Ph.D. Qualifying Exam: Algebra I
February 2017

Student ID: Name:

Note: Be sure to use English for your answers.

1. Answer the following questions.
 (a) [10 pts] Let F be a field and x be an indeterminate. Prove that $F[x]$ is a
 Euclidean domain.
 (b) [10 pts] Let R be a Euclidean domain. Prove that R is a PID.

2. [10 pts] Let G be a finite group acting on itself by conjugation. Using the
 orbits of the action, prove the class equation.

3. [10 pts] For a prime number p, consider the set G of equivalence classes of integers
 modulo p that is not equivalent to 0, i.e., $G = (\mathbb{Z}/p)^\times = \{1, \ldots, p-1\}$.
 Prove that G is a group with respect to the operation induced by the multi-
 plication of the integers.

4. Answer the following questions.
 (a) [10 pts] Let G be a simple group of order n acting nontrivially on a finite
 set of size r. Prove that $n|r!$.
 (b) [10 pts] Show that when G is a simple group of order 60, any proper
 subgroup $H < G$ has the cardinality at most 12.

5. Let $U \subset \mathbb{C}$ be a nonempty open subset of the complex plane and let $\mathcal{H}(U)$ be
 the set of holomorphic functions $U \to \mathbb{C}$. Answer the following questions:
 (a) [10 pts] Prove that $\mathcal{H}(U)$ is an integral domain if and only if U is con-
 nected.
 (b) [10 pts] Is $\mathcal{H}(U)$ always a unique factorization domain for a nonempty
 open subset $U \subset \mathbb{C}$? If so, give a proof. Otherwise, give a counterexample.
 (c) [10 pts] For $p \in \mathbb{C}$, consider \mathcal{H}_p defined to be the equivalence classes
 (f, U) with $f \in \mathcal{H}(U)$, with $p \in U$, where we define the equivalence
 relation $(f, U) \sim (g, V)$ for two open sets $U, V \subset \mathbb{C}$ satisfying $p \in U$ and
 $p \in V$, if there exists an open subset $W \subset U \cap V$ with $p \in W$ such that
 $f|_W = g|_W$. Prove that \mathcal{H}_p is a unique factorization domain.

6. [10 pts] Let R be a nonzero commutative ring with unity. Prove that R is an
 integral domain if and only if the zero ideal (0) is a prime ideal of $R.$
Ph.D. Qualifying Exam: Algebra II
February 2017

Student ID: Name:

Note: Be sure to use English for your answers.

1. [25 pts] Prove or disprove the following:
 (a) The rings $\mathbb{Q}[x, y]/(y^2 - x)$ and $\mathbb{Q}[x, y]/(xy - 1)$ are not isomorphic.
 (b) \mathbb{Q} is a projective \mathbb{Z}-module.
 (c) \mathbb{Q} is not a flat \mathbb{Z}-module.
 (d) $f(x^n) = f(x^n)$ for any polynomial $f(x) \in \mathbb{F}_p[x]$.
 (e) A splitting field K of a polynomial of degree n over F has degree $[K : F]$ which divides $n!$.

2. [15 pts] Let R be a subring of the commutative ring T with identity $1 \in R$.
 (a) If T is a finitely generated R-module, then T is integral over R.
 (b) If R is a U.F.D. then R is integrally closed.

3. [10 pts] Let (R, m) be a Noetherian local ring and M be a finitely generated R-module. Show that if $M \otimes_R R/m = 0$ then $M = 0$.

4. [20 pts] Let R be a commutative ring with identity 1_R.
 (a) If M is a projective R-module, then M is flat as an R-module.
 (b) If R is an integral domain with its quotient field K. Let V be the K-vector space, then $K \otimes_R V \simeq V$.

5. [30 pts] Let F be a field and K be the splitting field of the polynomial $x^4 - 2$ over F. Find $[K : F]$, a primitive element of K and the Galois group $\text{Gal}(K/F)$ where F is one of the following fields:
 (a) $F = \mathbb{R}$.
 (b) $F = \mathbb{Q}$.
 (c) $F = \mathbb{Z}_3$.

THE END
Ph.D. Qualifying Exam: Differential Geometry
February 2017

Student ID:
Name:

Note: Be sure to use English for your answers.

1. [15 pts] Show in detail that $\mathbb{R}P^n$ is a smooth manifold.

2. [15 pts] Let M denote a smooth manifold. Suppose K to be a compact subset of M and $O \subset M$ to be an open set containing K. Show there exists a smooth function $\beta : M \to [0, 1]$, that is identically equal to 1 on K and its compact support is contained in O.

3. [15 pts] State and give a proof of the Inverse Mapping Theorem for differentiable manifolds.

4. [15 pts] Show that the set on $\mathbb{R}^{n \times n}$ orthogonal real matrices $O(n, \mathbb{R})$ is a submanifold of the manifold of all square real matrices $M(n, \mathbb{R})$.

5. [15 pts] Find the integral curves in \mathbb{R}^2 of the vector field $X = e^{-x} \frac{\partial}{\partial z} + \frac{\partial}{\partial y}$ and determine if X is complete or not.

6. [10 pts] Determine if the differential 1-form

$$\alpha := \frac{xdy - ydx}{x^2 + y^2}$$

is globally conservative, locally conservative, exact in $\mathbb{R}^2 \setminus \{(0, 0)\}$.

7. [15 pts] Explain in detail the definition of the integral of a differential n-form with compact support on an oriented smooth n-manifold (without boundary and with boundary).

THE END
1. [10 pts] Let f be a function on a domain $U \subset \mathbb{C}$. Suppose that both f and \bar{f} are holomorphic. Prove that f is a constant.

2. [10 pts] Let f be a continuous function on the unit disc $D(0,1)$. Suppose that for any closed curve γ in $D(0,1)$, $\oint_{\gamma} f(z) dx = 0$. Prove that f is holomorphic.

3. [15 pts] Let u be a harmonic function in $D(0,1) \setminus \{0\}$. Prove that if
\[
\lim_{|(x,y)| \to 1} u(x,y) = 0 \quad \text{and} \quad \lim_{|(x,y)| \to 0} u(x,y) / \log(x^2 + y^2) = 0,
\]
u is identically zero on $D(0,1)$.

4. [15 pts] Prove or disprove that there exists an entire function f satisfying $\lim_{|z| \to \infty} |f(z)|/|z|^{3/2} = 1$.

5. [15 pts] Prove that for any compact subset K of the unit disc $D(0,1)$, there exists a constant $C > 0$ such that for any holomorphic function f on $D(0,1)$,
\[
\max_{z \in K} |f(z)| \leq C \left(\int_{D(0,1)} |f(z)|^2 dxdy \right)^{1/2}.
\]

6. [15 pts] Compute $\int_{-\infty}^{\infty} \frac{\cos x}{1+x^2} dx$.

7. [20 pts] Find all conformal mappings from \mathbb{C} to \mathbb{C}.

THE END
Ph.D. Qualifying Exam: Real Analysis
February 2017

Student ID: Name:

Note: Be sure to use English for your answers.

1. [10 pts] Suppose that μ is a semifinite measure and $\mu(E) = \infty$. Prove that for any $C > 0$ there exists $F \subset E$ such that $C < \mu(F) < \infty$.

2. [10 pts] Interpret Fatou's lemma, the monotone convergence theorem and the dominated convergence theorem when μ is the counting measure on \mathbb{N}.

3. [15 pts] Let $f : [a, b] \to \mathbb{R}$ be Lebesgue measurable and $\epsilon > 0$. Prove that there is a compact set $E \subset [a, b]$ such that
\[\mu(E^c) < \epsilon \] and $f|_E$ is continuous.

4. [15 pts] Suppose that μ, ν are σ-finite measures on (X, \mathcal{M}) with $\nu \ll \mu$, and let $\lambda = \mu + \nu$ and $f = \frac{d\nu}{d\lambda}$. Prove that $0 \leq f < 1$ μ-a.e. and $\frac{d\nu}{d\mu} = \frac{1}{f}$.

5. [15 pts] Let f be a measurable function on (X, \mathcal{M}, μ) and define $\lambda_f : (0, \infty) \to [0, \infty]$ as $\lambda_f(\alpha) = \mu(\{x : |f(x)| > \alpha\})$. Prove that
\[f \in L^1 \text{ if and only if } \sum_{k=-\infty}^{\infty} 2^k \lambda_f(2^k) < \infty. \]

6. [10 pts] Prove that every nonempty closed convex set K in a Hilbert space has a unique element of minimal norm.

7. Let (X, \mathcal{M}, μ) be a measure space.

 (a) [15 pts] Prove that $L^p(X)$ is complete for $1 \leq p < \infty$.

 (b) [10 pts] Prove that the set of simple functions
 \[f = \sum_{j=1}^{n} \alpha_j \chi_{E_j}, \text{ where } \mu(E_j) < \infty \text{ for all } j, \]
 is dense in $L^p(X)$ for $1 \leq p < \infty$.

THE END
1. [20 pts] Let \mathcal{F} be a family of subsets of a finite set, where each member of \mathcal{F} has size at least 2. Let A and B be two blocking sets of \mathcal{F} of minimal size, that is $|A| = |B| = \tau(\mathcal{F})$. Consider a bipartite graph G with parts A and B, where $a \in A$ is connected to $b \in B$ if there is an $F \in \mathcal{F}$ containing both a and b. Prove that G has a perfect matching.

2. [20 pts] Prove that for every integer k there exists a graph G with girth $g(G) > k$ and chromatic number $\chi(G) > k$.

3. [20 pts] Let $(\mathcal{P}, \mathcal{L})$ be a finite projective plane of order $q \geq 3$, and let $B \subset \mathcal{P}$ be a non-trivial blocking set. Prove that
 (i) $|B| \leq q^2 - \sqrt{q}$.
 (ii) no line in \mathcal{L} contains more than $|B| - q$ points from B.

4. [20 pts] Let $L \subset \{0, 1, 2, \ldots \}$ be a finite set of integers and let \mathcal{F} be a family of subsets of $\{1, 2, \ldots, n\}$ such that $|A \cap B| \in L$ for every pair A, B of distinct members of \mathcal{F}. Prove that
 $$|\mathcal{F}| \leq \sum_{i=0}^{\lfloor L/2 \rfloor} \binom{n}{i}.$$

5. [20 pts] Let \mathbb{F} be a finite field with $|\mathbb{F}| = q$. Prove that every non-zero polynomial $f(x_1, \ldots, x_n) \in \mathbb{F}[x_1, \ldots, x_n]$ of degree d ($1 \leq d \leq q$) has at most $d q^{n-1}$ roots.

THE END
Ph.D. Qualifying Exam: Probability Theory
February 2017

Student ID:
Name:

Note: Be sure to use English for your answers.

1. [15 pts] For \(n \in \mathbb{N} \), consider the probability space \((\Omega_n, \mathcal{F}_n, P_n)\) where \(\Omega_n = \{1, 2, \ldots, n\} \), \(\mathcal{F}_n \) is the set of all subsets of \(\Omega_n \), and \(P_n \) is the uniform probability measure, i.e., \(P_n(\{k\}) = 1/n \) for all \(k \in \Omega_n \). Find the largest positive integer \(N \) for which the following statement holds for all \(n \leq N \):
 If \(X \) and \(Y \) are independent random variables on \((\Omega_n, \mathcal{F}_n, P_n)\), then either \(X \) or \(Y \) must be constant.

2. [10 pts] Two sequences of random variables, \((X_n)\) and \((Y_n)\), are tail equivalent if
 \[
 \sum_{n \geq 1} P(X_n \neq Y_n) < \infty.
 \]
 Suppose \(\Omega_X \subset \Omega \) is the set on which \(\sum_n X_n \) converges, and \(\Omega_Y \subset \Omega \) is the set on which \(\sum_n Y_n \) converges. Show that the symmetric difference of \(\Omega_X \) and \(\Omega_Y \) has probability zero, i.e., \(P(\Omega_X \Delta \Omega_Y) = 0 \).

3. [15 pts] Prove Kolmogorov's Maximal Inequality for independent zero-mean random variables \(\{X_k\} \) which have finite variances: If \(S_n = X_1 + \cdots + X_n \) then
 \[
 P \left(\max_{1 \leq k \leq n} |S_k| \geq \varepsilon \right) \leq \frac{\varepsilon^{-2} \text{Var}(S_n)}{n}
 \]
 for all \(\varepsilon > 0 \).

4. [10 pts] Suppose that the sequence \((X_n/a_n, n \in \mathbb{N})\) converges in distribution where \(a_n \uparrow \infty \). If \((b_n)\) is a sequence of numbers such that \(a_n/b_n \to 0 \) as \(n \to \infty \), show that \((X_n/b_n, n \in \mathbb{N})\) converges in probability to 0. (Remark: this shows that the CLT implies the WLLN under finite second moments.)

5. [15 pts] Suppose \(\sup_n E|X|^p < \infty \) for some \(p > 0 \). Show that there is a subsequence \(\{X_{n_k}\} \) such that \(\{X_{n_k}, k \in \mathbb{N}\} \) converges in distribution.

6. (a) [10 pts] Consider \(\sigma \)-fields \(\mathcal{F}_1 \subset \mathcal{F}_2 \). Show \(E(E(X|\mathcal{F}_1)|\mathcal{F}_2) = E(X|\mathcal{F}_1) \) and
 \[
 E(E(X|\mathcal{F}_2)|\mathcal{F}_1) = E(X|\mathcal{F}_1).
 \]
 (b) [10 pts] If \(EX^2 < \infty \), then \(E(X|\mathcal{F}) \) is (a version of) the random variable \(Y \) which is \(\mathcal{F} \)-measurable and minimizes \(E(Y - X)^2 \).

7. [15 pts] Let \(\{X_k, k \in \mathbb{N}\} \) be an i.i.d. sequence such that \(E|X_1| < \infty \). If \(\tau \) is a stopping time with respect to the filtration given by \(\mathcal{F}_n = \sigma(X_1, \ldots, X_n) \), and \(E\tau < \infty \), then
 \[
 E(X_1 + \cdots + X_\tau) = E(\tau)E(X_1).
 \]
 (Remark: this is called Wald's equation, and it is not true when \(E\tau = \infty \).

THE END