

4Farnia and Ozdaglar, Do GANs always have Nash equilibria?, ICML, 2020.
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2. Strict Non-Optimality in Minimax Optimization

Loose second-order necessary condition

Second-order necessary condition: (Jin-Netrapalli-Jordan, ICML, ’20)

∇f(z∗) = 0, ∇2
yyf(z∗) ⪯ 0,

and if ∇2
yyf(z∗) ≺ 0, then in addition,

S(z∗) := [∇2
xxf −∇2

xyf(∇2
yyf)

−1∇2
yxf︸ ︷︷ ︸

Schur complement of DF

](z∗) ⪰ 0

(Loose when ∇2
yyf(z∗) is not invertible...)
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2. Strict Non-Optimality in Minimax Optimization

Restricted Schur Complement
By similarity transform, we may assume that ∇2

yyf is diagonal such that

DF =



β1

. . .

βr

0
. . .

0

∇2
xxf ∇2

xyf

−∇2
yxf


Let Γ be the submatrix in the shaded part above.
Let U be a matrix whose columns form an orthonormal basis of R(Γ)⊤.

Definition 2 (Restricted Schur Complement, Chae-Kim-K., ICLR, ‘24)

Sres = U⊤ (∇2
xxf −∇2

xyf(∇2
yyf)

†∇2
yxf)︸ ︷︷ ︸

(Generalized Schur complement of DF )=:S

U

Chae-Kim-K., Two-timescale extragradient for finding local minimax points, ICLR, 2024.
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2. Strict Non-Optimality in Minimax Optimization

Improved necessary condition and strict non-minimax point

Proposition 1 (Chae-Kim-K., ICLR, ’24)

Sres ⪰ 0 if and only if v⊤Sv ≥ 0 for any v ∈ R(U),

or equivalently, for any (∇2
yxf)v ∈ R(∇2

yyf).

Proposition 2 (Second-order necessary, Chae-Kim-K., ICLR, ’24)

Any local minimax point satisfies ∇2
yyf(z) ⪯ 0 and if h(δ) satisfies

lim supδ→0+
h(δ)
δ < ∞, a then Sres(z) ⪰ 0.

aMa, Yao, Ye and Zhang, Calm local optimality for nonconvex-nonconcave minimax
problems, Set-Valued and Variational Analysis, 2025

Definition 3 (Chae-Kim-K., ICLR, ‘24)

A stationary point z is said to be a strict non-minimax point if at least one
of Sres(z) or −∇2

yyf(z) has a strictly negative eigenvalue.

Donghwan Kim (KAIST) Strict Non-Optimality in Minimax Optimization 8 / 21



2. Strict Non-Optimality in Minimax Optimization

Improved necessary condition and strict non-minimax point

Proposition 1 (Chae-Kim-K., ICLR, ’24)

Sres ⪰ 0 if and only if v⊤Sv ≥ 0 for any v ∈ R(U),

or equivalently, for any (∇2
yxf)v ∈ R(∇2

yyf).

Proposition 2 (Second-order necessary, Chae-Kim-K., ICLR, ’24)

Any local minimax point satisfies ∇2
yyf(z) ⪯ 0 and if h(δ) satisfies

lim supδ→0+
h(δ)
δ < ∞, a then Sres(z) ⪰ 0.

aMa, Yao, Ye and Zhang, Calm local optimality for nonconvex-nonconcave minimax
problems, Set-Valued and Variational Analysis, 2025

Definition 3 (Chae-Kim-K., ICLR, ‘24)

A stationary point z is said to be a strict non-minimax point if at least one
of Sres(z) or −∇2

yyf(z) has a strictly negative eigenvalue.

Donghwan Kim (KAIST) Strict Non-Optimality in Minimax Optimization 8 / 21



2. Strict Non-Optimality in Minimax Optimization

Improved necessary condition and strict non-minimax point

Proposition 1 (Chae-Kim-K., ICLR, ’24)

Sres ⪰ 0 if and only if v⊤Sv ≥ 0 for any v ∈ R(U),

or equivalently, for any (∇2
yxf)v ∈ R(∇2

yyf).

Proposition 2 (Second-order necessary, Chae-Kim-K., ICLR, ’24)

Any local minimax point satisfies ∇2
yyf(z) ⪯ 0 and if h(δ) satisfies

lim supδ→0+
h(δ)
δ < ∞, a then Sres(z) ⪰ 0.

aMa, Yao, Ye and Zhang, Calm local optimality for nonconvex-nonconcave minimax
problems, Set-Valued and Variational Analysis, 2025

Definition 3 (Chae-Kim-K., ICLR, ‘24)

A stationary point z is said to be a strict non-minimax point if at least one
of Sres(z) or −∇2

yyf(z) has a strictly negative eigenvalue.

Donghwan Kim (KAIST) Strict Non-Optimality in Minimax Optimization 8 / 21



1 Background

2 Strict Non-Optimality in Minimax Optimization

3 Two-Timescale Methods Escape Strict Non-Optimal Points

4 Application: GAN



2. Two-Timescale Methods

Two-timescale GDA

Two-timescale τ -GDA5 for τ > 1:

xk+1 = xk − η

τ
∇xf(xk,yk),

yk+1 = yk + η∇yf(xk,yk)

In a compact form:

zk+1 = zk − ηΛτF (zk), where Λτ =

[
1
τ I

I

]

Two-timescaled Jacobian:

ΛτDF =

[
1
τ∇

2
xxf

1
τ∇

2
xyf

−∇2
yxf −∇2

yyf

]
(But why two-timescale?)

5Heusel, Ramsauer, Unterthiner, Nessler and Hochreiter, GANs trained by a two
time-scale update rule converge to a local Nash equilibrium, NeurIPS, 2017.
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2. Two-Timescale Methods

Spectrum of two-timescaled Jacobian

Lemma 1 (Jin-Netrapalli-Jordan, ICML, ‘20, Lemma 40)

If ∇2
yyf is invertible, the d1 + d2 complex eigenvalues {λj} of ΛτDF have

one of the following asymptotics as ϵ = 1
τ → 0+:

|λj − ϵµj | = o(ϵ),

|λj − νj | = o(1),

where {µj} and {νj} are the eigenvalues of S and −∇2
yyf , respectively.

(Invertibility of ∇2
yyf is too restrictive.)
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2. Two-Timescale Methods

Spectrum of two-timescaled Jacobian (cont’d)

Theorem 1 (Chae-Kim-K., ICLR ’24)

If at least one of Sres and ∇2
yyf is invertible, the d1 + d2 complex

eigenvalues {λj} of ΛτDF have one of the following asymptotics as
ϵ = 1

τ → 0+:
(i) |λj ± i

√
ϵσj | = o(

√
ϵ),

(ii) |λj − ϵµj | = o(ϵ),

(iii) |λj − νj | = o(1),

where {σj} are the singular values of Γ, {µj} are the eigenvalues of Sres, and
{νj} are the nonzero eigenvalues of −∇2

yyf .

λ(i)(ϵ)

1

η

2

η

GDA stable region

(type (i) makes GDA unstable)
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2. Two-Timescale Methods

Extragradient

Extragradient (EG): zk+1 = w(zk) = zk − ηF (zk − ηF (zk))

1
η

i
η

− i
η

EG stable region

Kyuwon Kim6, Wed 10:30am - 11:45am

(Alternating update + Chambolle-Pock extrapolation helps!)

6Kim-K., Double-step alternating extragradient with increasing timescale separation for
finding local minimax points: Provable improvements, ICML, 2024
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2. Two-Timescale Methods

Two-timescale method avoids strict non-minimax points

By the stable manifold theorem, if at least of one of Sres and ∇2
yyf is

invertible, for any strict non-minimax point z̃, τ -EG satisfies
(Chae-Kim-K., ICLR ’24)

P (lim
k

zk = z̃) = 0,

for sufficiently large τ

If τ -EG (and τ -GDA) converges to a point, then it is almost surely not a
strict non-minimax point.

(But τ -GDA also escapes some optimal points)
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1 Background

2 Strict Non-Optimality in Minimax Optimization

3 Two-Timescale Methods Escape Strict Non-Optimal Points

4 Application: GAN



4. Application: GAN

Generative models and GAN

Ptrue and Pθ: True and generated data distributions

Generative models aim to train θ so that Ptrue ≈ Pθ.

GAN: minimizes the distance between them via minimax optimization

Donghwan Kim (KAIST) Strict Non-Optimality in Minimax Optimization 14 / 21



4. Application: GAN

Wasserstein GAN

Wasserstein GAN7: minimizes the Wasserstein-1 distance

min
θ

W(Ptrue,Pθ) = inf
γ∈Π(Ptrue,Pθ)

E(x,z)∼γ [∥x− z∥]

= min
θ

(
max

f :∥f∥L≤1
Ex∼Ptrue [f(x)]− Ez∼Pθ

[f(z)]

)
.

Since this is informative even when Ptrue and Pθ have disjoint supports,
it is considered well-suited for gradient-based training.

Yet enforcing the constraint required heuristics, and optimization
remained difficult, leading the community to favor diffusion models for
their stable training.

Avoidance in constrained problem?: projected GD may converge to a
strict saddle even when there is only a single linear constraint.8

7Arjovsky, Chintala and Bottou, Wasserstein generative adversarial networks, ICML, 2017
8Nouiehed, Lee and Razaviyayn, Convergence to second-order stationarity for constrained

non-convex optimization, arXiv, 2018.
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4. Application: GAN

Jensen-Shannon GAN

Original GAN9: minimizes the Jensen-Shannon (JS) divergence:

JS(Ptrue,Pθ) :=
1

2
KL

(
Ptrue

∥∥∥∥Ptrue + Pθ

2

)
+

1

2
KL

(
Pθ

∥∥∥∥Ptrue + Pθ

2

)
,

which is

min
θ

(2JS(Ptrue,Pθ)− 2 log 2) = min
θ

(
max
f

−Ex∼Ptrue
[l(f(x))]− Ez∼Pθ

[l(−f(z))]

)
,

where l(t) = log(1 + exp(−t)) is the logistic loss.

This is unconstrained, but suffers from a vanishing gradient issue,
since for each θ, near-optimal f stays in the tail of the logistic loss.

Can we design a loss (or distance) that mitigates vanishing gradients
without imposing constraints?

9Goodfellow et al., Generative adversarial nets, NeurIPS, 2014.
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4. Application: GAN

Zero-Infinity GAN

Zero-Infinity distance:

ZI(Ptrue,Pθ) =

{
0, Ptrue = Pθ,

∞, otherwise.

Zero-Infinity (ZI) GAN:10 (= WGAN w/o constraint)

min
θ

ZI(Ptrue,Pθ) = min
θ

(
max
f

Ex∼Ptrue [f(x)]− Ez∼Pθ
[f(z)]

)

We argue that this least informative distance yields the simplest minimax
loss, one that is potentially solvable by gradient methods. (But... really?)

10Lee-K., Zero-Infinity GAN and implicit bias of extragradient (anchored at zero), 2025
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4. Application: GAN

Toy Example: Dirac GAN

Consider the following simple setting:11

True and generated data: 0 and θ in R (Linear generator)

True and generated data distributions: Ptrue = δ0 and Pθ = δθ

Linear discriminator: f(x) = wx

Dirac GAN:
min
θ

min
w∈W

−l(0)− l(−wθ)

W: l(t) = −t and W = {|w| ≤ 1}
JS: l(t) = log(1 + exp(−t)) and W = R
ZI: l(t) = −t and W = R (Unconstrained bilinear)

11Mescheder, Geiger and Nowozin. Which training methods for GANs do actually
converge?, ICML, 2018.
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4. Application: GAN

Toy Example: Dirac GAN (cont’d)

Figure: EG trajectories for Dirac GAN: (L) JS divergence and (R) ZI distance
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4. Application: GAN

Strict Non-Optimality in Zero-Infinity GAN

We investigated the loss landscape of the ZIGAN for a linear generator
and a two-layer neural network discriminator f . (Lee-K., 2025)

There are strict non-minimax points in ZIGAN, which two-timescale
methods (τ -GDA and τ -EG) can almost surely escape.

τ -GDA vs. τ -EG?: the latter locally converges to global solutions, while
the former does not.
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4. Application: GAN

Conclusion

1. We defined a new strict non-optimality in minimax optimization, named
strict non-minimax points, which the two-timescale gradient methods can
almost surely escape.

2. We introduced the Zero-Infinity (ZI) GAN that neither requires Lipschitz
contraint nor suffers from gradient vanishing.

3. We showed that the ZIGAN has strict non-minimax points.
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