Thursday, January 2, 2025

<< >>  
2024. 12
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31
2025. 1
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
2025. 2
Sun Mon Tue Wed Thu Fri Sat
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28
2025-01-08 / 14:00 ~ 15:30
학과 세미나/콜로퀴엄 - 위상수학 세미나: 인쇄
by ()
Given a manifold, the vertices of a geometric intersection graph are defined as a class of submanifolds. Whether there is an edge between two vertices depends on their geometric intersection numbers. The geometric intersection complex is the clique complex induced by the geometric intersection graph. Common examples include the curve (arc) complex and the Kakimizu complex. Curve complexes and arc complexes are used to understand mapping class groups and Teichmüller spaces, while Kakimizu complexes are primarily used to study hyperbolic knots. We can study these geometric intersection complexes from various perspectives, including topology (e.g., homotopy type), geometry (e.g., dimension, diameter, hyperbolicity), and number-theoretic connections (e.g., trace formulas of maximal systems). In this talk, we will mainly explain how to determine the dimension of the (complete) $1$-curve (or arc) complex on a non-orientable surface and examine the transitivity of maximal complete $1$-systems of loops on a punctured projective plane.
2025-01-03 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: Random Cayley graphs and Additive combinatorics without groups 인쇄
by Huy Tuan Pham(IAS / Clay Mathematics Institute)
A major goal of additive combinatorics is to understand the structures of subsets A of an abelian group G which has a small doubling K = |A+A|/|A|. Freiman’s celebrated theorem first provided a structural characterization of sets with small doubling over the integers, and subsequently Ruzsa in 1999 proved an analog for abelian groups with bounded exponent. Ruzsa further conjectured the correct quantitative dependence on the doubling K in his structural result, which has attracted several interesting developments over the next two decades. I will discuss a complete resolution of (a strengthening of) Ruzsa’s conjecture. Surprisingly, our approach is crucially motivated by purely graph-theoretic insights, where we find that the group structure is superfluous and can be replaced by much more general combinatorial structures. Using this general approach, we also obtain combinatorial and nonabelian generalizations of classical results in additive combinatorics, and solve longstanding open problems around Cayley graphs and random Cayley graphs motivated by Ramsey theory, information theory and computer science. Based on joint work with David Conlon, Jacob Fox and Liana Yepremyan.
Events for the 취소된 행사 포함 모두인쇄
export to Google calendar  .ics download