- In the following you may use Fatou Lemma, Lebesgue Dominated Convergence Theorem, Hölder Inequality, Hahn-Banach Theorem, Open Mapping Theorem and Borel-Cantelli Lemma.
- 1. [15] Let X be a Hausdorff space and B(X) be the vector space of all bounded real-valued functions on X. For each $f \in B(X)$, let $||f||_{\infty} = \sup\{|f(x)||x \in X\}$. Decide whether each of the following spaces is a Banach space with norm $||\cdot||_{\infty}$.
 - (a) $C_c(X) = \{ f \in B(X) | \{ x \in X | f(x) \neq 0 \} \text{ is compact } \}.$
 - (b) $C_{\circ}(X) = \{ f \in B(X) | \{ x \in X | |f(x)| \ge \epsilon \} \text{ is compact for any } \epsilon > 0 \}.$
 - (c) $C^2(X) = \{ f \in B(X) | f'' \text{ exists and is continuous on } X \}$ where X = [0, 1].
- 2. [15] Let X be a normed vector space and S be a proper closed linear subspace of X. Let 0 < a < 1. Show that there is $x_o \in X$ with $||x_o|| = 1$ such that $d(x_o, S) \ge a$. Use this to prove that if $\{x \in X | ||x|| \le 1\}$ is compact, then X is finite dimensional.
- 3. [20] Let (X, \mathcal{A}, μ) be a measure space and $\{f_n\}$ be a sequence of measurable functions on (X, \mathcal{A}) that is Cauchy in measure. Show that it has a subsequence $\{f_{n_k}\}$ that converges almost uniformly to a measurable function f on (X, \mathcal{A}) . Show that if $f_n \in L^p(\mu)$ for all $n \in \mathbb{N}$ with $1 and <math>\lim_{k \to \infty} ||f_{n_k}|^p |f|^p||_1 = 0$, then $\lim_{k \to \infty} ||f_{n_k} f||_p = 0$.
- 4. [15] Let (X, \mathcal{A}, μ) be a measure space and $0 < q < p < s \le \infty$. Let f be a function in $L^p(\mu)$ and $E = \{x \in X | f(x) \ne 0\}$. Show that $\lim_{r\to 0^+} \|f\|_r^r = \mu(E)$. Prove that there exist $g \in L^q(\mu)$ and $h \in L^s(\mu)$ such that f = g + h on X.
- 5. [15] Let (X, \mathcal{A}, μ) be a measure space and $\|\cdot\|$ be a norm on $L^{\infty}(\mu)$ in which $L^{\infty}(\mu)$ is complete. Show that if $\|f\|_{\infty} \leq \|f\|$ for all $f \in L^{\infty}(\mu)$, then there is $C \in \mathbb{R}$ such that $\|f\| \leq C\|f\|_{\infty}$ for all $f \in L^{\infty}(\mu)$.
- 6. [10] Let H be the set of all absolutely continuous real-valued functions f on [0,1] such that f(0) = 0 and $f' \in L^2[0,1]$. For $f,g \in H$, define $(f,g) = \int_0^1 f'g'$. Let $0 < t \le 1$. For each $f \in H$, let F(f) = f(t). Show that F is a bounded linear functional on the Hilbert space H. Find ||F||. Find $f_o \in H$ such that $F(f) = (f, f_o)$ for all $f \in H$.
- 7. [10] Let $1 \leq p, q \leq \infty$ with 1/p + 1/q = 1. For each $g \in L^q[0, 1]$, let $F_g(f) = \int_0^1 fg$ for $f \in L^p[0, 1]$. Let $F \in L^p[0, 1]^*$. Is there $g \in L^q[0, 1]$ such that $F = F_g$? Explain.

Algebraic Topology I: Ph.D. Qualifying Exam August 7, 2013

Instructions

- 1) Use only ONE-SIDE of each answer sheet.
- 2) Answers without concrete justification will not be graded at all.
- 3) TWENTY points for each.

Problems

1. Let X be the subset of \mathbb{R}^3 obtained by deleting the three coordinate axes. In other words.

$$X = \mathbb{R}^3 \setminus (\{(t, 0, 0) : t \in \mathbb{R}\} \cup \{(0, t, 0) : t \in \mathbb{R}\} \cup \{(0, 0, t) : t \in \mathbb{R}\}).$$
Compute $\pi_1(X)$.

- 2. Let S be a closed surface with Euler characteristic -1. Compute the singular homology groups of S.
- 3. For a map $\phi: X \to Y$ between abelian groups X and Y, we define coker $\phi = Y/\phi(X)$. Consider the following commutative diagram of abelian groups such that the rows are exact:

$$\begin{array}{ccc}
A & \xrightarrow{i} & B & \xrightarrow{j} & C & \longrightarrow 0 \\
\downarrow^{f} & \downarrow^{g} & \downarrow^{h} \\
0 & \longrightarrow & A & \xrightarrow{i'} & B & \xrightarrow{j'} & C
\end{array}$$

Prove that there exists a homomorphism $d: \ker h \to \operatorname{coker} f$ such that the following sequence is exact:

$$\ker g \xrightarrow{j} \ker h \xrightarrow{d} \operatorname{coker} f \xrightarrow{i'} \operatorname{coker} g$$

- **4.** Prove that an m-dimensional manifold is not homeomorphic to an n-dimensional manifold if $m \neq n$.
- 5. Define

$$\begin{array}{lll} X_1 & = & \{(x,y): y = |\sin(2\pi/x)|, 0 < x < 2\} \\ X_2 & = & \{(0,y): 0 < y < 1\} \\ X_3 & = & \{(x,y): y = -\sqrt{1 - (1-x)^2}, 0 < x < 2\} \\ \end{array}$$

Find the singular homology groups of $X = X_1 \cup X_2 \cup X_3$.

Qualifying Exam-2 2013 in Advanced Statistics

1. [10 pts] Let T be a chi-square random variable with k degrees of freedom. Find the limiting distribution of

$$\frac{T-k}{\sqrt{2k}}$$

as $k \to \infty$.

- 2. [10 pts each] Let X_1, \dots, X_n be iid Poisson(λ) random variables. Let $Y = \sum_{i=1}^{n} X_i$.
 - (a) Find a $1-\alpha$ confidence interval of λ using the fact that

$$P_{\lambda}(Y \le y) = P(W > 2n\lambda)$$

where $W \sim \chi^2_{2(y+1)}$.

- (b) Assume that $\lambda \sim Gamma(a, b)$. Find a 1α credible interval of λ .
- (c) Denote the confidence interval obtained in question (a) by C, and denote the posterior distribution of λ considered in question (b) by $\pi(\lambda|x_1,\dots,x_n)$. Find the limit of $\pi(\lambda \in C|x_1,\dots,x_n)$ as $\sum_{i=1}^n x_i \to \infty$.
- 3. [10 pts] Suppose that a minimal sufficient statistic exists for a parameter θ of a distribution F. Then is it true that any complete sufficient statistic for θ is also minimally sufficient? Why?
- 4. [10 pts] Let X_1, \dots, X_n be a random sample from a distribution with pdf f. We know that the sample mean (\bar{X}) and the sample variance (S^2) are independent when the distribution is Normal. Is it also true when the distribution is an exponential distribution with parameter λ ? Why?
- 5. [10 pts] For two random variables, X and Y, suppose that $|\rho_{XY}| = 1$. What is the relationship between X and Y? Why?
- 6. Let X_1, \dots, X_n be a random sample from an exponential distribution with parameter λ . Let \bar{X} be the sample mean.
 - (a) [10 pts] Find the distribution of $X_1 \bar{X}$ and the limit of the distribution.
 - (b) [7 pts] Find a best unbiased estimator of λ and its variance.
 - (c) [13 pts] For two real constants, $0 < a < b < \infty$, find a best, if any, unbiased estimator of $P(a < X_1 < b)$ and its variance.

THE END

For problems 1 through 4: ALL WORK MUST BE SHOWN.

Assume all hypergraphs are finite and simple (meaning no repeated edges). Let $\tau(H)$ denote the transversal number (blocking number) of the hypergraph H, and $\tau^*(H)$ the fractional transversal number. A hypergraph H is τ -critical if $\tau(H \setminus E) < \tau(H)$ for any edge $E \in H$. A hypergraph is k-colorable if the vertices can be spit into k classes such that each edge contain vertices from at least two distinct classes. The hypergraph H is k-chromatic if k is the minimum integer for which H is k-colorable. Let $R_k(c_1, c_2, \ldots, c_k)$ denote the Ramsey number for k-edge coloring of the complete graph with color class sizes c_1, c_2, \ldots, c_k , in other words, the minimum integer m such that any k-coloring of the edges of K_m contains a monochromatic clique of size c_i with color i for some $1 \le i \le k$.

(a) Suppose that any k edges of an r-uniform hypergraph have at least one vertex in common. Show that

$$\tau(H) \le \frac{r-1}{k-1} + 1$$

- (b) Show that if a hypergraph is τ -critical, then either H is a collection of pairwise disjoint edges or $\tau(H) > \tau^*(H)$.
- (c) Determine the maximum number of vertices of a 5-uniform τ -critical hypergraph with $\tau=2$, and find all hypergraphs (up to isomorphism) which attain the maximum number of vertices.
- 2 Let H be an r-uniform hypergraph, where |H| denote the number of edges of H.

20 Points

- (a) Prove that the vertices of V can be colored red and blue such that the number of monochromatic edges is at most $\frac{|H|}{2^{r-1}}$. (An edge is monochromatic if all its vertices have the same color.)
- (b) Prove that the vertex set can be colored by r colors such that there are at least $\frac{r!}{r^r}|H|$ multicolored edges. (An edge is multicolored if all its vertices have distinct colors.)

3 (a) Let $H = \{A_1, \ldots, A_n\}$ be a 3-chromatic hypergraph on n vertices, without isolated vertices, such that for any vertex v the hypergraph

$$H-v=\{A_1\setminus\{v\},\ldots,A_n\setminus\{v\}\}$$

is 2-colorable. Prove that the incidence vectors of the edges of G generate the whole n-dimensional space.

- (b) Show that if a hypergraph H has the property, that for all $k \geq 1$, the union of any k-edges has at least k+1 vertices, then H is 2-chromatic.
- (c) Construct an r-uniform hypergraph such that the union of any k edges has at least k vertices, but H is not 2-chromatic.
- (a) Prove that the Ramsey number $R_k(3,\ldots,3) \leq \lfloor e \cdot k! \rfloor + 1$, for all $k \geq 2$.

20 Points

(b) Show that the Ramsey number $R_2(5,3) = 14$.

Ph.D Qualifying Exam Complex Analysis Aug 2013 (3 hours)

Problem 1. Assume that $f: \Omega \to \mathbb{C}$ is a C^1 analytic function, and $\gamma \in \Omega$ is a simple closed and piecewise C^1 contour. Prove the Cauchy Theorem i.e.

$$\oint_{\gamma} f(z) \, dz = 0.$$

Problem 2. Evaluate the following integral

$$\int_{-\infty}^{\infty} \frac{\cos x}{x^2 + a^2} \, dx, \qquad \text{where} \quad a > 0.$$

Problem 3. Assume that f(z) is an entire function so that for sufficiently large z,

$$|f(z)| \le C_1 + C_2|z|^{1/2},$$

for some C_1, C_2 . Show that f(z) is a constant function.

Problem 4. Let f(z) be analytic in a domain Ω containing $|z| \leq 1$, with the only zeros of f being the distinct points a_1, a_2, \dots, a_n , of multiplicities m_1, m_2, \dots, m_n , respectively, and each a_j lies in the disk |z| < 1. Given that g is analytic in Ω , derive a formula of

$$\oint_{|z|=1} \frac{f'(z)g(z)}{f(z)} dz$$

Problem 5. Let u(z) be a nonconstant, real valued, harmonic function on \mathbb{C} . Prove that there exists a sequence $\{z_n\}$ such that $z_n \to \infty$ for which $u(z_n) \to 0$.

Problem 6. Let $\{f_n(z)\}$ be a sequence of functions analytic in the connected open set D and assume they converge uniformly on every compact subset of D. Show that the sequence of derivatives $\{f'_n(z)\}$ also converges uniformly on every compact subset of D.

Problem 7. Let a > 1 be given. Show that the equation

$$a - z - e^{-z} = 0$$

has exactly one root in the half plane $\{z : Rez > 0\}$, and moreover, this root is real.

Numerical analysis, Qualifying Exam. 2013

Each problem is worth 10 points.

1. (20 pts)

- (a) Define a Lagrange interpolation polynomial with data $\{(x_i, f(x_i))\}_{i=0}^n$. x_i all distinct.
- (b) What is the error form in the above? Derive it.
- (c) Define a Newton's form of interpolation polynomial using the same data.
- (d) Explain what happens if some x_i are repeated, and in this case what is the correct data corresponding to the repeated points?
- 2. (15 pts) Prove the Newton's method to solve a scalar nonlinear equation f(x) = 0 (assume f is differentiable) is second order convergent under appropriate condition. What happens if the condition is not satisfied?
- 3. (15 pts) Describe Newton's method to solve a system of nonlinear equations $F(\mathbf{x}) := A\mathbf{x} + g(\mathbf{x})\mathbf{x} = 0$ starting from some initial points \mathbf{x}_0 . Here $\mathbf{x} = (x_1, \dots, x_n)$, A is $n \times n$ constant matrix and $g(\mathbf{x})$ is a scalar C^1 function of \mathbf{x} .
- 4. (10 pts) Suggest at least one more method to solve above system(Problem 3) and provide a sufficient condition for the convergence.
- 5. (15pts) Explain Runge phenomena and show how one can avoid it.
- 6. (15 pts)
 - (a) Let \mathbf{u}, \mathbf{v} are any vectors in \mathbb{R}^n . Find an $n \times n$ matrix of the form $H_{\mathbf{w}} = I 2\mathbf{w}\mathbf{w}^*$, for some unit vector $\mathbf{w} \in \mathbb{R}^n$ such that $H_{\mathbf{w}}\mathbf{u} = \mathbf{v}$.
 - (b) Show that $H_{\mathbf{w}}$ is symmetric and orthogonal
 - (c) Explain how to transform A into an upper triangular matrix R using above transformations. (Including how to avoid instability)
- 7. (10 pts) Describe Euler's method(explicit and implicit) to solve an ODE. $\dot{x} = f(t, x(t)), x(0) = x_0$. Discuss advantages and disadvantages.

Qualifying Exam in Probability Theory (August 2013)

- 1. (10 pts) Suppose $\{X_n, n \geq 1\}$ are random variables with a common unit exponential distribution, i.e. $\mathbb{P}(X_n > x) = e^{-x}$, x > 0 and set $M_n = \max\{X_1, \ldots, X_n\}$, $n \geq 1$. Find the distribution of Y which satisfies $M_n \log n \Rightarrow Y$. \Rightarrow denotes the convergence in distribution.
- 2. (10 pts) Suppose X and Y are independent random variables and $h: \mathbb{R}^2 \to [0, \infty)$ is measurable. Define $g(x) = \mathbb{E}[h(x, Y)]$. Show that $g(\cdot)$ is measurable and $\mathbb{E}[g(X)] = \mathbb{E}[h(X, Y)]$.
- 3. (10 pts) Compute

$$\lim_{n\to\infty} \int_0^1 \int_0^1 \cdots \int_0^1 \left(\frac{x_1 + x_2 + \cdots + x_n}{n} \right)^p dx_1 dx_2 \cdots dx_n$$

where p is a positive integer.

- 4. (10 pts) Suppose X is an integrable random variable on (Ω, \mathcal{B}, P) , and A_n are sets in \mathcal{B} . Show that if $P\{A_n\} \longrightarrow 0$ as n goes to ∞ , then $\int_{A_n} X \ dP \longrightarrow 0$ as n goes to ∞ .
- 5. (10 pts) If for each $i=1,\cdots,n$, C_i is a non-empty class of events satisfying
 - (a) C_i is a π -system
 - (b) C_i , $i = 1, \dots, n$ are independent,

then show that $\sigma(\mathcal{C}_1), \dots, \sigma(\mathcal{C}_n)$ are independent.

- 6. (10 pts) Compute the characteristic function of $N(\mu, \sigma^2)$, $\exp(\lambda)$, and Poisson(λ).
- 7. (10 pts) Consider a probability space $(\Omega = [0, 1], \mathcal{B}([0, 1]), \mathbb{P})$ where \mathbb{P} is the Lebesgue measure. Define the following random variables on Ω .

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in [0, \frac{1}{2}] \\ 0, & \text{if } \omega \in (\frac{1}{2}, 1] \end{cases}, Y(\omega) = \begin{cases} 1, & \text{if } \omega \in [0, \frac{3}{4}] \\ 0, & \text{if } \omega \in (\frac{3}{4}, 1] \end{cases}, Z(\omega) = \begin{cases} 1, & \text{if } \omega \in [\frac{1}{4}, \frac{3}{4}] \\ 0, & \text{if } \omega \notin (\frac{1}{4}, \frac{3}{4}] \end{cases}.$$

Compute $\mathbb{E}[X|Y]$ and $\mathbb{E}[X|Y,Z]$. Check if $\mathbb{E}[X|Y]=\mathbb{E}[X|Y,Z]$ is true. What can you say about your result?

- 8. (10 pts) Let $\{X_n\}$ be independent random variables and $S_n = X_1 + \ldots + X_n$. Show that the event $\{\omega : S_n(\omega)/n \to 0\}$ has probability 0 or 1.
- 9. (10 pts) Suppose $\{A_n\}$ are independent events satisfying $P\{A_n\} < 1$, for all n. Show that

$$P\{\bigcup_{n=1}^{\infty} A_n\} = 1$$
 if and only if $P\{A_n \text{ i.o.}\} = 1$.

10. (10 pts) If $X_n \xrightarrow{P} X$ and F is continuous at x, show that $\lim_{n\to\infty} F_n(x) = F(x)$. Here, $F_n(x)$ denotes the distribution function of X_n , and F(x) is the distribution function of X. (Hint: First show that

$$F(x-\epsilon) - P\{|X_n - X| \ge \epsilon\} \le F_n(x) \le P\{|X_n - X| \ge \epsilon\} + F(x+\epsilon).$$

and then prove the statement in the problem.)

QUALIFYING EXAM (ALGEBRA)

- 1. Let $A = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{bmatrix}$. Find an orthogonal matrix P so that such that $P^{-1}AP$ is a diagonal matrix.
 - 2. Show that no group of order 36 is simple.
 - 3. Show that every group of order $255 = 3 \cdot 5 \cdot 17$ is abelian.
- 4. Let R be a commutative ring with identity. Let $\mathfrak{m}_1, \mathfrak{m}_2, \ldots, \mathfrak{m}_r$ be distinct maximal ideals of R. Let a_1, a_2, \ldots, a_r be elements of R. Show that there exists an element a of R satisfying

$$a \equiv a_i \mod \mathfrak{m}_i$$
 for any $i = 1, 2, \dots, r$.

5. Let R be a commutative Nötherian ring with identity. Show that the polynomial ring R[X] is also Nötherian.