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Abstract. In this article, we prove that if two equivariant cohomologies of hypertoric manifolds
are isomorphic then these hypertoric manifolds are equivariantly diffeomorphic.

1. Introduction

In [BD00], Bielowsky and Dancer introduce the hypertoric variety1 as the hyperKähler ana-
logue of symplectic toric variety. The hypertoric variety is defined by the hyperKähler quotient
of the standard torus action on Hm where H is the quaternionic space, and belongs to the class
(M4n, Tn), i.e., 4n-dimensional space with n-dimensional torus action. This notion is different
from the toric variety which belongs to the class (M2n, Tn); however, there are some similar prop-
erties in toric and hypertoric varieties. For example, the hypertoric variety is determined by the
combinatorial data of the hyperplane arrangement as well as the symplectic toric varieties are
determined by the combinatorial data of polytopes. In the paper [M08], Masuda proved that the
equivariant cohomology of the non-singular toric variety (toric manifold) determines the polytope;
therefore, the equivariant cohomology also determines the equivariant types of toric manifolds.
The aim of this article is to prove the hypertoric analogue of the Masuda’s theorem. The following
theorem for two hypertoric manifolds (M,T ) and (M ′, T ) are the main theorem of this article.

Theorem 1.1. If H∗
T (M ;Z) ' H∗

T (M ′;Z), i.e., they are isomorphic up to H∗(BT )-algebra,
then (M, T ) ≡ (M ′, T ), i.e., they are T -equivariantly isometric.

By Theorem 1.1, we can easily show the following corollary.

Corollary 1.2. If H∗
T (M ;Z) ' H∗

T (M ′;Z), then (M, T ) ∼= (M ′, T ), i.e., they are T -
equivariantly diffeomorphic.

The organization of this article is as follows. In Section 2, we recall the definition of the
hypertoric manifolds and their basic properties. In Section 3, we give an outline of the proof of
the main theorem. In the final section (Section 4), we point out the Nishimura’s suggestion and
give the problem for the case of the (hyper)toric orbifold.

2. The hypertoric variety and hyperplane arrangement

In this section, we recall the definition of the hypertoric variety and how to define hyperplane
arrangement from the hypertoric variety (see [BD00], [Ko08] or [P08] for detail). We assume
throughout this article that R is the real space, C is the complex space and H is the quater-
nionic space, i.e., H ' R4 as the R-vector space and basis i, j, k except 1 satisfy the following
multiplicative relations:

ijk = i2 = j2 = k2 = −1.

The author was supported in part by Basic Science Research Program through the NRF of Korea funded by
the Ministry of Education, Science and Technology (2009-0063179) and the Fujyukai foundation.

1The former terminology was toric hyperKäler.
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2.1. The definition of the hypertoric variety. Assume Hm is the m-dimensional quater-
nionic vector space with the left H-scaler product. The m-dimensional torus Tm acts on Hm via
the left scaler product, i.e., we can denote it explicitly as follows:

Hm −→ Hm

∈ ∈

z + jw t·7−→ tz + jt−1w

for z, w ∈ Cm and t ∈ Tm. By using this torus action on Hm ' Cm ⊕ Cm, we can regard Hm as
T ∗Cm, i.e., the cotangent bundle of Cm; or Cm⊕Cm, where Cm is the orientation reversing space
of Cm.

Now we can define three complex structures on Hm, we denote them by I, J and K. These
complex structures determine not only the hyperKähler structure but also three symplectic struc-
tures on Hm. We denote three symplectic structures by ωI , ωJ and ωK , respectively. Moreover,
the holomorphic two form ωC = ωJ +

√−1ωK gives the holomorphic symplectic structure on Hm

if we regard the complex structure on Hm as I. Then the above Tm-action on Hm preserves
symplectic structures ωI = ωR and ωC, and determines the hyperKähler moment map

µR ⊕ µC : Hm −→ (tm)∗ ⊕ (tmC )∗

such that

µR(z, w) =
1
2

m∑

i=1

(|zi|2 − |wi|2)∂i

and

µC(z, w) = 2
√−1

m∑

i=1

ziwi∂i,

where z = (z1, . . . , zm) ∈ Cm and w = (w1, . . . , wm) ∈ Cm and ∂i (i = 1, . . . , m) is the basis in
(tm)∗ and (tmC )∗.

Put the subtorus K ⊂ Tm. Then there is the following sequence:

K
ι−→ Tm ρ−→ Tm/K ' Tn,

where ι is the natural embedding homomorphism, ρ is the projection to the cokernel of ι and
n = m− dim K. This sequence induces the following exact sequence of Lie algebras:

{0} −→ k
ι∗−→ tm

ρ∗−→ tn −→ {0}.
By taking the dual of this sequence, we have the following exact sequence of the dual Lie algebras:

{0} −→ (tn)∗
ρ∗−→ (tm)∗ ι∗−→ k∗ −→ {0}.(2.1)

By using ι∗ and its complexification ι∗C, we can define the hyperKähler moment map of K-action
on Hm as follows:

µHK : Hm µR⊕µC−−−−→ (tm)∗ ⊕ (tmC )∗
ι∗⊕ι∗C−−−−→ k∗ ⊕ k∗C.

By the definition of µHK , we may take (α, 0) ∈ k∗⊕ k∗C for α 6= 0 as the regular value of µHK .
Hence, its inverse image µ−1

HK(α, 0) has the almost free K-action because µHK is the K-equivariant
map and K acts on k∗ ⊕ k∗C trivially. Therefore, if we take its quotient space µ−1

HK(α, 0)/K then
this becomes an orbifold with dimension 4n. Moreover, µ−1

HK(α, 0)/K has the Tm/K = Tn action.
We call µ−1

HK(α, 0)/K a hypertoric variety. If hypertoric variety is non-singular, then we call it a
hypertoric manifold. The following proposition gives the criterion of the hypertoric manifold (see
[Ko00, Proposition 2.2]).

Proposition 2.1. The following two statements are equivalent.
(1) The action of K on µ−1

HK(α, 0) is free, i.e., µ−1
HK(α, 0)/K is a manifold.
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(2) For any J ⊂ {1, . . . ,m} such that {ι∗uj | j ∈ J} forms a basis of k∗,

tmZ = kZ ⊕
∑

j∈Jc

Z∂j as a Z-module,

where k ⊂ t via ι∗, and kZ and tZ are their lattice subgroups.

Moreover, we have the following proposition (see [P04, Lemma 3.4]).

Proposition 2.2. Let µ−1
HK(α, 0)/K and µ−1

HK(α′, 0)/K be hypertoric manifolds defined by
K ⊂ Tm and two non-zero elements α, α′ ∈ k∗. Then

µ−1
HK(α, 0)/K ∼= µ−1

HK(α′, 0)/K

as Tn-equivariant diffeomorphism.

The following example is one of the standard examples in hypertoric manifolds.

Example 2.3. Let ∆ be the diagonal subgroup in Tn+1. Then the hypertoric variety induced
by ∆ is equivariantly diffeomorphic to T ∗CPn with the induced Tn action from the Tn-action on
CPn.

2.2. The hyperplane arrangement. In this subsection, we introduce the hyperplane ar-
rangement associated with hypertoric varieties.

First, we give the flow chart to define the hypertoric variety.

(1) Take a subgroup K ⊂ Tm.
⇓

(2) Take a non-zero element α ∈ k∗.
⇓

(3) Take the hyperKähler quotient µ−1
HK(α, 0)/K.

In the first step of this flow chart, we have the exact sequence (2.1):

{0} −→ (tn)∗
ρ∗−→ (tm)∗ ι∗−→ k∗ −→ {0}.

By the exactness of the above sequence, we can take the lift of α (in the second step of the above
flow chart) as follows:

(tm)∗ ι∗−→ k∗

∈ ∈

α̃ 7−→ α,

i.e., ι∗(α̃) = α. Then we may define m hyperplanes in (tn)∗ as follows:

Hi = {x ∈ (tn)∗ | 〈ρ∗(x) + α̃, ei〉 = 0}
where ei (i = 1, . . . , m) is the basis of tm ' Rm. We call

H = {H1, . . . , Hm}
a hyperplane arrangement of µ−1

HK(α, 0)/K. Note that the combinatorial structure of H does not
depend on the choice of the lift α̃; in fact, only the parallel translations of Hi’s occur by changing
lifts of α.

Now we show a hyperplane arrangement of T ∗CPn.

Example 2.4. Let T ∗CPn be the cotangent bundle over CPn. Due to Example 2.3, the
subgroup ∆ ' S1 defines T ∗CPn. Therefore, we have the following exact sequence:

(tn)∗
ρ∗−→ (tn+1)∗ ι∗−→ R

where R is the dual of Lie algebra of ∆. Because ∆ is the diagonal subgroup, the representation
ι∗ is written as

ι∗(x1, . . . , xn+1) = x1 + · · ·+ xn+1 ∈ R.
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Because of the exactness, we may define the representation ρ∗ as follows:

ρ∗(t1, . . . , tn) = (t1, . . . , tn, −t1 − · · · − tn) ∈ (tn+1)∗

Take α = n+1 ∈ R. Then we can take its lift α̃ as α̃ = (1, . . . , 1). By the definition of hyperplane
arrangement of µ−1

HK(α, 0)/∆, we have the following hyperplanes:

H1 = {(t1, . . . , tn) ∈ (tn)∗ | t1 = −1};
...

Hn = {(t1, . . . , tn) ∈ (tn)∗ | tn = −1};
Hn+1 = {(t1, . . . , tn) ∈ (tn)∗ | t1 + · · ·+ tn = 1}.

The following Figure 1 shows the case n = 2.

  

 
 

H1

H2

H3

Figure 1. A hyperplane arrangement of T ∗CP (2)

By using the combinatorial data of H, we can describe the ring structure of the equivariant
cohomology (see Section 3.1) of hypertoric manifolds.

Theorem 2.5 (Konno [Ko99]). Let (M, T ) be the hypertoric manifold and H = {H1, . . . , Hm}
a hyperplane arrangement of M . Then its equivariant cohomology H∗

T (M) is denoted as follows:

H∗
T (M ;Z) ' Z[τ1, . . . , τm]/I

where deg τi = 2 and I is the ideal in the polynomial ring Z[τ1, . . . , τm] generated by
∏

i∈I

τi for
⋂

i∈I

Hi = ∅.

Here, I is the subset of [m] = {1, . . . , m}.
The above generator τi (i = 1, . . . , m) corresponds with the line bundle of M which will be

described as follows. Let pi : Tm → Ti ' S1 be the natural projection to the i-th coordinate.
Then we can define the H-line bundle over M = µ−1

HK(α, 0)/K as follows:

µ−1
HK(α, 0)×K Hpi ,

where Hpi is the vector space which is isomorphic to H with the K-action via K ⊂ Tm pi→ S1,
and µ−1

HK(α, 0) ×K Hpi is the orbit space (µ−1
HK(α, 0) × Hpi)/K. Then this bundle splits into the

following bundle:

µ−1
HK(α, 0)×K Hpi ≡ µ−1

HK(α, 0)×K (Cpi ⊕ Cpi).

Put µ−1
HK(α, 0)×K Cpi = Li. The 1st chern class of Li is the generator τi, i.e.,

c1(Li) = τi.
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Remark 2.6. For the toric manifold (M2n, Tn) case, the S1-invariant submanifold (charac-
teristic submanifold) becomes a manifold with dimension 2n−2; and the generators of H∗

T n(M2n)
are expressed by taking the Poincaré dual of such invariant submanifold. On the other hand,
for the hypertoric manifold (M4n, Tn) case, such invariant submanifold becomes a manifold with
dimension 4n− 4. Therefore, its Poincaré dual lives in H4

T (M). And this Poincaré dual becomes
c2(Li ⊕Li) = −τ2

i for i = 1, . . . , m. This property of hypertoric manifolds is one of the different
properties with toric manifolds.

Example 2.7. For the cotangent bundle T ∗CPn over CPn (see Example 2.3), by using Ex-
ample 2.4 and Theorem 2.5, we have the following formula:

H∗
T (T ∗CPn;Z) ' Z[τ1, . . . , τn+1]/〈τ1 · · · τn+1〉

for the generators τi ∈ H2
T (T ∗CPn;Z).

3. Outline of the proof of the main theorem

Throughout of this section, we assume that (M, T ) is a hypertoric manifold. The purpose of
this section is to give the outline of the proof of Theorem 1.1 (see [Ku2] for detail).

3.1. Equivariant cohomology. In order to prove Theorem 1.1, first we recall the equivari-
ant cohomology. Before we state its definition, we prepare some notations.

The symbol ET represents a universal space of T , i.e., ET satisfies the following two properties:
(1) ET is contractible;
(2) T acts on ET freely,

and BT represents its classifying space, i.e., BT = ET/T . Then the product space ET ×M has
the diagonal T -action, and we denote its orbit space (ET ×M)/T by ET ×T M . Because T acts
freely on the ET factor in ET ×M , there is the following fibration:

M
j−→ ET ×T M

π−→ BT.(3.1)

We call the ordinary cohomology H∗(ET ×T M) the equivariant cohomology of (M,T ) and denote
it by H∗

T (M). By using the fibration (3.1), we have the following homomorphism:

π∗ : H∗(BT ) −→ H∗
T (M).

Thus, we can regard H∗
T (M) as not only the ring but also the H∗(BT )-algebra via π∗. Note that

H∗(BT ;R) is isomorphic to the polynomial ring (see [MT91]), i.e.,

H∗(BT ;R) ' R[x1, . . . , xn]

for all coefficient ring R, where dim T = n and deg xi = 2 (i = 1, . . . , n).
Due to the Konno’s theorem (Theorem 2.5), we have the following exact sequence:

{0} −→ H2(BT ;Z) π∗−→ H2
T (M ;Z)

j∗−→ H2(M ;Z) −→ {0}.(3.2)

Moreover, by using the similar argument in [M08, Proposition 2.2], the representation π∗ in (3.2)
can be expressed as the following proposition.

Proposition 3.1. To each i ∈ [m], there is a unique element vi ∈ H2(BT ;Z) such that

π∗(x) =
m∑

i=1

〈x, vi〉τi

for any x ∈ H2(BT ;Z), where 〈, 〉 is the pairing of the cohomology and homology.

By taking each tensor product with R in the sequence (3.2), the sequence (3.2) induces the
following exact sequence:

{0} −→ H2(BTn;R)
π∗R−→ H2

T (M ;R)
j∗R−→ H2(M ;R) −→ {0}.(3.3)
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Because the above sequence (3.3) is the extension of the sequence (3.2), the representation π∗R is
also expressed as

π∗R(x) =
m∑

i=1

〈x, vi〉τi(3.4)

for a unique element vi ∈ H2(BT ;Z).
The key point of the proof is to construct the hyperplane arrangement in the equivariant

cohomology H∗
T (M ;R). We will describe it in the next subsection.

3.2. Hyperplane arrangement in the equivariant cohomology. The goal of this section
is to construct the hyperplane arrangement in H2(BT ;R) by using the sequence (3.3). In order
to construct it, we will prove the following key lemma.

Lemma 3.2. The following diagram is commute:

0 −→ (tn)∗
ρ∗−→ (tm)∗ ι∗−→ k∗ −→ 0

↓J∗n ↓J∗m ↓J∗K

0 −→ H2(BTn;R)
π∗R−→ H2

T (M ;R)
j∗R−→ H2(M ;R) −→ 0

Here, the isomorphism J∗n is defined by H2(BT ;Z) ' Hom(S1, Tn) ' tnZ, the isomorphism J∗m
is defined by e∗i 7→ τi for i = 1, . . . , m, and J∗K is induced homomorphism from J∗m and J∗n. Now
we may start to prove this lemma.

Outline of the proof of Lemma 3.2. With the method similarly to show the equation
(3.4), we have the following equations:

ρ∗(u) =
m∑

i=1

〈u, ṽi〉ei,

for some unique element ṽi ∈ tnZ for i = 1, . . . , m. Because of the equation (3.4), we have

π∗R(x) =
m∑

i=1

〈x, vi〉τi.

Therefore, in order to have the commutativity of the first diagram, we need to prove that

tnZ
(Jn)∗−−−→ H2(BT ; Z)

∈ ∈

ṽi 7−→ vi

for i = 1, . . . , m. This fact is known by using the following fact: the image of two corresponding
elements fevi

, fvi ∈ Hom(S1, Tn) determine the same isotropy subgroup of characteristic subman-
ifold Mi for i = 1, . . . , m. Therefore, (Jn)∗ : ṽi 7→ ±vi. If (Jn)∗(ṽi) = −vi, then we change τi to
−τi. Then we have (Jn)∗(ṽi) = vi and the commutativity of the first diagram.

For the second diagram, the isomorphism J∗K is induced by the first diagram. Hence, the
second diagram is commute. ¤

Now we may construct the hyperplane arrangement in H2(BT ;R). First we recall the con-
struction of the hyperplane arrangement in (tn)∗. Because of the definition of the hypertoric
manifolds, there is some non-zero element α ∈ k∗ such that M = µ−1

HK(α, 0)/K. According to the
construction of the hyperplane in (tn)∗, we can take its lift α̃ ∈ (tm)∗ such that this gives the
hyperplane arrangement Heα in (tn)∗.

Because J∗K is isomorphism, we can take the non-zero element β = J∗K(α) ∈ H2(M). By
taking J∗m(α̃) = β̃, we have j∗R(β̃) = β. With the method similar to construct Heα, we have the
hyperplane Heβ in H2(BT ;R). Then we have the following lemma.

Lemma 3.3. The isomorphism J∗n : (tn)∗ → H2(BT ;R) preserves Heα to Heβ.
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Outline of proof. A hyperplane Hi ∈ Heα is written as follows:

Hi = {u ∈ (tn)∗ | 〈ρ∗(u) + α̃, ei〉 = 0}.
This hyperplane goes to the following set by using J∗n.

H ′
i = {x = J∗n(u) ∈ H2(BT ;R) | 〈ρ∗(u) + α̃, ei〉 = 0}.

Then we have

〈ρ∗(u) + α̃, ei〉 = 0
〈ρ∗(u) + α̃, (Jm)∗(µi)〉 = 0
〈J∗m ◦ ρ∗(u) + J∗m(α̃), µi〉 = 0

〈π∗R ◦ J∗n(u) + β̃, µi〉 = 0

where µi ∈ HT
2 (M ;R) is the element which corresponds to τi ∈ H2

T (M ;R). Therefore, H ′
i is the

element in Heβ . ¤

This means that we show the following theorem.

Theorem 3.4. Let (M, T ) be the hypertoric manifold and H be a hyperplane arrangement of
M . Then we can define the hyperplane arrangement H′ in H2(BT ;R) such that J∗n : (tn)∗ →
H2(BT ;R) preserves H to H′.

3.3. Outline of the proof of the main theorem. In this section, we prove Theorem 1.1.
Let (M,T ) and (M ′, T ) be hypertoric manifolds. Assume H∗

T (M ;Z) ' H∗
T (M ;Z) as the

H∗(BT ;Z)-algebra, that is, there is the ring isomorphism fT : H∗
T (M ;Z) → H∗

T (M ;Z) such that

fT (rx) = rfT (x)

for all x ∈ H∗
T (M ;Z) and r ∈ H∗(BT ;Z). Note that we denote the induced ring isomorphism

H∗(M ;Z) → H∗(M ′;Z) by f . Then we have the following commutative diagrams:

0 −→ H2(BTn;R)
π∗R−→ H2

T (M ;R)
j∗R−→ H2(M ;R) −→ 0

↓id ↓fT
↓f

0 −→ H2(BTn;R)
π∗R−→ H2

T (M ′;R)
j∗R−→ H2(M ′;R) −→ 0

(3.5)

Let β ∈ H2(M ;R) be a non-zero element and β̃ ∈ H2
T (M ;R) be its lift. The goal of this section

is to show that Heβ and HfT (eβ) are precisely same hyperplane arrangement. In order to show this
fact, it is sufficient to prove the following proposition.

Proposition 3.5. If fT is an H∗(BT ;Z)-algebra isomorphism between H∗
T (M ;Z) to H∗

T (M ′;Z),
then fT preserves {τ1, . . . , τm} to {τ ′1, . . . , τ ′m} up to signs. In other wards, Heβ and HfT (eβ) are
precisely same hyperplane arrangement up to coorientations of hyperplanes.

Let MT be the set of T -fixed points in M . As is well known, it consists of finitely many points.
For ξ ∈ H2

T (M ;Z), we denote its restriction to p ∈ MT by ξ|p and define

Z(ξ) := {p ∈ MT | ξ|p = 0}.
Lemma 3.6. Express ξ =

∑m
i=1 aiτi with integers ai. If ai 6= 0 for some i, then Z(ξ) ⊂ Z(τi).

Moreover, if ai 6= 0 and aj 6= 0 for some different i and j, then Z(ξ) ⊂ Z(τi) and Z(ξ) 6= Z(τi).

Proof. Let p ∈ MT . Recall Li = µHK(α, 0) ×K Cpi (see Section 2). This line bundle Li

satisfies that Li ⊕ Li|Mi is the normal bundle of Mi and Li|M\Mi
is the trivial bundle by the

definition, where Mi is the characteristic submanifold. Since τi = c1(Li), we have that τi|p = 0 if
p /∈ Mi. Moreover, if p ∈ Mi, then

τi|p = c1(Li|p) ∈ H2
T (p;Z) = H2(BT ;Z).

This implies that

(3.6) τi|p = 0 if and only if p /∈ Mi
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and that there are exactly n number of Mi’s containing p and {τi|p | p ∈ Mi} forms a basis of
H2(BT ;Z).

Suppose p ∈ Z(ξ). Then 0 = ξ|p =
∑m

i=1 aiτi|p and it follows from the observation above that
τi|p = 0 if ai 6= 0. Therefore, we have Z(ξ) ⊂ Z(τi) (former statement).

If both ai and aj are non-zero, then Z(ξ) ⊂ Z(τi) ∩ Z(τj) by the former statement in the
lemma. Therefore, it suffices to prove that Z(τi) ∩ Z(τj) is properly contained in Z(τi). Suppose
that Z(τi) ∩ Z(τj) = Z(τi). Then Z(τj) ⊃ Z(τi), so MT

j ⊂ MT
i by (3.6). This implies that

Mj = Mi, a contradiction. ¤

Let S = H∗(BT ;Z)\{0} and let S−1H∗
T (M ;Z) denote the localized ring of H∗

T (M ;Z) by S,
i.e.,

S−1H∗
T (M ;Z) = {r

s
| r ∈ H∗

T (M ;Z), s ∈ S}/ ∼

where

r1

s1
∼ r2

s2
⇐⇒ (r1s2 − r2s1)t = 0 for some t ∈ S.

Since Hodd(M ;Z) = 0, H∗
T (M ;Z) is free as a module over H∗(BT ;Z). Hence, the natural map

H∗
T (M ;Z) −→ S−1H∗

T (M ;Z) ∼= S−1H∗
T (MT ;Z) =

⊕

p∈MT

S−1H∗
T (p;Z)

is injective, where the above isomorphism is induced from the inclusion map from MT to M
and is a consequence of the Localization Theorem in equivariant cohomology ([H75, p.40]). The
annihilator

Ann(ξ) := {η ∈ S−1H∗
T (M ;Z) | ηξ = 0} ⊂

⊕

p∈MT

S−1H∗
T (p;Z)

of ξ is nothing but the sum of S−1H∗
T (p;Z) over p with ξ|p = 0, because if ξ|p 6= 0 then we have

η|p = 0. Therefore, it is a free S−1H∗(BT ;Z) module of rank |Z(ξ)|. Since Ann(ξ) is defined
using the algebra structure of H∗

T (M ;Z), |Z(ξ)| is an invariant of ξ depending only on the algebra
structure of H∗

T (M ;Z). We note that |Z(ξ)| is invariant under an algebra isomorphism. We call
|Z(ξ)| the zero-length of ξ.

Now we may start to prove Proposition 3.5.

Proof of Proposition 3.5. Let T1 be the set of τi’s in H2
T (M) with largest zero-length,

and let T2 be the set of τi’s in H2
T (M) with second largest zero-length, and so on. Similarly we

define T ′1 , T ′2 and so on for τ ′i ’s in H2
T (M ′).

Let mk (resp. m′
k) be the zero-length of elements in Tk (resp. T ′k). Since both fT and f−1

T

preserve zero-length and are isomorphisms, m1 = m′
1 and fT maps T1 to T ′1 bijectively up to sign

by Lemma 3.6. Take an element τi from T2. Since T1 and T ′1 are preserved under fT and f−1
T ,

fT (τi) is not a linear combination of elements in T ′1 . This together with Lemma 3.6 means that
m2 ≤ m′

2. The same argument for f−1
T instead of fT shows that m′

2 ≤ m2, so that m2 = m′
2.

Again, this together with Lemma 3.6 implies that f maps T2 to T ′2 bijectively up to sign. The
lemma follows by repeating this argument. ¤

Now we have the following proposition (see [P08, Lemma 3.5]).

Proposition 3.7. The hypertoric manifold (M,T ) is independent, up to Tn-equivariant isom-
etry, of the coorientation of the hyperplane arrangement H of M .

By using Proposition 3.5 and 3.7, we have Theorem 1.1.
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4. Nishimura’s suggestion and the future prospects

Several days later after the author’s talk in RIMS, Nishimura suggested that the set of hyper-
toric manifolds up to Tn-equivariant diffeomorphism is the very special case in the set of hypertoric
varieties. We will introduce about that in this final section, and give the problem for the case of
all (hyper)toric varieties.

Let +ki (resp. −ki) be the number of hyperplanes whose coorientation vector is ei (resp. −ei)
in Rn, where ei (resp. −ei) is the canonical basis such that the i-th coordinate 1 (resp. −1) and the
other coordinates are 0 in Rn. Let k0 be the number of hyperplanes whose coorientation vector
is

∑n
i=1 vi, where vi = ei or −ei. Now we may define two types of hypertoric manifolds by using

these hyperplanes as follows:
(1) M0(k1, . . . , kn);
(2) M1(k0, ±k1, . . . , ±kn),

where the hyperplane of M1 which corresponds to k0 is determined by the sign of ±ki for all
i = 1, . . . , n. Because of Proposition 2.1 and 2.2, we can denote all hypertoric manifolds up to
Tn-equivariant diffeomorphism as one of the above manifolds (up to simultaneous sign changing).
Therefore, the fact that the Tn-equivariant diffeomorphism types of hypertoric manifolds are
determined by the H∗(BT ;Z)-algebraic types of H∗

T (M ;Z) (see Corollary 1.2) is almost trivial.
However, as we seen in Section 3, two hyperplane arrangements determined by H∗

T (M ;Z) and
H∗

T (M ′;Z) (they are algebraic isomorphic) are same not only their combinatorial types but also
their position of hyperplanes. It follows that the H∗(BT ;Z)-algebraic structure of H∗

T (M ;Z) can
determine not only the T -equivariant diffeomorphism of (M, T ) but also T -equivariant isometry
of (M, T ) (see Theorem 1.1).

According to the above comments by Nishimura, we know that the really important objects
in hypertoric varieties are orbifolds. Fortunately, if we take the coefficient as the rational number
Q then Theorem 2.5 is true for the hypertoric orbifolds. However, we can easy to construct two
distinct hyperplanes (angles of intersections of hyperplanes are different) from two H∗

T (M ;Q) and
H∗

T (M ′;Q) (they are same up to H∗(BT ;Q)-algebra). It follows that the orbifold analogue of
Corollary 1.2 for Q-coefficient does not hold. Moreover, to compute H∗

T (M ;Z) is very complicated
for hypertoric orbifolds as well as toric orbifolds. Because of the singularity of orbifolds, there is
the torsion element appears in H∗

T (M ;Z).
In order to consider the space with singularities, we can use the intersection cohomology

IH∗(M) or the equivariant intersection cohomology IH∗
T (M). The intersection cohomology is

considered as the “true” cohomology theory for the spaces with singularities. Actually, the equiv-
ariantly formality satisfies for IH∗

T but it does not satisfy for H∗
T if the space has singularities (see

[GKM98], [BP09]). In this year (2009), Braden-Proudfoot determines the equivariant intersec-
tion cohomology of hypertoric varieties IH∗

T (M) by using the functorial method in [BP09]. So,
finally, we may ask the following problem as the orbifold analogue of Theorem 1.2 by using the
equivariant intersection cohomology.

Problem 4.1. Does equivariant intersection cohomology determine (hyper)toric orbifold? In
other words, if IH∗

T (M) ' IH∗
T (M ′) satisfies for two (hyper)toric orbifolds then is there a T -

equivariant map f : M → M ′ such that f is a homeomorphism which preserves the singularities?

If we have the affirmative answer in this problem, it corresponds to the generalizations of the
main results in [M08] and [Ku2] to the orbifold case.
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