
ON TRANSFORMATION GROUPS WHICH ACT ON TORUS MANIFOLDS

SHINTARÔ KUROKI

ABSTRACT. We study the question of what 2n-dimensional torus manifolds (M, T) can
have an extension (M, G) with codimension zero (transitive) or codimension one principal
orbits and classify such (M, G), where rank G = dim T = n.

In this article we focus on the case M is the (quasi-)toric manifold, when (M, G) has
codimension one principal orbits (this paper is written as an article for the ”Symposium on
Transformation Groups (2006)” in Yokohama).

1. INTRODUCTION

The pair (M, T) of the 2n-dimensional, closed, connected, oriented, smooth manifold
M and n-dimensional torus T , is said to be a torus manifold [HM03] if the following con-
ditions are satisfies;

(1) M has an effective smooth action of an n-dimensional toral group T .
(2) the fixed point set MT is the non-empty set (automatically MT is a finite set).
(3) M is omnioriented.

Here M is called omnioriented if an orientation is specified for M and for every character-
istic submanifold Mi (a T -invariant (2n − 2)-manifold). Let G be a compact, connected,
semisimple, Lie group which has T as a maximal tori (such G is called a rank n Lie group).
In this paper we study the question of what 2n-dimensional torus manifolds M can have
an extended G-action with codimension zero (transitive) or codimension one principal
orbits, and get the following classifications;

Theorem A . The torus manifold (M, T) extends to the transitive action (M, G), where G is
a compact, connected, semisimple, rank n, Lie group. Then M is diffeomorphic to a product of
complex projective spaces CP(m) or even dimensional spheres S2m and G is locally isomorphic to
a product of special unitary groups SU(m+ 1) or special orthogonal groups SO(2m+ 1) , that is,

M ∼=

a∏

i=1

CP(li)×
b∏

j=1

S2mj, G ≈
a∏

i=1

SU(li + 1)×
b∏

j=1

SO(2mj + 1),

where
a∑

i=1

li +

b∑

j=1

mj = n = dim T .
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Theorem B . The torus manifold (M, T) extends to (M, G) which has codimension one orbits
and H1(M; Z2) = 0. Then M is diffeomorphic to an S2m or a CP(m) bundle over a product of
complex projective spaces or even dimensional spheres, and G is locally isomorphic to a product of
SU(l + 1) or SO(2l + 1) or T 1 , that is,

M ∼= G×H P(Ck1 ⊕ Ck2),
M ∼= G×H S(Ck ⊕ R) or
M ∼= G×H S(R2k2+1 ⊕ Ck1)

where G/H ∼=
∏a
i=1CP(li)×

∏b
j=1 S2mj , and H acts on the fibre by the representation of H which

is determined by the slice representation of the singular orbit. The above last case is the case one
singular orbit is not a torus manifold.

Automatically we have the follwoing corollary for the (quasi-)toric manifold.

Corollary B . Under the hypothesis in Theorem B, assume (M, T) is a (quasi-)toric manifold.
Then (M, G) is as follows;

M ∼= G×H P
(
Ck1 ⊕ Ck2) , G '

a∏

i=1

SU(li + 1)× (SU(k1)× SU(k2))× T 1,

where the subgroup H ' ∏a
i=1 S(U(1)×U(li))× (SU(k1)×SU(k2))×T 1 acts on P(Ck1⊕Ck2)

by the following representation;

H 3
((

t1 0

0 A1

)
, · · · ,

(
ta 0

0 Aa

)
, B1, B2, t

)
7→ (tr11 · · · traa trB1, B2) ∈ U(k1)× SU(k2).

Here G acts on M canonically and G/H ∼=
∏a
i=1CP(li),

∑a
i=1 li + k1 + k2 − 1 = n = dim T ,

(r1, · · · , ra, r) ∈ Za ⊕ (Z− 0).

The manifold in the above corollary is a generalized object for the Hirzebruch surface
(CP(1) bundle over CP(1)). In fact the case k1 = k2 = a = 1 = l1 is the Hirzebruch
surface.

Only Theorem A and Corollary B (as Theorem B’) will be shown in this paper.

In this paper the symbol A ∼= B means A is diffeomorphic to B, A ≈ B means A is
locally isomorphic to B, i.e., Lie algebras of A and B are isomorphic, and A ' B means
A is isomorphic to B as a Lie group. Moreover we identify (M, G) and (M, G ′) if their
induced effective actions are equivariant diffeomorphic. We call such equivalence relation
an essential isomorphism.

The outline of proofs for Theorem A, B’ and the organization of this paper are as fol-
lows. In the next Section 2 we recall some basic notations and results from the classical
Lie theorey [MT91] and the transformation group theory [Bre72]. Then we go on and in
Section 3 give a proof for Theorem A. To prove Theorem A, we use the classical classifica-
tion theorem of the simple Lie group and its maximal rank subgroup. In Section 4 then we
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prepare from the transformation group theory to prove Theorem B’, we know the local
and global structure of (M, G) which has codimension one singular orbits and, especially
we know there are two singular orbits in (M, G). In Section 5 we also prepare from the
assumption that M is the torus manifold. In particular we know if M is a (quasi-)toric
manifold, two singular orbits are (quasi-)toric manifold. In Section 6 we prove Theorem
B’. To prove Theorem B’, we use the method of Uchida [Uch77]. The sketch of this method
is the following. First, find two singular orbits (by using Theorem A). Second, compute
slice representations of two singular isotropy groups. Then we get a closed tubular neigh-
borhood of a singular orbit. Third, consider attaching maps between boundaries of two
tubular neighborhoods. Then we know how many (M, G) exist. The uniqueness of each
(M, G) follows form Lemma 4.7. Finally we construct such examples of (M, G) directly.

Uchida classified (M, G) such that M is a rational cohomology complex projective
space, i.e., a rational cohomology ring H∗(M; Q) is isomorphic to H∗(CP(m); Q). In his
case the cohomology ring of M is fixed, but in our case the cohomology ring of M is not
fixed (M is a family of torus manifolds). Hence this research says not only the research of
the torus manifold (the toric topological aspect), but also what his method is effective for
wider situation (the transformation group aspect). 1

2. PREPARATION I (FROM THE LIE THEORY)

We begin by noting some definitions and facts which will be of use in the codimension
zero (transitive) case.

The symbol (W, H) means a manifold W with H-action. We call (W, T) is a GKM
manifold if it satisfies the following conditions [GHZ06]:

(1) the set of zero dimensional orbits (the fixed point set WT ) in the orbit space W/T is
zero dimensional.

(2) the set of one dimensional orbits in the orbit space W/T is one dimensional.
Under these hypotheses, the union of zero and one dimensional orbits has a structure of
a graph. As is easily seen that the torus manifold (M, T) is a GKM manifold. So the torus
manifold is a GKM manifold in this sence.

We say (M, T) exteds to (M, G) or (M, G) is an extension of (M, T), if the restricted
action of ϕ : G×M → M to T (ϕ|T : T ×M → M) coincides with the action (M, T).

The following theorem becomes a trigger to start this research.

Theorem 2.1 ([GHZ06]). Suppose W is a H-homogeneous manifold. Then the following are
equivalent;

(1) (W, T) is a GKM manifold.
(2) The Euiler characteristic of W is non-zero (χ(W) 6= 0).

1While the condition, that (M,G) is an extension of the torus manifold (M, T), seems to be a strong
condition.
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(3) W is of the form W = H/K, where K is a closed connected subgroup of H containig T

(T ⊂ K ⊂ H).

This theorem says if the torus manifold (M, T) extends to the transitive action (M, G)
and denote such M as G/H, i.e. M ∼= G/H, then rank G = rank Ho holds (we can also
have rank G = rank Ho directly, because of χ(G/H) = χ(M) = χ(MT ) 6= 0 and the classical
result in [MT91]), where Ho is a connected component of H. So we need to consider the
maximal rank subgroup of G.

Before to consider the maximal rank subgroup, we recall the results in the Lie theory
(see [MT91] Chapter V). In general, a compact, connected, Lie group has the following
structure;

G ' (G1 × · · · ×Gk)/N

where Gi is a simple, simply connected, compact Lie group or toral Lie group (i =
1, · · · , k) and N is some finite central normal subgroup in G1 × · · · × Gk, that is, we
can take a finite covering map

p : G̃ = G1 × · · · ×Gk → G.

In this paper we assume (M, G) is identified by the essential isomorphism, so we may
assume all our Lie groups as G1 × · · · × Gk because the action ϕ : G × M → M and
ϕ̃ : G̃×M

p×1→ G×M
’→ M are essential isomorphic.

Let G/H be a quotient space of a maximal rank subgroup H in G. Then H̃ = p-1(H) ⊂ G̃

is a maximal rank subgroup in G̃. So we can put H̃o = H1 × · · · × Hk where Hi ⊂ Gi is a
connected, maximal rank subgroup, because of the following lemma.

Lemma 2.2. Let Gi be a compact, connected, Lie group and G be a product of such Lie group, i.e.,
G = G1×· · ·×Gk. Assume H is a closed maximal rank subgroup in G. Then H = H1×· · ·×Hk

where Hi is a maximal rank subgroup in Gi.

Proof. It is sufficient to prove the case k = 2.
Assume G = G1×G2. Let H be a maximal rank closed subgroup of G. Then we can put

as follows;

G1 ×G2 ⊃ H ⊃ T1 × T2

where Ti is a maximal tori in Gi (i = 1, 2).
Put H1 = {g1 | (g1, g2) ∈ H ⊂ G1 × G2} and H2 = {g2 | (g1, g2) ∈ H ⊂ G1 × G2}. Since

T1 × T2 ⊂ H, we have Ti ⊂ Hi ⊂ Gi for i = 1, 2. Now T = T1 × T2 is a maximal tori
in H, hence we have ∪b∈HbTb-1 = H. Therefore, for all a = (a1, a2) ∈ H, there exists
b = (b1, b2) ∈ H such that b-1(a1, a2)b ∈ T = T1 × T2. Take a2 = e ∈ H2 (the identity
element in H2), then t = (b-1

1 a1b1, e) ∈ T1 × 1. So we have btb-1 = (a1, e) ∈ H. This
relation says H1 × 1 ⊂ H, and similary we also have 1 × H2 ⊂ H. Hence H1 × H2 ⊂ H.
Consequently H = H1 ×H2 (H1 ×H2 ⊃ H can be easily shown). ¤
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If (G/H, T) is a torus manifold, then this action is effective. So Gi 6= Hi for each factor
of G = G1 × · · · × Gk and H = H1 × · · · × Hk. In particular Gi is not a toral group, but a
simple Lie group.

In the next section we will mention about codimension zero (transitive) case.

3. CODIMENSION ZERO CASE (TRANSITIVE CASE)

Let (M, T) be a torus manifold and G be a compact, connected, semisimple, Lie group
which has T as a maximal tori, i.e., rank G = dim T = n. Assume (M, T) extends to the
transitive action (M, G). Then the following theorem holds.

Theorem A . The torus manifold (M, T) extends to the transitive action (M, G), where G is
a compact, connected, semisimple, rank n, Lie group. Then M is diffeomorphic to a product of
complex projective spaces CP(m) or even dimensional spheres S2m and G is locally isomorphic to
a product of SU(m + 1) or SO(2m + 1) , that is,

M ∼=

a∏

i=1

CP(li)×
b∏

j=1

S2mj, G ≈
a∏

i=1

SU(li + 1)×
b∏

j=1

SO(2mj + 1),

where
a∑

i=1

li +

b∑

j=1

mj = n = dim T .

In this section this theorem is proved.

We would like to classify (M, G) up to the essential isomorphism, so we can put G =
G1 × · · · ×Gk from the argument Section 2. Moreover we can put

M ∼= G/H = G1/H1 × · · · ×Gk/Hk = M1 × · · · ×Mk.

Here Gi is a simply connected, simple, Lie group such that
∑k
i=1 rank Gi = n = dim T

and Hi is a maximal rank subgroup of Gi for all i = 1, · · · , k.
The maximal tori T in Ho devides into

T = T1 × · · · × Tk ⊂ Ho
1 × · · · ×Ho

k = Ho ⊂ H = H1 × · · · ×Hk ⊂ G1 × · · · ×Gk = G

where Ti ⊂ Hi is a maximal tori in the simple Lie group Gi (i = 1, · · · , k). Then the
following lemma holds.

Lemma 3.1. Each pair (Mi, Ti) = (Gi/Hi, Ti) (i = 1, · · · , k) satisfies 2 dim Ti = dim Mi.

Proof. Since (M, T) = (G/H, T) is a torus manifold, we have the following equations;

2 dim T = 2n = dim(G/H) =

k∑

i=1

dim(Gi/Hi) = 2

k∑

i=1

dim Ti.(3.1)
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The tangential representation on p = (p1, · · · , pk) ∈ MT = MT1
1 × · · · ×MTk

k is devided
into

Tp(M) = Tp1(M1)⊕ · · · ⊕ Tpk(Mk).

Moreover each factor Tpi(Mi) is devided into

Tpi(Mi) = V(α1)⊕ · · · ⊕ V(αl)

by the tangential representation of Ti. Here the weight representations α1, · · · , αl ∈ t∗i
are linearly independent because (M, T) is a torus manifold.

If there exist a factor such that 2 dim Tj > dim Gj/Hj, then there is a factor such that
2 dim Ti < dim Gi/Hi by the equation (3.1). However this contradicts to the tangential
representation α1, · · · , αl ∈ t∗i (where 2l = dim Gi/Hi > dim t∗i ) are linearly independent.
Hence dim Gi/Hi = 2 dim Ti for each i = 1, · · · , k. ¤

From this lemma, to prove Theorem A, it is sufficient to consider each factor Gi/Hi con-
structed by a simple Lie group Gi and its maximal rank subgroup Hi such that dim Gi/Hi =
dim Gi − dim Hi = 2 rank Gi.

Put S be a simple, compact Lie group and S ′ be a closed, maximal rank, maximal sub-
group of S. Then the following beautiful classification for such (S, S ′) are known by the
classical Lie theory ([MT91] Chapter V).

S Al Bl Cl
S ′ Ai-1 ×Al-i × T 1 Bl-1 × T 1 Bi-1 ×Dl-i+1 Dl Ci-1 × Cl-i+1 Al-1 × T 1

S Dl (l ≥ 3) E6
S ′ Dl-1 × T 1 Di-1 ×Dl-i+1 Al-1 × T 1 D5 × T 1 A1 ×A5 A2 ×A2 ×A2

S E7 E8
S ′ D6 ×A1 A7 A2 ×A5 E6 × T 1 D8 A8 A4 ×A4 E6 ×A2 E7 ×A1

S F4 G2

S ′ C3 ×A1 A2 ×A2 B4 A2 A1 ×A1

Here Al ≈ SU(l+1), Bl ≈ SO(2l+1), Cl ≈ Sp(l), Dl ≈ SO(2l) are classical Lie groups and
E6, E7, E8, F4, G2 are exceptional Lie groups. Remark each dimension of S is as follows;

dim Al = l2 + 2l, dim Bl = dim Cl = (2l + 1)l, dim Dl = l(2l − 1)

dim E6 = 78, dim E7 = 133, dim E8 = 248, dim F4 = 52, dim G2 = 14.
6



Therefore we have dim S/S ′ = dim S − dim S ′ as follows;

dim Al/(Ai-1 ×Al-i × T 1) = −2i2 + 2li + 2i (1 ≤ i < l),

dim Bl/(Bl-1 × T 1) = 4l − 2,

dim Bl/(Bi-1 ×Dl-i+1) = −2l − 4i2 + 6i − 2 + 4li (1 < i < l), dim Bl/Dl = 2l,

dim Cl/(Ci-1 × Cl-i+1) = −4i2 + 8i − 4 + 4li − 4l (1 ≤ i < l),

dim Cl/(Al-1 × T 1) = l2 + l, dim Dl/(Dl-1 × T 1) = 4l − 4,

dim Dl/(Di-1 ×Dl-i+1) = 8i − 4i2 + 4li − 4 − 4l, dim Dl/(Al-1 × T 1) = l2 − l,

dim E6/(D5 × T 1) = 32, dim E6/(A1 ×A5) = 40, dim E6/(A2 ×A2 ×A2) = 54,

dim E7/(D6 ×A1) = 64, dim E7/A7 = 70, dim E7/(A2 ×A5) = 90,

dim E7/(E6 × T 1) = 54, dim E8/D8 = 158, dim E8/A8 = 168,

dim E8/(A4 ×A4) = 200, dim E8/(E6 ×A2) = 162, dim E8/(E7 ×A1) = 112,

dim F4/(C3 ×A1) = 28, dim F4/(A2 ×A2) = 36, dim F4/B4 = 16,

dim G2/A2 = 6, dim G2/(A1 ×A1) = 8.

Checking whether the above dimension is 2l(= 2 rank S) or not, we get the followings
are equal to 2l;

Al/(Al-1 × T 1) ∼= SU(l + 1)/S(U(l)×U(1)) ∼= CP(l)

Bl/Dl
∼= SO(2l + 1)/SO(2l) ∼= S2l

B1/T 1 ∼= SO(3)/SO(2) ∼= S2 ∼= Sp(1)/T 1 ∼= C1/T 1

D3/(A2 × T 1) ∼= Spin(6)/U(3) ∼= SU(4)/S(U(3)×U(1)) ∼= A4/(A3 × T 1) ∼= CP3

If S" is not a maximal subgroup but maximal rank subgroup, then S" is a subgroup of one
of the maximal subgroups S ′ in the above list of (S, S ′). So we have dim S/S" > dim S/S ′.
Moreover from the list of dim S/S ′ we have dim S/S ′ ≥ 2 rank S, hence such S" does not
occur. Therefore we get the following lemma.

Lemma 3.2. Let (Gi/Hi, T) be a pair such that Gi ⊃ Hi ⊃ T and dim Gi/Hi = 2 dim T = 2l.
Assume Gi is a simple, connected, compact Lie group. Then we have Gi/Hi

∼= S2l, RP(2l) or
CP(l).

Proof. We already have Gi/Ho
i

∼= S2l or CP(l) by the above argument. It is easy to show
Ho
i ⊂ Hi ⊂ N(Ho

i ; G), where N(Ho
i ; Gi) is a normalizer subgroup of Ho

i in Gi.
If (Gi, Ho

i ) ≈ (Al, Al-1×T 1), then Ho
i = N(Ho

i ; Gi) holds. Hence if Gi/Ho
i

∼= CP(l) then
we have Hi = Ho

i (l 6= 1). Especially we have Gi/Hi
∼= CP(l).

If (Gi, Ho
i ) ≈ (Bl, Dl), then Ho

i × Z2 ' N(Ho
i ; G) holds. Hence if Gi/Ho

i
∼= S2l then we

have Hi = Ho
i or Hi = Ho

i ×Z2. If Hi = Ho
i , then we have Gi/Hi

∼= S2l, and if Hi = Ho
i ×Z2,

then we have Gi/Hi
∼= RP(2l). ¤

Remark the torus manifold is an orientable manifold but RP(2l) is a non-orientable
manifold. Hence the torus manifold (M, T) which extends to the transitive action (M, G)
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is a product of S2l or CP(l) by Lemma 3.1 and 3.2. Consequently the codimension zero
case (transitive case) of our problem was solved, that is, Theorem A was proved.

4. PREPARATION II (FROM THE TRANSFORMATION GROUP THEORY)

In Section 3 we proved Theorem A (codimension zero case), so we are naturally led to
study actions with codimension one orbits. We used the Lie theory for the codimension
zero case, but the codimension one case belongs to the transformation group theory. In
this section we recall some results from the transformation group theory which will be of
use in the codimension one case.

Let (M, G) be a smooth transformation group which has codimension one orbits, and
M be a compact manifold whose first Z2 cohomology is 0, i.e., H1(M; Z2) = 0. Then the
following structure theorem holds.

Theorem 4.1 (Uchida[Uch77] Lemma 1.2.1). Let G be a compact connected Lie group and M a
compact connected manifold without boundary. Assume H1(M; Z2) = 0, and G acts smoothly on
M with codimension one orbits G(x). Then G(x) ∼= G/K is a principal orbit and (G,M) has just
two singular orbits G(x1) ∼= G/K1 and G(x2) ∼= G/K2. Moreover there exists a closed invariant
tubular neighborhood Xs of G(xs) such that

M = X1 ∪ X2 and X1 ∩ X2 = ∂X1 = ∂X2.

In our case H1(M; Z2) = 0, hence this structure theorem holds for (M, G). The tubular
neighborhoods of two singular orbits are understood from the following theorem (for
example it is in [Bre72]).

Theorem 4.2 (differentiable slice theorem). Let G be a compact Lie group and M be a smooth
G-manifold. Then for all xi ∈ M there is a closed invariant tubular neighborhood Xi of the orbit
G(xi) ∼= G/Ki and Xi ∼= G ×Ki Dxi as a G-manifold, where Dxi is a closed disk which has an
orthogonal Ki-action via the representation σi : Ki → O(Dxi).

We call the representation σi in this theorem a slice representation of Ki at xi ∈ M. Put
the codimension of two singular orbits by mi (i = 1, 2). Then two tubular neighborhoods
of G/K1 and G/K2 are denoted by X1 ∼= G×K1 Dm1 and X2 ∼= G×K2 Dm2 such that Ki acts
on Dmi through the slice representation σi : Ki → O(mi) for i = 1, 2.

Moreover we have Ki/K ∼= Smi-1 ⊂ Dmi for i = 1, 2, that is, Ki acts on Smi-1 ⊂ Dmi

transitively because (M, G) has a codimension one principal orbit G/K. The transitive ac-
tions on sphere have been already studied by Montgomery and Samelson, Borel and Pon-
cet. The following results were proved in a series of papers [MS43], [Bor50] and [Pon59].

Theorem 4.3. Let G be a compact connected Lie group acting effectively and transitively on a
homotopy sphere Σm and H be the isotropy subgroup, namely, G/H ∼= Σm. Then there always
exists a simple normal subgroup G1 of G that is already transitive on Σm, i.e., G1/(G1∩H) = Σm.

Theorem 4.4. Let G1 be a one of the simple groups in G such that G1/H1
∼= Σm. Then, as in

[Bor50], [MS43], we have that
8



(1) If m is even, G1 = SO(m + 1) or the exceptional Lie group G2 in case m = 6.
(2) If m = 2l − 1 and l odd, G1 = SO(m + 1) or SU(l).
(3) If m = 2l − 1 and l even, G1 = SO(m + 1), SU(l), Sp(l/2), Spin(9) (if m = 15, l = 8),

or Spin(7) (if m = 7, l = 4).

As we may check easily in each of the above cases, we have a unique embedding of G1

in SO(m + 1) such that H1 = G1 ∩ SO(m). Hence Σm is diffeomorphic to the standerd
sphere Sm.

Theorem 4.5. Let G1(⊂ G) be the simple subgroup in Theorem 4.4. Then G1 ⊂ G ⊂ N(G1)
o ⊂

SO(m + 1), where N(G1)
o is the identity componenet of the normalizer of G1 in SO(m + 1), and

the following holds;
(1) In case G1 = SO(m + 1), G2 (m = 6), Spin(7) (m = 7, l = 4), or Spin(9) (m =

15, l = 8), we have that N(G1)
o = G1, hence G1 = G.

(2) In case G1 = SU(l), we see that N(G1)
o = U(l); hence we may have either G = G1 or

U(l).
(3) In case G1 = Sp( l

2
), N(G1)

o is the subgroup of SO(m + 1) generated by Sp( l
2
), and the

S3-subgroup realized as right multiplications of unit quaternions. As a group, N(Sp( l
2
))o

is isomorphic to Sp( l
2
)×Z2 S3, where Z2 is the subgroup generated by (−Id, −1). Hence

G is either Sp( l
2
) or Sp( l

2
)×Z2 S1 or Sp( l

2
)×Z2 S3.

The above reuslts are also refered in a paper [HH65].
In particular the following lemma comes from Theorem 4.4 and 4.5 directly.

Lemma 4.6. Assume the connected subgroup H in O(2l) acts on S2l-1 transitively and its rank
is l, i.e., rank H = l. Then H ' U(l) or SO(2l) in O(2l).

The above results (from Theorem 4.2 to Lemma 4.6) were about the local structure of
singular orbits G/K1 and G/K2. On the other hand, Theorem 4.1 and the following lemma
are about the global structure of (M, G).

Lemma 4.7 ([Uch77] Lemma 5.3.1). Let f, f ′ : ∂X1 → ∂X2 be G-equivariant diffeomorphisms,
where ∂Xi means a boundary of Xi. Then M(f) is equivariantly diffeomorphic to M(f ′) as G-
manifolds, if one of the following conditions are satisfied (where M(f) = X1 ∪f X2);

(1) f is G-diffeotopic to f ′.
(2) f-1f ′ is extendable to a G-equivariant diffeomorphism on X1.
(3) f ′f-1 is extendable to a G-equivariant diffeomorphism on X2.

The story of the classification is first we pick up all tubular neighborhoods Xi which
have possible to occur. Then we consider the attaching map f from ∂X1 to ∂X2. Because the
boundary of tubular neighborhoods are a principal orbit G/K, we can take an attaching
map f from N(K; G)/K. Using this attaching map f, we construct a manifold M(f) =
X1∪fX2 with G-action. Finally Lemma 4.7 is a criterion whether M(f) and M(f ′) are same
or not. From the next section we will start to classify the action which has codimension
one orbits along the above story.

9



5. PRELUDE TO CLASSIFY THE CODIMENSION ONE CASE

Let (M, G) be an extension of the torus manifold (M, T) such that rank G = dim T .
Assume H1(M, Z2) = 0 and M has a codimension one orbits. Then (M, G) has just two
singular orbits by Theorem 4.1. Put these two orbits G/K1 and G/K2. Then they have the
following structure by Theorem 4.1;

M ∼= X1 ∪ X2, X1 ∩ X2 = G/K

where Xi is a tubular neighborhood of G/Ki for i = 1, 2 and G/K is a principal orbit. In
this section we show some fundamental results for such (M, G). In particular we will
know the structure of the singular orbit G/K1 in Lemma 5.4 and 5.5.

5.1. Singular orbit. First we study about the singular orbits. The following lemma holds.

Lemma 5.1. The orbit of the fixed point (in MT ) is the singular orbits, that is, G(p) = G/K1 or
G/K2 for all p ∈ MT .

Proof. Let p be a fixed point (p ∈ MT ). Consider the G-isotropy group on p and denote
it Gp. Then we have T ⊂ Gp because p is fixed by T ⊂ G. Hence rank Gp coincides with
rank G. So G/Gp has an even dimension. Therefore we have the G-orbit on p is a singular
orbit. ¤

From this lemma we expect G/K1 (or G/K2) is a torus manifold. We shall show it is
true. Before to show it, the following proposition holds in general.

Proposition 5.2. Let M ′ be a T -invariant submanifold in the torus manifold (M, T). If M ′ has
a fixed point p ∈ MT , then (M ′, T/T ") is a torus manifold for some subtorus T " ⊂ T .

Proof. Because M ′ is a T -invariant submanifold, the tangent space Tp(M) on p ∈ M ′ ∩MT

divides into;

Tp(M) ' Tp(M
′)⊕Np(M

′),

where Np(M
′) is a normal space of M ′ on p. Since Tp(M

′) has a T -action through the
tangential representation, we have the irreducible decomposition

Tp(M
′) ' V(α1)⊕ · · · ⊕ V(αk)

where V(αi) ' C, αi : T → S1 (i = 1, · · · , k) and 2k = dim M ′. Put T " = ∩ki=1Ker αi ⊂ T .
Then T " acts on Tp(M

′) trivially. Hence T " acts Np(M
′) by the restricted T -action on Tp(M)

and we also have the irreducible decomposition;

Np(M
′) ' V(αk+1)⊕ · · · ⊕ V(αn),

where dim T = n. So dim T " = n − k. Therefore k-dimensional torus T/T " acts on 2k-
dimensional manifold M ′. This is a torus manifold, because M is a torus manifold. ¤

Consequently, form Lemma 5.1 and Proposition 5.2, the following corollary holds.

Corollary 5.3. At least one of the singular orbits of (M, G) is a torus manifold.

We can assume (G/K1, T/T ") is a torus manifold by some T " ⊂ T .
10



5.2. Structure of G and K1. Next we study the structure of G and K1 by making use of
Theorem A, because G/K1 is a torus manifold and it extends to a transitive action.

From Lemma 2.2, we see the decomposition G = G ′
1 ×G"1 and K1 = K ′

1 ×G"1 for G and
K1, where G"1 is the normal subgroup of G and G ′

1 acts on G/K1 almost effectively and
transitively. Moreover the following decomposition holds for the maximal tori;

G ′
1 ×G"1 ⊃ K ′

1 ×G"1 ⊃ T ′ × T " ' T,

where T ′ is a maximal tori of G ′
1.

Put k1 = rank G"1 = dim T " and p ∈ MT . Then we have dim Np(G/K1) = 2k1 from the
proof of Proposition 5.2. So the equations

dim G/K1 = 2n − 2k1 = 2n − 2rank G"1

holds.

Since the torus manifold (G ′
1/K ′

1, T ′) = (G/K1, T) extends to the transitive action
(G ′

1/K ′
1, G ′

1), we have from Theorem A;

G ′
1/K ′

1
∼=

a∏

i=1

CP(li)×
b∏

j=1

S2mj ,

(G ′
1, K ′

1) ≈
(

a∏

i=1

SU(li + 1)×
b∏

j=1

SO(2mj + 1),

a∏

i=1

S(U(1)×U(li))×
b∏

j=1

SO(2mj)

)
,

where
a∑

i=1

li +

b∑

j=1

mj = n − k1 = n − rank G"1.

5.3. Slice representation of K1. Denote the slice representation of Gp = K1 on p ∈ MT by

σ1 : K1 = K ′
1 ×G"1 → O(2k1).

Remark the image of σ1 is in SO(2k1) because of the connectedness of K1 (see Section 5.2).
Since T " ⊂ G"1 acts effectively on the normal space of p ∈ G/K1 in M (because M is a

torus manifold), we have σ1(T ") = Tk1 ⊂ SO(2k1) where dim T " = k1. In particular the
restricted representation σ1|G}1 to G"1 is non-trivial. Moreover we see σ1(K

′
1) ⊂ σ1(G"1)

because σ1(K
′
1) is in the centralizer of σ1(T ") = Tk1 ⊂ SO(2k1) (the centralizer is isomor-

phic to Tk1). Therefore G"1 acts transitively on S2k1-1 through the slice representation
σ1 : K ′

1 ×G"1 → SO(2k1). Because rank σ1(G"1) = k1, we have from Lemma 4.6;

σ1(G"1) ' G"1 ' U(k1), or SO(2k1)

Because σ1(K
′
1) is also in the centralizer of σ1(G"1), we see

σ1(K
′
1) ' S1 (if σ1(G"1) ' U(k1)) or

σ1(K
′
1) ' {e} (if σ1(G"1) ' SO(2k1)).

Let us gather the above arguments, then we have the following two lemmas.
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Lemma 5.4. Let G/K1 be a singular orbit in (M, G) which is an extension of a torus manifold
(M, T). Then we can put (G/K1, T/T ") is a torus manifold and the followings are satisfied;

(G, K1) = (G ′
1 ×G"1, K ′

1 ×G"1),

(G ′
1, K ′

1) ≈
(

a∏

i=1

SU(li + 1)×
b∏

j=1

SO(2mj + 1),

a∏

i=1

S(U(1)×U(li))×
b∏

j=1

SO(2mj)

)
,

G"1 ≈ SU(k1)× T 1 or SO(2k1),

where T " is a maximal tori (dim T " = k1) in G"1, and T/T " = T ′ is a maximal tori (dim T ′ =∑a
i=1 li +

∑b
j=1mj) in G ′

1

Lemma 5.5. Under the hypothesis in Lemma 5.4, we have the followings for the slice representa-
tion σ1 : K1 ' K ′

1 ×G"1 → SO(2k1) of K1;
(1) if G"1 ≈ SO(2k1), then σ1(G"1) = SO(2k1) and σ1(K

′
1) = {e},

(2) if G"1 ≈ SU(k1) × T 1, then σ1(G"1) = U(k1) ⊂ SO(2k1) and σ1(K
′
1) = S1 which is the

diagonal subgroup in U(k1).

Above these lemmas is corresponding to the structue of G/K1 and of its closed invariant
tubular neighborhood X1.

In the next section we will begin to classify the codimension one case.

6. CODIMENSION ONE CASE (FOR QUASI-TORIC MANIFOLD)

In this paper we only classify the (quasi-)toric manifold2. First of all we define the
(quasi-)toric manifold. We call M is a (quasi-)toric manifold if M is a toric manifold or a
quasi-toric manifold as follows;

Definition[toric manifold] A toric manifold is a smooth algebraic variety M containing
the algebraic torus (C∗)n as a Zariski open dence subset such that the natural (C∗)n-action
on itself extends to an action on M

Definition[quasi-toric manifold] Given a combinatorial simple polytope Pn, a Tn-manifold
M2n is called a quasi-toric manifold over Pn if the following two conditions are satisfied;

(1) the Tn-action is locally standard (equivariant to the standerd (Cn, Tn)),
(2) there is a projective map π : M2n → Pn constant on Tn-orbits which maps every

k-dimensional orbit to a point in the interior of a codimension-k face of Pn, k =
1, · · · , n.

Remark a (quasi-)toric manifold is a torus manifold, especially CP(m) is a (quasi-)toric,
but S2m (m ≥ 2) is not a (quasi-)toric.

Let (M, T) be a (quasi-)toric manifold, and G be a compact, connected, Lie group.
Assume (M, T) extends to (M, G) which has codimension one orbits. The aim of this
section is to prove the following theorem (Corollary B).

2For the general torus manifold case, I will write soon as a generalized version of this paper.
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Theorem B’ . (M, G) is an extension of a (quasi-)toric manifold (M, T) where rank G = dim T .
Then (M, G) is as follows;

M ∼= G×H P
(
Ck1 ⊕ Ck2) , G '

h∏

i=1

SU(li + 1)× (SU(k1)× SU(k2))× T 1,

where the subgroup H ' (
∏h
i=1 S(U(1)×U(li)))×(SU(k1)×SU(k2))×T 1 acts on P(Ck1⊕Ck2)

by the following representation;

H 3
((

t1 0

0 A1

)
, · · · ,

(
th 0

0 Ah

)
, B1, B2, t

)
7→ (t¸11 · · · t¸hh t¸B1, B2) ∈ U(k1)× SU(k2).

Here G acts on M canonically and G/H ∼=
∏h
i=1CP(li),

∑h
i=1 li + k1 + k2 − 1 = n = dim T ,

(α1, · · · , αh, α) ∈ Zh ⊕ (Z− 0).

First the following lemma is proved.

Lemma 6.1. Two singular orbits G/K1 and G/K2 in (M, G) are quasi-toric manifolds.

Proof. Since M is a (quasi-)toric manifold, M1 = G/K1 is also a (quasi-)toric manifold
by Corollary 5.3. So we see M/T is a polytope. Then M1/T is a face in the polytope
M/T . Therefore there exists p ∈ MT which is not in M1. Hence its orbit G(p) is the other
singular orbit G/K2 by Lemma 5.1. Because M is a (quasi-)toric manifold, G/K2 is also a
(quasi-)toric manifold by Proposition 5.2. ¤

Therefore for the other singular orbit G/K2 in (M, G) we can apply the same argument
in Lemma 5.4 and 5.5. Hence we can put

(G, K1) =(
h∏

i=1

SU(li + 1)× Spin(2k1),

h∏

i=1

S(U(1)×U(li))× Spin(2k1)

)
(k1 6= 2), or(6.1)

(
h∏

i=1

SU(li + 1)× SU(k1)× T 1,

h∏

i=1

S(U(1)×U(li))× SU(k1)× T 1

)
(6.2)

and

(G, K2) =(
k∏

j=1

SU(mj + 1)× Spin(2k2),

k∏

j=1

S(U(1)×U(mj))× Spin(2k2)

)
(k2 6= 2), or(6.3)

(
k∏

j=1

SU(mj + 1)× SU(k2)× T 1,

k∏

j=1

S(U(1)×U(mj))× SU(k2)× T 1

)
(6.4)

because S2m (m ≥ 4) is not a (quasi-)toric.
Therefore we only consider the following three cases.
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6.1. When (6.1) and (6.3) occur. First we assume k1 ≥ 4. Then we easily see k1 = k2,
h = k and li = mj for (i = j), by comparing each simple group factor in (G, K1) and
(G, K2). Moreover the slice representations σ1 and σ2 are unique from Lemma 5.5. Hence
we have unique tubular neighborhoods Xi ∼= G ×Ki D2ki of G/Ki for i = 1, 2. Let us
consider the attaching map f : ∂X1 → ∂X2. Since f can be considered as an equivariantly
map from G/K → G/K, so the map f is in N(K; G)/K. Now K = σ-1

1 (SO(2k1 − 1)) =

σ-1
2 (SO(2k2 − 1)). So we have K =

∏h
i=1 SU(li + 1)× Spin(2k1 − 1). From Lemma 4.7 (1),

if two attaching maps f and f ′ are in N(K; G)o then the manifolds M(f) = X1 ∪f X2 and
M(f ′) = X1∪f ′X2 are equivariantly diffeomorphic. So we may take f ∈ N(K; G)/N(K; G)o.
As is easily seen that N(K; G)/N(K; G)o ' S(O(1) ×O(2k1 − 1))/SO(2k1 − 1) ' Z2. Put
f ∈ (S(O(1)×O(2k1 − 1))/SO(2k1 − 1)) − {e}, then we can put

f =

(
−1 0

0 −I2k1-1

)
.

This f is in the center of K in K1. Hence the following diagram is well-defined and com-
mute;

∂X1 = G×K1 K1/K
ı−→ G/K

1× F ↓ ↓ R(f)

∂X1 = G×K1 K1/K
ı−→ G/K

where π([g, k1K]) = gk1K, R(f)(kK) = kfK and (1 × F)([g, k1K]) = [g, k1fK]. Here
F : K1/K ∼= S2k1-1 → S2k1-1 ∼= K1/K can take from the special orthogonal group SO(2k1).
So F is extendable to the diffeomorphism from D2k1 to itself. Hence from Lemma 4.7 (2),
we see M(f) ∼= M(e) for {e, f} = N(K; G)/N(K; G)o. Therefore this case has unique
(M, G). We can put such (M, G) as

M ∼=

h∏

i=1

CP(li)× S2k1, G '
h∏

i=1

SU(li + 1)× SO(2k1)

up to essential isomorphism, because the above (M, G) has same orbits in this case
(where k1 = k2 and

∑h
i=1 li + k1 = n). But this is not a (quasi-)toric manifold, because

k1 ≥ 4 and S2k1 is not a (quasi-)toric manifold.

Next k1 = 3. Then there are two cases Spin(2k1) = Spin(2k2) and Spin(2k1) =
SU(mk + 1) because of Spin(6) ' SU(4). The first case is similar to the k1 ≥ 4 case,
so it is not a (quasi-)toric manifold. Hence Spin(2k1) = SU(4) = SU(mk + 1) holds, eas-
ily we have Spin(2k2) = SU(4) = SU(lh + 1). However we can easily show this is a
contradiction from σ-1

1 (SO(5)) ' K ' σ-1
2 (SO(5)) (as a conjugation).

Finally k1 = 1. Then easily we have

G =

h∏

i=1

SU(li + 1)× T 1, K1 =

h∏

i=1

S(U(li)×U(1))× T 1 = K2,

14



and k1 = k2 = 1. The slice representations are as follows;

σ1 : K1 =

h∏

i=1

S(U(li)×U(1))× T 1 −→ T 1, σ1(t1, · · · , th, t) = t¸11 · · · t¸hh t¸,

σ2 : K2 =

h∏

i=1

S(U(li)×U(1))× T 1 −→ T 1, σ2(t1, · · · , th, t) = t
˛1
1 · · · t˛hh t˛.

Beause of Ker σ1 ' K, we see K ∩ ({e} × T 1) ' Z¸. On the other hand Ker σ2 ' K,
so we see K ∩ ({e} × T 1) ' Z˛. Hence |α| = |β|. Because T 1 acts on Ki/K transitively
by Lemma 5.5, we also have |α| = |β| 6= 0. Similarly for each factor, we have |αi| =
|βi|. Denote such representations σ1, σ2 by (α1, · · · , αh, α) and (α ′

1, · · · , α ′
h, α

′), where
|αi| = |α ′

i| and |α| = |α ′|. Moreover comparing K ∩ (SU(li + 1) × SU(lj + 1)), we have
(α ′
1, · · · , α ′

h, α
′) = ±(α1, · · · , αh, α). Since the slice representation is identified up to the

equivalence of representation in σi : Ki → O(2ki), we can put

(α ′
1, · · · , α ′

h, α
′) = −(α1, · · · , αh, α).

Hence two tubular neighborhoods are

X1(α1, · · · , αh, α) ∼= G×K1 D2, X2(−α1, · · · , −αh, −α) ∼= G×K2 D2

such that K1 acts on D2 ⊂ C by the representation σ1 = (α1, · · · , αh, α) and K2 acts on
D2 ⊂ C by the representation σ2 = (−α1, · · · , −αh, −α).

Now N(K; G) = N(K; G)o, so we have unique M(f) for each tubular neighborhood
(X1, X2) from Lemma 4.7 (1).

We can construct such (M, G) as follows;

M ∼= G×K1 P(C1 ⊕ C2),

G =

h∏

i=1

SU(li + 1)× T 1,

K1 =

h∏

i=1

S(U(li)×U(1))× T 1,

where K1 acts on C1 by σ1. This is the case k1 = k2 = 1 in Theorem B’.

6.2. When (6.2) and (6.4) occur. If k1 = 1, then we have already studied in Section 6.1
k1 = 1 case. So we put k1 ≥ 2. Comparing (G, K1) and (G, K2) we have two cases
in this case; one of them is SU(k1) = SU(k2) and the other is SU(k1) = SU(mk + 1),
SU(k2) = SU(lh+1). We can similarly show the former case is not a (quasi-)toric manifold.
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Hence we have

G =

h-1∏

i=1

SU(mi + 1)× SU(k1)× SU(k2)× T 1,

K1 =

h-1∏

i=1

S(U(mi)×U(1))× SU(k1)× S(U(k2)×U(1))× T 1,

K2 =

h-1∏

i=1

S(U(mi)×U(1))× S(U(k1)×U(1))× SU(k2)× T 1,

and the slice representation

σiKi → U(ki) ⊂ SO(2ki) ⊂ O(2ki)

is σi(SU(ki)) = SU(ki) ⊂ U(ki) and the other factor N = Ki/SU(ki) goes to the diagonal
subgroup T 1 in U(ki). From similar argument with the Section 6.1 k1 = 1 case, we see this
case satisfies Theorem B’.

6.3. When (6.1) and (6.4) (or (6.2) and (6.3)) occur. We can show this case does not be-
come a (quasi-)toric manifold, similary as the Section 6.1.

Consequently we get Theorem B’.

Finally the author is grateful to Mikiya Masuda for his invaluable advices and com-
ments.
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