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ALGEBRAIC COBORDISM THEORY ATTACHED TO ALGEBRAIC

EQUIVALENCE

AMALENDU KRISHNA AND JINHYUN PARK

Abstract. After the algebraic cobordism theory of Levine-Morel, we develop a theory
of algebraic cobordism modulo algebraic equivalence.

We prove that this theory can reproduce Chow groups modulo algebraic equivalence
and the zero-th semi-topological K-groups. We also show that with finite coefficients,
this theory agrees with the algebraic cobordism theory.

We compute our cobordism theory for some low dimensional or special types of
varieties. The results on infinite generation of some Griffiths groups by Clemens and
on smash-nilpotence by Voevodsky and Voisin are also lifted and reinterpreted in terms
of this cobordism theory.

1. Introduction

The goal of this paper is to develop a cobordism theory on schemes, that is associated
to algebraic equivalence, from the algebraic cobordism theory Ω∗ of Levine and Morel
[12]. The algebraic cobordism theory is defined from cobordism cycles as the Chow group
is defined from algebraic cycles. Here we regard Ω∗ as the cobordism theory associated
to rational equivalence, which is the finest adequate equivalence on algebraic cycles in
the sense of [1, Définition 3.1.1.1.] or [8].

The algebraic cobordism theory is a universal oriented cohomology theory on smooth
varieties modeled on the complex cobordism MU∗ in [15]. Unlike the cases of ordi-
nary cohomology theories on algebraic varieties or topological spaces, the Chern classes
of the algebraic cobordism and the complex cobordism satisfy a relation of the form
c1(L ⊗ M) = F (c1(L), c1(M)) for a formal power series in two variables F (u, v) =
u+ v+ (higher order terms). They have the structures of graded modules over a graded
ring called the Lazard ring. The algebraic cobordism theory contains enough data to re-
produce Chow groups and Grothendieck groups. Levine and Pandharipande [13] defined
the double-point cobordism theory ω∗ that is isomorphic to the Levine-Morel algebraic
cobordism theory Ω∗.

There are at least three ways to approach the problem of defining cobordism theories
associated to algebraic equivalence. The first method is to modify the Levine-Morel
algebraic cobordism by adding additional relations coming from algebraic equivalence.

The resulting theory is Ωalg
∗ . The second method is to modify the Levine-Pandharipande

double-point relations, allowing curves of all genus g ≥ 0. We obtain ωalg
∗ in this method,

which was originally mentioned in [13, §11.2] without further studies. The third method
is motivated by the relation between the Grothendieck K0 and the semi-topological K0

discussed in Friedlander-Walker [4]:

Definition 1.1. Let X be a separated scheme of finite type over a field k. For a smooth
projective curve C over k and k-rational points ij : {tj} ↪→ C, j = 1, 2, let ωFW

∗ (X) be
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the quotient of ω∗(X) by the subgroup generated by the images of i∗0 − i∗1 : ω∗(X×C)→
ω∗(X). The existence i∗j follows from [12, 6.5.4] and [13, Theorem 1].

Some of the central results of this paper are summarized as follows:

Theorem 1.2. Let Schk be the category of separated schemes of finite type over a field
k of characteristic 0, and let Smk be the subcategory of smooth quasi-projective reduced
k-schemes. Then, on the category Schk, we can define three algebraic cobordism theories

attached to algebraic equivalence : Ωalg
∗ in Definition 3.6, ωalg

∗ in Definition 4.3, ωFW
∗ in

Definition 1.1, all isomorphic to each other, satisfying the following properties:

(1) The functor Ωalg
∗ defines an oriented Borel-Moore homology theory on Schk that

respects algebraic equivalence, in the sense of [12, Definitions 5.1.3] and Definition 7.8.
The restriction Ω∗alg on the subcategory Smk, with the cohomological indexing in Defini-
tion 3.6, defines an oriented cohomology theory that respects algebraic equivalence in the
sense of [12, Definition 1.1.2] and Definition 7.8.

(2) In particular, Ωalg
∗ satisfies the localization property, the A1-homotopy invariance

and the projective bundle formula.
(3) Ω∗alg is universal among all oriented cohomology theories on Smk that respect alge-

braic equivalence. Similarly, Ωalg
∗ is universal among all oriented Borel-Moore homology

theories on Schk that respect algebraic equivalence.

(4) Let X ∈ Schk. Then, Ωalg
∗ (X) ⊗L∗ Z ' CHalg

∗ (X) and Ωalg
∗ (X) ⊗L∗ Z[β, β−1] '

Gsemi
0 (X)[β, β−1], where CHalg

∗ is the Chow group modulo algebraic equivalence, Gsemi
0 is

the semi-topological Grothendieck group of coherent sheaves, and β is a formal symbol of
degree −1. Here, L∗ is the Lazard ring in [12, p. 4] (or, see Remark 3.5).

(5) Let X ∈ Schk. Then, Ω∗(X)⊗Z Z/m '→ Ωalg
∗ (X)⊗Z Z/m.

A good part of the paper, from Sections 2 to 8, is devoted to proving Theorem 1.2.
Section 2 recalls the definition of cobordism cycles from [12], and that of algebraic equiv-

alence. In Section 3, we define Ωalg
∗ in terms of the cobordism cycles of Levine-Morel

modulo various relations, one of which reflects algebraic equivalence of line bundles. We

prove a universal property of Ωalg
∗ . Section 4 recalls the rational and algebraic double-

point cobordism theories ω∗ and ωalg
∗ from [13].

In Section 5, we prove as Theorem 5.1 a basic exact sequence that relates ω∗(X) and

ωalg
∗ (X) for any X ∈ Schk. This yields ωalg

∗ ' ωFW
∗ . This sequence proves various

results in the paper. Section 6 proves a comparison theorem Ωalg
∗ ' ωalg

∗ and Theorem
1.2(2). Section 7 finishes the proof of Theorem 1.2(1). In Section 8, we answer Theorem
1.2(4)(5). This concludes Theorem 1.2. From (3) and (4) we deduce a novel observation
that the Chow groups modulo algebraic equivalence have a characterization by a universal
property. See Remark 8.2.

In Section 9, we compute Ωalg
∗ from various angles:

Theorem 1.3. Let X ∈ Schk and let L∗ be the Lazard ring with the cohomological
indexing (see Remark 3.5).

(1) For X smooth over C, there is a cycle class map Ω∗alg(X)→ MU2∗(X(C)).

(2) L∗ ' Ω∗(k) ' Ω∗alg(k). Furthermore, Ωalg
∗ is generically constant in the sense of

[12, Definition 4.1.1]. (Or, see the paragraph above Proposition 9.4.)

(3) If X is a cellular variety, then Ω∗(X)
'→ Ωalg

∗ (X) as free L∗-modules.
(4) If X is smooth, the L∗-module Ω∗alg(X) is finitely generated if and only if the

group CH∗alg(X) is finitely generated. If X is smooth projective over C, then the L∗-
module Ω∗alg(X) is finitely generated if and only if the Griffiths group Griff∗(X) is finitely
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generated. If dimX ≤ 2, the L∗-module Ω∗alg(X) is finitely generated, and if dimX ≥ 3,
there are non-finitely generated examples.

(5) If X is a smooth affine curve, then L∗ ' Ω∗alg(X). If X is a smooth curve over

C, then Ω∗alg(X)
'→ MU2∗(X(C)). An analogue of Quillen-Lichtenbaum conjecture holds

for smooth curves over C:

Ω∗(X)⊗Z Z/m '→ MU2∗(X(C))⊗Z Z/m.

In Section 10, we discuss a cobordism analogue of a theorem of Voevodsky [18] and
Voisin [19] about smash-nilpotence of algebraically trivial algebraic cycles:

Theorem 1.4. Let X be a smooth projective variety and α be a cobordism cycle over X.
If α vanishes in Ω∗alg(X)Q, then its smash-product α�N (see Definition 10.1) vanishes in

Ω∗(XN )Q for some integer N > 0.

Some details related to Gysin pull-backs from [12] are placed in the Appendix (Section

11), and there a new lemma related to Ωalg
∗ is proven.

This paper builds on two grand works [12] and [13] on algebraic cobordism. Whenever
necessary, we take the freedom of using the definitions and results of these references.
In doing so, we will provide full reference details.

Convension: Throughout the paper, k is a field of characteristic zero. When no
confusion arises, we use ∼ to mean algebraic equivalence.

2. Cobordism cycles and algebraic equivalence

This section recalls the basic definitions on cobordism cycles in the theory of algebraic
cobordism of Levine and Morel [12]. We also recall the notion of algebraic equivalence
of vector bundles and algebraic cycles. This will be used in the construction of our
cobordism theory in Section 3.

2.1. Cobordism cycles. We recall the definition of the cobordism cycles of Levine and
Morel from [12, Definition 2.1.6]. The cobordism cycles in algebraic cobordism theories
play the role of the algebraic cycles in Chow groups.

Definition 2.1. Let X ∈ Schk be of dimension n ≥ 0. An integral cobordism cycle
over X is a family (f : Y → X,L1, · · · , Lr), where Y is integral and in Smk, consisting
of a projective morphism f , and a finite sequence (L1, · · · , Lr) of r line bundles on Y ,
with r = 0 case also allowed. Its dimension is defined to be dim(Y ) − r ∈ Z. An
isomorphism Φ of two cobordism cycles (Y → X,L1, · · · , Lr) ' (Y ′ → X,L′1, · · · , L′r′)
is a triple Φ = (φ : Y → Y ′, σ, (ψ1, · · · , ψr)) consisting of an isomorphism φ : Y → Y ′ of
X-schemes, a bijection σ : {1, · · · , r} ' {1, · · · , r′}, and isomorphisms ψi : Li ' φ∗L′σ(i)

of lines bundles over Y for all i. When Y has multiple connected components, then
(Y → X,L1, · · · , Lr) is defined as the sum of the obvious integral cobordism cycles for
the components.

Let Z∗(X) be the free abelian group on the set of isomorphism classes of integral
cobordism cycles over X. We let Zd(X) be the subgroup generated by the dimension d
cobordism cycles. An element of this group is called a cobordism d-cycle. The image of
the integral cobordism cycle (Y → X,L1, · · · , Lr) is denoted by [Y → X,L1, · · · , Lr] ∈
Z∗(X). When X is smooth equidimensional, the class [IdX : X → X] ∈ Zd(X) is denoted
by 1X . A cobordism cycle of the form [IdX : X → X,L1, · · · , Lr] is often written as
[X → X,L1, · · · , Lr] when no confusion arises. Recall the following definitions from [12,
2.1.2, 2.1.3]:



4 AMALENDU KRISHNA AND JINHYUN PARK

Definition 2.2. Consider the category Schk.
(1) For a projective morphism g : X → X ′ in Schk, the push-forward along g is the

graded group homomorphism g∗ : Z∗(X) → Z∗(X ′) given by the composition with g,
i.e., [f : Y → X,L1, · · · , Lr] 7→ [g ◦ f : Y → X ′, L1, · · · , Lr].

(2) For a smooth equidimensional morphism g : X → X ′ of relative dimension d,
the pull-back along g is the homomorphism g∗ : Z∗(X ′) → Z∗+d(X) given by sending
[f : Y → X ′, L1, · · · , Lr] to [pr2 : Y ×X′ X → X, pr∗1(L1), · · · , pr∗1(Lr)].

(3) Let X ∈ Schk, and let L be a line bundle on X. The first Chern class operator
of L is defined to be the homomorphism c̃1(L) : Z∗(X) → Z∗−1(X) given by [f : Y →
X,L1, · · · , Lr] 7→ [f : Y → X,L1, · · · , Lr, f∗(L)]. If X is smooth, we define the first
Chern class c1(L) of L to be the cobordism cycle c1(L) : = [IdX : X → X,L].

(4) For X,Y ∈ Schk, we define the external product

× : Z∗(X)×Z∗(Y )→ Z∗(X × Y )

by sending the pair [f : X ′ → X,L1, · · · , Lr]× [g : Y ′ → Y,M1, · · · ,Ms] to

[f × g : X ′ × Y ′ → X × Y, pr∗1(L1), · · · , pr∗1(Lr), pr
∗
2(M1), · · · , pr∗2(Ms)].

It is known that Z∗(−) defines the universal oriented Borel-Moore functor on Schk
with products in the sense of [12, Definition 2.1.10]. This universality is based on
the observation in [ibid., Remark 2.1.8] that in Z∗(X), we have the identity [f : Y →
X,L1, · · · , Lr] = f∗◦ c̃1(Lr)◦· · ·◦ c̃r(L1)◦π∗Y (1), where πY : Y → Spec(k) is the structure
map and 1: = 1Spec(k) ∈ Z0(k).

2.2. Algebraic equivalence on vector bundles. For algebraic cycles on varieties,
the notion of algebraic equivalence was defined first in [16]. For X ∈ Schk, we say
that two algebraic cycles Z1 and Z2 on X are algebraically equivalent if there exists a
smooth projective curve C and k-rational points t1, t2 on C with a cycle Z on X × C
such that Z|X×{tj} = Zj for j = 1, 2. We refer to [6, Chapter 10] for basic facts on
algebraic equivalence of algebraic cycles. For vector bundles, we have a related notion.
Let X ∈ Schk, and let E1, E2 be two vector bundles of finite rank on X. We say that
E1 and E2 are algebraically equivalent if there is a smooth projective curve C, k-rational
points t1, t2 on C and a vector bundle V on X ×C such that Ei ' V |X×{tj} for j = 1, 2.
We use ∼alg to mean both of the above notions on cycles and vector bundles.

We say that a vector bundle E of rank m on X is algebraically trivial if it is al-
gebraically equivalent to the trivial bundle O⊕mX . The following facts about algebraic
equivalence of vector bundles and algebraic cycles will be useful in the sequel. Note that
we immediately have:

Lemma 2.3. Two vector bundles E1 and E2 on a scheme X are algebraically equivalent
if and only if E1 ⊗ L and E2 ⊗ L are algebraically equivalent for every L ∈ Pic(X).

Lemma 2.4. Let X be a smooth variety and let D1 and D2 be two Weil divisors on X.
Then D1 ∼alg D2 as cycles if and only if OX(D1) ∼alg OX(D2) as line bundles.

Proof. If D1 and D2 are algebraically equivalent, then there is a smooth connected
scheme T of dimension > 0, k-rational points t1, t2 on T , and a Weil divisor D on X×T
such that D1 −D2 = Dt1 −Dt2 . We can assume that T is projective.

By [9, Theorem 1] (see also [6, Example 10.3.2] if k is algebraically closed), we can
replace T by a smooth projective curve C passing through t1, t2. Thus, we have a
Weil divisor D on X × C such that D1 − D2 = Dt1 − Dt2 . We can modify D by
D − (Dt2 × C) + (D2 × C) so that Dti = Di for i = 1, 2. Letting L = OX×C(D), we see
that L|X×{ti} ' OX(Di) for i = 1, 2.
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Conversely, suppose there is a line bundle L on X × C such that L|X×{ti} ' OX(Di)
for i = 1, 2. Since X×C is smooth, there is a Weil divisor D on X×C whose associated
line bundle is L. This implies in particular that Dti ∼rat Di for i = 1, 2. In other words,
we have D1 ∼rat Dt1 ∼alg Dt2 ∼rat D2, which implies that D1 ∼alg D2. �

Remark 2.5. Note that if the curve C in the above definition is (a nonempty open subset
of) P1, then we can say that E1 and E2 are rationally equivalent. However, when X is
a semi-normal variety and E1, E2 are line bundles, this is equivalent to saying that E1

and E2 are isomorphic.

3. Definition of the algebraic cobordism Ωalg
∗ modulo algebraic

equivalence

In this section, we define an alegbraic cobordism theory of a scheme X ∈ Schk asso-
ciated to algebraic equivalence, modifying the definition of algebraic cobordism Ω∗(X)
of Levine and Morel [12]. The basic motivation is the simple observation that the alge-
braic cobordism is associated to the rational equivalence of line bundles in that, two line
bundles on a smooth variety are isomorphic if and only if they are rationally equivalent
(see Remark 2.5).

Levine and Morel in ibid. constructed Ω∗(X) from the cobordism cycles Z∗(X) of

Definition 2.1. We will define the cobordism theory Ωalg
∗ (X) that is similar to that of

Levine-Morel, with one additional set of relations that identifies two integral cobordism
cycles when their line bundles are suitably related by algebraic equivalence. We use ∼
to mean algebraic equivalence.

Definition 3.1 (cf. [12, Definition 2.4.5]). For X ∈ Schk, the ∼-pre-cobordism Ωalg
∗ (X)

is the quotient of Z∗(X) by the following three relations:
(1) (Dim) If there is a smooth quasi-projective morphism π : Y → Z with line bun-

dles M1, · · · ,Ms>dimZ on Z with Li ' π∗Mi for i = 1, · · · , s ≤ r, then [f : Y →
X,L1, · · · , Lr] = 0.

(2) (Sect) For a section s : Y → L of a line bundle L on Y with its smooth associated
divisor i : D → Y, we impose

[f : Y → X,L1, · · · , Lr, L] = [f ◦ i : D → X, i∗L1, · · · , i∗Lr].
(3) (Equiv) [Y → X,L1, · · · , Lr] and [Y ′ → X,L′1, · · · , L′r] are identified if there

exists an isomorphism φ : Y → Y ′ over X, a permutation σ of {1, · · · , r} and algebraic
equivalences of the line bundles Li ∼ φ∗(L′σ(i)).

Remark 3.2. If we take the quotient of Z∗(X) by only the relations (Dim) and (Sect),
then the resulting quotient group is the pre-cobordism Ω∗(X) of Levine-Morel in ibid.
The cobordism cycles of the form [Y → X,L]− [Y → X,L′] are zero in Ω∗(X) if L ' L′.
If ∼ in (Equiv) is replaced by the rational equivalence ∼rat of line bundles, then by
Remark 2.5, the modified relation (Equiv)rat plays no role because Y is smooth, thus
semi-normal.

Remark 3.3. Note that by definition, we have a natural surjection ΦX : Ω∗(X)→ Ωalg
∗ (X).

Lemma 3.4. All four operations (projective push-forward, smooth pull-back, external
product and the first Chern class operation) in Definition 2.2 descend onto the ∼-pre-

cobordism Ωalg
∗ .

Proof. By [12, Remarks 2.1.11, 2.1.14, Lemmas 2.4.2, 2.4.7], Ω∗ is an oriented Borel-
Moore functor on Schk with product in the sense of [12, Definition 2.1.10], which implies
(Dim) and (Sect) are respected by the four operations. For (Equiv), it follows from the
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fact that the pull-back operations on line bundles via any morphisms respect algebraic
equivalence. �

Remark 3.5. To impose the universal formal group law into our cobordism theory as in
[12, p. 4, §2.4.4], first recall from ibids. that there is a graded polynomial ring Z[ai,j |i, j ≥
0], where ai,j are variables of degree i+ j−1 subject to some relations. This is called the
Lazard ring written L∗. There is a power series FL∗(u, v) : =

∑
i,j ai,ju

ivj ∈ L∗[[u, v]]

such that the pair (L∗, FL∗) is the universal commutative formal group law of rank one.
One also uses the cohomological indexing L∗ by letting Ln = L−n. We have L0 ' Z and
L−n = Ln = 0 if n < 0. Now we define the main object of study in this article.

Definition 3.6 (cf. [12, Definition 2.4.10]). For X ∈ Schk, the graded group Ωalg
∗ (X)

is defined to be the quotient of L∗ ⊗Z Ωalg
∗ (X) by the relations (FGL) of the form

FL∗(c̃1(L), c̃1(M))([f : Y → X,L1, · · · , Lr]) = c̃1(L ⊗M)([f : Y → X,L1, · · · , Lr]) for
lines bundles L and M on X. By the relation (Dim) in Definition 3.1-(1), the expression
FL∗(c̃1(L), c̃1(M)) is a finite sum so that the operator is well-defined. This graded abelian

group Ωalg
∗ (X) is called the algebraic cobordism of X modulo algebraic equivalence.

When X is smooth equidimensional of dimension n, the codimension of a cobordism

d-cycle is defined to be n−d. By codimension, we let Ωn−d
alg (X) : = Ωalg

d (X), and Ω∗alg(X)

is the direct sum of the groups over the all codimensions.

Remark 3.7. If we omit in the above process the relation (Equiv), then we obtain the
algebraic cobordism theory Ω∗(X) of [12, Definition 2.4.10]. In particular, we have a

natural surjection ΦX : Ω∗(X)→ Ωalg
∗ (X).

We immediately see the following:

Proposition 3.8. All four operations (projective push-forward, smooth pull-back, ex-
terior product, and the first Chern class operation) in Definition 2.2 descend onto the

cobordism Ωalg
∗ .

Remark 3.9. By definition, we have a natural ring homomorphism

(3.1) Φalg : L∗ → Ωalg
∗ (k)

induced from the quotient map L∗ ⊗Z Ωalg
∗ (k) → Ωalg

∗ (k), which factors through the
known map Φ: L∗ → Ω∗(k) in [12]. We will see later in Proposition 9.2 that this is an
isomorphism.

We have a natural map qalg : Ωalg
∗ (X)→ Ωalg

∗ (X). It was proven that the corresponding
map q : Ω∗(X)→ Ω∗(X) is surjective by [12, Lemma 2.5.9]. We have a similar result:

Lemma 3.10. Let X ∈ Schk. Then, the abelian group Ωalg
∗ (X) is generated by the

images of the integral cobordism cycles [Y → X,L1, · · · , Lr]. In other words, the natural

map Z∗(X)→ Ωalg
∗ (X) is surjective.

Proof. It suffices to show that the map qalg : Ωalg
∗ → Ωalg

∗ (X) is surjective. But, this
follows from the observation that in the commutative diagram

(3.2)

Ω∗(X)
ΦX−−−−→ Ωalg

∗ (X)

q

y qalg
y

Ω∗(X)
ΦX−−−−→ Ωalg

∗ (X),

the map ΦX is surjective and so is q by [12, Lemma 2.5.9]. �
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Our discussion so far summarizes as follows (cf. [12, Theorem 2.4.13] for Ω∗):

Proposition 3.11. The theory Ωalg
∗ is an oriented Borel-Moore L∗-functor on Schk of

geometric type in the sense of [12, Definitions 2.1.2, 2.1.12, 2.2.1].

We now discuss a universal property of Ωalg
∗ .

Definition 3.12. Let A∗ be an oriented Borel-Moore L∗-functor on Schk of geometric
type. We say that A∗ respects algebraic equivalence if for any X ∈ Schk and for any
pair of algebraically equivalent line bundles L and M over X, we have c̃1(L) = c̃1(M)
as operators A∗(X)→ A∗−1(X).

Certainly, by (Equiv) of Definition 3.1, the theory Ωalg
∗ satisfies Definition 3.12.

Proposition 3.13. The theory Ωalg
∗ is universal among all oriented Borel-Moore L∗-

functors on Schk of geometric type that respect algebraic equivalence. In other words, for

any theory A∗ satisfying Definition 3.12, there exists a unique morphism θA : Ωalg
∗ → A∗

of oriented Borel-Moore L∗-functor of geometric type on Schk.

Proof. By construction, the algebraic cobordism Ω∗ of Levine-Morel is a universal ori-
ented Borel-Moore L∗-functor of geometric type (cf. [13, §0.4]). So, there is a morphism
θ : Ω∗ → A∗ of oriented Borel-Moore L∗-functor of geometric type on Schk.

To show that it induces θA : Ωalg
∗ → A∗, assuming Proposition 3.16, that will be proven

below, it is enough to show that θ(η) = 0 in A∗(X) for η : = [f : Y → X,L]− [f : Y →
X,M ], where L ∼M . This is equivalent to f∗ ((c̃1(L)− c̃1(M)) (1Y )) = 0 ∈ A∗(X). But
this holds by the assumption that c̃1(L) = c̃1(M) on A∗(Y ). Hence, we have the induced

morphism θA : Ωalg
∗ → A∗ as desired. �

We still need to prove Proposition 3.16 to complete the above. We need the following

results that provide useful information on the relationship between Ω∗ and Ωalg
∗ .

Lemma 3.14. The kernel of the map ΦX : Ω∗(X) → Ωalg
∗ (X) is a subgroup generated

by elements of the form [f : Y → X,L]− [f : Y → X,M ] with L ∼M .

Proof. Let θX : Ω∗(X) � Ω
alg
∗ (X) be the quotient of Ω∗(X) by the subgroup generated by

elements given in the lemma. It follows from the definition and the surjection Z∗(X) �
Ω∗(X) that ker(ΦX) is generated by elements of the form η = [f : Y → X,L1, · · · , Lr]−
[f ′ : Y ′ → X,L′1, · · · , L′r], where φ : Y → Y ′ is an isomorphism over X and σ is a
permutation of {1, · · · , r} such that Li ∼ φ∗(L′σ(i)). It suffices to show that such elements

vanish in Ω
alg
∗ (X). We can modify η so that η = [f : Y → X,L1, · · · , Lr] − [f : Y →

X,L′1, · · · , L′r], where Li ∼ L′i for 1 ≤ i ≤ r by virtue of the relations in Ω∗(X) as
described in Definition 2.1. Since θX(η) = f∗ ◦ θY {c̃1(L1) ◦ · · · ◦ c̃1(Lr)(1Y ) − c̃1(L′1) ◦
· · · ◦ c̃1(L′r)(1Y )}, it is enough to consider the case when X = Y and f = IdY . Then, the
lemma follows by repeated applications of the Chern class operators, i.e., c̃1(L1) ◦ · · · ◦
c̃1(Lr)(1Y ) = c̃1(L′1) ◦ · · · ◦ c̃1(L′r)(1Y ) in Ω

alg
∗ (Y ). �

For X ∈ Schk, let R̃alg
∗ (X) denote (cf. [12, Definition 2.5.13]) the graded subgroup of

Ωalg
∗ (X) generated by elements of the form

(3.3) f∗ ◦ c̃1(L1) ◦ · · · ◦ c̃1(Lr){F (c̃1(L), c̃1(M)) (η)− c̃1(L⊗M)(η)},
where [f : Y → X,L1, · · · , Lr] is a standard cobordism cycle, L,M ∈ Pic(Y ) and

η ∈ Ωalg
∗ (Y ). Since we have a natural surjection Z∗(k) � Ω∗(k) and the isomorphism

Φ: L∗
'−→ Ω∗(k) (cf. [12, Lemma 2.5.9]), each element ai,j ∈ L∗ has a lift in Z∗(k). In
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particular, the elements of the form F (c̃1(L), c̃1(M)) (η) are well-defined in Ω∗(Y ), thus

well-defined in Ωalg
∗ (Y ). Set Ω̃alg

∗ (X) : = Ωalg
∗ (X)/R̃alg

∗ (X). The following result is a
refinement of Lemma 3.10.

Proposition 3.15. For any X ∈ Schk, there is a natural map ψalg
X : Ω̃alg

∗ (X)→ Ωalg
∗ (X)

which is an isomorphism.

Proof. It follows from Definition 3.6 that the map Ωalg
∗ (X)→ Ωalg

∗ (X) kills R̃alg
∗ (X). This

induces the natural map ψalg
X : Ω̃alg

∗ (X) → Ωalg
∗ (X). We have already shown in Lemma

3.10 that this map ψalg
X is surjective. We define an inverse φalg

X : Ωalg
∗ (X) → Ω̃alg

∗ (X) of

ψalg
X to complete the proof of the proposition.
To do this, we consider the commutative diagram

(3.4) Ω∗(X) // //

����

##

Ωalg
∗ (X)

����

%%

L∗ ⊗ Ω∗(X) β // //

α

����

γ

$$

L∗ ⊗ Ωalg
∗ (X)

αalg

����

γalg

yy

Ω̃∗(X) // //

ψX

##

Ω̃alg
∗ (X)

ψalg
X

%%

Ω∗(X)
β

// //

φX

cc

Ωalg
∗ (X),

φalgX

ee

where Ω̃∗(X) is defined in [12, Definition 2.5.13]. All the squares in the above diagram
commute and the maps ψX and φX are inverse to each other by [12, Proposition 2.5.15].
By Lemma 3.14, the kernel of the map β is generated by elements of the form a ⊗
([Y → X,L]− [Y → X,M ]), where L ∼ M and a ∈ L∗. On the other hand, such an

element maps to Φ(a) ([Y → X,L]− [Y → X,M ]) in Ω̃∗(X) under φX ◦ α (cf. (3.1)).

In particular, these elements are killed in Ω̃alg
∗ (X) under the composite map γ : L∗ ⊗

Ω∗(X) → Ω∗(X) → Ω̃∗(X) → Ω̃alg
∗ (X). Thus it descends to the quotient γalg : L∗ ⊗

Ωalg
∗ (X)→ Ω̃alg

∗ (X).
Next, we see from Definition 3.6 that the kernel of αalg is generated by elements the

form FL∗(c̃1(L), c̃1(M))([f : Y → X,L1, · · · , Lr]) − c̃1(L ⊗M)([f : Y → X,L1, · · · , Lr])
for line bundles Li on Y , and line bundles L and M on X. But these elements also lie

in the kernel of the map α. In particular, they die in Ω̃alg
∗ (X) via γ so that we conclude

that ker(αalg) ⊆ ker(γalg). Hence, the map γalg descends to φalg
X : Ωalg

∗ (X) → Ω̃alg
∗ (X)

which makes all the squares commute. Now, from the construction, φalg
X ◦ ψ

alg
X is the

identity map. In particular, ψalg
X is injective, thus an isomorphism. �

Proposition 3.16. For X ∈ Schk, the kernel of the natural surjection ΦX : Ω∗(X) →
Ωalg
∗ (X) is the graded subgroup generated by the cobordism cycles of the form [f : Y →

X,L]− [f : Y → X,M ], where L and M are algebraically equivalent.

Proof. In the commutative diagram

(3.5) 0 // R̃∗(X) //

��

Ω∗(X) //

ΦX
��

Ω∗(X) //

ΦX
��

0

0 // R̃alg
∗ (X) // Ωalg

∗ (X) // Ωalg
∗ (X) // 0,
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the top row is exact by [12, Proposition 2.5.15] and the bottom row is exact by Proposi-

tion 3.15. The left vertical arrow in this diagram is surjective by the definition of R̃alg
∗ (X)

above and that of R̃∗(X) in [12, Lemma 2.5.14]. Hence, the map ker (ΦX)→ ker (ΦX) is
surjective by the snake lemma. On the other hand, by Lemmas 2.3 and 3.14, the group
ker (ΦX) is generated by cobordism cycles of the form [f : Y → X,L] − [f : Y → X,M ]
where L ∼M . This proves the proposition. �

Some fundamental properties of Ωalg
∗ will be studied in Section 6.2 and Section 7. We

shall also show that Ωalg
∗ gives an oriented cohomology theory on Smk and an oriented

Borel-Moore homology theory on Schk (see [12, Definitions 1.1.2, 5.1.3]), equipped with
a similar universal property.

4. Algebraic double-point cobordism ωalg
∗

The purpose of this section is to recall the cobordism theories ω∗ and ωalg
∗ based on

the double-point relations of Levine and Pandharipande [13].

4.1. Double-point cobordism after Levine-Pandharipande. We recall the double-
point cobordism theory ω∗ of Levine and Pandharipande in [13, §0.3], and its algebraic

equivalence analogue ωalg
∗ in [13, §11.2]. This description is simpler than that of Levine-

Morel in [12] in that, first, the cobordism cycles are simpler, i.e., without the attached
line bundles and forcing of the formal group law as in Definitions 2.1 and 3.6, and second,
the relations are given from a single sort of morphisms called double-point degenerations.

For the cobordism cycles in the sense of Levine-Pandharipande in [13], we will still
call them cobordism cycles whenever no confusion arises.

Definition 4.1 ([13, §0.2]). Let X ∈ Schk. An integral cobordism cycle on X is the
isomorphism class over X of a projective morphism f : Y → X, where Y is integral and
in Smk. This will be denoted by [f : Y → X]. Its dimension is by definition dimY . A
cobordism cycle is a finite sum of integral cobordism cycles. If Y =

∐
Yi ∈ Smk where

each Yi is integral, then given a projective morphism f : Y → X, the cobordism cycle
[f : Y → X] is defined to be the sum of [f |Yi : Yi → X]. LetM∗(X)+ be the free abelian
group of all cobordism cycles over X, and let Md(X)+ be the subgroup generated by
the cobordism cycles of dimension d.

Now we recall the notion of double-point degenerations and the associated relations
in [13, §0.2, §0.3, §11.2].

Definition 4.2. Let Y ∈ Smk be of pure dimension. Let (C, p) be a pair consisting of
a smooth projective curve C and a k-rational point p ∈ C.

(1) A morphism π : Y → C of k-varieties is a double-point degeneration over p ∈ C if
π−1(p) can be written as π−1(p) = A∪B, where A and B are smooth closed subschemes
of Y of codimension 1 intersecting transversally. The intersection D = A ∩ B is called
the double-point locus of π over p ∈ C. We allow A,B, or D to be empty. Let NA/D

and NB/D denote the normal bundles of D in A and B, respectively. As in [13, §0.2],
the projective bundles P(OD ⊕NA/D)→ D and P(OD ⊕NB/D)→ D are isomorphic
over D. Either of these is denoted by P(π)→ D of the double-point degeneration π.

(2) Let X ∈ Schk, and let pr1, pr2 be the projections from X × C to X and C,
respectively. Let Y ∈ Smk be of pure dimension, and let g : Y → X ×C be a projective
morphism such that π = pr2 ◦ g : Y → C is a double-point degeneration over p ∈ C. For
each regular value ζ ∈ C(k) of π, the triple (g, p, ζ) is called a double-point cobordism with
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the degenerate fibre over p ∈ C and the smooth fibre over ζ. The associated double-point
relation over X of the double-point cobordism (g, p, ζ) is the cobordism cycle

∂C(g, p, ζ) : = [Yζ → X]− [A→ X]− [B → X] + [P(π)→ X] ∈M∗(X)+,

where Yζ : = π−1(ζ).
(3) Let Rrat

∗ (X) ⊂ M∗(X)+ be the subgroup generated by all double-point relations
over X over the pair (C, p) = (P1, 0). This is the group of rational double-point relations.
This group was denoted by R∗(X) in [13].

(4) Let Ralg
∗ (X) ⊂ M∗(X)+ be the subgroup generated by all double-point relations

over X over all pairs (C, p) of smooth projective curve C and a point p ∈ C(k). This is
the group of algebraic double-point relations.

Now we define the associated cobordism theories:

Definition 4.3 ([13]). Let X ∈ Schk.
(1) The (rational) double-point cobordism theory ω∗(X) is the quotient

ω∗(X) =M∗(X)+/Rrat
∗ (X). ([ibid., Definition 0.2])

(2) The algebraic double-point cobordism theory ωalg
∗ (X) is the quotient

ωalg
∗ (X) =M∗(X)+/Ralg

∗ (X). ([ibid., §11.2])

4.2. Basic structures. There are some basic properties of ωalg
∗ that follow essentially

from the definition and some analogous constructions in [13, §3.1]:

Proposition 4.4. For X ∈ Schk, the assignment X 7→ ωalg
∗ (X) has the following struc-

tures. Let X,X ′ ∈ Schk.

(1) projective push-forward: For a projective g : X → X ′, we have g∗ : ωalg
∗ (X) →

ωalg
∗ (X ′) given by g∗([f : Y → X]) = [g ◦ f : Y → X ′]. This satisfies (g1 ◦ g2)∗ = g1∗ ◦ g2∗

when g1, g2 are both projective.
(2) smooth pull-back: For a smooth quasi-projective g : X ′ → X of pure relative

dimension d, we have g∗ : ωalg
∗ (X) → ωalg

∗+d(X
′) given by g∗([f : Y → X]) = [pr2 : Y ×X

X ′ → X ′]. This satisfies (g1 ◦ g2)∗ = g∗2 ◦ g∗1.

(3) external product: We have × : ωalg
∗ (X)×ωalg

∗ (X ′)→ ωalg
∗ (X×X ′) given by [f : Y →

X]× [f ′ : Y ′ → X ′] = [f × f ′ : Y × Y ′ → X ×X ′].
(4) unit: The class 1Spec(k) ∈ ω

alg
0 (k) is the unit for the external product on ωalg

∗ .
(5) Chern classes: For every line bundle L on X, there is a Chern class operation

c̃1(L) : ωalg
∗ (X) → ωalg

∗−1(X) which is compatible with smooth pull-back and projective
push-forward.

Proof. (1) Given projective g : X → X ′, we already have g∗ : M∗(X)+ →M∗(X ′)+. It

remains to show that g∗ sends the algebraic double-point relationsRalg
∗ (X) intoRalg

∗ (X ′).
Indeed, given an algebraic double-point cobordism (h, p, ζ) over X, where h : Y → X×C
with a smooth projective curve C, we get an algebraic double-point cobordism ((g ×
IdC) ◦ h, p, ζ) over X ′, where (g × IdC) ◦ h : Y → X ′ × C. We immediately note that
g∗(∂C(h, p, ζ)) = ∂C((g × IdC) ◦ h, p, ζ). This proves (1).

(2) Given smooth quasi-projective g : X ′ → X, we have g∗ : M∗(X)+ → M∗(X ′)+.

It remains to show that g∗ sends Ralg
∗ (X) into Ralg

∗ (X ′). This follows by observing
that given an algebraic double-point cobordism (h, p, ζ) over X, the pull-back (g∗h, p, ζ),
given by the second projection of the fibre product Y ′ : = Y ×X×C (X ′ ×C)→ X ′ ×C,
is an algebraic double-point cobordism over X ′.
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(3) The map × : M∗(X)+ ×M∗(X ′)+ → M∗(X × X ′)+ is defined on the level of
cobordism cycles. For an algebraic double-point cobordism (h, p, ζ) over X as before,
for each [f : Y ′ → X ′] ∈M∗(X ′)+, we get an induced algebraic double-point cobordism
(h× f, p, ζ), where h× f : Y × Y ′ → X ×X ′ ×C. Similarly, interchanging the role of X

and X ′, we see that × descends onto the level of ωalg
∗ (−). This proves (3). Part (4) is

immediate.
(5) The construction of the first Chern class operation c̃1(L) on ωalg

∗ (X) follows the
same arguments as for ω∗(X) by first assuming that L is globally generated and then
deducing the general case, as in [13, §4] and [ibid., §9], respectively. We omit the details.

�

5. The basic exact sequence

Let X ∈ Schk. By [13, Theorem 1], the natural map ω∗(X) → Ω∗(X) is an isomor-
phism. We often identify these implicitly in the following. Let (C, t1, t2) denote a smooth
projective curve C with distinct t1, t2 ∈ C(k) with the inclusions ij : X ×{tj} → X ×C.
By the existence of the l.c.i. pull-backs on Ω∗ in [12, §6.5], we have maps i∗1, i

∗
2 : ω∗(X ×

C) → ω∗(X). By definition, we also have a natural surjection ΨX : ω∗(X) → ωalg
∗ (X).

The main theorem of the section is:

Theorem 5.1. Let X ∈ Schk. The sequence⊕
(C,t1,t2)

ω∗(X × C)
i∗1−i∗2−−−→ ω∗(X)

ΨX−−→ ωalg
∗ (X)→ 0,

where (C, t1, t2) runs over the equivalence classes of triples consisting of a smooth pro-
jective curve C and two distinct points t1, t2 ∈ C(k), is exact.

We begin with some remarks on cobordism cycles associated to strict normal crossing
divisors on smooth varieties.

5.1. Remarks on divisor classes. Recall from [12, §3.1] that given a strict normal
crossing divisor E on Y ∈ Smk with the support ι : |E| → Y , there is a class [E →
|E|] ∈ Ω∗(|E|) that satisfies ι∗([E → |E|]) = [Y → Y,OY (E)] = c̃1(OY (E))(1Y ). Since

we have a natural surjection Ω∗ → Ωalg
∗ , the class [E → |E|] makes sense also in Ωalg

∗ (|E|).
The construction [E → |E|] ∈ Ω∗(|E|) uses the formal group law F for Ω∗(k). We look

at only the following case from [12, §3.1]. The special case we need is when E = E1 +E2,
where E1, E2 are transversal smooth divisors on Y ∈ Smk. Let ιD : D = E1 ∩ E2 → Y
be the inclusion. We let OD(Ei) : = ι∗D (OY (Ei)). Then, the class [E → Y ] ∈ Ω∗(Y ) is
defined as

[E → Y ] : = [E1 → Y ] + [E2 → Y ] + ιD∗
(
F 1,1(c̃1(OD(E1)), c̃1(OD(E2)))(1D)

)
,

where F 1,1(u, v) =
∑

i,j≥1 ai,ju
i−1vj−1 ∈ Ω∗(k)[[u, v]] and ai,j ∈ Ωi+j−1(k) are the coef-

ficients of the formal group law.
In addition, suppose that OD(E) : = ι∗D (OY (E)) is trivial, i.e., OD(E1) ' OD(E2)−1

on D. Let PD → D be the P1-bundle P(OD ⊕ OD(E1)). Then, by [13, Lemma 3.3], we
have

(5.1) F 1,1(c̃1(OD(E1)), c̃1(OD(E2)))(1D) = −[PD → D] ∈ Ω∗(D).

Hence, we have the following equation in Ω∗(Y ), thus in Ωalg
∗ (Y ), too:

(5.2) [E → Y ]− [E1 → Y ]− [E2 → Y ] + [PD → Y ] = 0.
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5.2. Proof of Theorem 5.1. Consider the commutative diagram with the top exact
row:

(5.3) 0→ Ralg
∗ (X) //

θ

''

M∗(X)+

����

// ωalg
∗ (X) // 0

⊕
(C,t1,t2)

ω∗(X × C)
θ′

// ω∗(X)
ΨX

// ωalg
∗ (X) // 0,

where θ is the composition of the two arrows, θ′ is the sum of the maps i∗1 − i∗2. We
want to prove that the bottom row is exact. It is apparent that ker(ΨX) = Im(θ), thus
it suffices to prove that Im(θ) = Im(θ′).

We prove Im(θ) ⊆ Im(θ′) first. Let (g, p, ζ) be a double-point cobordism as in Defini-
tion 4.2, i.e., a projective g : Y → X×C, two points p, ζ ∈ C(k) such that for π = pr2 ◦g
we have π−1(p) = A ∪B. Let γ : = [g : Y → X × C] ∈ ω∗(X × C).

Let ip : X × {p} → X × C be the inclusion. Let Xp : = X × {p}. Since the divisor
E : = g∗(Xp) = A+B is strict normal crossing, we have γ ∈ Ω∗(X×C)Xp (see Definitions
11.1, 11.2, 11.3), and by Theorem 11.4, Definition 11.5 and [12, Lemma 6.5.6], we have
i∗p(γ) = g′∗([E → |E|]) ∈ ω∗(Xp), where g′ = g||E| : |E| → Xp. Consider the following
commutative diagram:

|E| ιE //

g′

��

Y

g

��

π′

""

Xp
ip
// X × C

pr1
// X.

Note that pr1 ◦ ip = IdX via X ' Xp and π′ is projective. Thus, i∗p(γ) = g′∗([E → |E|]) =

pr1∗ip∗g
′
∗ ([E → |E|]) = π′∗ιE∗ ([E → |E|]) = π′∗([E → Y ]) =† [A → X] + [B → X] −

[P(π)→ X] in ω∗(X), where † follows from (5.2). Since Yζ is smooth, i∗ζ(α) = [Yζ → X].

Hence, we get θ(∂C(g, p, ζ)) = [Yζ → X] − [A → X] − [B → X] + [P(π) → X] =
−(i∗p − i∗ζ)(γ). That is, Im(θ) ⊆ Im(θ′).

To prove the reverse inclusion Im(θ) ⊇ Im(θ′), we consider two cases.
Case 1: First assume that X is smooth. For (C, t1, t2) as before, let γ : = [g : Y → X×

C] be a cobordism cycle. Since X is smooth, by the transversality [12, Proposition 3.3.1],
we may assume that g is transverse to ij , j = 1, 2. The composition Y → X × C → C
now has smooth fibres over t1, t2 so that we have −(i∗1 − i∗2)(γ) = θ (∂C(g, t1, t2)). So, if
X is smooth, then Im(θ) ⊇ Im(θ′) holds.

Case 2: Suppose X is any scheme in Schk. We prove by induction on dimX. Note
that every cobordism cycle is a formal sum of integral cobordism cycles of the form
[f : Y → X] where Y is smooth and irreducible, and such f factors uniquely through an
irreducible component of Xred. Thus, we may reduce to the case when X is integral.

If dimX = 0, then X is smooth so that the statement holds by Case 1. Suppose
dimX > 0, and assume the statement holds for all lower dimensional schemes in Schk.

Let ι : Z ↪→ X be the singular locus, and let U : = X\Z be the open complement.

Using Hironaka’s resolution of singularities, we can find a projective morphism π : X̃ →
X that is an isomorphism over U such that the inverse image of Z is a strict normal
crossing divisor. Let [g : Y → X ×C] ∈ ω∗(X ×C), and let t1, t2 ∈ C(k) be two distinct
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points. Consider the diagram:

E

��

� � // Ỹ

µ

��

g̃
// X̃ × C

πC
��

U × C? _oo

W �
� j

// Y
g
//

f

;;

X × C U × C? _oo

W
?�

j

OO

g′
// Z × C,
?�

ιC

OO

where W : = g−1(Z ×C), g′ is the restriction of g on W , f is the rational map π−1
C ◦ g,

and µ is a sequence of blow-ups of the indeterminacy of f , which is an isomorphism on
the complement of W such that the exceptional divisor E is a strict normal crossing
divisor, and such that there is a morphism g̃ making the diagram commute. Moreover,
the upper-right and the lower squares are Cartesian.

Let α : = [g : Y → X × C] ∈ ω∗(X × C), α̃ : = [g̃ : Ỹ → X̃ × C] ∈ ω∗(X̃ × C), and

β : = [µ : Ỹ → Y ] ∈ ω∗(Y ). Recall that for V ∈ Smk, we write 1V = [Id: V → V ] ∈
ω∗(V ). Then as cobordism cycle classes, we have

(5.4) α = g∗(1Y ), α̃ = g̃∗(1Ỹ ), πC∗(α̃) = g∗µ∗(1Ỹ ) = g∗(β).

Thus, α−πC∗(α̃) = g∗(1Y −β). But, by a blow-up formula [12, Proposition 3.2.4], there
is a cobordism cycle η ∈ ω∗(W ) such that 1Y − β = j∗(η). We thus have

(5.5) α− πC∗(α̃) = g∗(1Y − β) = g∗j∗(η) = ιC∗g
′
∗(η).

In particular, we have i∗j (α)− i∗j (πC∗(α̃)) = i∗j (ιC∗g
′
∗(η)) for j = 1, 2 so that

(5.6) θ′(α)− θ′(πC∗(α̃)) = θ′(ιC∗g
′
∗(η)).

On the other hand, in the Cartesian diagrams below whose rows are regular embed-
dings,

X̃ × {tj} //

π

��

X̃ × C

πC

��

Z × {tj} //

ι

��

Z × C

ιC

��

X × {tj} // X × C, X × {tj} // X × C,

we can use [12, Proposition 6.5.4] and Lemma 5.3 (to be proven below) to deduce that
θ′(πC∗(α̃)) = π∗ (θ′(α̃)) and θ′(ιC∗g

′
∗(η)) = ι∗ (θ′(g′∗(η))). (N.B. The Tor-independence

assumption in [12, Proposition 6.5.4] is only to guarantee that pull-backs of regular
embeddings are regular embeddings. In our case, the rows are regular embeddings, thus,
the conclusion of the proposition applies here without Lemma 5.3.) Applying this to
(5.6), we conclude that

(5.7) θ′(α) = π∗
(
θ′(α̃)

)
+ ι∗

(
θ′(g′∗(η))

)
.

By the Case 1 applied to X̃, we have θ′(α̃) ∈ θ(Ralg
∗ (X̃)) so that π∗(θ

′(α̃)) ∈
π∗(θ(Ralg

∗ (X̃))) ⊂ θ(Ralg
∗ (X)) by Proposition 4.4. Thus, to show θ′(α) ∈ θ(Ralg

∗ (X)),

it is enough to prove that θ′(g′∗(η)) ∈ θ(Ralg
∗ (Z)). But this holds by the induction hy-

pothesis since dimZ < dimX. Hence, we have shown that Im(θ) ⊇ Im(θ′) for X. This
finishes the proof of the theorem. �

Corollary 5.2. Let X ∈ Schk. Then, we have an isomorphism

ωFW
∗ (X) ' ωalg

∗ (X).
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We used the following lemma in the proof of Theorem 5.1, while it was not absolutely
necessary for the theorem. But it is used a few times at other locations in the paper:

Lemma 5.3. Let T be a smooth scheme over k and let W ⊂ T be a smooth closed
subscheme. Then for any morphism f : V ′ → V in Schk, the schemes V ′×T and V ×W
are Tor-independent over V × T .

Proof. Since the assertion is local on V and T , by shrinking them to small enough affine
open subschemes if necessary, we may assume that both are affine such that W ⊆ V is a
complete intersection subscheme. In particular, there is a finite resolution F• → OW by
free OT -modules of finite rank. This in turn shows that F• ⊗k OV → OV×W is a finite
free resolution of OV×W as OV×T -module.

Since (F• ⊗k OV )⊗OV×T
OV ′×T ' F• ⊗k OV ′ , we have

Tor
OV×T

i (OV×W ,OV ′×T ) = Hi (F• ⊗k OV ′) = 0

for i > 0. This proves the lemma. �

6. Equivalence of Ωalg
∗ and ωalg

∗ and consequences

The purpose of this section is to prove Theorem 6.2, and to establish some fundamental
properties of our cobordism theory.

6.1. The comparison theorem. First, we state an analogue of [13, Lemma 3.2] for
algebraic equivalence:

Lemma 6.1. Let Y ∈ Smk, and let E,F be strict normal crossing divisors on Y that

are algebraically equivalent. Then, we have [E → Y ] = [F → Y ] in Ωalg
∗ (Y ).

Proof. By [12, Proposition 3.1.9], we have [E → Y ] = [Y → Y,OY (E)] and [F → Y ] =

[Y → Y,OY (F )] in Ω∗(Y ). Via the natural map Ω∗(Y ) → Ωalg
∗ (Y ), these equalities

still hold in Ωalg
∗ (Y ). It follows from the relation (∼) of Definition 3.1 and Lemma 2.4

that [Y → Y,OY (E)] = [Y → Y,OY (F )] in Ωalg
∗ (Y ). Hence [E → Y ] = [F → Y ] in

Ωalg
∗ (Y ). �

Theorem 6.2. For X ∈ Schk, there is a canonical isomorphism Ωalg
∗ (X) ' ωalg

∗ (X).

Proof. We first define a natural map ϑalg
X : ωalg

∗ (X)→ Ωalg
∗ (X). We let ϑalg

X : M∗(X)+ →
Ωalg
∗ (X) be given by ϑalg

X ([f : Y → X]ωalg) : = [f : Y → X]Ωalg . We need to show that

ϑalg
X kills the algebraic double-point relations.
So let (g, p, ζ) be an algebraic double-point cobordism given by a projective g : Y →

X × C, where C is a smooth projective curve. It is enough to show that ∂C(g, p, ζ)

vanishes in Ωalg
∗ (X). Let f : = pr1 ◦ g and π : = pr2 ◦ g. Since

∂C(g, p, ζ) = f∗ ([Yζ → Y ]− [A→ Y ]− [B → Y ] + [P(π)→ Y ]) ,

it suffices to show that we have in Ωalg
∗ (Y ),

(6.1) [Yζ → Y ]− [A→ Y ]− [B → Y ] + [P(π)→ Y ] = 0.

We apply the equation (5.2) to the divisor E : = A+B on Y to obtain

(6.2) [E → Y ]− [A→ Y ]− [B → Y ] + [P(π)→ Y ] = 0 ∈ Ωalg
∗ (Y ).

On the other hand, the divisor E is algebraically equivalent to the divisor Yζ and hence

by Lemma 6.1, we also have the equality [E → Y ] = [Yζ → Y ] ∈ Ωalg
∗ (Y ). Combining this
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with (6.2), we obtain (6.1). This shows that the natural map ϑalg
X : M∗(X)+ → Ωalg

∗ (X)

descends to give ϑalg
X : ωalg

∗ (X)→ Ωalg
∗ (X).

To define the inverse %alg
X : Ωalg

∗ (X)→ ωalg
∗ (X) of ϑalg

X , we consider the diagram

(6.3) Ω∗(X)
ΦX //

%X

��

Ωalg
∗ (X)

��

// 0

⊕
(C,t1,t2)

ω∗(X × C)
i∗1−i∗2

// ω∗(X)
ΨX

// ωalg
∗ (X) // 0,

where the bottom row is exact by Theorem 5.1 and the isomorphism %X is from [13,
Theorem 1]. Let θ′ be the sum of the maps i∗1−i∗2. We need to show %X(ker(ΦX)) ⊆ Im(θ′)

in order to define %alg
X . By Proposition 3.16, it is enough to show it for a cobordism cycle

α of the form [f : Y → X,L1] − [f : Y → X,L2] such that L1 ∼ L2. We can write
α = f∗ (c̃1(L1)(1Y )− c̃1(L2)(1Y )). By Lemma 5.3 and [12, Theorem 6.5.12], we replace
X by Y . So, suppose X = Y , replace f by IdX , and assume that X is smooth.

Since L1 ∼ L2, there exists a smooth projective curve C, two distinct points t1, t2 ∈
C(k) and a line bundle L on X × C such that L|X×{tj} ' Li for j = 1, 2. We can then
write

[IdX : X → X,Lj ] = c̃1(Lj)(1X) = (c̃1

(
i∗j (L)

)
◦ i∗j ) (1X×C) = (i∗j ◦ c̃1(L)) (1X×C) ,

where the last equality follows from [12, Lemma 7.4.1 (2)].
In particular, we see that α = i∗1(α̃)− i∗2(α̃), where α̃ = [Id: X×C → X×C,L]. That

is, %X(α) = θ′(α̃). This shows that %X(ker(ΦX)) ⊆ Im(θ′) and it defines %alg
X such that

the above diagram commutes. Both ωalg
∗ (X) and Ωalg

∗ (X) are generated by cobordism

cycles of the form [f : Y → X] and for those cycles %alg and ϑalg
X are inverse to each

other. This proves the theorem. �

As an immediate consequence of Theorems 5.1 and 6.2, we obtain:

Theorem 6.3. Let X ∈ Schk. The sequence

⊕
(C,t1,t2)

Ω∗(X × C)
i∗1−i∗2−−−→ Ω∗(X)

ΦX−−→ Ωalg
∗ (X)→ 0,

where (C, t1, t2) runs over the equivalence classes of triples consisting of a smooth pro-
jective curve C and two distinct points t1, t2 ∈ C(k), is exact.

6.2. Fundamental properties of Ωalg
∗ . We prove some important properties of our

cobordism theory.

Theorem 6.4 (Localization sequence). The cobordism Ωalg
∗ satisfies the localization ex-

act sequence Ωalg
∗ (Y ) → Ωalg

∗ (X) → Ωalg
∗ (U) → 0, where Y is closed in X ∈ Schk, and

U = X\Y .
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Proof. Let ι : Z → X and j : U → X be the inclusions. Consider the diagram⊕
(C,t1,t2)

Ω∗(Z × C)
i∗1−i∗2//

ι∗

��

Ω∗(Z)
ΦZ //

ι∗

��

Ωalg
∗ (Z)

ι∗

��

// 0

⊕
(C,t1,t2)

Ω∗(X × C)
i∗1−i∗2//

j∗

��

Ω∗(X)
ΦX //

j∗

��

Ωalg
∗ (X)

j∗

��

// 0

⊕
(C,t1,t2)

Ω∗(U × C)
i∗1−i∗2//

��

Ω∗(U)
ΦU //

��

Ωalg
∗ (U)

��

// 0

0 0 0,

where the rows are exact by Theorem 6.3 and the first two columns are exact by [12,
Theorem 3.2.7]. The top square on the left commutes by Lemma 5.3 and [12, Theorem
6.5.12], and the bottom square on the left commutes by the composition law of the pull-
back map. The top and the bottom squares on the right are easily seen to commute by the
naturality of the quotient map ΦX . In other words, the diagram above is commutative.
A simple diagram chase now shows that the third column is also exact which proves the
theorem. �

Theorem 6.5 (A1-homotopy Invariance). Let X ∈ Schk and let p : V → X be an

affine-space bundle over X of rank n. Then, the map p∗ : Ωalg
∗ (X) → Ωalg

∗+n(V ) is an
isomorphism.

Proof. We consider the commutative diagram⊕
(C,t1,t2)

Ω∗(X × C)
i∗1−i∗2 //

p∗

��

Ω∗(X)
ΦX //

p∗

��

Ωalg
∗ (X)

p∗

��

// 0

⊕
(C,t1,t2)

Ω∗+n(V × C)
i∗1−i∗2// Ω∗+n(V )

ΦV // Ωalg
∗+n(V ) // 0,

where the rows are exact by Theorem 6.3. The first two vertical arrows are isomorphisms
by [12, Theorem 3.6.3] and hence the third vertical arrow must also be an isomorphism.

�

Using the projective bundle formula [12, Theorem 3.5.4] for Ω∗, the argument of the
proof of Theorem 6.5 can be repeated in verbatim with V replaced by P(V ) to prove the
following projective bundle formula for our cobordism theory.

Theorem 6.6 (Projective bundle formula). Let X ∈ Schk and let E be a rank n + 1

vector bundle on X. Then, we have
⊕n

j=0 Ωalg
∗−n+j(X)

'→ Ωalg
∗ (P(E)).

7. Ω∗alg as an oriented cohomology theory

Recall from [12, Definition 1.1.2] that an oriented cohomology theory A∗ on Smk

is an additive contravariant functor to the category of commutative graded rings with
unit, such that A∗ has push-forward maps for projective morphisms and it satisfies the
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homotopy invariance and projective bundle formula. Moreover, the push-forward and
the pull-back maps commute in a Cartesian diagram of transverse morphisms.

On the bigger category Schk, from [12, Definition 5.1.3], we have the notion of an ori-
ented Borel-Moore homology theory. This requires some similar axioms, but a nontrivial
one is the existence of pull-backs for locally complete intersection (l.c.i.) morphisms.
This ensures that an oriented Borel-Moore homology theory on Schk restricted onto
Smk gives an oriented cohomology theory.

Our goal in this section is to conclude that Ω∗alg is an oriented cohomology theory on

Smk and Ωalg
∗ is an oriented Borel-Moore homology theory on Schk.

7.1. Pull-back via l.c.i. morphisms. By Definition 2.2, one can pull-back cobordism

cycles via smooth quasi-projective morphisms. One further step needed to turn Ωalg
∗

into an oriented Borel-Moore homology is to show that one can pull-back also via l.c.i.
morphisms f : X → Y for X,Y ∈ Schk. Recall that f : X → Y is an l.c.i. morphism if
it factors as the composition f = q ◦ i : X → P → Y , where i is a regular embedding and
q is a smooth quasi-projective morphism. Since we have q∗ already, defining i∗ is the
first technical issue to resolve. We shall demonstrate the existence of such pull-backs on

Ωalg
∗ using Proposition 3.16 and the analogous construction for the algebraic cobordism

in [12, §5, 6].
Recall from [6, Definition 2.2.1] that a pseudo-divisor D on a scheme X is a triple

D = (Z,L, s), where Z ⊂ X is a closed subset, L is an invertible sheaf on X, and s is a
section of L on X such that the support of the zero scheme of s is contained in Z. We
call Z the support of D and write it as |D|. We call the zero scheme {s = 0} the divisor
of D and write it as Div(D).

Given X ∈ Schk and a pseudo-divisor D on X, Levine and Morel defined in [12,
§6.1.2] a graded group Ω∗(X)D with a natural map θX : Ω∗(X)D → Ω∗(X), which
is an isomorphism by [12, Theorem 6.4.12]. Roughly speaking, this is the group on
which the “intersection product” by the divisor D is well-defined so that we have a map
D(−) : Ω∗(X)D → Ω∗−1(|D|). (See Section 11 for the definitions of Ω∗(X)D and D(−).)
This yields

(7.1) i∗D : Ω∗(X)
θ−1
X→
'

Ω∗(X)D
D(−)−−−→ Ω∗−1(|D|).

It follows from Proposition 3.16 and Lemma 11.6 that i∗D descends to

(7.2) i∗D : Ωalg
∗ (X)→ Ωalg

∗−1(|D|).

7.1.1. Gysin map for regular embedding. Let ιZ : Z → X be a closed regular subscheme
of codimension d in Schk. We use (7.2) and the technique of the deformation to the

normal bundle to define the pull-back map ι∗Z : Ωalg
∗ (X) → Ωalg

∗−d(Z), that we call the
Gysin map for the cobordism classes. Without going into the full construction of the
deformation to the normal bundle, we recall here only the necessary summary from [12,
§6.5.2 (6.10)]:

Proposition 7.1. Let ιZ : Z → X be a closed regular embedding in Schk. Then, there
exist a scheme U ∈ Schk, a closed immersion iN : N → U of codimension 1, a surjective
morphism µ : U → X × P1, and its restriction µN : N → Z × 0, that form the following
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commutative diagram

N
iN //

µN
��

U

µ
��

Z × 0
Id×0
// Z × P1 ιZ×Id

// X × P1,

such that
(1) N is isomorphic to the normal vector bundle NZ/X of Z in X over Z, under the

identification Z = Z × 0, and
(2) the restriction µ : U\N → X ×

(
P1\{0}

)
is an isomorphism of k-schemes.

We have the following analogue of [12, Lemma 6.5.2]:

Lemma 7.2. The composition i∗N ◦ iN ∗ : Ωalg
∗+1(N)→ Ωalg

∗+1(U)→ Ωalg
∗ (N) is zero, where

iN ∗ is the push-forward via the closed immersion iN , and i∗N is the pull-back by the
divisor N defined in (7.2).

Proof. Consider the commutative diagram

Ω∗+1(N)
i∗N◦iN∗−−−−−→ Ω∗(N)y y

Ωalg
∗+1(N)

i∗N◦iN∗−−−−−→ Ωalg
∗ (N),

where the vertical maps are the natural surjections. Since the top map on the algebraic
cobordism is zero by [12, Lemma 6.5.2], the bottom map is also zero. �

By Theorem 6.4, we have the localization exact sequence Ωalg
∗+1(N)

iN∗→ Ωalg
∗+1(U)

j∗→
Ωalg
∗+1(U\N)→ 0, that gives an isomorphism

(7.3) (j∗)−1 : Ωalg
∗+1(U\N)→

Ωalg
∗+1(U)

iN ∗(Ω
alg
∗+1(N))

.

Combining (7.3) with Lemma 7.2, we see that the composition

(7.4) α : Ωalg
∗+1(U\N)

(j∗)−1

→
Ωalg
∗+1(U)

iN ∗(Ω
alg
∗+1(N))

i∗N→ Ωalg
∗ (N)

is well-defined.

Definition 7.3. For a regular embedding ιZ : Z → X of codimension d in Schk, the

Gysin morphism ι∗Z : Ωalg
∗ (X)→ Ωalg

∗−d(Z) is defined to be the composition

Ωalg
∗ (X)

pr∗1→ Ωalg
∗+1(X × (P1\{0})) µ∗→

'
Ωalg
∗+1(U\N)

α→ Ωalg
∗ (N)

(µ∗N )−1

→
'

Ωalg
∗−d(Z),

where pr1 is the projection, µ is the isomorphism of Proposition 7.1(2), α is the map in
(7.4), and µN : N → Z is the normal vector bundle of Proposition 7.1(1) so that µ∗N is
an isomorphism by the A1-homotopy invariance, Theorem 6.5.

We have the following basic properties for the Gysin maps on Ωalg
∗ that can be easily

deduced from [12, Lemmas 6.5.6, 6.5.7, Theorem 6.5.8]:
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Proposition 7.4. The Gysin maps on Ωalg
∗ satisfy the following:

(1) Let ι : Z → X be a regular embedding of codimension 1. Then, as operators

Ωalg
∗ (X) → Ωalg

∗−1(Z), the pull-back Z(−) by the divisor Z is identical to the Gysin pull-
back ι∗.

(2) Let ι : Z → X be a regular embedding, let p : Y → X be a smooth quasi-projective
morphism, and let s : Z → Y be a section of Y over Z. Then, s∗ ◦ p∗ = ι∗.

(3) Let ι : Z → Z ′ and ι′ : Z ′ → X be regular embeddings. Then, (ι′ ◦ ι)∗ = ι∗ ◦ ι′∗.

Proof. All of the above statements follow simply from [12, Lemmas 6.5.6, 6.5.7, Theorem

6.5.8] and the surjectivity of ΦX : Ω∗(X)→ Ωalg
∗ (X), as in the proof of Lemma 7.2. We

skip the details. �

7.1.2. Pull-back for l.c.i. morphisms. Let f : X → Y be an l.c.i. morphism in Schk with
a factorization f = p ◦ i : X → P → Y , where p is smooth quasi-projective and i is a
regular embedding. We now have p∗ by Definition 2.2, and we have the Gysin pull-back
i∗ by Definition 7.3. So, one wishes to define f∗ by simply taking the composition i∗ ◦p∗.
To show that this definition is meaningful, one needs to know that if p1 ◦ i1 = p2 ◦ i2 are
two such factorizations, then i∗1 ◦ p∗1 = i∗2 ◦ p∗2. However, this fact follows at once from
such an equality on the level of algebraic cobordism, as shown in [12, Lemma 6.5.9], and

from the surjection Φ− : Ω∗(−)→ Ωalg
∗ (−). Thus we have:

Definition 7.5. Let f : X → Y be an l.c.i. morphism that has a factorization f =
p ◦ i : X → P → Y , where i is a regular embedding and p is smooth quasi-projective.

The pull-back f∗ on Ωalg
∗ (Y ) is defined to be i∗ ◦ p∗.

One has the following properties of the l.c.i. pull-backs on Ωalg
∗ as for Ω∗ proven in

[12, Theorems 6.5.11, 6.5.12, 6.5.13]. The proof follows immediately from ibid. and we
omit the arguments.

Theorem 7.6. The pull-backs via l.c.i. morphisms have the following properties:
(1) If f1 : X → Y , f2 : Y → Z are l.c.i. morphisms in Schk, then (f2 ◦ f1)∗ = f∗1 ◦ f∗2 .
(2) Suppose f : X → Z and g : Y → Z are Tor-independent morphisms in Schk, where

f is l.c.i. and g is projective. Then, for the Cartesian square

X ×Z Y
pr2−−−−→ Y

pr1

y g

y
X

f−−−−→ Z,

we have f∗ ◦ g∗ = pr1∗ ◦ pr∗2.
(3) Let fi : Xi → Yi for i = 1, 2 be two l.c.i. morphisms in Schk. Then, for ηi ∈

Ωalg
∗ (Yi) with i = 1, 2, we have (f1 × f2)∗(η1 × η2) = f∗1 (η1)× f∗2 (η2).

Corollary 7.7. Let f : X → Y be any morphism of smooth varieties. Then, there is
a well-defined pull-back f∗ : Ω∗alg(Y ) → Ω∗alg(X). If f : X → Y , g : Y → Z are any

morphisms of smooth varieties, then (g ◦ f)∗ = f∗ ◦ g∗.

Proof. Any morphism f : X → Y of smooth varieties is an l.c.i. morphism, with a
factorization f = pr2 ◦ Γf : X → X × Y → Y . The rest follows immediately. �

7.2. Summary and the universal property. Here is an analogue of Definition 3.12

Definition 7.8. We say that an oriented cohomology theory A∗ on Smk respects alge-
braic equivalence if for X ∈ Smk and two algebraically equivalent line bundles L and M
over X, we have c̃1(L) = c̃1(M) as operators A∗(X)→ A∗+1(X).
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Similarly, we say that an oriented Borel-Moore homology theory A∗ on Schk respects
algebraic equivalence if for X ∈ Schk and two algebraically equivalent line bundles L
and M over X, we have c̃1(L) = c̃1(M) as operators A∗(X)→ A∗−1(X).

The main results discussed in Sections 6.2 and 7.1 can be crystallized into the following
result:

Theorem 7.9. The theory Ω∗alg is an oriented cohomology theory on Smk that respects
algebraic equivalence, and it is universal among such theories. In other words, for any
oriented cohomology theory A∗ that respects algebraic equivalence, there exists a unique
morphism of oriented cohomology theories θ : Ω∗alg → A∗ on Smk.

Similarly, the theory Ωalg
∗ is an oriented Borel-Moore homology theory on Schk that

respects algebraic equivalence, and it is universal among such theories.

8. Connections to algebraic cobordism, Chow groups and K-theory

In this section, we study how our cobordism theory Ωalg
∗ (X) is related with the

Chow groups CHalg
∗ (X) modulo algebraic equivalence and the semi-topological K-groups

Ksemi
0 (X) and Gsemi

0 (X). We also show that with finite coefficients, our cobordism theory
agrees with the algebraic cobordism theory.

8.1. Connection with Chow groups and K-theory.

Theorem 8.1. For X ∈ Schk, there is a natural map Ωalg
∗ (X)→ CHalg

∗ (X) that induces

an isomorphism Ωalg
∗ (X)⊗L∗ Z

'−→ CHalg
∗ (X).

Proof. We consider the commutative diagram⊕
(C,t1,t2)

Ω∗(X × C)
i∗1−i∗2 //

��

Ω∗(X) //

��

Ωalg
∗ (X)

��

// 0

⊕
(C,t1,t2)

CH∗(X × C)
i∗1−i∗2// CH∗(X) // CHalg

∗ (X) // 0,

where the top row is exact by Theorem 6.3. It follows from the definition of algebraic
equivalence on algebraic cycles in [6, Definition 10.3] and the proof of Lemma 2.4 that
the bottom row is also exact (see [6, Example 10.3.2] when k is algebraically closed).
The existence of the first two vertical maps and their commutativity follow from the

universal property of Ω∗. This immediately yields a natural map Ωalg
∗ (X)→ CHalg

∗ (X).
Moreover, the top row remains exact after tensoring with − ⊗L∗ Z and the first two

vertical maps after tensoring are isomorphisms by [12, Theorem 4.5.1]. Thus, the last
vertical map after tensoring is also an isomorphism. �

Remark 8.2. By Theorems 7.9, 8.1, and [12, Theorem 1.2.2], we see that CH∗alg is uni-
versal among oriented cohomology theories on Smk whose Chern class operations are
additive, c̃1(L1 ⊗ L2) = c̃1(L1) + c̃1(L2), and respect algebraic equivalence.

For X ∈ Schk, let K0(X) (resp. G0(X)) be the Grothendieck group of coherent locally
free sheaves (resp. coherent sheaves) on X. Recall from [4, Definition 1.1] that the
semi-topological K-group Ksemi

0 (X) (resp. Gsemi
0 (X)) is the quotient by the subgroup

generated by the images of the l.c.i. pull-back i∗1 − i∗2 : K0(X × C) → K0(X) (resp.
i∗1− i∗2 : G0(X×C)→ G0(X)) over the equivalence classes of the triples (C, t1, t2). When
X is smooth, we have Ksemi

0 (X) = Gsemi
0 (X). We have the following analogue of [12,

Corollary 4.2.12].
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Theorem 8.3. Let X ∈ Schk and let β be a formal symbol of degree −1. Then, there is

a natural map Ωalg
∗ (X)→ Gsemi

0 (X)[β, β−1] which induces an isomorphism Ωalg
∗ (X)⊗L∗

Z[β, β−1]
'−→ Gsemi

0 (X)[β, β−1].

Proof. The existence and the isomorphism of the desired maps follow from the definition
of Gsemi

0 (X) above, Theorem 6.3, together with [12, Corollary 4.2.12] (if X is smooth)
and [3, Theorem 1.5] (if X is not smooth) by repeating the same kind of arguments as
in the proof of Theorem 8.1 in verbatim. We remark that we take −⊗L∗ Z[β, β−1] in the
diagram of the proof of Theorem 8.1. �

8.2. Comparison with algebraic cobordism with finite coefficients. By [5, Corol-
lary 3.8], we know that with finite coefficients, the algebraic and the semi-topological
K-theories of complex projective varieties coincide. We prove its cobordism analogue

using Ω∗ and Ωalg
∗ :

Theorem 8.4. Let X ∈ Schk and let m ≥ 1 be an integer. Then, the natural map

ΦX ⊗ Z/m : Ω∗(X)⊗Z Z/m→ Ωalg
∗ (X)⊗Z Z/m is an isomorphism.

Proof. Using [13, Theorem 1] and Theorem 6.2, we can identify Ω∗(X) and Ωalg
∗ (X) with

ω∗(X) and ωalg
∗ (X), respectively, whenever necessary. In the diagram (5.3), it suffices to

show that Im(θ) in ω∗(X) is divisible.
Let (g, p, ζ) be a double-point cobordism with a projective g : Y → X ×C, two points

p, ζ ∈ C(k) and π = pr2 ◦ g such that π−1(p) = A ∪B as in Definition 4.2.
Let α : = [Yζ → Y ] − [A → Y ] − [B → Y ] + [P(π) → Y ] in ω∗(Y ). Let f : =

pr1 ◦ g : Y → X. Since ∂C(g, p, ζ) = f∗(α), it suffices to show that α is divisible in
ω∗(Y ). An application of (5.2) to the divisor E : = A+B shows that [A→ Y ] + [B →
Y ]− [P(π)→ Y ] = [E → Y ] = π∗([{p} → C]). We also have [Yζ → Y ] = π∗([{ζ} → C]).
Thus, α = π∗ ([{ζ} → C]− [{p} → C]) and it reduces to prove that the class β : =
[{ζ} → C]− [{p} → C] is divisible in ω0(C).

By [12, Lemma 4.5.3], the natural map ω0(C)→ CH0(C) is an isomorphism and the
image of β in CH0(C) is [{ζ}]− [{p}], which lies in Pic0(C). Since Pic0(C) is an abelian
variety, the group Pic0(C)(k) is divisible. This concludes the proof. �

9. Computations of Ωalg
∗ and questions on finite generation

It is not in general easy to compute Ω∗. For the point X = Spec(k), Levine and Morel
[12] showed that the natural map L∗ → Ω∗(k) is an isomorphism. In this section, we

focus on some computational aspects of Ωalg
∗ .

9.1. Comparison with the complex cobordism. We refer to [15] or [17] for the
definition and basic properties of the complex cobordism theory MU∗ for locally com-
pact Hausdorff topological spaces. We only mention here that MU∗(X) is generated by
[f : Y → X], where f is proper and Y is a weakly complex real manifold under certain
“bordism relations”.

Proposition 9.1. If there is an embedding σ : k ↪→ C, then there is a natural trans-
formation θalg : Ω∗alg → MU2∗ of oriented cohomology theories on Smk that factors the

natural cycle class map θ : Ω∗ → MU2∗.

Proof. From [12, Example 1.2.10], we have a morphism θ : Ω∗ → MU2∗ of oriented
cohomology theories on Smk. Hence by Theorem 7.9, it suffices to show that for any
X ∈ Smk and algebraically equivalent line bundles L1 and L2 on X, one has c̃1(L1) =
c̃1(L2) : MU∗(Xσ)→ MU∗+2(Xσ). We can assume k = C.
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Let L be a line bundle on X × C for some compact Riemann surface C such that for
some points t1, t2 ∈ C, we have Lj = L|X×{tj} for j = 1, 2. Let ij : X × {tj} → X × C
be the inclusions. Take any differentiable path I in C, diffeomorphic to the unit interval
[0, 1], whose end points are t1 and t2. Let α : X × I → X ×C and ιj : X ×{tj} → X × I
be the inclusions. Note that α ◦ ιj = ij for j = 1, 2.

Since X is smooth, we have c̃1(Lj)([Y → X]) = (c̃1(Lj)(1X))·[Y → X] = c1(Lj)·[Y →
X], where the first equality comes from [12, (5.2)-5]. On the other hand, we have
c1(Lj) = i∗j (c1(L)) = ι∗jα

∗(c1(L)). The desired assertion now follows from the fact that

ι∗j : MU∗(X×I)→ MU∗(X) is an isomorphism for j = 1, 2 because I is contractible. �

Remark 9.2. One may view the above result as a lifting of the cycle class map of Totaro
[17], CH∗alg(X)→ MU2∗(X)⊗L∗ Z because CH∗alg(X) ' Ω∗alg ⊗L∗ Z by Theorem 8.1.

9.2. Points.

Proposition 9.3. The map L∗ → Ω∗alg(k) is an isomorphism.

Proof. Composing the isomorphism L∗ '→ Ω∗(k) with the surjection Ω∗(k) → Ω∗alg(k),

we see that the map L∗ → Ω∗alg(k) is surjective. We prove injectivity.

We first prove the injectivity of the map L∗ ⊗Z Q → Ω∗alg(k) ⊗Z Q with the rational

coefficients. Applying Proposition 3.16, we see that ker(Ω∗(k) → Ω∗alg(k)) is generated

by the cobordism cycles of the form α = [Y → Spec(k), L] − [Y → Spec(k),M ], where
L ∼ M on Y . Since we are working with the rational coefficients, we can use [13,
Theorem 1, Corollary 3] to assume that Y is a product of projective spaces. But for
such spaces, that two lines bundles are algebraically equivalent is nothing but that the
line bundles are isomorphic to each other. In particular, α is zero already in Ω∗(k)⊗ZQ.
Thus, the map L∗⊗ZQ→ Ω∗alg(k)⊗ZQ is injective. The injectivity of L∗ → Ω∗alg(k) now
follows for L∗ has no torsion. �

Recall from [12, Definition 4.4.1] that an oriented Borel-Moore homology theory A∗
on Schk is said to be generically constant if for each finitely generated field extension
k ⊂ F , the canonical morphism A∗(k)→ A∗(F/k) is an isomorphism, where A∗(F/k) is
the colimit of A∗+trF/k

(X) over models X for F over k. Here trF/k is the transcendence
degree of F over k. Recall that a model for F over k is an integral scheme X ∈ Schk
whose function field is isomorphic to F .

Proposition 9.4. The cobordism theory Ωalg
∗ is generically constant.

Proof. Let C denote the category of models for F over k. Then, we have a commutative
diagram

Ω∗(k)
' //

ηF '
��

Ωalg
∗ (k)

ηalgF
��

'

''

colim
X∈C

Ω∗+trF/k
(X) // colim

X∈C
Ωalg
∗+trF/k

(X) // Ωalg
∗ (F ).

We have to show that ηalg
F is an isomorphism. It follows from [12, Corollary 4.4.3] that

ηF is an isomorphism. Applying Proposition 3.16 to the first horizontal arrow on the

bottom, we see that ηalg
F is surjective. On the other hand, it follows from Proposition

9.3 that the slanted downward arrow is an isomorphism. This in turn implies that ηalg
F

must also be injective, and hence an isomorphism. �
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Recall from [6, Example 1.9.1] that a scheme X ∈ Schk is called cellular if it has a
filtration ∅ = Xn+1 ( Xn ( · · · ( X1 ( X0 = X by closed subschemes such that each
Xi\Xi+1 is a disjoint union of affine spaces, called cells. By the Bruhat decomposition,
one sees that the schemes of type G/P are cellular, where P is a parabolic subgroup
of a split reductive group G. Smooth projective toric varieties are also examples of
cellular schemes. Both these classes contain the projective spaces. As a consequence of
Proposition 9.3, we have the following computation of our cobordism theory for cellular
schemes.

Proposition 9.5. For a cellular scheme X ∈ Schk, the natural map ΦX : Ω∗(X) →
Ωalg
∗ (X) is an isomorphism. Each of these groups is a free L∗-module.

Proof. We prove it by induction on the length of a filtration {Xi}0≤i≤n+1 on X. Let
Ui = X\Xi. Here, all Ui and Ui+1\Ui are also cellular. By Theorem 6.4 and [11,
Proposition 4.3], for each 1 ≤ i ≤ n, there is a commutative diagram with exact rows

0→ Ω∗ (Ui+1\Ui) //

��

Ω∗(Ui+1) //

��

Ω∗(Ui) //

��

0

0→ Ωalg
∗ (Ui+1\Ui) // Ωalg

∗ (Ui+1) // Ωalg
∗ (Ui) // 0.

Since U1 is a disjoint union of affine spaces over k, the map Ω∗(U1) → Ωalg
∗ (U1) is an

isomorphism of free L∗-modules by Proposition 9.3 and Theorem 6.5. By the same
reason, the left vertical map in the above diagram is an isomorphism for each 1 ≤ i ≤ n.

Assuming the assertion for Ui, from a diagram chase and the induction hypothesis, it
follows that the middle vertical map is an isomorphism. Taking i = n, we get the desired
result for X. �

Remark 9.6. If there is an embedding σ : k ↪→ C, Proposition 9.5 can be also deduced
from Proposition 3.16, Proposition 9.1 and [10, Theorem 6.1].

9.3. Curves. We compute the cobordism theory Ω∗alg(X) of a smooth curve X. We
show that this is a finitely generated L∗-module. This is usually false for the algebraic
cobordism Ω∗(X) unless X is rational. If k = C, we show that Ω∗alg(X) is closely related

to the complex cobordism MU∗(X(C)).

Theorem 9.7. Let X be a smooth curve over a field k. Then,
(1) The L∗-module Ω∗alg(X) is generated by at most 2 elements.

(2) If X is affine, then the map L∗ → Ω∗alg(X) is an isomorphism.

(3) When k = C, there is a split exact sequence

(9.1) 0→ Ω∗alg(X)→ MU∗(X(C))→ H∗(X(C),Z)⊗Z L∗ → 0.

In particular, the map Ω∗alg(X)→ MU2∗(X(C)) is an isomorphism.

Proof. We have shown in Theorem 6.4 and Proposition 9.4 that Ωalg
∗ has the localization

property and is generically constant. Hence, it satisfies the generalized degree formula
[12, Theorem 4.4.7]. By the degree formula, the cobordism Ω∗alg(X) is generated as an

L∗-module by the cobordism cycles 1X = [X → X] and [{p} → X] = [X → X,OX(p)],
where p is a closed point of X. Part (1) now follows from the fact that the map
deg : Pic(X)/∼ → Z is injective.

If X is affine, we choose a smooth compactification j : X ↪→ X and set Z : = X\X.
This yields an exact sequence

CH0(Z)→ Pic(X)/∼ j∗−→ Pic(X)/∼ → 0
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by [6, Example 10.3.4], and here the first map in this exact sequence is surjective. In
particular, the last term is zero. Thus, Ω∗alg(X) is generated by 1X as an L∗-module, i.e.,

L∗ → Ω∗alg(X) is surjective. On the other hand, for a closed point p ∈ X, the composition

with the pull-back L∗ → Ω∗alg(X) → Ω∗alg (k(p)) is an isomorphism by Proposition 9.3.

Hence, L∗ → Ω∗alg(X) is injective, thus this map is an isomorphism. This proves (2).

For (3), we first compute MU∗(X(C)) using the Atiyah-Hirzebruch spectral sequence
E2 = H∗(X(C),L∗) ⇒ MU∗(X(C)) (see Remark 9.8 for an elementary approach). It
is known (cf. [17, §1]) that the differentials of this spectral sequence are all torsion.
On the other hand, the inclusion H∗(X(C),Z) ↪→ H∗(X(C),C) (use the exponential
exact sequence) shows that H∗(X(C),Z) is torsion-free. Thus, the spectral sequence
degenerates and induces isomorphisms

(9.2) H∗(X(C),Z)⊗Z L∗ '−→ MU∗(X(C)),

MU∗(X(C)) = MU2∗+1(X(C))⊕MU2∗(X(C)) ' H1 (X(C),L∗)⊕H{0,2} (X(C),L∗) .
Since H{0,2} (X(C),Z) is generated by the algebraic cycles on X, we see from the

proof of (1) and (2) above that the image of the map Ω∗alg(X) → MU∗(X(C)) contains

MU2∗(X(C)), and is exactly equal to MU2∗(X(C)) if X is affine (since H2(X(C),Z) is
zero in this case). In particular, this proves (3) if X is affine using (2).

If X is not affine (thus X(C) is a compact Riemann surface in this curve case), we let
U = X\{p} where p is a closed point. Consider the commutative diagram

(9.3) 0 // Ω∗alg({p}) //

��

Ω∗alg(X) //

��

Ω∗alg(U) //

��

0

0 // MU∗({p}) // MU∗(X(C)) // MU∗(U(C)) // 0,

where the bottom row is exact from the computations in (9.2) and the isomorphism
H∗(X(C),Z) ' H∗({p},Z) ⊕ H∗(U(C),Z). Since the left vertical arrow is an isomor-
phism, we see from Theorem 6.4 that the top row is also exact. The exact sequence
(9.1) for X now follows from a diagram chase and the case of the affine curve U . The

isomorphism Ω∗alg(X)
'−→ MU2∗(X(C)) follows from (9.1) and (9.2). �

Remark 9.8. The authors thank the referee who pointed out that, Theorem 9.7(3) can
be proven in an elementary way: if X is affine, then X(C) has the homotopy type of a
wedge of finitely many circles, and if X is not affine, then the suspension ΣX(C) has the
homotopy type of the sum of S1, 2g-copies of S2, and a copy of S3. Thus, the suspension
isomorphism in MU∗ and Mayer-Vietoris give the proof.

As an immediate corollary of Theorems 8.4 and 9.7, we obtain the following analogue
of Quillen-Lichtenbaum conjecture for the cobordism of smooth curves.

Corollary 9.9. For a smooth curve X over C and an integer m ≥ 1, the natural map
Ω∗(X)⊗Z Z/m→ MU2∗(X(C))⊗Z Z/m is an isomorphism.

9.4. Surfaces. For an algebraic surface X, under the rational equivalence both the 1-
cycles and 0-cycles often form infinitely generated Chow groups. Since the algebraic
cobordism contains more data than Chow groups as shown in [12, Theorem 4.5.1], the
algebraic cobordism of a surface is often infinitely generated as an L∗-module. However,
under algebraic equivalence, the 1-cycles form the Néron-Severi group, which is finitely
generated, and the 0-cycles form an infinite cyclic group. We prove an analogous result
for the L∗-module Ω∗alg(X). We use the following graded Nakayama lemma whose proof
is an elementary application of a backward induction argument. It is left as an exercise.
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Lemma 9.10. Let M∗ be a Z-graded L∗-module such that for some integer N ≥ 0, we
have Mn = 0 for all n > N . Suppose that S = {α1, · · · , αr} is a set of homogeneous
elements in M≥0 whose images generate M∗ ⊗L∗ Z as an abelian group. Then M∗ is
generated by S as an L∗-module.

Theorem 9.11. Let X be a smooth projective surface. Then, Ω∗alg(X) is a finitely
generated L∗-module, with at most ρ + 2 generators, where ρ is the minimal number of
generators of the Néron-Severi group NS(X).

Note that if NS(X) is torsion free, then ρ is the Picard number of X.

Proof. This follows immediately from Theorem 8.1 and Lemma 9.10 using the fact that
CH∗alg(X) ' Z⊕NS(X)⊕ Z. �

9.5. Threefolds and beyond. We saw that for a smooth projective variety X of di-
mension ≤ 2, the L∗-module Ω∗alg(X) is finitely generated. But, this is the highest we can
go, due to the following result and some known deep results about algebraic cycles. Re-
call that for a smooth projective complex variety X, the Griffiths group Griffr(X) of X
is the group of codimension r homologically trivial cycles modulo algebraic equivalence.
In particular, it is a subgroup of CHr

alg(X).

Theorem 9.12. For any smooth variety X, the following two statements are equivalent:
(1) The Chow group CH∗alg(X) modulo algebraic equivalence is finitely generated.

(2) The cobordism Ω∗alg(X) is a finitely generated L∗-module.
If X is a smooth projective complex variety, then the following statement is also equiv-

alent to the above two:
(3) The Griffiths group Griff∗(X) is finitely generated.

Proof. The equivalence (1) ⇔ (2) follows from Theorem 8.1 and by applying Lemma
9.10 to M∗ = Ω∗alg(X).

When X is a smooth projective complex variety, let CH∗hom(X) denote the group of
algebraic cycles on X modulo homological equivalence. The equivalence (1)⇔ (3) follows
from the exact sequence

(9.4) 0→ Griff∗(X)→ CH∗alg(X)→ CH∗hom(X)→ 0

and the observation that CH∗hom(X) is a subgroup of H2∗(X(C),Z), which is a finitely
generated abelian group since X is smooth and projective. �

Remark 9.13. It was shown by Griffiths [7] that the Griffiths groups can be nontrivial.
Clemens [2] later showed that Griff2(X) is not finitely generated for a general quintic
threefold X. These results were generalized by Nori [14] for algebraic cycles of codimen-
sion ≥ 2. Thus, it follows from Theorem 9.12 that the L∗-module Ω∗alg(X) is in general
not finitely generated for a variety of dimension at least three.

It seems that certain questions about algebraic cycles of smooth projective varieties
can be lifted to the level of cobordism cycles. As an example, consider the following.
We saw in Section 9.1 that for a smooth complex variety X, there are cycle class maps

θX : Ω∗(X) → MU2∗(X(C)) and θalg
X : Ω∗alg(X) → MU2∗(X(C)). Let ΦX : Ω∗(X) →

Ω∗alg(X) be the natural map. We define the Griffiths groups for the cobordism cycles to
be the graded group

(9.5) Griff∗Ω(X) = ker(θX)/ker(ΦX).

The subgroup ker(θX) can be called the group of cobordism cycles homologically equiv-
alent to zero. We ask the following:
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Question 9.14. Let X be a smooth projective complex variety of dimension at least
three. Is it true that Griff∗Ω(X) is a finitely generated L∗-module if and only if Griff∗(X)
is a finitely generated abelian group? In particular, are there examples where Griff∗Ω(X)
is not finitely generated as an L∗-module?

10. Rational smash-nilpotence for cobordism

It was proven by Voevodsky [18] and Voisin [19] that if an algebraic cycle α on a

smooth projective variety X is 0 in CHalg
∗ (X)Q, then for some integer N > 0 its smash-

product α⊗N : = α × · · · × α on XN : = X × · · · ×X is 0 in CH∗(X
N )Q. We use the

notation α⊗N instead of αN for the latter is the self-intersection of α in CH∗(X)Q. This
section studies the corresponding question for cobordism cycles.

Definition 10.1. Let X ∈ Schk. Let α ∈ Z∗(X). Let N ≥ 1 be an integer.
(1) The N -fold smash-product α�N ∈ Z∗(XN ) is the N -fold self-external product

α× · · · × α using Definition 2.2.
(2) α is rationally smash-nilpotent if there is an integer N > 0 such that the image of

α�N in Ω∗(X
N )Q is zero.

Lemma 10.2. Let X ∈ Schk. Let α, β ∈ Z∗(X).
(1) If α or β is rationally smash-nilpotent, then so is α× β.
(2) If α and β are rationally smash-nilpotent, then so is α+ β.

Proof. Note that the external product × is commutative because in Definition 2.1 we
identified all isomorphic cobordism cycles. For (1), if α�N = 0 ∈ Ω∗(X

N )Q, then (α ×
β)�N = α�N × β�N = 0 ∈ Ω∗(X

2N )Q. The case β�N = 0 in Ω∗(X
N )Q is similar. For

(2), use the binomial theorem since × is commutative. �

We now prove the cobordism analogue of the result [18, Corollary 3.2]:

Theorem 10.3. Let X be a smooth projective variety. Let α ∈ Z∗(X). If the image of

α in Ωalg
∗ (X)Q is trivial, then it is rationally smash-nilpotent.

Proof. By [13, Theorem 1] and Theorem 6.2, we may identify Ω∗(X) and Ωalg
∗ (X) with

ω∗(X) and ωalg
∗ (X), respectively. Consider the exact sequence of Theorem 5.1 and tensor

it with −⊗Z Q to obtain the exact sequence:⊕
(C,t1,t2)

ω∗(X × C)Q
θ′−→ ω∗(X)Q

ΨX−−→ ωalg
∗ (X)Q → 0,

where (C, t1, t2) runs over the equivalence classes of triples consisting of a smooth pro-
jective curve C and two distinct points t1, t2 ∈ C(k), and θ′ is the sum of the maps
i∗1 − i∗2, with the inclusions ij : X × {tj} → X × C. Consider the image of α in
ω∗(X)Q, also denoted by α. Since α belongs to ker ΨX by the given assumption, we
have α ∈ Im(θ′). By Lemma 10.2-(2), it is enough to consider α of the form (i∗1 − i∗2)(β)
for β = [g : Y → X × C] ∈ ω∗(X × C). So, we call α = (i∗1 − i∗2)(β).

Since X×C is smooth, by the transversality [12, Proposition 3.3.1] combined with [13,
Theorem 1], we may assume that g is transversal to the closed immersions ij , j = 1, 2.
Hence, the fibre product Ytj of X × {tj} and Y over X × C is smooth, and i∗j (β) =

[Ytj → X]. On the other hand, let π : = pr2 ◦ g : Y → X × C → C, which is projective
since X is projective, then π∗[{tj} → C] = [Ytj → Y ]. Hence, for f : = pr1 ◦ g : Y →
X×C → X, which is projective for C is projective, we have f∗π

∗[{tj} → C] = [Ytj → X]
so that (i∗1 − i∗2)(β) = [Yt1 → X] − [Yt2 → X] = f∗π

∗([{t1} → C] − [{t2} → C]). Let
γ : = [{t1} → C]− [{t2} → C] ∈ ω0(C)Q.
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Then we have α = f∗π
∗(γ) with γ ∈ ω0(C)Q, such that γ = 0 ∈ ωalg

0 (C)Q. We claim
that γ is rationally smash-nilpotent.

Under the isomorphism ω0(C)Q
'→ CH0(C)Q of [12, Lemma 4.5.10], the image of γ

in CH0(C)Q is the 0-cycle γ̄ = [{t1}] − [{t2}] ∈ CH0(C)Q, whose image in CHalg
0 (C)Q

is trivial. Hence, by [18, Corollary 3.2], for some integer N > 0, we have γ̄⊗N =
0 ∈ CH0(CN )Q. Since the isomorphism ω0(CN )Q ' CH0(CN )Q of [12, Lemma 4.5.10]
respects the external products, we have γ�N = 0 ∈ ω0(CN )Q.

Since γ is rationally smash-nilpotent, we now easily see that α = f∗π
∗(γ) is also ra-

tionally smash-nilpotent since the push-forward and the pull-back maps respect external
products (cf. Theorem 7.6). �

Remark 10.4. We remark that the proof of Theorem 10.3 uses [18] only for smooth
projective curves.

11. Appendix

This section gives a summary of the constructions from [12, §6] related to the Gysin
maps and the pull-backs via l.c.i. morphisms on the algebraic cobordism, that are used
in the paper. The only new result is Lemma 11.6, used in the construction of the map

i∗D : Ωalg
∗ (X)→ Ωalg

∗−1(|D|) of (7.2) for a pseudo-divisor D on X.

Definition 11.1 ([12, 6.1.2]). Let X ∈ Schk and let D be a pseudo-divisor on X.
(1) Z∗(X)D is the subgroup of Z∗(X) generated by the cobordism cycles [f : Y →

X,L1, · · · , Lr] such that either f(Y ) ⊂ |D|, or f(Y ) 6⊂ |D| and Div f∗D is a strict
normal crossing divisor on Y .

(2) Let RDim
∗ (X)D be the subgroup of Z(X)D generated by the cobordism cycles of

the form [f : Y → X,π∗(L1), · · · , π∗(Lr),M1, · · · ,Ms], where π : Y → Z is smooth quasi-
projective, Z ∈ Smk, and L1, · · · , Lr>dimZ are line bundles on Z. We let Z∗(X)D : =
Z∗(X)D/RDim

∗ (X)D.
The projective push-forward and smooth pull-back on Z∗(−)D can be defined as for

Z∗(−), and similarly for Z∗(−).
(3) For a line bundle L → X, define the Chern class operation c̃1(L) : Z∗(X)D →

Z∗−1(X)D as for Z∗(X). This descends onto Z∗(X)D.
(4) We have the external product

× : Z∗(X)D ⊗Z∗(X ′)D′ → Z∗(X ×X ′)pr∗1D+pr∗2D
′

as for Z∗(−). This descends onto Z∗(−)D-level.

Given X ∈ Schk, a pseudo-divisor D on X, and a projective morphism f : Y → X,
where Y is a smooth irreducible variety, a strict normal crossing divisor E on Y is said to
be in very good position with D if either f(Y ) ⊂ |D|, or f(Y ) 6⊂ |D| and E+Div f∗D is a
strict normal crossing divisor on Y . By [12, Remark 6.1.4(1)], if E is in very good position
with D, then for each face iJ : EJ ↪→ E and the composition fJ : = f ◦iJ : EJ → Y → X,
either fJ(EJ) ⊂ |D| or Div f∗JD is a strict normal crossing divisor on EJ .

Definition 11.2 (([12, Definition 6.1.5])). Let X ∈ Schk and let D be a pseudo-divisor
on X. Let RSect

∗ (X)D be the subgroup of Z∗(X)D generated by elements of the form
[f : Y → X,L1, · · · , Lr]− [f ◦ i : Z → X, i∗(L1), · · · , i∗(Lr−1)], with r > 0, such that

(1) [f : Y → X,L1, · · · , Lr] ∈ Z∗(X)D, and
(2) i : Z → Y is the closed immersion of the subscheme given by the vanishing of a

transverse section s : Y → Lr such that Z is in very good position with D.
Then, we let Ω∗(X)D : = Z∗(X)D/RSect

∗ (X)D.
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Definition 11.3 ([12, Definitions 6.1.6]). Let X ∈ Schk and let D be a pseudo-divisor
on X.

(1) Let R∗(X)D be the subgroup of Z∗(X)D generated by elements of the form [Y →
X,L1, · · · , Lr]− [Y ′ → X,L′1, · · · , L′r] such that

(a) [Y → X,L1, · · · , Lr] and [Y ′ → X,L′1, · · · , L′r] are in Z∗(X)D, and
(b) there exist an isomorphism φ : Y → Y ′ over X, a permutation σ of {1, · · · , r}

and an isomorphism Li ' φ∗(L′σ(i)).

We define Ω∗(X)D : = Ω∗(X)D/R∗(X)D.
(2) Let Ω∗(X)D be the quotient of L∗ ⊗Z Ω∗(X)D by the relations of the form

(IdL∗ ⊗ f∗)(FL∗(c̃1(L), c̃1(M))(η)− c̃1(L⊗M)(η))

where L,M are line bundles on Y , η ∈ Ω∗(Y )D, and [f : Y → X] is a cobordism cycle
such that either f(Y ) ⊂ |D|, or f(Y ) 6⊂ |D| and Div f∗D is a strict normal crossing
divisor on Y .

The Chern class operation and the external product are induced onto Ω∗(−)D.

It is clear from the above definition that there is a natural map θX : Ω∗(X)D → Ω∗(X).
The main content of [12, §6.4.1] is the proof of the following moving lemma.

Theorem 11.4 ([12, Theorem 6.4.12]). For X ∈ Schk, the natural map θX : Ω∗(X)D →
Ω∗(X) is an isomorphism.

Now we define the intersection byD on Ω∗(X)D, namely, D(−) : Ω∗(X)D → Ω∗−1(|D|).
First recall the map D(−) : Z∗(X)D → Ω∗−1(|D|).

Definition 11.5 (([12, §6.2.1])). Let X ∈ Schk and let D = (|D|, OX(D), s) be a
pseudo-divisor on X. Let η : = [f : Y → X,L1, · · · , Lr] ∈ Z∗(X)D.

(1) If f(Y ) ⊂ |D|, then let fD : Y → |D| be the induced morphism from f . Note
c̃1(f∗OX(D))([IdY : Y → Y,L1, · · · , Lr]) ∈ Ω∗−1(Y ). We define

D(η) : = fD∗ {c̃1(f∗OX(D)) ([IdY : Y → Y,L1, · · · , Lr])} ∈ Ω∗−1(|D|).

(2) If f(Y ) 6⊂ |D|, then D̃ : = Div f∗D is a strict normal crossing divisor on Y . Let

fD : |D̃| → |D| be the restriction of f , and LDi be the restriction of Li on |D̃|. We define

D(η) : = fD∗ {c̃1(LD1 ) ◦ · · · ◦ c̃1(LDr )([D̃ → |D̃|])} ∈ Ω∗−1(|D|), where the cobordism cycle

[D̃ → |D̃|] ∈ Ω∗(|D̃|) is discussed in Section 5.1, and with more details in [12, §3.1].

This descends to give D(−) : Ω∗(X)D → Ω∗−1(|D|) by [12, §6.2]. To show that it
induces (7.2), we need the following:

Lemma 11.6. Let X ∈ Schk and let D be a pseudo-divisor on X. Let [f : Y → X,L]
and [f : Y → X,M ] be two cobordism cycles in Ω∗(X) such that L ∼M . Let η : = [Y →
X,L] − [Y → X,M ]. Then D ◦ φX(η) ∈ ker(Ω∗−1(|D|) → Ωalg

∗−1(|D|)), where φX = θ−1
X

of Theorem 11.4.

Proof. We first assume that [f : Y → X,L] and [f : Y → X,M ] lie in Ω∗(X)D and show

that D(η) ∈ ker(Ω∗−1(|D|)→ Ωalg
∗−1(|D|)).

By the definition of D(−) in Definition 11.5, if f(Y ) ⊂ |D|, then there is nothing to
prove. So, suppose f(Y ) 6⊂ |D|. Then, we have

(11.1) D([f : Y → X,L]) = fD∗ {c̃1(L|
D̃

)([D̃ → |D|])} ∈ Ω∗−1(|D|)

and the similar expression holds for D([f : Y → X,M ]). On the other hand, L ∼ M

implies that L|
D̃
∼M |

D̃
and hence c̃1(L|

D̃
) = c̃1(L|

D̃
) as operators on Ωalg

∗ (|D̃|). Using
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Proposition 3.13 and applying fD∗ , from (11.1) we get D([f : Y → X,L]) = D([f : Y →
X,M ]) in Ωalg

∗−1(|D|). Equivalently, D(η) ∈ ker
(

Ω∗−1(|D|)→ Ωalg
∗−1(|D|)

)
.

To complete the proof we note again that the only case to consider is when f(Y ) 6⊂ |D|.
In this case, choose a suitable projective birational map ρ : W → Y ×P1 as in [12, Lemma
6.4.1]. This yields a commutative diagram

(11.2) Ω∗(W )DW

DW (−)
//

(f◦pr1◦ρ)∗
��

Ω∗−1(|DW |)

(f◦pr1◦ρ)∗
��

Ω∗(X)D
D(−)

// Ω∗−1(|D|)

where DW = ρ∗ ◦ pr∗1 ◦ f∗(D) such that

D ◦ φX([Y → X,L]) = (f ◦ pr1 ◦ ρ)∗ ◦DW ([ρ∗(Y × {0})→W,ρ∗(L)]) .

A similar formula holds for D ◦ φX([Y → X,M ]). From this the lemma follows by
applying what we have shown above to the pair (W,DW ) in place of (X,D). �
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