1. Introduction

A GKM manifold is a $2m$-dimensional manifold M^{2m} equipped with an effective T^n-action whose one and zero dimensional orbits have the structure of a graph, where $n \leq m$. Let Γ be the induced m-valent graph of the GKM manifold (M^{2m}, T^n). We may identify the fixed points of (M^{2m}, T^n) with the vertices of Γ. Moreover, we can label each outgoing edge of Γ around a vertex p by its tangential representation, called an axial function $\alpha : E \to H^2(BT^n)$ where here E is the set of oriented edges of Γ. This labeled graph (Γ, α) is called a GKM graph induced by the GKM manifold. On the other hand, a GKM graph can be defined abstractly by the labeled graph (Γ, α) which satisfies some properties of GKM graphs induced by GKM manifolds (see Section 2 or [3, 6, 7, 8, 13] for detail).

Let (M^{2m}, T^n) be a compact GKM manifold, and G a non-abelian, compact Lie group whose maximal torus is T^n. In this article, we study compact GKM manifolds with extended G-actions (also see [2, 9, 10, 11, 15, 17, 18, 19] for the related topics). For technical reasons, we assume the followings:

1. A GKM manifold M^{2m} has an almost complex structure which is compatible with the T^n-action;
2. G preserves almost complex structure \mathcal{J} on M, i.e., $G \subset \text{Diff}(M, \mathcal{J})$;
3. the universal covering \tilde{G} of G has the $SU(2)$-factor;
4. there are codimension two characteristic submanifolds in (M, T); we denote all of them by $\mathcal{F} = \{X_1, \ldots, X_k\}$.

The goal of this article is to introduce a property of GKM graphs induced by GKM manifolds with extended G-actions as above (see Theorem 4.1).

The details of this article for more general cases will be appeared in the forthcoming paper [12].

Date: June 29, 2010.

2010 Mathematics Subject Classification. Principal: 57S25, Secondly: 05C25; 55N91; 55R91.

Key words and phrases. Characteristic submanifold, Equivariant cohomology, GKM manifold, GKM graph, Weyl group.

The author was supported in part by Basic Science Research Program through the NRF of Korea funded by the Ministry of Education, Science and Technology (2010-0001651) and the Fujyukai Foundation.

1In E, we distinguish the two same edges pq and qp by regarding that their orientations are different.
2. Definition of GKM graphs

Let E_p be the set of all outgoing edges from the vertex p. By the assumption (1) in Section 1, the GKM graph (Γ, α) induced by the GKM manifold has the following properties:

- Γ is an m-valent graph, i.e., $|E_p| = m$ for all vertices p;
- $\alpha(e) = -\alpha(\bar{e})$, where e and \bar{e} are the same edge but their orientations are different, e.g., if $e = pq$ then $\bar{e} = qp$;
- $\{\alpha(e_i) | e_i \in E_p\}$ is pairwise linearly independent, i.e., $\alpha(e_i)$ and $\alpha(e_j)$ are linearly independent if $e_i \neq e_j$;
- if two vertices p and q are connected by an edge (called f), there is a bijective map $\nabla_f : E_p \to E_q$ such that $\nabla_f = \nabla_f^{-1}$, $\nabla_f(f) = \bar{f}$, and $\alpha(e) - \alpha(\nabla_f(e)) \equiv 0 \pmod{\alpha(f)}$ for $e \in E_p$, (the collection of maps $\nabla = \{\nabla_f | f \in E\}$ is called connection).

On the other hand, if the given labeled graph (Γ, α), where $\alpha : E \to H^2(BT^n)$, satisfies the properties above then we call (Γ, α) a GKM graph in this article.

3. Basic properties of GKM manifolds with $SU(2)$-symmetries

Assume that the GKM manifold (M^{2m}, T^n) equipped with an extended G-action satisfies all the assumptions (1)–(4) mentioned in Section 1.

Let W be the Weyl group of $SU(2)$, i.e., $W \simeq \mathbb{Z}_2$. We let $r \in t^* \simeq H^2(BT^n; \mathbb{R})$ denote a simple root of $SU(2)$. As is well-known, the root system corresponds to the elements in W which act on t^* as the reflections (e.g., see [16, Chapter 5]); so, we let $\sigma \in W$ denote the reflection corresponding to the simple root r.

Let $\pi : ET \times_T M \to BT$ be the projection of the Borel construction of (M, T), and $\pi^* : H^*(BT) \to H^*_T(M)$ be the induced homomorphism. The element $\tau_i \in H^2_T(M)$, $i = 1, \ldots, k$, represents the equivariant Thom class of codimension two characteristic submanifold $X_i \in \mathcal{F}$. We denote the set of such equivariant Thom classes by \mathcal{F}^*. Then, there is the W-action on \mathcal{F}^* induced by the W-action on \mathcal{F}.

In order to state Theorem 4.1, we first introduce the following lemma.

Lemma 3.1. Assume $\sigma(X_s) = X_t$, where $X_s, X_t \in \mathcal{F}$. Then the following equation holds:

$$\pi^*(r) = \tau_s - \tau_t.$$
where $\tau_1, \tau_2 \in H^2_\ell(\Gamma, \alpha)$ are the Thom classes of some $(m - 1)$-valent GKM subgraphs Γ_1, Γ_2, respectively.

Now we may state the following theorem.

Theorem 4.1. Suppose that there is $r \in H^2(BT^n)$ such that E.q. (4.1) holds for some GKM subgraphs Γ_1 and Γ_2. Then, one of the following cases occur:

- **The 1st case:** if $\Gamma_1 \cap \Gamma_2 = \emptyset$, there is the GKM fiber bundle $\rho : (\Gamma, \alpha) \to (I, \alpha_I)$, where I is the compact 1-valent graph (i.e., two vertices p, q and one edge $e = pq$) and α_I satisfies that $\alpha_I(p) = r$ and $\alpha_I(q) = -r$;

- **The 2nd case:** otherwise, there is the GKM blow-up $(\tilde{\Gamma}, \tilde{\alpha}) \to (\Gamma, \alpha)$ along $\Gamma_1 \cap \Gamma_2$ such that $(\tilde{\Gamma}, \tilde{\alpha})$ satisfies the 1st case.

The geometric interpretation of this theorem is as follows (also see [1]). The 1st case corresponds to that M is T^n-equivariantly diffeomorphic to the crossed product $SU(2) \times_{S^1} N$ for some $(2m - 2)$-dimensional GKM manifold N. The 2nd case is otherwise, i.e., M does not decompose into the crossed product; however, there is the codimension-4 GKM submanifold X such that there is the blow up $\tilde{M} \to M$ along X and \tilde{M} is equivariantly diffeomorphic to the crossed product $SU(2) \times_{S^1} N$ for some N.

See [12] for more general results (in particular, for GKM manifolds with larger symmetries) and further studies.

Acknowledgements. The author would like to thank all speakers and participants in KAIST Toric Topology Workshop 2010 from February 22nd to 26th 2010. I also would like to express my gratitude to Professor DongYoup Suh for providing me excellent circumstances to do research.

References

Department of Mathematical Sciences, KAIST, Daejeon 305-701, R. Korea
E-mail address: kuroki@kaist.ac.kr