Saturday, April 13, 2024

<< >>  
2024. 3
Sun Mon Tue Wed Thu Fri Sat
1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31
2024. 4
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30
2024. 5
Sun Mon Tue Wed Thu Fri Sat
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
2024-04-20 / 14:30 ~ 15:30
학과 세미나/콜로퀴엄 - 대수기하학: 인쇄
by ()
The r-th cactus variety of a subvariety X in a projective space generalises secant variety of X and it is defined using linear spans of finite schemes of degree r. It's original purpose was to study the vanishing sets of catalecticant minors. We propose adding a scheme structure to the cactus variety and we define it via relative linear spans of families of finite schemes over a potentially non-reduced base. In this way we are able to study the vanishing scheme of the catalecticant minors. For X which is a sufficiently large Veronese reembedding of projective variety, we show that r-th cactus scheme and the zero scheme of appropriate catalecticant minors agree on an open and dense subset which is the complement of the (r-1)-st cactus variety/scheme. As an application, we can describe the singular locus of (in particular) secant varieties to high degree Veronese varieties. Based on a joint work with Hanieh Keneshlou.
2024-04-16 / 16:30 ~ 17:30
IBS-KAIST 세미나 - 이산수학: Algorithmic aspects of linear delta-matroids 인쇄
by Magnus Wahlström(Royal Holloway, University of London)
Delta-matroids are a generalization of matroids with connections to many parts of graph theory and combinatorics (such as matching theory and the structure of topological graph embeddings). Formally, a delta-matroid is a pair $D=(V,\mathcal F)$ where $\mathcal F$ is a collection of subsets of V known as "feasible sets." (They can be thought of as generalizing the set of bases of a matroid, while relaxing the condition that all bases must have the same cardinality.) Like with matroids, an important class of delta-matroids are linear delta-matroids, where the feasible sets are represented via a skew-symmetric matrix. Prominent examples of linear delta-matroids include linear matroids and matching delta-matroids (where the latter are represented via the famous Tutte matrix). However, the study of algorithms over delta-matroids seems to have been much less developed than over matroids. In this talk, we review recent results on representations of and algorithms over linear delta-matroids. We first focus on classical polynomial-time aspects. We present a new (equivalent) representation of linear delta-matroids that is more suitable for algorithmic purposes, and we show that so-called delta-sums and unions of linear delta-matroids are linear. As a result, we get faster (randomized) algorithms for Linear Delta-matroid Parity and Linear Delta-matroid Intersection, improving results from Geelen et al. (2004). We then move on to parameterized complexity aspects of linear delta-matroids. We find that many results regarding linear matroids which have had applications in FPT algorithms and kernelization directly generalize to linear delta-matroids of bounded rank. On the other hand, unlike with matroids, there is a significant difference between the "rank" and "cardinality" parameters - the structure of bounded-cardinality feasible sets in a delta-matroid of unbounded rank is significantly harder to deal with than feasible sets in a bounded-rank delta-matroid.
2024-04-19 / 10:00 ~ 12:00
IBS-KAIST 세미나 - 수리생물학: 인쇄
by 정의민(IBS 의생명수학그룹)
"Phenotypic switching in gene regulatory networks", PNAS. (2014) will be discussed in this Journal Club. Noise in gene expression can lead to reversible phenotypic switching. Several experimental studies have shown that the abundance distributions of proteins in a population of isogenic cells may display multiple distinct maxima. Each of these maxima may be associated with a subpopulation of a particular phenotype, the quantification of which is important for understanding cellular decision-making. Here, we devise a methodology which allows us to quantify multimodal gene expression distributions and single-cell power spectra in gene regulatory networks. Extending the commonly used linear noise approximation, we rigorously show that, in the limit of slow promoter dynamics, these distributions can be systematically approximated as a mixture of Gaussian components in a wide class of networks. The resulting closed-form approximation provides a practical tool for studying complex nonlinear gene regulatory networks that have thus far been amenable only to stochastic simulation. We demonstrate the applicability of our approach in a number of genetic networks, uncovering previously unidentified dynamical characteristics associated with phenotypic switching. Specifically, we elucidate how the interplay of transcriptional and translational regulation can be exploited to control the multimodality of gene expression distributions in two-promoter networks. We demonstrate how phenotypic switching leads to birhythmical expression in a genetic oscillator, and to hysteresis in phenotypic induction, thus highlighting the ability of regulatory networks to retain memory. If you want to participate in the seminar, you need to enter IBS builiding (https://www.ibs.re.kr/bimag/visiting/). Please contact if you first come IBS to get permission to enter IBS building.
Events for the 취소된 행사 포함 모두인쇄
export to Google calendar  .ics download