- 1 Determine whether the following statements are true or false. Mark each statement 40 Points CLEARLY: T (true) or F (false).
 - **false**: Every planar graph *G* has chromatic number $\chi(G) = 4$.
 - **false**: There exists integers $n \ge r 1 > 2$ and a graph G with |G| = n, $||G|| > \frac{r-2}{2r-2}n^2$, and $\chi(G) < r$.
 - **false**: If *G* has chromatic number $\chi(G) = k$, then *G* has a vertex of degree at most k^2 .
 - true: Every hamiltonian cubic graph is 3-edge colorable.
 - **false**: There exists a function $f : \mathbb{N} \to \mathbb{N}$ such that every graph *G* with girth *k* has connectivity $\kappa(G) \le f(k)$.
 - **true**: There exists a *k*-regular graph with $k \ge 2$ which is not hamiltonian.
 - **true**: Every planar graph has an independent set of size at least $\lceil \frac{n}{4} \rceil$.
 - **true**: For all positive integers *a* and *b*, if a graph has ab + 1 vertices and chromatic number at most *a*, then it has a vertex of degree at most (a 1)b.
 - **false**: Every *k*-connected graph G with $|G| \ge 3$ and $\chi(G) \ge |G|/k$ has a hamiltonian cycle.
 - **true**: If (A, B) is an ϵ -regular pair in a graph G, then (A, B) is an ϵ -regular pair in the complement \overline{G} .
 - **true**: For every integer n > 1 the set of pairs of an *n*-element set can be paritioned into n + 1 parts such that the sets in each part are pairwise disjoint.
 - true: Every graph G with m edges satisfies $\chi(G) \leq \frac{1}{2} + \sqrt{2m + \frac{1}{4}}$
 - **true**: There exists a function $f : \mathbb{N} \to \mathbb{N}$ such that any graph *G* with independence number $\alpha(G) \le k$ and clique number $\omega(G) \le k$ implies that $|G| \le f(k)$.
 - **true**: The Turán graphs $T_{r-1}(n)$ are hamiltonian for all $n \ge r 1 \ge 3$.
 - **false**: If a graph has a vertex of degree k, then its chromatic number is at most k + 1.
 - **true**: The sequence (1, 1, 1, 1, 1, 1, n 1, n 1, n 1, n 1) is not hamiltonian.
 - false: If a graph is hamiltonian, then its degree sequence is hamiltonian.
 - **true**: The list chromatic number (or choice number) of a graph can be arbitrarily larger than its chromatic number.
 - **false**: There exists a cubic graph with more than 1000 vertices and no independent set greater than 333.
 - **true**: For constant $p \in (0, 1)$, almost every graph in $\mathcal{G}(n, p)$ contains an induced cycle of length 10^6 .

[MAS477] Graph theory FINAL	ID:	Name:	
-----------------------------	-----	-------	--

2 If a graph *G* has chromatic number $\chi(G) = k > 1$, show that its vertex set can be partitioned into two non-empty parts V_1 and V_2 such that the induced subgraphs $G[V_1]$ and $G[V_2]$ satisfy

$$\chi(G[V_1]) + \chi(G[V_2]) = k$$

Solution. Since $\chi(G) = k$ there exists a partition of the vertex set $V = C_1 \cup C_2 \cup \cdots \cup C_k$ where each $C_i \neq \emptyset$. Let $V_1 = C_1$ and $V_2 = C_2 \cup \cdots \cup C_k$. Clearly $G[V_1]$ is a set of isolated vertices, therefore $\chi(G[V_1]) = 1$. The original coloring of G implies that $\chi(G[v_2]) \le k - 1$. Moreover, if $\chi(G[V_2]) < k - 1$, then we could color G by k - 1 colors, since the vertices from V_1 can be colored by a single color distinct from the ones used to color $G[V_2]$. Therefore $\chi(G[V_2]) = k - 1$.

3 Show that for every constant $p \in (0, 1)$, almost no graph in $\mathcal{G}(n, p)$ has a separating complete subgraph.

Solution. Consider a graph G with property $\mathcal{P}_{2,1}$. (This was defined in class and in section 11.3 in the textbook.) We claim that a graph with property $\mathcal{P}_{2,1}$ has the following property: For any pair of vertices u and v in G there exists a pair of vertices w_1 and w_2 such that w_1 is neighbor to u and v, w_2 is neighbor to u and v, w_1 and w_2 are not neighbors. To see this consider vertices u and v and an arbitrary vertex x. By property $\mathcal{P}_{2,1}$ there exists a vertex w_1 which is neighbor to u and v, but not to x. Using property $\mathcal{P}_{2,1}$ again it follows that there exists a vertex w_2 which is neighbor to u and v, but not to w_1 . Now it is easily seen that a graph G with property $\mathcal{P}_{2,1}$ has no complete separating subgraph: Consider a complete subgraph $H \subset G$ and two arbitrary vertices u and v in G - V(H). By the property above, there are two non-adhacent vertices w_1 and w_2 in G which are both neighbors of u and v. Since H is complete it follows that w_1 and w_2 cannot both belong to H, therefore H does not separate G. The statement now follows since almost all graphs in $\mathcal{G}(n, p)$ have property $\mathcal{P}_{2,1}$ for any constant $p \in (0, 1)$.

4 Show that for every integer *r* there exists an integer n = n(r) such that every connected graph 20 Points on *n* vertices contains and induced subgraph *H* where *H* is either K_r , $K_{1,r}$, or a path on r + 1 vertices.

Solution. Let m = R(r) the symmetric Ramsey number for graphs. Suppose that G has a vertex v of degree at least m. Then in the neighborhood N(v) there exists an r-clique or r independent vertices. In the first case this implies that there is a K_{r+1} subgraph, and in the second case this implies there is an induced $K_{1,r}$ subgraph.

Otherwise, the maximum degree $\Delta(G) < m$. This implies that for any vertex v, the number of vertices in the neighborhood N(v) cannot exceed m. Thus if G has sufficiently many vertices, then there must exist vertices at distance 2 from v. Again, by using the maximum degree, the number of vertices at distance ≤ 2 from v cannot exceed $m + m^2$. Continuing in this way we see that the number of vertices at distance $\leq r + 1$ from v cannot exceed $m + m^2 + \cdots + m^{r+1}$. Therefore, the more vertices that G has the larger the diameter of G must be (and since G is connected, the diameter is finite). So if G has sufficiently many vertices there must exists a pair of vertices whose distance is at least r + 1, and the shortest path connecting them is an induced path.