Determine whether the following statements are true or false. Mark each statement 40 Points CLEARLY: \mathbf{T} (true) or \mathbf{F} (false).
false: Every planar graph G has chromatic number $\chi(G)=4$.
false: There exists integers $n \geq r-1>2$ and a graph G with $|G|=n,\|G\|>\frac{r-2}{2 r-2} n^{2}$, and $\chi(G)<r$.
false: If G has chromatic number $\chi(G)=k$, then G has a vertex of degree at most k^{2}.
true: Every hamiltonian cubic graph is 3-edge colorable.
false: There exists a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that every graph G with girth k has connectivity $\kappa(G) \leq f(k)$.
true: There exists a k-regular graph with $k \geq 2$ which is not hamiltonian.
true: Every planar graph has an independent set of size at least $\left\lceil\frac{n}{4}\right\rceil$.
true: For all positive integers a and b, if a graph has $a b+1$ vertices and chromatic number at most a, then it has a vertex of degree at most $(a-1) b$.
false: Every k-connected graph G with $|G| \geq 3$ and $\chi(G) \geq|G| / k$ has a hamiltonian cycle.
true: If (A, B) is an ϵ-regular pair in a graph G, then (A, B) is an ϵ-regular pair in the complement \bar{G}.
true: For every integer $n>1$ the set of pairs of an n-element set can be paritioned into $n+1$ parts such that the sets in each part are pairwise disjoint.
true: Every graph G with m edges satisfies $\chi(G) \leq \frac{1}{2}+\sqrt{2 m+\frac{1}{4}}$
true: There exists a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that any graph G with independence number $\alpha(G) \leq k$ and clique number $\omega(G) \leq k$ implies that $|G| \leq f(k)$.
true: The Turán graphs $T_{r-1}(n)$ are hamiltonian for all $n \geq r-1 \geq 3$.
false: If a graph has a vertex of degree k, then its chromatic number is at most $k+1$.
true: The sequence $(1,1,1,1,1,1, n-1, n-1, n-1, n-1)$ is not hamiltonian.
false: If a graph is hamiltonian, then its degree sequence is hamiltonian.
true: The list chromatic number (or choice number) of a graph can be arbitrarily larger than its chromatic number.
false: There exists a cubic graph with more than 1000 vertices and no independent set greater than 333.
true: For constant $p \in(0,1)$, almost every graph in $\mathcal{G}(n, p)$ contains an induced cycle of length 10^{6}.

2 If a graph G has chromatic number $\chi(G)=k>1$, show that its vertex set can be partitioned 20 points into two non-empty parts V_{1} and V_{2} such that the induced subgraphs $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ satisfy

$$
\chi\left(G\left[V_{1}\right]\right)+\chi\left(G\left[V_{2}\right]\right)=k
$$

Solution. Since $\chi(G)=k$ there exists a partition of the vertex set $V=C_{1} \cup C_{2} \cup \cdots \cup C_{k}$ where each $C_{i} \neq \emptyset$. Let $V_{1}=C_{1}$ and $V_{2}=C_{2} \cup \cdots \cup C_{k}$. Clearly $G\left[V_{1}\right]$ is a set of isolated vertices, therefore $\chi\left(G\left[V_{1}\right]\right)=1$. The original coloring of G implies that $\chi\left(G\left[v_{2}\right]\right) \leq k-1$. Moreover, if $\chi\left(G\left[V_{2}\right]\right)<k-1$, then we could color G by $k-1$ colors, since the vertices from V_{1} can be colored by a single color distinct from the ones used to color $G\left[V_{2}\right]$. Therefore $\chi\left(G\left[V_{2}\right]\right)=k-1$.

3 Show that for every constant $p \in(0,1)$, almost no graph in $\mathcal{G}(n, p)$ has a separating complete 20 Points subgraph.

Solution. Consider a graph G with property $\mathcal{P}_{2,1}$. (This was defined in class and in section 11.3 in the textbook.) We claim that a graph with property $\mathcal{P}_{2,1}$ has the following property: For any pair of vertices u and v in G there exists a pair of vertices w_{1} and w_{2} such that w_{1} is neighbor to u and v, w_{2} is neighbor to u and v, w_{1} and w_{2} are not neighbors. To see this consider vertices u and v and an arbitrary vertex x. By property $\mathcal{P}_{2,1}$ there exists a vertex w_{1} which is neighbor to u and v, but not to x. Using property $\mathcal{P}_{2,1}$ again it follows that there exists a vertex w_{2} which is neighbor to u and v, but not to w_{1}. Now it is easily seen that a graph G with property $\mathcal{P}_{2,1}$ has no complete separating subgraph: Consider a complete subgraph $H \subset G$ and two arbitrary vertices u and v in $G-V(H)$. By the property above, there are two non-adhacent vertices w_{1} and w_{2} in G which are both neighbors of u and v. Since H is complete it follows that w_{1} and w_{2} cannot both belong to H, therefore H does not separate G. The statement now follows since almost all graphs in $\mathcal{G}(n, p)$ have property $\mathcal{P}_{2,1}$ for any constant $p \in(0,1)$.

4 Show that for every integer r there exists an integer $n=n(r)$ such that every connected graph 20 Points on n vertices contains and induced subgraph H where H is either $K_{r}, K_{1, r}$, or a path on $r+1$ vertices.

Solution. Let $m=R(r)$ the symmetric Ramsey number for graphs. Suppose that G has a vertex v of degree at least m. Then in the neighborhood $N(v)$ there exists an r-clique or r independent vertices. In the first case this implies that there is a K_{r+1} subgraph, and in the second case this implies there is an induced $K_{1, r}$ subgraph.

Otherwise, the maximum degree $\Delta(G)<m$. This implies that for any vertex v, the number of vertices in the neighborhood $N(v)$ cannot exceed m. Thus if G has sufficiently many vertices, then there must exist vertices at distance 2 from v. Again, by using the maximum degree, the number of vertices at distance ≤ 2 from v cannot exceed $m+m^{2}$. Continuing in this way we see that the number of vertices at distance $\leq r+1$ from v cannot exceed $m+m^{2}+\cdots+m^{r+1}$. Therefore, the more vertices that G has the larger the diameter of G must be (and since G is connected, the diameter is finite). So if G has sufficiently many vertices there must exists a pair of vertices whose distance is at least $r+1$, and the shortest path connecting them is an induced path.

