ON TRANSFORMATION GROUPS WHICH ACT ON TORUS MANIFOLDS

SHINTARÔ KUROKI

Abstract

We study the question of what $2 n$-dimensional torus manifolds (M, T) can have an extension (M, G) with codimension zero (transitive) or codimension one principal orbits and classify such (M, G), where $\operatorname{rank} G=\operatorname{dim} T=n$.

In this article we focus on the case M is the (quasi-)toric manifold, when (M, G) has codimension one principal orbits (this paper is written as an article for the "Symposium on Transformation Groups (2006)" in Yokohama).

1. Introduction

The pair (M, T) of the $2 n$-dimensional, closed, connected, oriented, smooth manifold M and n-dimensional torus T, is said to be a torus manifold [HM03] if the following conditions are satisfies;
(1) M has an effective smooth action of an n-dimensional toral group T.
(2) the fixed point set M^{\top} is the non-empty set (automatically M^{\top} is a finite set).
(3) M is omnioriented.

Here M is called omnioriented if an orientation is specified for M and for every characteristic submanifold M_{i} (a T-invariant ($2 n-2$)-manifold). Let G be a compact, connected, semisimple, Lie group which has T as a maximal tori (such G is called a rank n Lie group). In this paper we study the question of what $2 n$-dimensional torus manifolds M can have an extended G-action with codimension zero (transitive) or codimension one principal orbits, and get the following classifications;

Theorem A. The torus manifold (M, T) extends to the transitive action (M, G), where G is a compact, connected, semisimple, rank n, Lie group. Then M is diffeomorphic to a product of complex projective spaces $\mathbb{C P}(\mathrm{m})$ or even dimensional spheres $S^{2 m}$ and G is locally isomorphic to a product of special unitary groups $\mathrm{SU}(\mathrm{m}+1)$ or special orthogonal groups $\mathrm{SO}(2 m+1)$, that is,

$$
\begin{aligned}
& \quad M \cong \prod_{i=1}^{a} \mathbb{C P}\left(l_{i}\right) \times \prod_{j=1}^{b} S^{2 m_{j}}, \quad G \approx \prod_{i=1}^{a} \operatorname{SU}\left(l_{i}+1\right) \times \prod_{j=1}^{b} \operatorname{SO}\left(2 m_{j}+1\right), \\
& \text { where } \sum_{i=1}^{a} l_{i} \\
& +\sum_{j=1}^{b} m_{j}=n=\operatorname{dim} T .
\end{aligned}
$$

The author was supported by OCAMI (Osaka City university Advanced Mathematical Institute) and the Fujyukai fundation.

Theorem B. The torus manifold (M, T) extends to (M, G) which has codimension one orbits and $\mathrm{H}^{1}\left(\mathrm{M} ; \mathbb{Z}_{2}\right)=0$. Then M is diffeomorphic to an $\mathrm{S}^{2 \mathrm{~m}}$ or a $\mathbb{C P}(\mathrm{m})$ bundle over a product of complex projective spaces or even dimensional spheres, and G is locally isomorphic to a product of $\mathrm{SU}(l+1)$ or $\mathrm{SO}(2 l+1)$ or T^{1}, that is,

$$
\begin{aligned}
& M \cong G \times_{H} P\left(\mathbb{C}^{k_{1}} \oplus \mathbb{C}^{k_{2}}\right) \\
& M \cong G \times_{H} S\left(\mathbb{C}^{k} \oplus \mathbb{R}\right) \text { or } \\
& M \cong G \times_{H} S\left(\mathbb{R}^{2 k_{2}+1} \oplus \mathbb{C}^{k_{1}}\right)
\end{aligned}
$$

where $\mathrm{G} / \mathrm{H} \cong \prod_{i=1}^{\mathrm{a}} \mathbb{C P}\left(\mathrm{l}_{\mathrm{i}}\right) \times \prod_{\mathrm{j}=1}^{\mathrm{b}} \mathrm{S}^{2 \mathrm{~m}_{\mathrm{j}}}$, and H acts on the fibre by the representation of H which is determined by the slice representation of the singular orbit. The above last case is the case one singular orbit is not a torus manifold.

Automatically we have the follwoing corollary for the (quasi-)toric manifold.
Corollary B. Under the hypothesis in Theorem B, assume (M, T) is a (quasi-)toric manifold. Then (M, G) is as follows;

$$
M \cong G \times_{H} P\left(\mathbb{C}^{k_{1}} \oplus \mathbb{C}^{k_{2}}\right), G \simeq \prod_{i=1}^{a} \operatorname{SU}\left(\mathrm{l}_{i}+1\right) \times\left(\operatorname{SU}\left(k_{1}\right) \times \operatorname{SU}\left(k_{2}\right)\right) \times \mathrm{T}^{1}
$$

where the subgroup $\mathrm{H} \simeq \prod_{i=1}^{\mathrm{a}} \mathrm{S}\left(\mathrm{U}(1) \times \mathrm{U}\left(\mathrm{l}_{\mathrm{i}}\right)\right) \times\left(\mathrm{SU}\left(\mathrm{k}_{1}\right) \times \mathrm{SU}\left(\mathrm{k}_{2}\right)\right) \times \mathrm{T}^{1}$ acts on $\mathrm{P}\left(\mathbb{C}^{\mathrm{k}_{1}} \oplus \mathbb{C}^{\mathrm{k}_{2}}\right)$ by the following representation;

$$
H \ni\left(\left(\begin{array}{cc}
t_{1} & 0 \\
0 & A_{1}
\end{array}\right), \cdots,\left(\begin{array}{cc}
t_{a} & 0 \\
0 & A_{a}
\end{array}\right), B_{1}, B_{2}, t\right) \mapsto\left(t_{1}^{r_{1}} \cdots t_{a}^{r_{a}} t^{r} B_{1}, B_{2}\right) \in U\left(k_{1}\right) \times S U\left(k_{2}\right) .
$$

Here G acts on M canonically and $G / H \cong \prod_{i=1}^{a} \mathbb{C P}\left(l_{i}\right), \sum_{i=1}^{a} l_{i}+k_{1}+k_{2}-1=n=\operatorname{dim} T$, $\left(r_{1}, \cdots, r_{a}, r\right) \in \mathbb{Z}^{a} \oplus(\mathbb{Z}-0)$.

The manifold in the above corollary is a generalized object for the Hirzebruch surface ($\mathbb{C P}(1)$ bundle over $\mathbb{C P}(1))$. In fact the case $k_{1}=k_{2}=a=1=l_{1}$ is the Hirzebruch surface.

Only Theorem A and Corollary B (as Theorem B') will be shown in this paper.
In this paper the symbol $A \cong B$ means A is diffeomorphic to $B, A \approx B$ means A is locally isomorphic to B, i.e., Lie algebras of A and B are isomorphic, and $A \simeq B$ means A is isomorphic to B as a Lie group. Moreover we identify (M, G) and $\left(M, G^{\prime}\right)$ if their induced effective actions are equivariant diffeomorphic. We call such equivalence relation an essential isomorphism.

The outline of proofs for Theorem A, B' and the organization of this paper are as follows. In the next Section 2 we recall some basic notations and results from the classical Lie theorey [MT91] and the transformation group theory [Bre72]. Then we go on and in Section 3 give a proof for Theorem A. To prove Theorem A, we use the classical classification theorem of the simple Lie group and its maximal rank subgroup. In Section 4 then we
prepare from the transformation group theory to prove Theorem B', we know the local and global structure of (M, G) which has codimension one singular orbits and, especially we know there are two singular orbits in (M, G). In Section 5 we also prepare from the assumption that M is the torus manifold. In particular we know if M is a (quasi-)toric manifold, two singular orbits are (quasi-)toric manifold. In Section 6 we prove Theorem B'. To prove Theorem B', we use the method of Uchida [Uch77]. The sketch of this method is the following. First, find two singular orbits (by using Theorem A). Second, compute slice representations of two singular isotropy groups. Then we get a closed tubular neighborhood of a singular orbit. Third, consider attaching maps between boundaries of two tubular neighborhoods. Then we know how many (M, G) exist. The uniqueness of each (M, G) follows form Lemma 4.7. Finally we construct such examples of (M, G) directly.

Uchida classified (M, G) such that M is a rational cohomology complex projective space, i.e., a rational cohomology ring $\mathrm{H}^{*}(M ; \mathbb{Q})$ is isomorphic to $\mathrm{H}^{*}(\mathbb{C P}(\mathfrak{m})$; $\mathbb{Q})$. In his case the cohomology ring of M is fixed, but in our case the cohomology ring of M is not fixed (M is a family of torus manifolds). Hence this research says not only the research of the torus manifold (the toric topological aspect), but also what his method is effective for wider situation (the transformation group aspect). ${ }^{1}$

2. Preparation I (from the Lie theory)

We begin by noting some definitions and facts which will be of use in the codimension zero (transitive) case.

The symbol (W, H) means a manifold W with H -action. We call (W, T) is a GKM manifold if it satisfies the following conditions [GHZ06]:
(1) the set of zero dimensional orbits (the fixed point set W^{\top}) in the orbit space W / T is zero dimensional.
(2) the set of one dimensional orbits in the orbit space W / T is one dimensional.

Under these hypotheses, the union of zero and one dimensional orbits has a structure of a graph. As is easily seen that the torus manifold (M, T) is a GKM manifold. So the torus manifold is a GKM manifold in this sence.

We say (M, T) exteds to (M, G) or (M, G) is an extension of (M, T), if the restricted action of $\varphi: G \times M \rightarrow M$ to $T\left(\left.\varphi\right|_{T}: T \times M \rightarrow M\right)$ coincides with the action ($M, \mathrm{~T}$).

The following theorem becomes a trigger to start this research.
Theorem 2.1 ([GHZ06]). Suppose W is a H -homogeneous manifold. Then the following are equivalent;
(1) (W, T) is a GKM manifold.
(2) The Euiler characteristic of W is non-zero $(x(W) \neq 0)$.

[^0](3) W is of the form $\mathrm{W}=\mathrm{H} / \mathrm{K}$, where K is a closed connected subgroup of H containig T $(\mathrm{T} \subset \mathrm{K} \subset \mathrm{H})$.

This theorem says if the torus manifold (M, T) extends to the transitive action (M, G) and denote such M as G / H, i.e. $M \cong G / H$, then rank $G=\operatorname{rank} H^{\circ}$ holds (we can also have $\operatorname{rank} \mathrm{G}=\operatorname{rank} \mathrm{H}^{\circ}$ directly, because of $\chi(\mathrm{G} / H)=\chi(M)=\chi\left(M^{\top}\right) \neq 0$ and the classical result in [MT91]), where H° is a connected component of H . So we need to consider the maximal rank subgroup of G.

Before to consider the maximal rank subgroup, we recall the results in the Lie theory (see [MT91] Chapter V). In general, a compact, connected, Lie group has the following structure;

$$
G \simeq\left(G_{1} \times \cdots \times G_{k}\right) / N
$$

where G_{i} is a simple, simply connected, compact Lie group or toral Lie group ($i=$ $1, \cdots, k)$ and N is some finite central normal subgroup in $G_{1} \times \cdots \times G_{k}$, that is, we can take a finite covering map

$$
p: \widetilde{\mathrm{G}}=\mathrm{G}_{1} \times \cdots \times \mathrm{G}_{\mathrm{k}} \rightarrow \mathrm{G}
$$

In this paper we assume (M, G) is identified by the essential isomorphism, so we may assume all our Lie groups as $G_{1} \times \cdots \times G_{k}$ because the action $\varphi: G \times M \rightarrow M$ and $\widetilde{\varphi}: \widetilde{\mathrm{G}} \times M \xrightarrow{p \times 1} \mathrm{G} \times M \xrightarrow{\varphi} M$ are essential isomorphic.

Let G / H be a quotient space of a maximal rank subgroup H in G. Then $\widetilde{H}=p^{-1}(H) \subset \widetilde{G}$ is a maximal rank subgroup in \widetilde{G}. So we can put $\widetilde{H}^{o}=H_{1} \times \cdots \times H_{k}$ where $H_{i} \subset G_{i}$ is a connected, maximal rank subgroup, because of the following lemma.

Lemma 2.2. Let G_{i} be a compact, connected, Lie group and G be a product of such Lie group, i.e., $\mathrm{G}=\mathrm{G}_{1} \times \cdots \times \mathrm{G}_{\mathrm{k}}$. Assume H is a closed maximal rank subgroup in G . Then $\mathrm{H}=\mathrm{H}_{1} \times \cdots \times \mathrm{H}_{\mathrm{k}}$ where H_{i} is a maximal rank subgroup in G_{i}.

Proof. It is sufficient to prove the case $k=2$.
Assume $G=G_{1} \times G_{2}$. Let H be a maximal rank closed subgroup of G. Then we can put as follows;

$$
\mathrm{G}_{1} \times \mathrm{G}_{2} \supset \mathrm{H} \supset \mathrm{~T}_{1} \times \mathrm{T}_{2}
$$

where T_{i} is a maximal tori in $G_{i}(i=1,2)$.
Put $H_{1}=\left\{g_{1} \mid\left(g_{1}, g_{2}\right) \in H \subset G_{1} \times G_{2}\right\}$ and $H_{2}=\left\{g_{2} \mid\left(g_{1}, g_{2}\right) \in H \subset G_{1} \times G_{2}\right\}$. Since $T_{1} \times T_{2} \subset H$, we have $T_{i} \subset H_{i} \subset G_{i}$ for $i=1$, 2. Now $T=T_{1} \times T_{2}$ is a maximal tori in H, hence we have $\cup_{b \in H} b T b^{-1}=H$. Therefore, for all $a=\left(a_{1}, a_{2}\right) \in H$, there exists $b=\left(b_{1}, b_{2}\right) \in H$ such that $b^{-1}\left(a_{1}, a_{2}\right) b \in T=T_{1} \times T_{2}$. Take $a_{2}=e \in H_{2}$ (the identity element in $\left.H_{2}\right)$, then $t=\left(b_{1}^{-1} a_{1} b_{1}, e\right) \in T_{1} \times 1$. So we have $b t b^{-1}=\left(a_{1}, e\right) \in H$. This relation says $H_{1} \times 1 \subset H$, and similary we also have $1 \times H_{2} \subset H$. Hence $H_{1} \times H_{2} \subset H$. Consequently $\mathrm{H}=\mathrm{H}_{1} \times \mathrm{H}_{2}\left(\mathrm{H}_{1} \times \mathrm{H}_{2} \supset \mathrm{H}\right.$ can be easily shown $)$.

If $(G / H, T)$ is a torus manifold, then this action is effective. So $G_{i} \neq H_{i}$ for each factor of $G=G_{1} \times \cdots \times G_{k}$ and $H=H_{1} \times \cdots \times H_{k}$. In particular G_{i} is not a toral group, but a simple Lie group.

In the next section we will mention about codimension zero (transitive) case.

3. CODIMENSION ZERO CASE (TRANSITIVE CASE)

Let (M, T) be a torus manifold and G be a compact, connected, semisimple, Lie group which has T as a maximal tori, i.e., $\operatorname{rank} \mathrm{G}=\operatorname{dim} \mathrm{T}=\mathrm{n}$. Assume ($M, \mathrm{~T}$) extends to the transitive action (M, G). Then the following theorem holds.

Theorem A. The torus manifold ($M, \mathrm{~T}$) extends to the transitive action (M, G), where G is a compact, connected, semisimple, rank n, Lie group. Then M is diffeomorphic to a product of complex projective spaces $\mathbb{C P}(\mathrm{m})$ or even dimensional spheres $S^{2 m}$ and G is locally isomorphic to a product of $\mathrm{SU}(\mathrm{m}+1)$ or $\mathrm{SO}(2 \mathrm{~m}+1)$, that is,

$$
M \cong \prod_{i=1}^{a} \mathbb{C P}\left(l_{i}\right) \times \prod_{j=1}^{b} S^{2 m_{j}}, \quad G \approx \prod_{i=1}^{a} \operatorname{SU}\left(l_{i}+1\right) \times \prod_{j=1}^{b} S O\left(2 m_{j}+1\right)
$$

where $\sum_{i=1}^{a} l_{i}+\sum_{j=1}^{b} m_{j}=n=\operatorname{dim} T$.
In this section this theorem is proved.
We would like to classify (M, G) up to the essential isomorphism, so we can put $G=$ $\mathrm{G}_{1} \times \cdots \times \mathrm{G}_{\mathrm{k}}$ from the argument Section 2. Moreover we can put

$$
M \cong G / H=G_{1} / H_{1} \times \cdots \times G_{k} / H_{k}=M_{1} \times \cdots \times M_{k} .
$$

Here G_{i} is a simply connected, simple, Lie group such that $\sum_{i=1}^{k} \operatorname{rank} G_{i}=n=\operatorname{dim} T$ and H_{i} is a maximal rank subgroup of G_{i} for all $i=1, \cdots, k$.
The maximal tori T in H° devides into

$$
\mathrm{T}=\mathrm{T}_{1} \times \cdots \times \mathrm{T}_{\mathrm{k}} \subset \mathrm{H}_{1}^{\mathrm{o}} \times \cdots \times \mathrm{H}_{\mathrm{k}}^{\mathrm{o}}=\mathrm{H}^{\mathrm{o}} \subset \mathrm{H}=\mathrm{H}_{1} \times \cdots \times \mathrm{H}_{\mathrm{k}} \subset \mathrm{G}_{1} \times \cdots \times \mathrm{G}_{\mathrm{k}}=\mathrm{G}
$$

where $T_{i} \subset H_{i}$ is a maximal tori in the simple Lie group $G_{i}(i=1, \cdots, k)$. Then the following lemma holds.

Lemma 3.1. Each pair $\left(M_{i}, T_{i}\right)=\left(G_{i} / H_{i}, T_{i}\right)(i=1, \cdots, k)$ satisfies $2 \operatorname{dim} T_{i}=\operatorname{dim} M_{i}$.
Proof. Since $(M, T)=(G / H, T)$ is a torus manifold, we have the following equations;

$$
\begin{equation*}
2 \operatorname{dim} T=2 n=\operatorname{dim}(G / H)=\sum_{\substack{i=1 \\ 5}}^{k} \operatorname{dim}\left(G_{i} / H_{i}\right)=2 \sum_{i=1}^{k} \operatorname{dim} T_{i} . \tag{3.1}
\end{equation*}
$$

The tangential representation on $p=\left(p_{1}, \cdots, p_{k}\right) \in M^{\top}=M_{1}^{T_{1}} \times \cdots \times M_{k}^{T_{k}}$ is devided into

$$
\mathrm{T}_{\mathrm{p}}(M)=\mathrm{T}_{p_{1}}\left(M_{1}\right) \oplus \cdots \oplus \mathrm{T}_{\mathrm{p}_{k}}\left(M_{k}\right)
$$

Moreover each factor $T_{p_{i}}\left(M_{i}\right)$ is devided into

$$
\mathrm{T}_{\mathfrak{p}_{\mathbf{i}}}\left(M_{i}\right)=\mathrm{V}\left(\alpha_{1}\right) \oplus \cdots \oplus \mathrm{V}\left(\alpha_{l}\right)
$$

by the tangential representation of T_{i}. Here the weight representations $\alpha_{1}, \cdots, \alpha_{\imath} \in \mathfrak{t}_{i}^{*}$ are linearly independent because (M, T) is a torus manifold.

If there exist a factor such that $2 \operatorname{dim} T_{j}>\operatorname{dim} G_{j} / H_{j}$, then there is a factor such that $2 \operatorname{dim} T_{i}<\operatorname{dim} G_{i} / H_{i}$ by the equation (3.1). However this contradicts to the tangential representation $\alpha_{1}, \cdots, \alpha_{l} \in \mathfrak{t}_{i}^{*}$ (where $2 l=\operatorname{dim} G_{i} / H_{i}>\operatorname{dim} \mathfrak{t}_{i}^{*}$) are linearly independent. Hence $\operatorname{dim} G_{i} / H_{i}=2 \operatorname{dim} T_{i}$ for each $i=1, \cdots, k$.

From this lemma, to prove Theorem A, it is sufficient to consider each factor G_{i} / H_{i} constructed by a simple Lie group G_{i} and its maximal rank subgroup H_{i} such that $\operatorname{dim} G_{i} / H_{i}=$ $\operatorname{dim} G_{i}-\operatorname{dim} H_{i}=2 \operatorname{rank} G_{i}$.

Put S be a simple, compact Lie group and S^{\prime} be a closed, maximal rank, maximal subgroup of S. Then the following beautiful classification for such $\left(S, S^{\prime}\right)$ are known by the classical Lie theory ([MT91] Chapter V).

S	A_{l}		B_{1}						C_{1}				
S^{\prime}	$\lambda_{\text {i-1 }} \times A_{l}$	${ }_{-i} \times \mathrm{T}^{1}$	B_{l-1}	$\times \mathrm{T}^{1}$	$\mathrm{B}_{\text {i-1 }}$	$1 \times$	-i+1	D_{1}		$1 \times$			$A_{l-1} \times T^{1}$
S	$\mathrm{D}_{\mathrm{l}}(\mathrm{l} \geq 3)$						E_{6}						
S'	$\frac{\mathrm{D}_{l-1} \times 1 / \mathrm{D}_{\text {i-1 }} \times \mathrm{D}_{\text {l-i+1 }} \lambda^{\text {l-1 }} \times}{\mathrm{E}_{7}}$					$\times{ }^{1}$	$\mathrm{D}_{5} \times$			$\times \mathrm{A}_{5}$			$A_{2} \times A_{2}$
S						E_{8}							
S^{\prime}	$\mathrm{D}_{6} \times \mathrm{A}_{1}$	A_{7} A_{2}	$\times A_{5}$		$\times \mathrm{T}^{1}$	D_{8}	A_{8}	$A_{4} \times$		$E_{6} \times$			${ }_{7} \times A_{1}$
S	F_{4}			G_{2}									
S^{\prime}	$\mathrm{C}_{3} \times A_{1}$	$A_{2} \times A_{2}$	2 B_{4}	A_{2}	$A_{1} \times$	A_{1}							

Here $A_{l} \approx S U(l+1), B_{l} \approx S O(2 l+1), C_{l} \approx S p(l), D_{l} \approx S O(2 l)$ are classical Lie groups and $\mathrm{E}_{6}, \mathrm{E}_{7}, \mathrm{E}_{8}, \mathrm{~F}_{4}, \mathrm{G}_{2}$ are exceptional Lie groups. Remark each dimension of S is as follows;

$$
\begin{aligned}
& \operatorname{dim} A_{l}=l^{2}+2 l, \quad \operatorname{dim} B_{l}=\operatorname{dim} C_{l}=(2 l+1) l, \quad \operatorname{dim} D_{l}=l(2 l-1) \\
& \operatorname{dim} E_{6}=78, \operatorname{dim} E_{7}=133, \operatorname{dim} E_{8}=248, \operatorname{dim} F_{4}=52, \operatorname{dim} G_{2}=14
\end{aligned}
$$

Therefore we have $\operatorname{dim} S / S^{\prime}=\operatorname{dim} S-\operatorname{dim} S^{\prime}$ as follows;

$$
\begin{aligned}
& \operatorname{dim} A_{l} /\left(A_{i-1} \times A_{l-i} \times T^{1}\right)=-2 i^{2}+2 l i+2 i(1 \leq i<l), \\
& \operatorname{dim} B_{l} /\left(B_{l-1} \times T^{1}\right)=4 l-2, \\
& \operatorname{dim} B_{l} /\left(B_{i-1} \times D_{l-i+1}\right)=-2 l-4 i^{2}+6 i-2+4 l i(1<i<l), \quad \operatorname{dim} B_{l} / D_{l}=2 l, \\
& \operatorname{dim} C_{l} /\left(C_{i-1} \times C_{l-i+1}\right)=-4 i^{2}+8 i-4+4 l i-4 l(1 \leq i<l), \\
& \operatorname{dim} C_{l} /\left(A_{l-1} \times T^{1}\right)=l^{2}+l, \quad \operatorname{dim} D_{l} /\left(D_{l-1} \times T^{1}\right)=4 l-4, \\
& \operatorname{dim} D_{l} /\left(D_{i-1} \times D_{l-i+1}\right)=8 i-4 i^{2}+4 l i-4-4 l, \quad \operatorname{dim} D_{l} /\left(A_{l-1} \times T^{1}\right)=l^{2}-l, \\
& \operatorname{dim} E_{6} /\left(D_{5} \times T^{1}\right)=32, \quad \operatorname{dim} E_{6} /\left(A_{1} \times A_{5}\right)=40, \quad \operatorname{dim} E_{6} /\left(A_{2} \times A_{2} \times A_{2}\right)=54, \\
& \operatorname{dim} E_{7} /\left(D_{6} \times A_{1}\right)=64, \quad \operatorname{dim} E_{7} / A_{7}=70, \quad \operatorname{dim} E_{7} /\left(A_{2} \times A_{5}\right)=90, \\
& \operatorname{dim} E_{7} /\left(E_{6} \times T^{1}\right)=54, \quad \operatorname{dim} E_{8} / D_{8}=158, \quad \operatorname{dim} E_{8} / A_{8}=168, \\
& \operatorname{dim} E_{8} /\left(A_{4} \times A_{4}\right)=200, \quad \operatorname{dim} E_{8} /\left(E_{6} \times A_{2}\right)=162, \quad \operatorname{dim} E_{8} /\left(E_{7} \times A_{1}\right)=112, \\
& \operatorname{dim} F_{4} /\left(C_{3} \times A_{1}\right)=28, \quad \operatorname{dim} F_{4} /\left(A_{2} \times A_{2}\right)=36, \quad \operatorname{dim} F_{4} / B_{4}=16, \\
& \operatorname{dim} G_{2} / A_{2}=6, \quad \operatorname{dim} G_{2} /\left(A_{1} \times A_{1}\right)=8 .
\end{aligned}
$$

Checking whether the above dimension is $2 l(=2$ rank S) or not, we get the followings are equal to $2 l$;

$$
\begin{aligned}
& A_{l} /\left(A_{l-1} \times T^{1}\right) \cong \operatorname{SU}(l+1) / S(U(l) \times U(1)) \cong \mathbb{C P}(l) \\
& B_{l} / D_{l} \cong S O(2 l+1) / S O(2 l) \cong S^{2 l} \\
& B_{1} / T^{1} \cong S O(3) / S O(2) \cong S^{2} \cong S p(1) / T^{1} \cong C_{1} / T^{1} \\
& D_{3} /\left(A_{2} \times T^{1}\right) \cong \operatorname{Spin}(6) / U(3) \cong \operatorname{SU}(4) / S(U(3) \times U(1)) \cong A_{4} /\left(A_{3} \times T^{1}\right) \cong \mathbb{C} P^{3}
\end{aligned}
$$

If $S^{\prime \prime}$ is not a maximal subgroup but maximal rank subgroup, then $S^{\prime \prime}$ is a subgroup of one of the maximal subgroups S^{\prime} in the above list of $\left(S, S^{\prime}\right)$. So we have $\operatorname{dim} S / S^{\prime \prime}>\operatorname{dim} S / S^{\prime}$. Moreover from the list of $\operatorname{dim} S / S^{\prime}$ we have $\operatorname{dim} S / S^{\prime} \geq 2 \operatorname{rank} S$, hence such $S^{\prime \prime}$ does not occur. Therefore we get the following lemma.
Lemma 3.2. Let $\left(\mathrm{G}_{\mathrm{i}} / \mathrm{H}_{\mathrm{i}}, \mathrm{T}\right)$ be a pair such that $\mathrm{G}_{\mathrm{i}} \supset \mathrm{H}_{\mathrm{i}} \supset \mathrm{T}$ and $\operatorname{dim} \mathrm{G}_{\mathrm{i}} / \mathrm{H}_{\mathrm{i}}=2 \operatorname{dim} \mathrm{~T}=2 \mathrm{l}$. Assume G_{i} is a simple, connected, compact Lie group. Then we have $\mathrm{G}_{\mathrm{i}} / \mathrm{H}_{\mathrm{i}} \cong \mathrm{S}^{2 l}, \mathbb{R} \mathrm{P}(2 \mathrm{l})$ or $\mathbb{C P}(\mathrm{l})$.

Proof. We already have $\mathrm{G}_{\mathrm{i}} / \mathrm{H}_{\mathrm{i}}^{\mathrm{o}} \cong \mathrm{S}^{2 l}$ or $\mathbb{C P}(\mathrm{l})$ by the above argument. It is easy to show $H_{i}^{o} \subset H_{i} \subset N\left(H_{i}^{o} ; G\right)$, where $N\left(H_{i}^{o} ; G_{i}\right)$ is a normalizer subgroup of H_{i}^{o} in G_{i}.
If $\left(G_{i}, H_{i}^{o}\right) \approx\left(A_{l}, A_{l-1} \times T^{1}\right)$, then $H_{i}^{o}=N\left(H_{i}^{o} ; G_{i}\right)$ holds. Hence if $G_{i} / H_{i}^{o} \cong \mathbb{C P}(l)$ then we have $H_{i}=H_{i}^{o}(l \neq 1)$. Especially we have $G_{i} / H_{i} \cong \mathbb{C P}(l)$.

If $\left(G_{i}, H_{i}^{o}\right) \approx\left(B_{l}, D_{l}\right)$, then $H_{i}^{o} \times \mathbb{Z}_{2} \simeq N\left(H_{i}^{\circ} ; G\right)$ holds. Hence if $G_{i} / H_{i}^{o} \cong S^{2 l}$ then we have $H_{i}=H_{i}^{o}$ or $H_{i}=H_{i}^{o} \times \mathbb{Z}_{2}$. If $H_{i}=H_{i}^{o}$, then we have $G_{i} / H_{i} \cong S^{2 l}$, and if $H_{i}=H_{i}^{o} \times \mathbb{Z}_{2}$, then we have $\mathrm{G}_{\mathrm{i}} / \mathrm{H}_{\mathrm{i}} \cong \mathbb{R} P(2 l)$.

Remark the torus manifold is an orientable manifold but $\mathbb{R P}(2 l)$ is a non-orientable manifold. Hence the torus manifold (M, T) which extends to the transitive action (M, G)
is a product of $S^{2 l}$ or $\mathbb{C P}(l)$ by Lemma 3.1 and 3.2. Consequently the codimension zero case (transitive case) of our problem was solved, that is, Theorem A was proved.

4. PREPARATION II (FROM THE TRANSFORMATION GROUP THEORY)

In Section 3 we proved Theorem A (codimension zero case), so we are naturally led to study actions with codimension one orbits. We used the Lie theory for the codimension zero case, but the codimension one case belongs to the transformation group theory. In this section we recall some results from the transformation group theory which will be of use in the codimension one case.

Let (M, G) be a smooth transformation group which has codimension one orbits, and M be a compact manifold whose first \mathbb{Z}_{2} cohomology is 0 , i.e., $H^{1}\left(M ; \mathbb{Z}_{2}\right)=0$. Then the following structure theorem holds.

Theorem 4.1 (Uchida[Uch77] Lemma 1.2.1). Let G be a compact connected Lie group and Ma compact connected manifold without boundary. Assume $\mathrm{H}^{1}\left(M ; \mathbb{Z}_{2}\right)=0$, and G acts smoothly on M with codimension one orbits $\mathrm{G}(\mathrm{x})$. Then $\mathrm{G}(\mathrm{x}) \cong \mathrm{G} / \mathrm{K}$ is a principal orbit and (G, M) has just two singular orbits $\mathrm{G}\left(\mathrm{x}_{1}\right) \cong \mathrm{G} / \mathrm{K}_{1}$ and $\mathrm{G}\left(\mathrm{x}_{2}\right) \cong \mathrm{G} / \mathrm{K}_{2}$. Moreover there exists a closed invariant tubular neighborhood X_{s} of $G\left(x_{s}\right)$ such that

$$
M=X_{1} \cup X_{2} \quad \text { and } \quad X_{1} \cap X_{2}=\partial X_{1}=\partial X_{2}
$$

In our case $H^{1}\left(M ; \mathbb{Z}_{2}\right)=0$, hence this structure theorem holds for (M, G). The tubular neighborhoods of two singular orbits are understood from the following theorem (for example it is in [Bre72]).

Theorem 4.2 (differentiable slice theorem). Let G be a compact Lie group and M be a smooth G -manifold. Then for all $x_{i} \in M$ there is a closed invariant tubular neighborhood X_{i} of the orbit $\mathrm{G}\left(\mathrm{x}_{\mathrm{i}}\right) \cong \mathrm{G} / \mathrm{K}_{\mathrm{i}}$ and $\mathrm{X}_{\mathrm{i}} \cong \mathrm{G} \times_{\mathrm{K}_{i}} \mathrm{D}_{\mathrm{x}_{\mathrm{i}}}$ as a G -manifold, where $\mathrm{D}_{\mathrm{x}_{\mathrm{i}}}$ is a closed disk which has an orthogonal K_{i}-action via the representation $\sigma_{i}: \mathrm{K}_{\mathrm{i}} \rightarrow \mathrm{O}\left(\mathrm{D}_{x_{i}}\right)$.

We call the representation σ_{i} in this theorem a slice representation of K_{i} at $x_{i} \in M$. Put the codimension of two singular orbits by $m_{i}(i=1,2)$. Then two tubular neighborhoods of G / K_{1} and G / K_{2} are denoted by $X_{1} \cong G \times_{K_{1}} D^{m_{1}}$ and $X_{2} \cong G \times_{K_{2}} D^{m_{2}}$ such that K_{i} acts on $D^{\mathfrak{m}_{i}}$ through the slice representation $\sigma_{i}: K_{i} \rightarrow O\left(m_{i}\right)$ for $i=1,2$.
Moreover we have $K_{i} / K \cong S^{\mathfrak{m}_{i}-1} \subset D^{\mathfrak{m}_{\mathfrak{i}}}$ for $i=1$, 2, that is, K_{i} acts on $S^{\mathfrak{m}_{i}-1} \subset D^{\mathfrak{m}_{i}}$ transitively because (M, G) has a codimension one principal orbit G / K. The transitive actions on sphere have been already studied by Montgomery and Samelson, Borel and Poncet. The following results were proved in a series of papers [MS43], [Bor50] and [Pon59].
Theorem 4.3. Let G be a compact connected Lie group acting effectively and transitively on a homotopy sphere Σ^{m} and H be the isotropy subgroup, namely, $\mathrm{G} / \mathrm{H} \cong \Sigma^{\mathrm{m}}$. Then there always exists a simple normal subgroup G_{1} of G that is already transitive on Σ^{m}, i.e., $\mathrm{G}_{1} /\left(\mathrm{G}_{1} \cap \mathrm{H}\right)=\Sigma^{m}$.
Theorem 4.4. Let G_{1} be a one of the simple groups in G such that $\mathrm{G}_{1} / \mathrm{H}_{1} \cong \Sigma^{\mathrm{m}}$. Then, as in [Bor50], [MS43], we have that
(1) If m is even, $\mathrm{G}_{1}=\mathrm{SO}(\mathrm{m}+1)$ or the exceptional Lie group G_{2} in case $\mathrm{m}=6$.
(2) If $\mathrm{m}=2 \mathrm{l}-1$ and $\mathrm{lodd}, \mathrm{G}_{1}=\mathrm{SO}(\mathrm{m}+1)$ or $\mathrm{SU}(\mathrm{l})$.
(3) If $\mathrm{m}=2 \mathrm{l}-1$ and l even, $\mathrm{G}_{1}=\operatorname{SO}(\mathrm{m}+1), \operatorname{SU}(\mathrm{l}), \operatorname{Sp}(\mathrm{l} / 2), \operatorname{Spin}(9)($ if $\mathrm{m}=15, l=8)$, or $\operatorname{Spin}(7)$ (if $\mathrm{m}=7, \mathrm{l}=4$).
As we may check easily in each of the above cases, we have a unique embedding of G_{1} in $\mathrm{SO}(\mathrm{m}+1)$ such that $\mathrm{H}_{1}=\mathrm{G}_{1} \cap \mathrm{SO}(\mathrm{m})$. Hence $\Sigma^{\mathfrak{m}}$ is diffeomorphic to the standerd sphere S^{m}.
Theorem 4.5. Let $\mathrm{G}_{1}(\subset \mathrm{G})$ be the simple subgroup in Theorem 4.4. Then $\mathrm{G}_{1} \subset \mathrm{G} \subset \mathrm{N}\left(\mathrm{G}_{1}\right)^{0} \subset$ $\mathrm{SO}(\mathrm{m}+1)$, where $\mathrm{N}\left(\mathrm{G}_{1}\right)^{\circ}$ is the identity componenet of the normalizer of G_{1} in $\mathrm{SO}(\mathrm{m}+1)$, and the following holds;
(1) In case $\mathrm{G}_{1}=\operatorname{SO}(\mathrm{m}+1), \mathrm{G}_{2}(\mathrm{~m}=6)$, $\operatorname{Spin}(7)(\mathrm{m}=7, l=4)$, or $\operatorname{Spin}(9)(\mathrm{m}=$ $15, l=8)$, we have that $N\left(G_{1}\right)^{0}=G_{1}$, hence $\mathrm{G}_{1}=\mathrm{G}$.
(2) In case $\mathrm{G}_{1}=\mathrm{SU}(\mathrm{l})$, we see that $\mathrm{N}\left(\mathrm{G}_{1}\right)^{\mathrm{o}}=\mathrm{U}(\mathrm{l})$; hence we may have either $\mathrm{G}=\mathrm{G}_{1}$ or $\mathrm{U}(\mathrm{l})$.
(3) In case $\mathrm{G}_{1}=\mathrm{Sp}\left(\frac{\mathrm{l}}{2}\right), \mathrm{N}\left(\mathrm{G}_{1}\right)^{\circ}$ is the subgroup of $\mathrm{SO}(\mathrm{m}+1)$ generated by $\mathrm{Sp}\left(\frac{\mathrm{l}}{2}\right)$, and the S^{3}-subgroup realized as right multiplications of unit quaternions. As a group, $\mathrm{N}\left(\mathrm{Sp}\left(\frac{1}{2}\right)\right)^{\circ}$ is isomorphic to $\operatorname{Sp}\left(\frac{l}{2}\right) \times_{\mathbb{Z}_{2}} S^{3}$, where \mathbb{Z}_{2} is the subgroup generated by $(-\mathrm{Id},-1)$. Hence G is either $\operatorname{Sp}\left(\frac{l}{2}\right)$ or $\operatorname{Sp}\left(\frac{l}{2}\right) \times_{\mathbb{Z}_{2}} S^{1}$ or $\operatorname{Sp}\left(\frac{l}{2}\right) \times_{\mathbb{Z}_{2}} S^{3}$.
The above reuslts are also refered in a paper [HH65].
In particular the following lemma comes from Theorem 4.4 and 4.5 directly.
Lemma 4.6. Assume the connected subgroup H in $\mathrm{O}(2 l)$ acts on $\mathrm{S}^{2 l-1}$ transitively and its rank is l, i.e., rank $\mathrm{H}=\mathrm{l}$. Then $\mathrm{H} \simeq \mathrm{U}(\mathrm{l})$ or $\mathrm{SO}(2 l)$ in $\mathrm{O}(2 l)$.

The above results (from Theorem 4.2 to Lemma 4.6) were about the local structure of singular orbits $\mathrm{G} / \mathrm{K}_{1}$ and $\mathrm{G} / \mathrm{K}_{2}$. On the other hand, Theorem 4.1 and the following lemma are about the global structure of (M, G).
Lemma 4.7 ([Uch77] Lemma 5.3.1). Let $\mathrm{f}, \mathrm{f}^{\prime}: \partial \mathrm{X}_{1} \rightarrow \partial \mathrm{X}_{2}$ be G-equivariant diffeomorphisms, where ∂X_{i} means a boundary of X_{i}. Then $M(f)$ is equivariantly diffeomorphic to $M\left(f^{\prime}\right)$ as G manifolds, if one of the following conditions are satisfied (where $M(f)=X_{1} \cup_{f} X_{2}$);
(1) f is G-diffeotopic to f^{\prime}.
(2) $f^{-1} f^{\prime}$ is extendable to a G-equivariant diffeomorphism on X_{1}.
(3) $f^{\prime} f^{-1}$ is extendable to a G-equivariant diffeomorphism on X_{2}.

The story of the classification is first we pick up all tubular neighborhoods X_{i} which have possible to occur. Then we consider the attaching map from ∂X_{1} to ∂X_{2}. Because the boundary of tubular neighborhoods are a principal orbit G / K, we can take an attaching map from $N(K ; G) / K$. Using this attaching map f, we construct a manifold $M(f)=$ $X_{1} \cup_{f} X_{2}$ with G-action. Finally Lemma 4.7 is a criterion whether $M(f)$ and $M\left(f^{\prime}\right)$ are same or not. From the next section we will start to classify the action which has codimension one orbits along the above story.

5. Prelude to classify the codimension one case

Let (M, G) be an extension of the torus manifold (M, T) such that $\operatorname{rank} G=\operatorname{dim} T$. Assume $H^{1}\left(M, \mathbb{Z}_{2}\right)=0$ and M has a codimension one orbits. Then (M, G) has just two singular orbits by Theorem 4.1. Put these two orbits G / K_{1} and G / K_{2}. Then they have the following structure by Theorem 4.1;

$$
M \cong X_{1} \cup X_{2}, \quad X_{1} \cap X_{2}=G / K
$$

where X_{i} is a tubular neighborhood of G / K_{i} for $i=1,2$ and G / K is a principal orbit. In this section we show some fundamental results for such (M, G). In particular we will know the structure of the singular orbit $\mathrm{G} / \mathrm{K}_{1}$ in Lemma 5.4 and 5.5.
5.1. Singular orbit. First we study about the singular orbits. The following lemma holds.

Lemma 5.1. The orbit of the fixed point (in M^{\top}) is the singular orbits, that is, $\mathrm{G}(\mathrm{p})=\mathrm{G} / \mathrm{K}_{1}$ or $\mathrm{G} / \mathrm{K}_{2}$ for all $\mathrm{p} \in \mathrm{M}^{\mathrm{T}}$.
Proof. Let p be a fixed point $\left(p \in M^{\top}\right)$. Consider the G-isotropy group on p and denote it G_{p}. Then we have $T \subset G_{p}$ because p is fixed by $T \subset G$. Hence rank G_{p} coincides with rank G. So G / G_{p} has an even dimension. Therefore we have the G -orbit on p is a singular orbit.

From this lemma we expect G / K_{1} (or G / K_{2}) is a torus manifold. We shall show it is true. Before to show it , the following proposition holds in general.
Proposition 5.2. Let M^{\prime} be a T-invariant submanifold in the torus manifold (M, T). If M^{\prime} has a fixed point $p \in M^{\top}$, then $\left(M^{\prime}, T / T^{\prime \prime}\right)$ is a torus manifold for some subtorus T " $\subset T$.
Proof. Because M^{\prime} is a T-invariant submanifold, the tangent space $T_{p}(M)$ on $p \in M^{\prime} \cap M^{\top}$ divides into;

$$
\mathrm{T}_{\mathrm{p}}(M) \simeq \mathrm{T}_{\mathrm{p}}\left(M^{\prime}\right) \oplus \mathrm{N}_{\mathrm{p}}\left(M^{\prime}\right)
$$

where $N_{p}\left(M^{\prime}\right)$ is a normal space of M^{\prime} on p. Since $T_{p}\left(M^{\prime}\right)$ has a T-action through the tangential representation, we have the irreducible decomposition

$$
\mathrm{T}_{\mathrm{p}}\left(\mathrm{M}^{\prime}\right) \simeq \mathrm{V}\left(\alpha_{1}\right) \oplus \cdots \oplus \mathrm{V}\left(\alpha_{k}\right)
$$

where $V\left(\alpha_{i}\right) \simeq \mathbb{C}, \alpha_{i}: T \rightarrow S^{1}(i=1, \cdots, k)$ and $2 k=\operatorname{dim} M^{\prime}$. Put $T "=\cap_{i=1}^{k} \operatorname{Ker} \alpha_{i} \subset T$. Then $T^{\prime \prime}$ acts on $T_{p}\left(M^{\prime}\right)$ trivially. Hence $T^{\prime \prime}$ acts $N_{p}\left(M^{\prime}\right)$ by the restricted T-action on $T_{p}(M)$ and we also have the irreducible decomposition;

$$
\mathrm{N}_{\mathrm{p}}\left(\mathrm{M}^{\prime}\right) \simeq \mathrm{V}\left(\alpha_{k+1}\right) \oplus \cdots \oplus \mathrm{V}\left(\alpha_{n}\right)
$$

where $\operatorname{dim} T=n$. So $\operatorname{dim} T^{\prime \prime}=n-k$. Therefore k-dimensional torus $T / T "$ acts on $2 k-$ dimensional manifold M^{\prime}. This is a torus manifold, because M is a torus manifold.

Consequently, form Lemma 5.1 and Proposition 5.2, the following corollary holds.
Corollary 5.3. At least one of the singular orbits of (M, G) is a torus manifold.
We can assume $\left(G / K_{1}, T / T^{\prime \prime}\right)$ is a torus manifold by some T " $\subset T$.
5.2. Structure of G and K_{1}. Next we study the structure of G and K_{1} by making use of Theorem A, because G / K_{1} is a torus manifold and it extends to a transitive action.

From Lemma 2.2, we see the decomposition $G=\mathrm{G}_{1}^{\prime} \times \mathrm{G}_{1}$ and $\mathrm{K}_{1}=\mathrm{K}_{1}^{\prime} \times \mathrm{G}^{\prime \prime}$, for G and K_{1}, where $G^{\prime \prime}$ is the normal subgroup of G and G_{1}^{\prime} acts on G / K_{1} almost effectively and transitively. Moreover the following decomposition holds for the maximal tori;

$$
\mathrm{G}_{1}^{\prime} \times \mathrm{G}^{\prime \prime}{ }_{1} \supset \mathrm{~K}_{1}^{\prime} \times \mathrm{G}^{\prime \prime}{ }_{1} \supset \mathrm{~T}^{\prime} \times \mathrm{T}^{\prime \prime} \simeq \mathrm{T},
$$

where T^{\prime} is a maximal tori of G_{1}^{\prime}.
Put $k_{1}=\operatorname{rank} G^{\prime \prime}{ }_{1}=\operatorname{dim} T "$ and $p \in M^{\top}$. Then we have $\operatorname{dim} N_{p}\left(G / K_{1}\right)=2 k_{1}$ from the proof of Proposition 5.2. So the equations

$$
\operatorname{dim} G / K_{1}=2 n-2 k_{1}=2 n-2 \operatorname{rank} G_{1}
$$

holds.
Since the torus manifold $\left(\mathrm{G}_{1}^{\prime} / \mathrm{K}_{1}^{\prime}, \mathrm{T}^{\prime}\right)=\left(\mathrm{G} / \mathrm{K}_{1}, \mathrm{~T}\right)$ extends to the transitive action $\left(G_{1}^{\prime} / K_{1}^{\prime}, G_{1}^{\prime}\right)$, we have from Theorem A;

$$
\begin{aligned}
& \mathrm{G}_{1}^{\prime} / \mathrm{K}_{1}^{\prime} \cong \prod_{i=1}^{a} \mathbb{C P}\left(\mathrm{l}_{\mathrm{i}}\right) \times \prod_{j=1}^{b} \mathrm{~S}^{2 \mathrm{~m}_{j}}, \\
& \left(\mathrm{G}_{1}^{\prime}, \mathrm{K}_{1}^{\prime}\right) \approx\left(\prod_{i=1}^{a} \operatorname{SU}\left(\mathrm{l}_{i}+1\right) \times \prod_{j=1}^{b} \operatorname{SO}\left(2 m_{j}+1\right), \prod_{i=1}^{a} S\left(U(1) \times U\left(l_{i}\right)\right) \times \prod_{j=1}^{b} \operatorname{SO}\left(2 m_{j}\right)\right),
\end{aligned}
$$

where $\sum_{i=1}^{a} l_{i}+\sum_{j=1}^{b} m_{j}=n-k_{1}=n-\operatorname{rank} G^{\prime \prime}{ }_{1}$.
5.3. Slice representation of K_{1}. Denote the slice representation of $G_{p}=K_{1}$ on $p \in M^{\top}$ by

$$
\sigma_{1}: \mathrm{K}_{1}=\mathrm{K}_{1}^{\prime} \times \mathrm{G}_{1}^{\prime \prime} \rightarrow \mathrm{O}\left(2 \mathrm{k}_{1}\right) .
$$

Remark the image of σ_{1} is in $\mathrm{SO}\left(2 \mathrm{k}_{1}\right)$ because of the connectedness of K_{1} (see Section 5.2).
Since $T^{\prime \prime} \subset G^{\prime \prime}{ }_{1}$ acts effectively on the normal space of $p \in G / K_{1}$ in M (because M is a torus manifold), we have $\sigma_{1}\left(T^{\prime \prime}\right)=T^{k_{1}} \subset S O\left(2 k_{1}\right)$ where $\operatorname{dim} T^{\prime \prime}=k_{1}$. In particular the restricted representation $\left.\sigma_{1}\right|_{\mathrm{G}_{1}}$ to G_{1} is non-trivial. Moreover we see $\sigma_{1}\left(\mathrm{~K}_{1}^{\prime}\right) \subset \sigma_{1}\left(\mathrm{G}_{1}{ }_{1}\right)$ because $\sigma_{1}\left(\mathrm{~K}_{1}^{\prime}\right)$ is in the centralizer of $\sigma_{1}\left(\mathrm{~T}^{\prime \prime}\right)=\mathrm{T}^{k_{1}} \subset \mathrm{SO}\left(2 \mathrm{k}_{1}\right)$ (the centralizer is isomorphic to $T^{k_{1}}$). Therefore $G_{1}{ }_{1}$ acts transitively on $S^{2 k_{1}-1}$ through the slice representation $\sigma_{1}: \mathrm{K}_{1}^{\prime} \times \mathrm{G}^{\prime \prime} \rightarrow \mathrm{SO}\left(2 \mathrm{k}_{1}\right)$. Because rank $\sigma_{1}\left(\mathrm{G}_{1}\right)=\mathrm{k}_{1}$, we have from Lemma 4.6;

$$
\sigma_{1}\left(\mathrm{G}^{\prime \prime}\right) \simeq \mathrm{G}_{1} \simeq \mathrm{U}\left(\mathrm{k}_{1}\right), \text { or } \mathrm{SO}\left(2 \mathrm{k}_{1}\right)
$$

Because $\sigma_{1}\left(\mathrm{~K}_{1}^{\prime}\right)$ is also in the centralizer of $\sigma_{1}\left(\mathrm{G}^{\prime \prime}\right)$, we see

$$
\begin{aligned}
& \sigma_{1}\left(\mathrm{~K}_{1}^{\prime}\right) \simeq \mathrm{S}^{1}\left(\text { if } \sigma_{1}\left(\mathrm{G}_{1}{ }_{1}\right) \simeq \mathrm{U}\left(\mathrm{k}_{1}\right)\right) \text { or } \\
& \sigma_{1}\left(\mathrm{~K}_{1}^{\prime}\right) \simeq\{e\}\left(\text { if } \sigma_{1}\left(\mathrm{G}_{1}\right) \simeq \mathrm{SO}\left(2 \mathrm{k}_{1}\right)\right) .
\end{aligned}
$$

Let us gather the above arguments, then we have the following two lemmas.

Lemma 5.4. Let $\mathrm{G} / \mathrm{K}_{1}$ be a singular orbit in (M, G) which is an extension of a torus manifold (M, T). Then we can put $\left(\mathrm{G} / \mathrm{K}_{1}, \mathrm{~T} / \mathrm{T}^{\prime \prime}\right)$ is a torus manifold and the followings are satisfied;

$$
\begin{aligned}
& \left(G, K_{1}\right)=\left(G_{1}^{\prime} \times G^{\prime \prime}, K_{1}^{\prime} \times G_{1}\right), \\
& \left(G_{1}^{\prime}, K_{1}^{\prime}\right) \approx\left(\prod_{i=1}^{a} \operatorname{SU}\left(l_{i}+1\right) \times \prod_{j=1}^{b} \operatorname{SO}\left(2 m_{j}+1\right), \prod_{i=1}^{a} S\left(U(1) \times U\left(l_{i}\right)\right) \times \prod_{j=1}^{b} \operatorname{SO}\left(2 m_{j}\right)\right), \\
& G^{\prime \prime}{ }_{1} \approx \operatorname{SU}\left(\mathrm{~K}_{1}\right) \times \mathrm{T}^{1} \text { or SO}\left(2 \mathrm{k}_{1}\right),
\end{aligned}
$$

where $\mathrm{T}^{\prime \prime}$ is a maximal tori $\left(\operatorname{dim} \mathrm{T}^{\prime \prime}=\mathrm{k}_{1}\right)$ in $\mathrm{G}^{\prime \prime}{ }_{1}$, and $\mathrm{T} / \mathrm{T}^{\prime \prime}=\mathrm{T}^{\prime}$ is a maximal tori $\left(\operatorname{dim} \mathrm{T}^{\prime}=\right.$ $\sum_{i=1}^{a} l_{i}+\sum_{j=1}^{b} m_{j}$) in G_{1}^{\prime}
Lemma 5.5. Under the hypothesis in Lemma 5.4, we have the followings for the slice representation $\sigma_{1}: \mathrm{K}_{1} \simeq \mathrm{~K}_{1}^{\prime} \times \mathrm{G}_{1} \rightarrow \mathrm{SO}\left(2 \mathrm{k}_{1}\right)$ of K_{1};
(1) if $\mathrm{G}^{\prime \prime} \approx \mathrm{SO}\left(2 \mathrm{k}_{1}\right)$, then $\sigma_{1}\left(\mathrm{G}_{1}\right)=\mathrm{SO}\left(2 \mathrm{k}_{1}\right)$ and $\sigma_{1}\left(\mathrm{~K}_{1}^{\prime}\right)=\{e\}$,
(2) if $\mathrm{G}_{1} \approx \mathrm{SU}\left(\mathrm{k}_{1}\right) \times \mathrm{T}^{1}$, then $\sigma_{1}\left(\mathrm{G}_{1}\right)=\mathrm{U}\left(\mathrm{k}_{1}\right) \subset \mathrm{SO}\left(2 \mathrm{k}_{1}\right)$ and $\sigma_{1}\left(\mathrm{~K}_{1}^{\prime}\right)=\mathrm{S}^{1}$ which is the diagonal subgroup in $\mathrm{U}\left(\mathrm{k}_{1}\right)$.

Above these lemmas is corresponding to the structue of $\mathrm{G} / \mathrm{K}_{1}$ and of its closed invariant tubular neighborhood X_{1}.

In the next section we will begin to classify the codimension one case.

6. CODIMENSION ONE CASE (FOR QUASI-TORIC MANIFOLD)

In this paper we only classify the (quasi-)toric manifold ${ }^{2}$. First of all we define the (quasi-)toric manifold. We call M is a (quasi-)toric manifold if M is a toric manifold or a quasi-toric manifold as follows;

Definition[toric manifold] A toric manifold is a smooth algebraic variety M containing the algebraic torus $\left(\mathbb{C}^{*}\right)^{n}$ as a Zariski open dence subset such that the natural $\left(\mathbb{C}^{*}\right)^{n}$-action on itself extends to an action on M
Definition[quasi-toric manifold] Given a combinatorial simple polytope P^{n}, a T^{n}-manifold $M^{2 n}$ is called a quasi-toric manifold over P^{n} if the following two conditions are satisfied;
(1) the T^{n}-action is locally standard (equivariant to the standerd $\left(\mathbb{C}^{n}, T^{n}\right)$),
(2) there is a projective map $\pi: M^{2 n} \rightarrow P^{n}$ constant on T^{n}-orbits which maps every k -dimensional orbit to a point in the interior of a codimension- k face of $\mathrm{P}^{\mathrm{n}}, \mathrm{k}=$ $1, \cdots, n$.
Remark a (quasi-)toric manifold is a torus manifold, especially $\mathbb{C P}(m)$ is a (quasi-)toric, but $S^{2 m}(m \geq 2)$ is not a (quasi-)toric.

Let ($M, \mathrm{~T}$) be a (quasi-)toric manifold, and G be a compact, connected, Lie group. Assume (M, T) extends to (M, G) which has codimension one orbits. The aim of this section is to prove the following theorem (Corollary B).

[^1]Theorem $\mathbf{B}^{\prime} .(M, G)$ is an extension of a (quasi-)toric manifold (M, T) where $\operatorname{rank} G=\operatorname{dim} T$. Then (M, G) is as follows;

$$
M \cong G \times_{H} P\left(\mathbb{C}^{k_{1}} \oplus \mathbb{C}^{k_{2}}\right), G \simeq \prod_{i=1}^{h} \operatorname{SU}\left(l_{i}+1\right) \times\left(\operatorname{SU}\left(k_{1}\right) \times \operatorname{SU}\left(k_{2}\right)\right) \times T^{1}
$$

where the subgroup $\mathrm{H} \simeq\left(\prod_{i=1}^{h} \mathrm{~S}\left(\mathrm{U}(1) \times \mathrm{U}\left(\mathrm{l}_{\mathrm{i}}\right)\right)\right) \times\left(\mathrm{SU}\left(\mathrm{k}_{1}\right) \times \mathrm{SU}\left(\mathrm{k}_{2}\right)\right) \times \mathrm{T}^{1}$ acts on $\mathrm{P}\left(\mathbb{C}^{\mathrm{k}_{1}} \oplus \mathbb{C}^{\mathrm{k}_{2}}\right)$ by the following representation;
$H \ni\left(\left(\begin{array}{cc}t_{1} & 0 \\ 0 & A_{1}\end{array}\right), \cdots,\left(\begin{array}{cc}t_{h} & 0 \\ 0 & A_{h}\end{array}\right), B_{1}, B_{2}, t\right) \mapsto\left(t_{1}^{\alpha_{1}} \cdots t_{h}^{\alpha_{h}} t^{\alpha} B_{1}, B_{2}\right) \in U\left(k_{1}\right) \times \operatorname{SU}\left(k_{2}\right)$.
Here G acts on M canonically and $G / H \cong \prod_{i=1}^{h} \mathbb{C P}\left(l_{i}\right), \sum_{i=1}^{h} l_{i}+k_{1}+k_{2}-1=n=\operatorname{dim} T$, $\left(\alpha_{1}, \cdots, \alpha_{h}, \alpha\right) \in \mathbb{Z}^{h} \oplus(\mathbb{Z}-0)$.

First the following lemma is proved.
Lemma 6.1. Two singular orbits $\mathrm{G} / \mathrm{K}_{1}$ and $\mathrm{G} / \mathrm{K}_{2}$ in (M, G) are quasi-toric manifolds.
Proof. Since M is a (quasi-)toric manifold, $M_{1}=G / K_{1}$ is also a (quasi-)toric manifold by Corollary 5.3. So we see M / T is a polytope. Then M_{1} / T is a face in the polytope M / T. Therefore there exists $p \in M^{\top}$ which is not in M_{1}. Hence its orbit $G(p)$ is the other singular orbit $\mathrm{G} / \mathrm{K}_{2}$ by Lemma 5.1. Because M is a (quasi-)toric manifold, $\mathrm{G} / \mathrm{K}_{2}$ is also a (quasi-)toric manifold by Proposition 5.2.

Therefore for the other singular orbit G / K_{2} in (M, G) we can apply the same argument in Lemma 5.4 and 5.5. Hence we can put

$$
\left(G, K_{1}\right)=
$$

$$
\begin{align*}
& \left(\prod_{i=1}^{h} \operatorname{SU}\left(l_{i}+1\right) \times \operatorname{Spin}\left(2 k_{1}\right), \prod_{i=1}^{h} \operatorname{S}\left(U(1) \times U\left(l_{i}\right)\right) \times \operatorname{Spin}\left(2 k_{1}\right)\right)\left(k_{1} \neq 2\right), \text { or } \tag{6.1}\\
& \left(\prod_{i=1}^{h} \operatorname{SU}\left(l_{i}+1\right) \times \operatorname{SU}\left(k_{1}\right) \times T^{1}, \prod_{i=1}^{h} \operatorname{S}\left(U(1) \times U\left(l_{i}\right)\right) \times \operatorname{SU}\left(k_{1}\right) \times T^{1}\right) \tag{6.2}
\end{align*}
$$

and

$$
\left(G, K_{2}\right)=
$$

$$
\begin{align*}
& \left(\prod_{j=1}^{k} \operatorname{SU}\left(m_{j}+1\right) \times \operatorname{Spin}\left(2 k_{2}\right), \prod_{j=1}^{k} \operatorname{S}\left(\mathrm{U}(1) \times \mathrm{U}\left(\mathrm{~m}_{\mathfrak{j}}\right)\right) \times \operatorname{Spin}\left(2 k_{2}\right)\right)\left(k_{2} \neq 2\right), \text { or } \tag{6.3}\\
& \left(\prod_{j=1}^{k} \operatorname{SU}\left(m_{j}+1\right) \times \operatorname{SU}\left(k_{2}\right) \times T^{1}, \prod_{j=1}^{k} \operatorname{S}\left(\mathrm{U}(1) \times U\left(m_{j}\right)\right) \times \operatorname{SU}\left(k_{2}\right) \times \mathrm{T}^{1}\right) \tag{6.4}
\end{align*}
$$

because $S^{2 m}(m \geq 4)$ is not a (quasi-)toric.
Therefore we only consider the following three cases.
6.1. When (6.1) and (6.3) occur. First we assume $k_{1} \geq 4$. Then we easily see $k_{1}=k_{2}$, $h=k$ and $l_{i}=m_{j}$ for ($i=j$), by comparing each simple group factor in (G, K_{1}) and (G, K_{2}). Moreover the slice representations σ_{1} and σ_{2} are unique from Lemma 5.5. Hence we have unique tubular neighborhoods $X_{i} \cong G \times_{K_{i}} D^{2 k_{i}}$ of G / K_{i} for $i=1$, 2. Let us consider the attaching map $f: \partial X_{1} \rightarrow \partial X_{2}$. Since f can be considered as an equivariantly map from $G / K \rightarrow G / K$, so the map f is in $N(K ; G) / K$. Now $K=\sigma_{1}^{-1}\left(S O\left(2 k_{1}-1\right)\right)=$ $\sigma_{2}^{-1}\left(\operatorname{SO}\left(2 k_{2}-1\right)\right)$. So we have $K=\prod_{i=1}^{h} S U\left(l_{i}+1\right) \times \operatorname{Spin}\left(2 k_{1}-1\right)$. From Lemma 4.7 (1), if two attaching maps f and f^{\prime} are in $N(K ; G)^{0}$ then the manifolds $M(f)=X_{1} \cup_{f} X_{2}$ and $M\left(f^{\prime}\right)=X_{1} \cup_{f} X_{2}$ are equivariantly diffeomorphic. So we may take $f \in N(K ; G) / N(K ; G)^{o}$. As is easily seen that $N(K ; G) / N(K ; G)^{o} \simeq S\left(O(1) \times O\left(2 k_{1}-1\right)\right) / S O\left(2 k_{1}-1\right) \simeq \mathbb{Z}_{2}$. Put $\mathrm{f} \in\left(\mathrm{S}\left(\mathrm{O}(1) \times \mathrm{O}\left(2 \mathrm{k}_{1}-1\right)\right) / \mathrm{SO}\left(2 \mathrm{k}_{1}-1\right)\right)-\{e\}$, then we can put

$$
f=\left(\begin{array}{cc}
-1 & 0 \\
0 & -I_{2 k_{1}-1}
\end{array}\right) .
$$

This f is in the center of K in K_{1}. Hence the following diagram is well-defined and commute;

$$
\begin{array}{rlll}
\partial X_{1}= & G \times{ }_{K_{1}} K_{1} / K \xrightarrow{\pi} \quad \mathrm{G} / \mathrm{K} \\
& 1 \times \mathrm{F} \downarrow & & \downarrow R(f) \\
\partial X_{1}= & G \times{ }_{K_{1}} K_{1} / K \xrightarrow{\pi} \quad G / K
\end{array}
$$

where $\pi\left(\left[g, k_{1} K\right]\right)=g k_{1} K, R(f)(k K)=k f K$ and $(1 \times F)\left(\left[g, k_{1} K\right]\right)=\left[g, k_{1} f K\right]$. Here $F: K_{1} / K \cong S^{2 k_{1}-1} \rightarrow S^{2 k_{1}-1} \cong K_{1} / K$ can take from the special orthogonal group $S O\left(2 k_{1}\right)$. So F is extendable to the diffeomorphism from $D^{2 k_{1}}$ to itself. Hence from Lemma 4.7 (2), we see $M(f) \cong M(e)$ for $\{e, f\}=N(K ; G) / N(K ; G)^{0}$. Therefore this case has unique (M, G). We can put such (M, G) as

$$
M \cong \prod_{i=1}^{h} \mathbb{C P}\left(l_{i}\right) \times S^{2 k_{1}}, \quad G \simeq \prod_{i=1}^{h} \operatorname{SU}\left(l_{i}+1\right) \times \operatorname{SO}\left(2 k_{1}\right)
$$

up to essential isomorphism, because the above (M, G) has same orbits in this case (where $k_{1}=k_{2}$ and $\sum_{i=1}^{h} l_{i}+k_{1}=n$). But this is not a (quasi-)toric manifold, because $k_{1} \geq 4$ and $S^{2 k_{1}}$ is not a (quasi-)toric manifold.

Next $k_{1}=3$. Then there are two cases $\operatorname{Spin}\left(2 \mathrm{k}_{1}\right)=\operatorname{Spin}\left(2 \mathrm{k}_{2}\right)$ and $\operatorname{Spin}\left(2 \mathrm{k}_{1}\right)=$ $\operatorname{SU}\left(m_{k}+1\right)$ because of $\operatorname{Spin}(6) \simeq \operatorname{SU}(4)$. The first case is similar to the $k_{1} \geq 4$ case, so it is not a (quasi-)toric manifold. Hence $\operatorname{Spin}\left(2 k_{1}\right)=\operatorname{SU}(4)=\operatorname{SU}\left(m_{k}+1\right)$ holds, easily we have $\operatorname{Spin}\left(2 \mathrm{k}_{2}\right)=\operatorname{SU}(4)=\operatorname{SU}\left(\mathrm{l}_{\mathrm{h}}+1\right)$. However we can easily show this is a contradiction from $\sigma_{1}^{-1}(S O(5)) \simeq K \simeq \sigma_{2}^{-1}(S O(5))$ (as a conjugation).

Finally $k_{1}=1$. Then easily we have

$$
\mathrm{G}=\prod_{i=1}^{h} \operatorname{su}\left(\mathrm{l}_{\mathrm{i}}+1\right) \times \mathrm{T}^{1}, \quad \mathrm{~K}_{1}=\prod_{\substack{i=1 \\ 14}}^{h} \mathrm{~S}\left(\mathrm{U}\left(\mathrm{l}_{\mathrm{i}}\right) \times \mathrm{U}(1)\right) \times \mathrm{T}^{1}=\mathrm{K}_{2},
$$

and $k_{1}=k_{2}=1$. The slice representations are as follows;

$$
\begin{aligned}
& \sigma_{1}: K_{1}=\prod_{i=1}^{h} S\left(U\left(l_{i}\right) \times U(1)\right) \times T^{1} \longrightarrow T^{1}, \quad \sigma_{1}\left(t_{1}, \cdots, t_{h}, t\right)=t_{1}^{\alpha_{1}} \cdots t_{h}^{\alpha_{h}} t^{\alpha}, \\
& \sigma_{2}: K_{2}=\prod_{i=1}^{h} S\left(U\left(l_{i}\right) \times U(1)\right) \times T^{1} \longrightarrow T^{1}, \quad \sigma_{2}\left(t_{1}, \cdots, t_{h}, t\right)=t_{1}^{\beta_{1}} \cdots t_{h}^{\beta_{h}} t^{\beta} .
\end{aligned}
$$

Beause of Ker $\sigma_{1} \simeq K$, we see $K \cap\left(\{e\} \times T^{1}\right) \simeq \mathbb{Z}_{\alpha}$. On the other hand Ker $\sigma_{2} \simeq K$, so we see $K \cap\left(\{e\} \times T^{1}\right) \simeq \mathbb{Z}_{\beta}$. Hence $|\alpha|=|\beta|$. Because T^{1} acts on K_{i} / K transitively by Lemma 5.5, we also have $|\alpha|=|\beta| \neq 0$. Similarly for each factor, we have $\left|\alpha_{i}\right|=$ $\left|\beta_{i}\right|$. Denote such representations σ_{1}, σ_{2} by $\left(\alpha_{1}, \cdots, \alpha_{h}, \alpha\right)$ and ($\alpha_{1}^{\prime}, \cdots, \alpha_{h}^{\prime}, \alpha^{\prime}$), where $\left|\alpha_{i}\right|=\left|\alpha_{i}^{\prime}\right|$ and $|\alpha|=\left|\alpha^{\prime}\right|$. Moreover comparing $K \cap\left(\operatorname{SU}\left(l_{i}+1\right) \times \operatorname{SU}\left(l_{j}+1\right)\right)$, we have $\left(\alpha_{1}^{\prime}, \cdots, \alpha_{h}^{\prime}, \alpha^{\prime}\right)= \pm\left(\alpha_{1}, \cdots, \alpha_{h}, \alpha\right)$. Since the slice representation is identified up to the equivalence of representation in $\sigma_{i}: K_{i} \rightarrow O\left(2 k_{i}\right)$, we can put

$$
\left(\alpha_{1}^{\prime}, \cdots, \alpha_{h}^{\prime}, \alpha^{\prime}\right)=-\left(\alpha_{1}, \cdots, \alpha_{h}, \alpha\right)
$$

Hence two tubular neighborhoods are

$$
X_{1}\left(\alpha_{1}, \cdots, \alpha_{h}, \alpha\right) \cong G \times_{K_{1}} D^{2}, \quad X_{2}\left(-\alpha_{1}, \cdots,-\alpha_{h},-\alpha\right) \cong G \times_{K_{2}} D^{2}
$$

such that K_{1} acts on $D^{2} \subset \mathbb{C}$ by the representation $\sigma_{1}=\left(\alpha_{1}, \cdots, \alpha_{h}, \alpha\right)$ and K_{2} acts on $\mathrm{D}^{2} \subset \mathbb{C}$ by the representation $\sigma_{2}=\left(-\alpha_{1}, \cdots,-\alpha_{h},-\alpha\right)$.

Now $N(K ; G)=N(K ; G)^{\circ}$, so we have unique $M(f)$ for each tubular neighborhood $\left(\mathrm{X}_{1}, \mathrm{X}_{2}\right)$ from Lemma 4.7 (1).

We can construct such (M, G) as follows;

$$
\begin{aligned}
& M \cong G \times_{K_{1}} P\left(\mathbb{C}_{1} \oplus \mathbb{C}_{2}\right), \\
& G=\prod_{i=1}^{h} \operatorname{SU}\left(l_{i}+1\right) \times T^{1}, \\
& K_{1}=\prod_{i=1}^{h} S\left(U\left(l_{i}\right) \times U(1)\right) \times T^{1},
\end{aligned}
$$

where K_{1} acts on \mathbb{C}_{1} by σ_{1}. This is the case $k_{1}=k_{2}=1$ in Theorem B^{\prime}.
6.2. When (6.2) and (6.4) occur. If $k_{1}=1$, then we have already studied in Section 6.1 $k_{1}=1$ case. So we put $k_{1} \geq 2$. Comparing (G, K_{1}) and (G, K_{2}) we have two cases in this case; one of them is $\operatorname{SU}\left(\mathrm{k}_{1}\right)=\operatorname{SU}\left(\mathrm{k}_{2}\right)$ and the other is $\operatorname{SU}\left(\mathrm{k}_{1}\right)=\operatorname{SU}\left(\mathrm{m}_{\mathrm{k}}+1\right)$, $\operatorname{SU}\left(k_{2}\right)=\operatorname{SU}\left(l_{h}+1\right)$. We can similarly show the former case is not a (quasi-)toric manifold.

Hence we have

$$
\begin{aligned}
& \mathrm{G}=\prod_{i=1}^{\mathrm{h}-1} \operatorname{SU}\left(\mathrm{~m}_{\mathrm{i}}+1\right) \times \operatorname{SU}\left(\mathrm{k}_{1}\right) \times \operatorname{SU}\left(\mathrm{k}_{2}\right) \times \mathrm{T}^{1}, \\
& \mathrm{~K}_{1}=\prod_{i=1}^{\mathrm{h}-1} \mathrm{~S}\left(\mathrm{U}\left(\mathrm{~m}_{\mathrm{i}}\right) \times \mathrm{U}(1)\right) \times \operatorname{SU}\left(\mathrm{k}_{1}\right) \times \mathrm{S}\left(\mathrm{U}\left(\mathrm{k}_{2}\right) \times \mathrm{U}(1)\right) \times \mathrm{T}^{1}, \\
& \mathrm{~K}_{2}=\prod_{i=1}^{\mathrm{h}-1} \mathrm{~S}\left(\mathrm{U}\left(\mathrm{~m}_{\mathrm{i}}\right) \times \mathrm{U}(1)\right) \times \mathrm{S}\left(\mathrm{U}\left(\mathrm{k}_{1}\right) \times \mathrm{U}(1)\right) \times \mathrm{SU}\left(\mathrm{k}_{2}\right) \times \mathrm{T}^{1},
\end{aligned}
$$

and the slice representation

$$
\sigma_{i} \mathrm{~K}_{\mathrm{i}} \rightarrow \mathrm{U}\left(\mathrm{k}_{\mathrm{i}}\right) \subset \mathrm{SO}\left(2 \mathrm{k}_{\mathrm{i}}\right) \subset \mathrm{O}\left(2 \mathrm{k}_{\mathrm{i}}\right)
$$

is $\sigma_{i}\left(\operatorname{SU}\left(k_{i}\right)\right)=\operatorname{SU}\left(k_{i}\right) \subset U\left(k_{i}\right)$ and the other factor $N=K_{i} / \operatorname{SU}\left(k_{i}\right)$ goes to the diagonal subgroup T^{1} in $U\left(k_{i}\right)$. From similar argument with the Section $6.1 k_{1}=1$ case, we see this case satisfies Theorem B'.
6.3. When (6.1) and (6.4) (or (6.2) and (6.3)) occur. We can show this case does not become a (quasi-)toric manifold, similary as the Section 6.1.

Consequently we get Theorem B'.
Finally the author is grateful to Mikiya Masuda for his invaluable advices and comments.

References

[Bor50] A. Borel: Le plan projectif de actaves et les spheres comme espaces homogènes, C. R. Acad. Sci., Paris, 230 (1950), 1378-1381.
[Bre72] G. E. Bredon: Introduction to compact transformation groups, Academic Press, 1972.
[BP02] V. M. Buchstaber, T. E. Panov: Torus actions and their applications in topology and combinatorics, Amer. Math. Soc., 2002.
[GHZ06] V. Guillemin, T. S. Holm, C. Zara: A GKM description of the equivariant cohomology ring of a homogeneous space, J. Algebraic Combin., 23 (2006), no. 1, 21-41.
[HM03] A. Hattori, M. Masuda: Theory of Multi-fans, Osaka. J. Math., 40 (2003), 1-68.
[HH65] W. C. Hsiang, W. Y. Hsiang: Classification of differentiable actions on $\mathrm{S}^{n}, \mathrm{R}^{n}$ and D^{n} with S^{k} as the principal orbit type, Ann. of Math., 82 (1965), 421-433.
[Kur] S. Kuroki: Classification of compact transformation groups on complex quadrics with codimension one orbits, preprint.
[MT91] M. Mimura and H. Toda: Topology of Lie Groups, I and II, Amer. Math. Soc., 1991.
[MS43] D. Montgomery, H. Samelson: Transformation groups of spheres, Ann. of Math., 44 (1943), 454-470.
[Pon59] J. Poncet, Groupes de Lie compacts de transformations de l'espace euclidien et les spheres comme espaces homogènes, Comment. Math. Helv., 33 (1959), 109-120.
[Uch77] F. Uchida: Classification of compact transformation groups on cohomology complex projective spaces with codimension one orbits, Japan. J. Math. Vol. 3, No. 1, (1977), 141-189.

Osaka City university Advanced Mathematical Institute (OCAMI), Sumiyosi-Ku, Osaka 558-8585, JAPAN

E-mail address: kuroki@sci.osaka-cu.ac.jp

[^0]: ${ }^{1}$ While the condition, that (M, G) is an extension of the torus manifold ($M, \mathrm{~T}$), seems to be a strong condition.

[^1]: ${ }^{2}$ For the general torus manifold case, I will write soon as a generalized version of this paper.

