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Summary.
Discovering effective connectivity between brain regions gained a lot of attention recently. A
vector autoregressive (VAR) model is a simple and flexible approach for exploratory struc-
tural modeling where the involvement of a large number of brain regions is crucial to avoid
confounding. In this paper we propose improved procedures for inferring large-scale causal
networks of brain regions using functional MRI (fMRI) data. First, an empirical Bayesian pro-
cedure for shrinkage estimation of the model coefficients is recruited to prevent overfitting in
the face of the high dimensionality of VAR models. Second, a modified local false discovery
rate (FDR) procedure is suggested to identify nonzero coefficients by adaptively determining
null distributions with respect to skewed distributions of partial correlations between regions.
The effectiveness of the proposed procedures is demonstrated through simulated data sets in
comparison with other methods known in literature. Through multitask fMRI data sets concern-
ing Brodmann areas in both hemispheres, meaningful directed networks of the brain regions
are obtained and, through some measures from graph theory, we discover (1) the adaptation
of the networks of brain regions to different cognitive tasks in terms of changes in the level
of involvement of each hemisphere, (2) the importance of memory regions in the medial part
of the brain for efficient visual information processing, and (3) the adaptive changes of the
networks to different cognitive demands in terms of changes in solution strategies.

Keywords: Brodmann area; local false discovery rate; Granger causality; graph theory; high-
dimensional data

1. INTRODUCTION

Modeling communications among a set of brain regions which are involved in various cogni-
tive tasks is one of the most prevalent researches in neuroscience. Whereas it is well estab-
lished that the brain is segregated functionally in some depth, it is relatively less understood
how the functional areas of the brain are interconnected and integrated. The fMRI is a non-
invasive neuroimaging technique to measure time courses of hemodynamic responses in each
voxel of the brain. Statistical models for the brain connectivity using fMRI data have arisen
in recent years and are mainly categorized into two groups: the dynamic causal modelling
(DCM)(Friston, Harrison and Penny, 2003) and the Granger causal modelling/mapping
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(GCM)(Goebel et al., 2003; Valdes-Sosa, 2004). The comparisons and interpretations of
the two approaches are well discussed in Friston (2009), Roebroeck, Formisano and Goebel
(2011) and Friston (2011).

A typical example of GCM is a vector autoregressive (VAR) model, which is a simple
linear stochastic model without exogenous input variables. When it is used to model fMRI
time series data, nonzero coefficients of a VAR model represent Granger causality between
brain regions. It became popular for analysis and prediction of economic and financial time
series by Sims (1980), and it has been widely used in econometrics (Doan, Litterman and
Sims, 1984), bioinformatics (Opgen-Rhein and Strimmer, 2007) and neuroscience (Harrison,
Penny and Friston, 2003).

The strength of VAR models in brain connectivity analysis lies in its flexibility and
structure exploration capability (Roebroeck, Formisano and Goebel, 2011). For the ex-
ploratory analysis, it is important to include as many of the brain regions relevant to the
task as possible while avoiding overfitting. To cope with the increased demand to deal with
high-dimensional VAR models concerning a large number of brain regions for a relatively
short length of the time series, Valdes-Sosa et al. (2005) introduced a two-stage process
to estimate sparse VAR models. The process makes a combined use of (1) penalized re-
gression and (2) pruning of unlikely connections by means of the local false discovery rate
(FDR) developed by Efron (2003, 2004). Through simulation experiments, Valdes-Sosa et
al. (2005) showed that the penalized regression methods including ridge, LASSO and more,
resulted in similarly good detection efficiency by presenting areas under ROC curves of the
methods.

On the other hand, Opgen-Rhein and Strimmer (2007) suggested to use a nonparametric
shrinkage estimation method of Schäfer and Strimmer (2005b) for estimation of VAR model
coefficients with an application to modeling high-dimensional biological data. They showed
by simulation that the suggested shrinkage estimation is superior to ridge and LASSO
regressions in terms of positive predictive value when the length of time series data is shorter
than the dimensionality. However, they noticed that for large sample size the nonparametric
shrinkage estimator appears to prone to overshrinking, which leads to an increase of false
positives.

In this paper, we propose improvements to the two-stage processes of Valdes-Sosa et
al. (2005) and Opgen-Rhein and Strimmer (2007). First, for the penalized regression, we
notice that one of the reasons of the overshrinking of the nonparametric shrinkage estimator
is due to the independence assumption of data in the derivation in Schäfer and Strimmer
(2005b), which is obviously not true for time series data. We propose an improved shrinkage
estimation procedure based on an empirical Bayesian approach which correctly incorporates
correlations in the data.

Second, for the local FDR, it is often the case that empirical distributions of test statistics
obtained from fMRI data are skewed and have shifted modes. Schwartzman et al. (2009)
illustrate such examples which arise from fMRI and DTI data when selecting significant
activations of voxels. Schwartzman et al. (2009) and Efron (2004) also built some models
for simulations in which the shift of the mode of empirical distributions is caused by a shift
of theoretical null distributions. However, in this paper we show it is actually hard to tell
whether the shift has been caused by the shift of null distributions or the mixture of null
and alternative distributions in case that VAR models are considered in the selection of
nonzero coefficients through simulations. Accordingly we propose a procedure to estimate
null distributions assuming that the null distributions are not shifted. We also provide a
theoretical justification of the proposed procedure together with experimental evaluations.
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On the other hand, we concern the fMRI experiment where each of the total 27 male
subjects undergoes psychometric tests consisting of 5 types of problems. The 5 types of
problems are supposed to assess different aspects of spatial ability of individuals and may
have different difficulty levels. The spatial ability is considered to consist of various factors
involved in a process of generating, retaining, retrieving, and transforming well-structured
visual images (Lohman, 1994). Such factors include spatial visualization, spatial orientation,
and spatial relations. Several psychometric tests have been developed to distinguish such
factors. For instance, the tests such as a form board test, a hole punching test, and a
surface development test were suggested to measure the factor of spatial visualization, and
the tests such as card rotations and cube comparisons were suggested to measure the factor
of spatial relations (Ekstrom et al., 1976; French, Ekstrom and Price, 1963).

It is well known that individuals differ in the way they solve spatial tasks: different
people use different strategies in solving the same test items. Glück et al. (2002) also have
shown that training or practice can lead to changes in strategy use in a spatial task. In
general, strategies for solving test items in a type of spatial ability tests are classified into two
categories: holistic and analytic strategies (Glück and Fitting, 2003). These strategies are
not mutually exclusive categories, but rather they are the poles of a continuum. Glück and
Fitting (2003) also reported that people use analytic strategies more with increasing task
difficulty. Most people can solve easy tasks by holistic strategies, whereas with increased
complexity of spatial tasks, strategies become more analytic.

After all, by investigating the inferred large-scale causal networks of brain regions ob-
tained from the fMRI data, we can discover in part the dynamics underlying the cognitive
process of visual information processing. Since the structures of the networks may closely
related to the strategies that the subjects used for the test, we can compare the networks
of different problem types to discover common neural substrates in the spatial tasks and
examine changes in strategies over the different problem types. Specifically, by using graph
theoretic measures such as degree and betweenness centrality, we discover (1) the adap-
tation of the networks of brain regions to different cognitive tasks, (2) the importance of
memory regions in the medial part of the brain for efficient visual information processing,
and (3) the adaptive changes of the networks to different cognitive demands in terms of
changes in solution strategies.

This paper is organized as follows. In Section 2 we describe the fMRI data and and the
proposed methods for inferring large-scale causal networks. In Section 3 we present results
of simulation and analysis on the fMRI data. In Section 4 we discuss the implications along
with concluding remarks.

2. METHODS

2.1. Data Sets
For fMRI experiment, 27 young male college students were asked to participate in the
study. They are between 20-23 years old. The fMRI data were acquired from a 3.0T ISOL
FORTE scanner (ISOL Technology, Gyeonggi, Korea). A total of 177 scans of whole-brain
images were acquired using a T2*-weighted single-shot echo-planar imaging (EPI) sequence
(repetition time (TR) = 3,000 msec, echo time (TE) = 35 msec, number of slices = 36,
slice thickness = 3 mm, matrix size = 64 × 64, field of view = 220 mm × 220 mm).

All subjects took psychometric tests during scanning. The tests consist of 42 problems,
each of which falls into one of the five problem types: picture completion (12 problems),
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Table 1. Examples of the figure frames of stimulus figures and test probes for the five problem
types

problem
type

1 2 3 4 5

stimulus
figure

test
probe

mental rotation (12 problems), surface development (6 problems), aperture passing (6 prob-
lems), and hole punching (6 problems). The problems of each problem type were partitioned
into three sets and the total of 15 sets were presented to each subject in a given order. An
instruction on how to solve the problems was presented for 6 seconds before the problems in
each problem set were presented for 21 seconds. Each problem was displayed with two figure
frames: a stimulus figure and a test probe. Table 1 shows examples of the figure frames of
stimulus figures and test probes for the five problem types. If the test probe is recognized
as a correct answer to the stimulus figure, the subject is supposed to press the left mouse
button to answer ’Yes’; otherwise press the right mouse button to answer ’No’. The subject
may not press mouse buttons if he or she isn’t sure of the answer. The scores were obtained
by the number of correct answers subtracted by the number of incorrect answers, and the
difference were scaled linearly to lie between 0-100.

The fMRI data were preprocessed using the SPM software (SPM8, Wellcome Institute
of Cognitive Neurology, London, UK). The preprocessing step included spatial realignment
to the mean volume of a series of images and normalization to the MNI template brain.
The data were further partitioned based on the Brodmann areas separated in the left and
right hemispheres (Brodmann, 1909). The total 41 Brodmann areas in each hemisphere
were selected for the brain connectivity analysis. Table 4 in Appendix B summarizes the
anatomical labels and functions of the 41 Brodmann areas, which were produced mostly
based on Wikipedia (2011). After all, the fMRI time series data within each of the Brod-
mann areas was spatially averaged to yield 82 time series.

2.2. VAR Models
A VAR model is a dynamic model that is useful for representing inter-relationship among
a set of random variables in time series data. Let yt = [yt1, . . . , ytd]

′, t = 1, . . . , T, denote
(d× 1) vectors of time series variables and T is the total number of observations, i.e, scans.
A VAR model of order p is represented by

yt = c+

p∑
k=1

Akyt−k + εt, (1)

where Ak, k = 1, . . . , p, are (d × d) coefficient matrices, c is a (d × 1) vector, and εt is a
(d × 1) noise vector process with mean zero and covariance matrix V , i.e., E[εt] = 0, and
E[εtε

′
τ ] = V if t = τ and 0 if t ̸= τ . Let xt = [y′

t−1, . . . ,y
′
t−p]

′, t = p + 1, . . . , T, denote
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(dp× 1) vectors of predictors. Then the VAR model (1) is re-expressed as

yt = c+ Φ′xt + εt

where Φ = [A1, . . . , Ap]
′, or, equivalently in terms of components as

ytj = cj +

dp∑
i=1

ϕijxti + εtj (2)

for j = 1, . . . , d, where {ϕij} are the model coefficients.
A VAR model represents a causal network whose model structure is determined by its

nonzero coefficients. As indicated in (1), the causal relationship between any two variables
is defined as follows: the ith variable y·i does not Granger-cause the jth variable y·j if
the coefficient matrices satisfy (A1)ji = · · · = (Ap)ji = 0 (Granger, 1969). In a graphical
representation of a VAR model structure, each node corresponds to a variable and each
directed edge corresponds to the Granger-causality between the connected variables, the
arrow heading from a causal node to its effect node.

In the following subsections, we propose a two-step procedure for detecting nonzero
coefficients from a given multivariate time series data: the empirical Bayesian shrinkage
estimation procedure and the modified local FDR procedure.

2.3. Empirical Bayesian Shrinkage Estimation Procedure
The proposed shrinkage estimation procedure separates the model coefficients into variance
parts and correlation parts, and estimation is made separately on each of the parts. We
assume that the vector process yt is covariance-stationary, that is, its first and second order
moments are invariant over the time t. Let σ2

yj
= Var(ytj) and σ2

xi
= Var(xti) denote the

variances of the corresponding components, and assume that σyj > 0 and σxi > 0 for all
j = 1, . . . , d, and i = 1, . . . , dp. We define the correlation part of ϕij by ψij = ϕijσxi/σyj .
That is, ϕij is separated as

ϕij = ψij

σyj

σxi

. (3)

Once we obtain shrinkage estimates ŝ∗2yj
, ŝ∗2xi

and ψ̂∗
ij for σ2

yj
, σ2

xi
and ψij , respectively, we

can obtain the estimate of ϕij by

ϕ̂∗ij = ψ̂∗
ij

ŝ∗yj

ŝ∗xi

.

2.3.1. Estimation of the variance parts.
For notational convenience, let zt = [x′

t,y
′
t]
′, t = p+1, . . . , T, denote the ((dp+d)×1) vectors

and σ2
i = Var(zti), i = 1, . . . , dp + d, denote the variance parts. Let z̄i =

1
T−p

∑T
t=p+1 zti

and ŝ2i = 1
T−p−1

∑T
t=p+1(zti− z̄i)2 represent the sample mean and the sample variance. The

shrinkage estimator, ŝ∗2i , of σ2
i , is obtained by shrinking the sample variances toward their

median as in
ŝ∗2i = λvŝ

2
med + (1− λv)ŝ

2
i , i = 1, . . . , dp+ d (4)

where 0 ≤ λv ≤ 1 is a shrinkage parameter and ŝ2med is the median of the sample vari-

ances, i.e., ŝ2med = median(ŝ21, . . . , ŝ
2
dp+d). The optimal shrinkage level, λ̂∗v, is determined by



6 S.-H. Kim and N. Lee

minimizing the mean of the sum of squared error losses, E
[∑dp+d

i=1 (ŝ∗2i − σ2
i )

2
]
. Assuming

that the first two moments of distributions of ŝ2i and ŝ2med exist, Lee, Choi and Kim (2011)

provide λ̂∗v in the closed form by

λ̂∗EB,v =

∑dp+d
i=1 V̂arEB(ŝ

2
i )∑dp+d

i=1 (ŝ2med − ŝ2i )
2

where V̂arEB(ŝ
2
i ) is calculated from data as follows: let wti = (zti−z̄i)2, w̄i =

1
T−p

∑T
t=p+1 wti,

then

V̂arEB(ŝ
2
i ) =

1

(T − p− 1)2

T∑
t=p+1

T∑
τ=p+1

ĈovEB (wti, wτi)

where

ĈovEB (wti, wt+k,i) =
1

T − p

T−|k|∑
τ=p+1

(wτi − w̄i)(wτ+k,i − w̄i), |k| ≤ T − p− 1 .

To keep the value of λ̂∗EB,v within [0, 1], we use λ̂∗∗EB,v = max(0,min(1, λ̂∗EB,v)).

2.3.2. Estimation of the correlation parts.
From Eqs. (2) and (3), we get

ystj = csj +

dp∑
i=1

ψijx
s
ti + εstj , j = 1, . . . , d, (5)

where ystj = ytj/σyj , x
s
ti = xti/σxi , c

s
j = cj/σyj , and εstj = εtj/σyj . We assume that the

variances, σ2
yj

and σ2
xi
, are estimated by the sample variances, ŝ2yj

and ŝ2xi
, so that ystj and

xsti are obtainable from data. Let R̂1 and R̂2 be the sample correlation matrices defined by

R̂1 =
1

T − p− 1

T∑
t=p+1

(xs
t − x̄s) (xs

t − x̄s)
′

R̂2 =
1

T − p− 1

T∑
t=p+1

(xs
t − x̄s) (ys

t − ȳs)
′
.

Let Ψ = (ψij) be the matrix of the correlation parts. From (5), the ordinary least squares

estimate of Ψ is given by Ψ̂ = R̂−1
1 R̂2, which cannot be calculated if R̂1 is not invertible.

On the other hand, the shrinkage estimator, Ψ̂∗, of Ψ is obtained by shrinking the sample
correlation matrices as in

Ψ̂∗ = (R̂∗
1)

−1R̂∗
2 (6)

where
R̂∗

1 = λI + (1− λ)R̂1

R̂∗
2 = (1− λ)R̂2
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with a common shrinkage parameter 0 ≤ λ ≤ 1. That is, the off-diagonal entries of R̂1 and
the entries of R̂2 are shrunken toward zero. We note that Ψ̂∗ = 0 if λ = 1 and Ψ̂∗ = Ψ̂ if
λ = 0.

Lee, Choi and Kim (2011) have shown that the optimal value, λ̂∗, of λ for the correlation
parts has the following parametric form:

λ̂∗EB =
d2p

ν(T − p− 1) + d2p
(7)

where the unknown parameter ν is dependent only on the model parameters (Φ, V ) in the
model (1) (Φ = [A1, . . . , Ap]

′ is the coefficient matrix and V = E[εtε
′
t] is the covariance

matrix for noise εt).
The parameter ν can be estimated by applying a modification to the standard k-fold

cross-validation: the standard k-fold cross-validation procedure randomly divides the given
set of data pairs, (xs

t,y
s
t), t = p+ 1, . . . , T , into k sets of almost equal sizes. For the ith set

among the k sets, we use the rest k− 1 sets to calculate the coefficient matrix, Ψ̂∗(i), from

(6) for some λ. An optimal value λ̂∗(i) is obtained by minimizing the sum of the squares of

prediction errors on the ith set with respect to λ. That is, if (xs,val
t ,ys,val

t ), t = 1, . . . ,Mi,
denote the data pairs in the ith set, then

SSPE(i, λ) =

Mi∑
t=1

∥∥∥ys,val
t − ȳs(i)− (Ψ̂∗(i))′(xs,val

t − x̄s(i))
∥∥∥2 (8)

where x̄s(i) and ȳs(i) are the sample mean vectors calculated using the data pairs in the
rest k − 1 sets.

Note that each of the obtained estimates, λ̂∗(i), i = 1, . . . , k, is the optimal shrinkage

parameter for the shrinkage estimates, Ψ̂∗(i), which were calculated using only the rest i−1
sets. Let Ni = T − p −Mi denote the number of data pairs in the rest i − 1 sets. Then,
Ni corresponds to the term T − p in (7), and the ith estimate of ν is obtained from (7) by

using λ̂∗(i) as

λ̂∗(i) =
d2p

ν̂∗(i)(Ni − 1) + d2p
⇔ ν̂∗(i) =

(
λ̂∗(i)

1− λ̂∗(i)

Ni − 1

d2p

)−1

.

Finally, the estimate, ν̂∗EB, of ν is determined by

− log ν̂∗EB =
1

k

k∑
i=1

(− log ν̂∗(i)) =
1

k

k∑
i=1

(
log

(
λ̂∗(i)

1− λ̂∗(i)

)
+ log

(
Ni − 1

d2p

))
.

2.4. Modified Local False Discovery Rate Procedure
For checking the Granger-causality, it is preferred to run a statistical test using partial
correlations instead of using model coefficients in case of data sets with small T and large
d (Schäfer and Strimmer, 2005a). Let corr(y·j , x·i|x·rest) denote the partial correlation
between two variables y·j and x·i. Whittaker (1990) shows that in the multivariate normal
linear regression model, ϕij = 0 if and only if corr(y·j , x·i|x·rest) = 0. For the calculation of
the partial correlations from shrinkage estimates, see Opgen-Rhein and Strimmer (2007).
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Fig. 1. Empirical distributions of the estimated partial correlations for the fMRI data of the 16th
subject

The obtained estimates of partial correlations are used in a local FDR procedure to
detect nonzero values of ϕij . In the standard local FDR procedure suggested by Strimmer
(2008) we assume that distributions of the estimated partial correlations are symmetric.
However, many real world fMRI data result in skewed distributions of estimated partial
correlations. Fig. 1 shows an example of the empirical distributions of the estimated partial
correlations for the given fMRI data of the 16th subject. In the figure we can see that all
of the five distributions obtained for the five problem types are not symmetric. In Section
3 we will show that skewed distributions of sample or estimated partial correlations are
well observed in time series data which are generated from VAR models whose nonzero
coefficients were drawn from skewed distributions.

Therefore we propose a modified local FDR procedure which is effective for skewed
distributions. In local FDR procedures, the empirical distribution of estimated partial
correlations is approximated by a mixture distribution

f(x) = η0f0(x;κ0) + (1− η0)fA(x), 0 ≤ η0 ≤ 1,

where f0 is called a null distribution and fA an alternative distribution. The parameter
η0 represents the portion of zero true partial correlations. The parametric form of f0 is
provided by Hotelling (1953) under the normality assumption. That is, if a true partial
correlation coefficient is zero, then the distribution of the corresponding sample partial
correlation coefficient is given by

f0(x;κ) = (1− x2)(κ−3)/2 Γ(κ/2)

π1/2Γ((κ− 1)/2)
, −1 ≤ x ≤ 1,
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where κ is the degree of freedom. Note that Var(X0) = 1/κ for a random variable X0

having the distribution f0(x;κ).
Local FDR procedures should estimate η0 and κ0 from the given estimated partial cor-

relations. In this paper, we assume that the null distribution f0 is not biased. Considering
that the given empirical distribution of the partial correlations has a shifted mode, x0 ̸= 0,
as in Fig. 1, we can infer that f(0) ≤ f(x0) and f0(0;κ0) > f0(x0;κ0), which yield

(1− η0)fA(x0) = f(x0)− η0f0(x0;κ0) > f(0)− η0f0(0;κ0) = (1− η0)fA(0) ≥ 0 ,

so that fA(x0) > 0. In the modified local FDR procedure, we use either the positive part
or the negative part of the estimated partial correlations, in an effort to avoid including
estimated partial correlations whose true partial correlations are not zero. For instance, in
Fig. 1, the modes of the empirical distributions are positive and not far from zero. Since the
alternative distributions are less mixed on the other side of the horizontal axis, the modified
procedure decides to use the other side to estimate the null distribution.

Next, the modified procedure uses a standard kernel density estimation algorithm such
as the Parzen windows estimation with Gaussian kernels and a rule-of-thumb bandwidth
selection method to obtain a smoothed distribution, f s(x), for the selected side of the
estimated partial correlations. That is, the selected side of the empirical distribution is
smoothed and scaled to get

f s(x) = f s(−x), ∀x ∈ [−1, 1] and

∫ 1

−1

f s(x)dx = 1 .

Then, with an appropriately selected cutoff value, 0 < ρ ≤ 1, the modified procedure
picks up a quantile value r = r(ρ) such that 100ρ% of the partial correlations belong to
the interval between 0 and r. For instance, if the negative side is to be used, then the
ratio of the numbers of the estimated partial correlations used for estimating κ0 satisfies
approximately ρ = #{r ≤ x ≤ 0}/#{−1 ≤ x ≤ 0}. Optimal values for η0 and κ0 are then
obtained by minimizing the sum of squares of differences between f s(x) and ηf0(x;κ). That
is, if the negative side is used, then(

ˆ̂η, κ̂
)
= argmin

0<η≤1,κ>1

∫
r≤x≤0

(f s(x)− ηf0(x;κ))
2
dx . (9)

Note that ˆ̂ηf0(x; κ̂) is an approximation to f s(x), and f s(x) has been obtained by scaling

f(x) to have
∫ 1

−1
f s = 1, i.e., f(x) ≈ c1f

s(x) for some c1 > 0. Since
∫ 0

−1
f s = 0.5 and∫ 0

−1
f = #{−1≤x≤0}

#{−1≤x≤1} = #{−1≤x≤0}
d2p = c1

∫ 0

−1
f s, ˆ̂η should further be re-scaled as

η̂ = ˆ̂η × c1 = ˆ̂η ×
∫ 0

−1
f∫ 0

−1
f s

= ˆ̂η × 2#{−1 ≤ x ≤ 0}
d2p

.

The factor, c1, multiplied to ˆ̂η is the ratio at which f s should be re-scaled to f .
Finally, the local area-based FDR score (Strimmer, 2008) is obtained as follows:

fdr(x) = Pr(zero partial correlation|x) = η̂f0(x; κ̂)

f(x)

where f(x) represents the empirical distribution of the partial correlations which is also
smoothed by a kernel density estimation method for robustness. A standard way of selecting
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Fig. 2. Estimated mixture of null and alternative distributions (a), and estimated local fdr score (b) for
the fMRI data in Fig. 1 (a)

nonzero partial correlations is to select x with fdr(x) ≤ 0.2. Fig. 2 (a) and (b) illustrate the
results for the estimation of the null and alternative distributions and the local FDR scores
obtained based on the data in Fig. 1 (a).

2.5. Selection of the Cutoff Value
The cutoff value, 0 < ρ ≤ 1, determines the amount of the data, that is, the estimated
partial correlations, which are used in the estimation of η̂ and κ̂. If ρ is too small, then
only a small quantity of data is used for the estimation and the estimates η̂ and κ̂ become
vulnerable to noise fluctuation in data. On the other hand, if ρ is too large, then a large
part of data corresponding to nonzero true partial correlations is included in the estimation.
Therefore we propose the following steps to choose a proper cutoff value. For simplicity, we
suppose that the negative side of the given data is used.

Cutoff selection procedure:

(a) Step 1. Estimate κ̂ for each value of ρ in a grid, e.g., ρ ∈ {0.1, 0.15, 0.2, . . . , 1}. We
denote the estimates by κ̂1, . . . , κ̂n and the grid points by ρ1, . . . , ρn.

(b) Step 2. Calculate the differences in the values of 1/κ̂, i.e., let δi = 1/κ̂i+1 − 1/κ̂i. δi
represents variability in estimation.

(c) Step 3. Select large enough values of ρ so that the estimates are not largely variable
due to noise. Specifically, pick up i∗ such that i∗ = max(i∗+, i∗−) where i∗+ =
argmaxi{δi : δi > 0} and i∗− = argmini{δi : δi < 0}. This process excludes an
unreliable part, and the interval ρi∗+1 ≤ ρ ≤ ρn is considered as valid candidate
values in the next step.

(d) Step 4. Find the minimum point of 1/κ̂i in the valid interval, i.e., let i∗∗ = argmini{1/κ̂i :
i∗ + 1 ≤ i ≤ n}. Finally, ρi∗∗ is the selected cutoff value.

The reason why we select the minimum point of 1/κ̂i at Step 4 is partly due to the intuition
that the more the interval [r(ρ), 0] contains the area under (1 − η0)fA(x) relatively to
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η0f0(x;κ0), the larger the variance, 1/κ̂, of f0(x; κ̂) becomes. This intuition is justified by
the following theorem:

Theorem 1. Suppose that f s(x) = c1(η0f0(x;κ0) + (1 − η0)fA(x)) for −1 ≤ x ≤ 0
for some c1 > 0, and f s(x) = f s(−x) for 0 < x ≤ 1. Suppose that there exists a value

−1 ≤ r1 < 0 such that fA(x) = 0 for r1 ≤ x ≤ 0. Let ˆ̂η = ˆ̂η(r) and κ̂ = κ̂(r) be the
estimates determined by (9). Then each of the following holds:

(a) If r1 ≤ r < 0, then ˆ̂η(r) = c1η0 and κ̂(r) = κ0.

(b) If −1 ≤ r < r1 and ˆ̂ηf0(x; κ̂) ≤ f s(x) for some x ∈ [r1, 0], then κ̂(r) ≤ κ0.

(c) If −1 ≤ r < r1 and ˆ̂ηf0(x; κ̂) > f s(x) for all x ∈ [r1, 0], then κ̂(r) ≤ κ0 provided

2c1(1− η0)fA(x1) ≤ r
r1
(ˆ̂ηf0(x1; κ̂)− c1η0f0(x1;κ0)) for all x1 ∈ (r, r1).

Proof. See Appendix A.

The condition in statement (b) of Theorem 1 is not a strong one in the sense that we
usually expect the estimated null density to be smaller than the empirical density, i.e.,
ˆ̂ηf0(x; κ̂) ≤ f s(x). Theorem 1 can be extended to cases including mild noise conditions, in
other words, a noise process with mean zero may be added to f s(x) and we will get the
same results. In Section 3 we show that the above cutoff selection procedure performs well
for a wide range of simulated data sets generated from various VAR models.

3. EXPERIMENTS

3.1. Simulated Data Sets
To compare performances of the proposed procedures with other competing procedures, we
generated VAR models with p = 1 and d ∈ {25, 50, 100}. Based on the way the nonzero
coefficients are created, the VAR models are classified into two groups as follows:

(a) Large Models: Among the total of d2p coefficients in the VAR models, 30% of the co-
efficients were randomly selected and set to 0.1, 10% of the coefficients were randomly
selected and set to −0.2, and the rest were set to zero.

(b) Small Models: Among the total of d2p coefficients in the VAR models, 4% of the
coefficients were randomly selected and set to 0.3, 1% of the coefficients were randomly
selected and set to −0.6, and the rest were set to zero.

Using these models, we generated multivariate time series data with T ∈ {10, 20, 40, 80,
160, 320} and V = 0.01I. Note that the nonzero coefficients of the models are drawn
from skewed distributions. That is, the locations and the numbers of the positive and the
negative nonzero coefficients are different. In Fig. 6 we can see that the data sets generated
in this way form distributions of the estimated partial correlations of fMRI data sets as
anticipated.

We repeatedly selected VAR models and their data sets 50 times for performance eval-
uation. For evaluation of the empirical Bayesian shrinkage estimation (EB) procedure, we
also ran other procedures such as ordinary least squares regression (OLS)(Seber and Lee,
2003), ridge regression (RID)(Golum, Heath and Wahba, 1979), and nonparametric shrink-
age estimation (NS)(Opgen-Rhein and Strimmer, 2007). We calculated the mean squared
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Fig. 3. Parameter estimation performance by MSE

error (MSE) between true model coefficients and estimated coefficients, that is,

M̂SE(l) =
∥∥∥Φ − Φ̃(l)

∥∥∥2 =

dp∑
i=1

d∑
j=1

(ϕij − ϕ̃(l)ij)
2

where Φ̃(l) =
(
ϕ̃(l)ij

)
is the estimated coefficient matrix for the lth data set. Fig. 3 shows

the MSE values averaged over the 50 data sets. In the figure the EB and the NS procedures
give low MSE values while the EB procedure produces the smallest MSEs for small T values.
The RID procedure gives small MSE for large T but it is very unstable for small T . We get
similar results for both small and large models.

Next, we compared the modified local FDR procedure with the standard local FDR
procedure by Strimmer (2008). We denote the modified one by ”ebfdr” and the standard one
by ”fdrtool”. We compared the performances of selecting nonzero true partial correlations
from the estimated partial correlations obtained by either the EB or the NS procedures.
The performances are measured through the numbers of true positives (TP), false positives
(FP), true negatives (TN) and false negatives (FN). The scores of precision, recall and F1
score are defined accordingly by

Precision =
TP

TP + FP

Recall =
TP

TP + FN

1

F1score
=
Precision−1 +Recall−1

2
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Fig. 4. Nonzero model coefficients detection performances by (a) precision, (b) recall, (c) F1 score
and (d) ROC curve for the large models with p = 1 and d = 50

The receiver operating characteristic (ROC) curves were also drawn based on local FDR
scores provided by either the ebfdr or the fdrtool. The 50 ROC curves were averaged
vertically, i.e., averaged with respect to true positive rates.

Figs. 4 and 5 illustrate the performance scores of the ebfdr and the fdrtool procedures
when they are provided data obtained by either the EB or the NS procedures. We can
find that the fdrtool, colored in black and blue, selects very small number of positives as
candidate nonzero coefficients so that it has very small recall scores together with high
precisions. On the other hand, the ebfdr, colored in green and red, selects a larger number
of positives so that its precision is slightly lower than that of the fdrtool but its recall is
much larger than that of the fdrtool. We note that the precision of the ebfdr is kept around
or above 0.8 which is as anticipated by the threshold fdr(x) ≤ 0.2. And the results of
averaged ROC curves show that the ebfdr is superior to the fdrtool, which is due to the
increments in the number of true positives while keeping the number of false positives low.
The NS and EB procedures do not make notable differences but the precision of the NS is
slightly larger than that of the EB, and the recall of the EB is slightly larger than that of
the NS.

Fig. 6 illustrates the cutoff selection procedure. We used the large models with p = 1
and d = 50, and the estimated partial correlations were obtained by the EB procedure. We
note that the empirical distributions in Fig. 6 (a) and (b) look similar to those in Fig. 1 for
the fMRI data sets. Especially, we note that the shifted modes are caused by the mixture
of null and alternative distributions.

Moreover, comparing the histograms for T = 40 and T = 160, we note that the alter-
native distribution for T = 160 is more clearly identified than T = 40. This observation is
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Fig. 5. Nonzero model coefficients detection performances by (a) precision, (b) recall, (c) F1 score
and (d) ROC curve for the small models with p = 1 and d = 50

reflected by the selected cutoff values: when T is small, an alternative distribution is mixed
with null distribution on a region close to zero, and a smaller cutoff value is selected. But
when T is large, an alternative distribution is less mixed with null distribution on a region
close to zero, and a larger cutoff value is selected. In Fig. 6, ρ = 0.5 was selected for T = 40
whereas ρ = 0.7 was selected for T = 160. In Fig 6 (c) and (d) the red dotted lines represent
the differences in the values of 1/κ̂, i.e., δi = 1/κ̂i+1 − 1/κ̂i, as was defined in Step 2 in
the cutoff selection procedure. We note that 1/κ̂ is unstable for small cutoff values and the
proposed procedure safely avoids the unstable regions.

The performance of the cutoff selection procedure was compared with methods of using
fixed cutoff values by calculating the scores of precision and recall. Fig. 7 shows that the
proposed cutoff selection procedure keeps precisions greater than 0.8 while it gives high
recall scores, that is, it gives the second largest recall scores for large models and the largest
recall scores for small models. On the other hand, the fixed cutoff value of 0.2, depicted
by black lines, gives the least values of precision, while it gives the highest recall scores for
large models and comparable recall scores for small models. The fixed cutoff values of 0.6
and 1.0, depicted by green and blue dotted lines, give high precision scores and low recall
scores, which implies that they produce a smaller number of true positives compared with
other cutoff values. Therefore, we conclude that the fixed cutoff values are unreliable and
they are subject to the data size, while the proposed cutoff selection procedure shows stable
and reliable performance results.
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Fig. 8. Model order p versus cross validation error plot for each tasks to help determine the most
proper value of p for the data set of the 16th subject

3.2. Multitask FMRI Data Set
We applied the proposed procedures to the multitask fMRI data sets introduced in Section
2. To determine the order p of VAR models, we analyzed the average of the k prediction
errors given in (8) obtained by the k-fold cross validation procedure. Fig. 8 illustrates the
averaged cross validation error values for data set of the 16th subject over different values
of p ∈ {1, 2, 3, 4, 5} where we set k to 5. We observe that for all tasks the optimal value
of p is determined at p = 1, 2, or 3, and p = 1 results in small cross validation errors on
average over all tasks. Data sets of other subjects show almost similar results. Therefore
in this real fMRI data experiments we use p = 1. We note that the actual time difference
between two consecutive scans is 3 seconds, and we conjecture that the time difference is
long enough for two brain regions to transfer information.

Table 2 summarizes information on the VAR networks obtained for each of the 5 tasks
for the 16th subject. All the five networks have the 82 nodes connected. Total degrees
denote the sum of the degrees of all the nodes in the network, which is exactly twice the
number of edges. The hub nodes were identified based on the degree of each node, which
will be explained later. We note that among the hub nodes, the nodes representing right
hemisphere regions of the brain dominate for task types 1 and 2 which are relatively easy
tasks, while the nodes representing left hemisphere regions of the brain dominate for task
types 3, 4 and 5 which are relatively difficult tasks.

Such a difference of connectivity between right and left hemispheres in relations with
the task types are more investigated in Fig. 9 for the data sets of all the 27 subjects. The
figure shows the ratio of the number of hubs in the right hemisphere to the number of all
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Table 2. Summary on the obtained networks for the 16th subject. Note that
among the hub nodes, the nodes representing right hemisphere regions dom-
inate for task types 1 and 2 which are relatively easy tasks, while the nodes
representing left hemisphere regions dominate for task types 3, 4 and 5 which
are relatively difficult tasks.

task type nodes edges total degrees hub nodes

1 82 589 1178 R26, L21, R23, R22, R42,
L39, R17, L23, R21, R43,

R44, R9

2 82 793 1586 L36, R30, R21, L28, R22,
R20, R35, L21, L35, R19,
R7, R1, R28, L17, L19

3 82 412 824 R41, L28, L34, L18, R39,
R20, L37

4 82 585 1170 L26, L5, R29, R5, L34,
L43, L29, L27, L20

5 82 1244 2488 L29, R3, L18, R4, L41,
L9, L27, R5, L3, L44,

R6

the hubs for subjects whose number of hubs is at least 5. We can see that for task types
1 and 2, more than half of the hubs are located on the right hemisphere for most of the
subjects. On the other hand, for tasks 3, 4 and 5, we can see that the ratio varies more
largely between subjects and the median of the ratio is not larger than 0.5. We can conclude
that the effective connectivity for brain networks adaptively changes according to the task
types.

Figs. 11 to 15 in Appendix B depict subgraphs with 50 edges of the obtained VAR
networks for the 5 task types for the data set of the 16th subject. The solid and dotted
lines indicate positive and negative partial correlation coefficients, respectively. Each node
is labeled by ”L” or ”R” which represents the left or the right hemisphere of the brain, and
the number in each node represents the Brodmann area number. Some of the nodes are
colored in yellow to indicate that they are hub nodes.

To identify important brain regions which are related with the other regions the most,
we first calculated the degree of each node in the networks. The degree of a node is the
number of its adjacent edges. It is the most fundamental measure of graph centrality and
the other measures such as closeness and betweenness are closely related with it (Bullmore
and Sporns, 2009). Figs. 16 to 20 in Appendix B illustrate the degrees of all the nodes in
the networks of the 16th subject in a descending order. We classified the nodes with degrees
greater than one standard deviation above the network mean as hub nodes (Sporns, Honey
and Kötter, 2007). The threshold value is indicated by red dotted lines crossing the plots
vertically.

Figs. 16 to 20 in Appendix B also present the histograms for the degrees of nodes in
the networks. If the networks were random networks each pair of nodes would be con-
nected with equal probability and the networks would result in symmetrically centered
degree distributions. However, the obtained 5 networks clearly show skewed heavy-tailed
degree distributions, which is one of the basic properties of complex networks (Bullmore
and Sporns, 2009).

To show that the networks obtained by the proposed procedures for the given fMRI
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Fig. 9. The ratio of the number of hubs in the right hemisphere to the number of whole hubs for
subjects whose number of hubs is at least 5. For task types 1 and 2, more than half of the hubs are
located on the right hemisphere for most of the subjects.

data sets yield significantly skewed degree distributions, we conducted statistical tests by
comparing the skewness of degree distribution of each of the fMRI networks to those of
random networks. The skewness of a degree distribution is calculated by

Skewness =
1
d

∑d
i=1

(
CD(i)− C̄D

)3(
1
d

∑d
i=1

(
CD(i)− C̄D

)2)3/2
where CD(i) represents the degree of ith node and C̄D is the mean of the degrees. A positive
skewness indicates a long right tail of the degree distribution, and vice versa. Moreover, we
created each of the random networks as a directed network with a given number of edges
in such a way that loop edges are allowed but multiple edges are not allowed as networks
for VAR models.

Fig. 10 illustrates the skewnesses of the degree distributions of the random networks and
the networks obtained from fMRI data sets of all subjects for each of the 5 task types. As
for the random networks, we generated 30 random networks for each number of edges and
calculated the mean of the skewnesses and the plus/minus one standard deviation around
the mean, which is represented by the black error bar in the figure. On the other hand, each
point in the figure represents the skewness for the network from the fMRI data set from a
subject for each task type. We can see that most of the skewnesses for the fMRI networks
are significantly larger than those of random networks. Specifically, we can further estimate
p-values for each of the fMRI networks for the statistical test whose alternative hypothesis
is that the skewness for the fMRI network is larger than those for random networks. After
generating 100 random networks with the same number of edges to that of the fMRI network,
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Fig. 10. Skewnesses of degree distributions of random networks and the networks obtained by
the proposed procedures for each of the subjects and task types. Most of the skewnesses for the
obtained networks of brain regions are significantly larger than those for random networks.

the p-value is estimated by calculating the number of the random networks whose degree
distributions have skewnesses larger than that of the fMRI network, i.e.,

p-value =
#{random networks with skewnesses > skewness of fMRI network}

#{random networks}
.

As for the 16th subject, we obtained the skewnesses 1.68, 0.64, 2.84, 1.19, and 0.43 for task
types 1, 2, 3, 4 and 5, respectively. The number of edges of the networks are 589, 793,
412, 585 and 1244, respectively. The estimated p-values are 0.00, 0.04, 0.00, 0.00 and 0.10.
Therefore, all the 5 networks have sufficiently small p-values to reject the null hypothesis
with a significance level 0.1. Since a large skewness is usually caused by long right tail of
the degree distribution, the high degree nodes are key factors to the nonrandomness of the
networks.

To further investigate characteristics of each brain region, we calculated betweenness
centrality of each node in the networks (Bullmore and Sporns, 2009). The betweenness
centrality is defined by the number of shortest paths going through a node. Specifically, it
is defined by

CB(i) =
∑

s̸=v,s̸=i ̸=v

gsiv
gsv

where gsv is the number of shortest paths between nodes s and v, and gsiv is the number of
shortest paths between nodes s and v passing through the node i. Since the determination
of shortest paths is largely dependent on whether the network edges are directed or not,
providing directed networks of brain regions is crucial to discovering the betweenness of brain
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Table 3. Brodmann areas with high betweenness centralities according to the causal net-
works obtained for the 16th subject. Only top six Brodmann areas are presented in the order
of their ranks for each of the five task types. The betweenness centrality measures are also
presented in parenthesis. Brodmann areas located at the medial part of the brain closely to
hippocampus are emphasized with bold type.

Rank Type 1 Type 2 Type 3 Type 4 Type 5

1 R26(740.18) L36(671.94) R41(1298.34) L26(740.30) L29(678.50)
2 L21(446.74) R30(463.56) L21(1180.58) R29(639.48) R4(430.10)
3 L38(423.57) L19(441.28) L36(903.80) L27(454.00) R3(320.41)
4 R35(359.02) L35(349.28) L28(673.52) L5((399.07) L9(289.28)
5 R22(340.84) R35(303.73) L30(615.57) L45(318.73) L27(285.54)
6 R23(313.39) L28(266.75) L1(533.00) R2(317.25) R29(274.82)

regions. Moreover, a node with high betweenness centrality is considered to be essential to
efficient communication between nodes.

We also calculated other graph centrality measures of each node such as out-closeness
and in-closeness, which are also distinctive for directed networks. The closeness centrality
measures the number of steps required from a node to another in the network. Specifically,
it is defined by the inverse of the average length of the shortest paths to or from the other
nodes in the network:

CC(i) =
d− 1∑
j ̸=i dij

where d is the number of nodes in the network and dij is the length of the shortest path
between nodes i and j. The out-closeness and the in-closeness centralities are further defined
by considering the direction of the shortest paths. A node with high out-closeness centrality
is considered to influence many other nodes through short or direct paths, while a node with
high in-closeness centrality is considered to be influenced by many other nodes.

Tables 5 to 9 in Appendix B list the nodes classified as hub nodes and their graph
centrality measures for each task type for the 16th subject. Each number in parenthesis
represents the rank according to the measure. We note that high-degree nodes have either
high out-closeness or high in-closeness measures together with high betweenness measures
in general. This is because those measures are related with the degree centrality. Moreover,
we note that many of the hub nodes have high out-closeness centralities compared to the
in-closeness centralities, especially for task types 1, 3 and 4. Based on this observation we
can guess that many hub regions of the brain are taking important roles as information
senders to other regions.

There are some more findings. First, we note that many of the Brodmann areas with
high betweenness centralities have memory functions and, anatomically, occupy the medial
part of the brain which is close to hippocampus. Table 3 presents a list of Brodmann areas
with the highest betweenness centralities in each of the five networks obtained for the 16th
subject. According to Table 4, Brodmann area 23 is labeled as Posterior cingulate cortex,
areas 26, 29 and 30 as Retrosplenial cingulate cortex, area 27 as Piriform cortex, areas 28
and 34 as Entorhinal cortex, and areas 35 and 36 as Perirhinal cortex. Those Brodmann
areas are anatomically located in the medial part of the brain, close to the hippocampus,
and supposed to be related to the memory functions. In Table 3 those Brodmann areas are
emphasized with bold type, which cover more than half of the Brodmann areas listed in the
table.

Second, the other Brodmann areas in Table 3 which are not written in bold are supposed
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to characterize the adaptive changes of brain networks to different cognitive loads for efficient
information processing. Task type 1 requires Brodmann areas L21, R22, and L38, which are
in the temporal lobe. Task type 2 requires L19 in the occipital lobe. Task type 3 requires
L21 and R41 in the temporal lobe and L1 in the parietal lobe. Task type 4 requires L45 in
the frontal lobe and R2 and L5 in the parietal lobe. Task type 5 requires R4 and L9 in the
frontal lobe and R3 in the parietal lobe.

These changes in network structures are supposed to be related with the changes in the
subject’s specific strategies depending on the cognitive loads of the five task types. Based on
the categorization of strategies by Glück and Fitting (2003), the holistic strategies involve
visualization and other ways of representing spatial relations, whereas the analytic strate-
gies, sometimes labeled as verbal strategies, are considered to reduce spatial information
to an essentially nonspatial, listlike format. We note that people can solve easy tasks by
holistic strategies, whereas people use analytic strategies more for tasks of higher difficulty.

In the fMRI experiment, the task types 1 and 2 are considered easy and the task types 3,
4 and 5 are considered difficult. We note that Brodmann areas in frontal and parietal lobes
are more included among the high betweenness Brodmann areas and high degree Brodmann
areas as well for task types 4 and 5. On the other hand, the visual areas of the brain in the
occipital lobe are more included for task type 2. This observation leads us to the conclusion
that analyzing high betweenness Brodmann areas and high degree Brodmann areas helps
to find the strategies used by the subjects.

4. CONCLUSION

In this paper we proposed an improved process of inferring large-scale causal networks for
modeling high dimensional fMRI data with VAR models. We proposed empirical Bayesian
shrinkage estimation procedure to improve the existing nonparametric shrinkage estimation
algorithm by incorporating the dependence assumption in time series data appropriately, so
that we can handle data of both small and large numbers of observations, i.e., scans, while
a large number of brain regions is included in data. We also proposed a modified local FDR
procedure for pruning unlikely connections especially for the skewed empirical distribution
of the estimated partial correlations. We also proposed a reliable cutoff selection algorithm
with mathematical justification. In a nutshell, we can say that the proposed procedures for
the inference of large-scale causal networks are applicable to a wide variety of real fMRI
data.

We applied the proposed procedures to the fMRI data. In the experiment, subjects took
psychometric tests to assess different aspects of spatial abilities. The discovered directed
networks of Brodmann areas revealed important brain regions involved in the given cognitive
tasks in terms of the graph theoretic measures such as degree and betweenness centralities.
We have shown that the discovered networks are far from randomly connected networks,
implicating dynamical behaviors of brain regions in visual information processing.

We could further observe that the brain networks change adaptively according to the
given cognitive tasks by analyzing the level of involvement of brain regions in each hemi-
sphere in terms of the number of identified hubs over all the subjects. Due to the directed
nature of the obtained networks, we could further analyze such graph theoretic measures
as out-closeness, in-closeness, and betweenness centralities. For analyzing the betweenness
centralities, we selected the 16th subject who scored almost equally high on all of the 5
tasks. By analyzing the betweenness centralities of the 16th subject, we could discover that



Large-scale VAR Modeling 23

the memory regions of the brain which are located closely to the hippocampus are taking
important roles in efficient information processing over all types of spatial tasks. Moreover,
we could discover that the adaptive changes in the brain regions with high betweenness
or high degree centralities are closely related to the changes in the strategy uses of the
subjects, holistic versus analytic strategies.

The application of graph theoretic measures such as the betweeenness centrality in this
paper suggested that graph theoretical analysis methods can serve as promising tools for
understanding networks of brain regions. Other measures such as modularity and motif are
also known to be related to complex behaviors of networks. Moreover, group based analysis
can be further conducted based on the graph theoretic measures to investigate differences
in strategy uses of subjects more specifically in various cognitive tasks.

A. PROOF OF THEOREM 1

First, we show that (a) holds. If r1 ≤ r < 0, then we have∫ 0

r

(f s(x)− ηf0(x;κ))
2dx =

∫ 0

r

(c1η0f0(x;κ0)− ηf0(x;κ))
2dx . (10)

If η = c1η0 and κ = κ0, then (10) is zero. On the other hand, if (10) is zero, then,
since f0(x;κ) is a continuous function for any κ, we have c1η0f0(x;κ0) = ηf0(x;κ) for all
x ∈ [r, 0]. So, it follows that c1η0f0(r;κ0) = ηf0(r;κ) and c1η0f0(0;κ0) = ηf0(0;κ), which
implies η = c1η0 and κ = κ0. Therefore, the minimization of (10) leads to the unique

solution (ˆ̂η = c1η0, κ̂ = κ0).
Next, we show that (b) holds. If −1 ≤ r < r1, then we have∫ 0

r1

(f s(x)− ˆ̂ηf0(x; κ̂))
2dx ≥

∫ 0

r1

(f s(x)− c1η0f0(x;κ0))
2dx (11)

and ∫ 0

r

(f s(x)− ˆ̂ηf0(x; κ̂))
2dx ≤

∫ 0

r

(f s(x)− c1η0f0(x;κ0))
2dx . (12)

By subtracting Eq. (11) from Eq. (12), we get∫ r1

r

(f s(x)− ˆ̂ηf0(x; κ̂))
2dx ≤

∫ r1

r

(f s(x)− c1η0f0(x;κ0))
2dx ,

which is further expanded to∫ r1

r

(c1η0f0(x;κ0)− ˆ̂ηf0(x; κ̂))
2dx ≤ 2c1(1− η0)

∫ r1

r

fA(x)(ˆ̂ηf0(x; κ̂)− c1η0f0(x;κ0))dx .

(13)
By the mean value theorem for integration, there exists x1 ∈ (r, r1) such that∫ r1

r

fA(x)(ˆ̂ηf0(x; κ̂)−c1η0f0(x;κ0))dx = (r1−r)fA(x1)(ˆ̂ηf0(x1; κ̂)−c1η0f0(x1;κ0)) . (14)

From Eqs. (13) and (14) we can conclude that

ˆ̂ηf0(x1; κ̂) ≥ c1η0f0(x1;κ0) (15)
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for some x1 ∈ (r, r1) unless fA(x) = 0 for all x ∈ [r, r1]. On the other hand, from the
assumption of (b), there exists x2 ∈ [r1, 0] such that

ˆ̂ηf0(x2; κ̂) ≤ f s(x2) = c1η0f0(x2;κ0) . (16)

By dividing Eq. (15) by (16), we get

f0(x1; κ̂)

f0(x2; κ̂)
≥ f0(x1;κ0)

f0(x2;κ0)

where |x1| > |x2|. Since f0(x1;κ)/f0(x2;κ) = ((1 − x21)/(1 − x22))
(κ−3)/2, we can conclude

that κ̂ ≤ κ0.
Finally, we show that (c) holds. By expanding Eq. (12), we get∫ 0

r

(c1η0f0(x;κ0)− ˆ̂ηf0(x; κ̂))
2dx ≤ 2c1(1− η0)

∫ r1

r

fA(x)(ˆ̂ηf0(x; κ̂)− c1η0f0(x;κ0))dx .

The above inequality is further simplified from
∫ 0

r
=
∫ r1
r

+
∫ 0

r1
by∫ 0

r1

(c1η0f0(x;κ0)− ˆ̂ηf0(x; κ̂))
2dx

≤
∫ r1

r

(
2c1(1− η0)fA(x)− (ˆ̂ηf0(x; κ̂)− c1η0f0(x;κ0))

)
(ˆ̂ηf0(x; κ̂)− c1η0f0(x;κ0))dx .

By the mean value theorem for integration, there exists x1 ∈ (r, r1) and x2 ∈ (r1, 0) such
that

−r1(c1η0f0(x2;κ0)− ˆ̂ηf0(x2; κ̂))
2

≤ (r1 − r)
(
2c1(1− η0)fA(x1)− (ˆ̂ηf0(x1; κ̂)− c1η0f0(x1;κ0))

)
×(ˆ̂ηf0(x1; κ̂)− c1η0f0(x1;κ0)) . (17)

Define

A(x) =
ˆ̂ηf0(x; κ̂)− c1η0f0(x;κ0)

c1η0f0(x;κ0)

and note that f0(x1;κ0) < f0(x2;κ0) for |x1| > |x2|. By dividing each side of Eq. (17) by
c1η0f0(x2;κ0) and c1η0f0(x1;κ0), we get

−r1A(x2)2 < (r1 − r)

(
2(1− η0)fA(x1)

η0f0(x1;κ0)
−A(x1)

)
A(x1) . (18)

Note that A(x2) > 0 from the assumption in (c). Moreover, we can derive that A(x1) > 0
from Eq. (18): If A(x1) = 0, then it contradicts to Eq. (18). If A(x1) < 0, then, from
Eq. (18), we get (2(1− η0)fA(x1)/η0f0(x1;κ0)−A(x1)) < 0, which implies 0 ≤ 2(1 −
η0)fA(x1)/η0f0(x1;κ0) < A(x1). This is also a contradiction. Therefore A(x1) > 0.

On the other hand, the condition in (c), i.e, 2c1(1 − η0)fA(x1) ≤ r
r1
(ˆ̂ηf0(x1; κ̂) −

c1η0f0(x1;κ0)), is equivalent to the following one:

r1 − r

−r1

(
2(1− η0)fA(x1)

η0f0(x1;κ0)
−A(x1)

)
≤ A(x1) . (19)

Then, from Eq. (18), it follows thatA(x2) < A(x1). A(x2) < A(x1) implies f0(x2; κ̂)/f0(x1; κ̂) <
f0(x2;κ0)/f0(x1;κ0), and finally we obtain κ̂ < κ0.
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B. SUPPLEMENTAL MATERIALS
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Table 4. Summary of the anatomical labels and functions of the 41 Brodmann areas
Area No. Anatomical Labels and Functions

1, 2, 3 [ Primary somatosensory cortex ] somatosensory information processing
4 [ Primary motor cortex ] control of voluntary movements
5,7 [ Somatosensory association cortex ] somatosensory processing and

association, integration of visual and motor information
6 [ Supplementary motor cortex (medial) and premotor cortex (lateral) ]

Planning of complex, coordinated movements
8 [ Frontal eye field, part of frontal cortex ] planning complex movements, the

management of uncertainty
9, 46 [ Dorsolateral prefrontal cortex ] motor planning, organization and regulation
10 [ Anterior prefrontal cortex ] involved in strategic processes of memory

retrieval and executive function
11 [ Orbitofrontal cortex ] cognitive processing of decision-making
17 [ Primary visual cortex (V1) ] visual information processing
18 [ Secondary visual cortex (V2) ] shape recognition and visual attention,

storage of object recognition memory
19 [ Associative visual cortex (V3) ] shape recognition and visual attention,

processing of global motion
20 [ Inferior temporal gyrus ] high-level visual processing and recognition
37 [ Fusiform gyrus, occipitotemporal cortex ] face and word recognition,

within-category identification
23 [ Posterior cingulate cortex ] involved in emotion system

24, 32 [ Anterior cingulate cortex ] error detection, anticipation of tasks, attention,
motivation, and modulation of emotional responses

25 [ Subgenual cingulate cortex ] influences a vast network involved in changes in
appetite and sleep; the mood and anxiety; memory formulation; self-esteem

26, 29, 30 [ Retrosplenial cingulate cortex ] recall of episodic information
28, 34 [ Entorhinal cortex ] memory and navigation
35, 36 [ Perirhinal cortex ] visual perception and memory
38 [ Temporopolar area, part of the temporal cortex ] important area in self

representation, semantic (left) and autobiographic (right)
27 [ Piriform cortex ] part of olfactory system, odor identification
43 [ Primary gustatory cortex ] perception of taste
48 [ Retrosubicular area, a small part of the medial surface of the temporal lobe ]
41 [ Primary auditory cortex ] auditory information processing
42 [ Auditory association cortex ] auditory information processing
21 [ Middle temporal gyrus ] language and auditory processing
22 [ Superior temporal gyrus, of which the posterior part contains Wernicke’s

area ] language and auditory processing
39 [ Angular gyrus, part of Wernicke’s area ] related to language, mathematics

and cognition
40 [ Supramarginal gyrus, part of Wernicke’s area ] involved in reading both in

regards to meaning and phonology
44, 45 [ Broca’s area ] syntactic and semantic tasks
47 [ Inferior prefrontal gyrus ] processing of syntax in spoken and signed

languages, and more recently in musical syntax.
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Fig. 11. Subgraph with 50 edges obtained by the suggested procedures for the task type 1. The
solid and dotted lines indicate positive and negative partial correlation coefficients, respectively, and
the line intensity denotes their strength. Hub nodes are colored in yellow.
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Table 5. Summary of graph centrality measures for identification and
classification of hub nodes of the obtained network for the task type 1
of the 16th subject. Each number in parenthesis represents the rank
according to the measure. Note that high-degree nodes have either
high out-closeness or high in-closeness measures together with high
betweenness measures in general.

hub node degree out-closeness in-closeness betweenness

R26 53(1) .382(3) .0315(37) 740.18(1)
L21 50(2) .386(2) .0312(56) 446.74(2)
R23 46(3) .329(10) .0316(32) 313.39(6)
R22 40(4) .360(4) .0313(54) 340.84(5)
R42 33(5) .352(5) .0306(79) 20.67(44)
L39 31(6) .333(8) .0308(75) 56.33(31)
R17 31(7) .305(17) .0313(49) 145.22(16)
L23 28(8) .279(29) .0315(33) 93.23(25)
R21 27(9) .288(24) .0313(48) 71.93(28)
R43 27(10) .340(7) .0308(73) 198.78(10)
R44 27(11) .316(14) .0313(51) 102.46(23)
R9 26(12) .278(31) .0315(39) 107.51(22)
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Fig. 12. Subgraph with 50 edges obtained by the suggested procedures for the task type 2. The
solid and dotted lines indicate positive and negative partial correlation coefficients, respectively, and
the line intensity denotes their strength. Hub nodes are colored in yellow.
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Fig. 13. Subgraph with 50 edges obtained by the suggested procedures for the task type 3. The
solid and dotted lines indicate positive and negative partial correlation coefficients, respectively, and
the line intensity denotes their strength. Hub nodes are colored in yellow.
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Fig. 14. Subgraph with 50 edges obtained by the suggested procedures for the task type 4. The
solid and dotted lines indicate positive and negative partial correlation coefficients, respectively, and
the line intensity denotes their strength. Hub nodes are colored in yellow.
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Fig. 15. Subgraph with 50 edges obtained by the suggested procedures for the task type 5. The
solid and dotted lines indicate positive and negative partial correlation coefficients, respectively, and
the line intensity denotes their strength. Hub nodes are colored in yellow.
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Fig. 16. Degree of each node in the network for task type 1. The histogram in the bottom shows that
the degree distribution is far from a Gaussian distribution, which indicates that the obtained causal
network is far from random networks. The red dotted line separates hub nodes whose degree is
greater than the network mean plus one standard deviation.
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Fig. 17. Degree of each node in the network for task type 2. The histogram in the bottom shows that
the degree distribution is far from a Gaussian distribution, which indicates that the obtained causal
network is far from random networks. The red dotted line separates hub nodes whose degree is
greater than the network mean plus one standard deviation.
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Fig. 18. Degree of each node in the network for task type 3. The histogram in the bottom shows that
the degree distribution is far from a Gaussian distribution, which indicates that the obtained causal
network is far from random networks. The red dotted line separates hub nodes whose degree is
greater than the network mean plus one standard deviation.
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Fig. 19. Degree of each node in the network for task type 4. The histogram in the bottom shows that
the degree distribution is far from a Gaussian distribution, which indicates that the obtained causal
network is far from random networks. The red dotted line separates hub nodes whose degree is
greater than the network mean plus one standard deviation.
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Fig. 20. Degree of each node in the network for task type 5. The histogram in the bottom shows that
the degree distribution is far from a Gaussian distribution, which indicates that the obtained causal
network is far from random networks. The red dotted line separates hub nodes whose degree is
greater than the network mean plus one standard deviation.
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Table 6. Summary of graph centrality measures for identification and
classification of hub nodes of the obtained network for the task type 2
of the 16th subject. Each number in parenthesis represents the rank
according to the measure. Note that high-degree nodes have either
high out-closeness or high in-closeness measures together with high
betweenness measures in general.

hub node degree out-closeness in-closeness betweenness

L36 51(1) .276(2) .249(22) 671.94(1)
R30 44(2) .264(7) .254(14) 463.56(2)
R21 39(3) .243(26) .259(8) 123.46(24)
L28 38(4) .275(3) .238(39) 266.75(6)
R22 38(5) .247(19) .254(13) 126.99(21)
R20 36(6) .243(25) .259(7) 145.90(19)
R35 36(7) .235(38) .262(4) 303.73(5)
L21 35(8) .272(4) .226(53) 197.99(14)
L35 35(9) .233(41) .267(3) 349.28(4)
R19 34(10) .262(8) .239(38) 193.54(15)
R7 33(11) .249(17) .244(29) 262.35(8)
R1 31(12) .228(52) .258(9) 263.15(7)
R28 31(13) .260(9) .233(44) 175.89(17)
L17 30(14) .225(56) .261(5) 59.95(43)
L19 30(15) .264(6) .246(23) 441.28(3)

Table 7. Summary of graph centrality measures for identification and
classification of hub nodes of the obtained network for the task type 3
of the 16th subject. Each number in parenthesis represents the rank
according to the measure. Note that high-degree nodes have either
high out-closeness or high in-closeness measures together with high
betweenness measures in general.

hub node degree out-closeness in-closeness betweenness

R41 47(1) .395(1) .0527(48) 1298.34(1)
L28 43(2) .375(2) .0519(69) 673.52(4)
L34 26(3) .313(7) .0525(55) 342.39(13)
L18 23(4) .306(8) .0525(54) 279.86(15)
R39 22(5) .340(4) .0499(81) 190.01(22)
R20 21(6) .323(5) .0522(63) 254.93(18)
L37 20(7) .290(12) .0523(62) 195.36(21)
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Table 8. Summary of graph centrality measures for identification and
classification of hub nodes of the obtained network for the task type 4
of the 16th subject. Each number in parenthesis represents the rank
according to the measure. Note that high-degree nodes have either
high out-closeness or high in-closeness measures together with high
betweenness measures in general.

hub node degree out-closeness in-closeness betweenness

L26 44(1) .354(6) .0766(23) 740.30(1)
L5 40(2) .367(2) .0751(48) 399.07(4)
R29 39(3) .354(7) .0767(20) 639.48(2)
R5 36(4) .367(3) .0743(62) 209.36(15)
L34 33(5) .352(8) .0721(78) 155.71(17)
L43 30(6) .373(1) .0723(76) 206.66(13)
L29 27(7) .362(4) .0722(77) 268.38(12)
L27 26(8) .314(13) .0777(11) 454.00(3)
L20 24(9) .316(12) .0751(51) 284.25(9)

Table 9. Summary of graph centrality measures for identification and
classification of hub nodes of the obtained network for the task type 5
of the 16th subject. Each number in parenthesis represents the rank
according to the measure. Note that high-degree nodes have either
high out-closeness or high in-closeness measures together with high
betweenness measures in general.

hub node degree out-closeness in-closeness betweenness

L29 65(1) .600(7) .281(3) 678.50(1)
R3 62(2) .686(2) .254(32) 320.74(3)
L18 61(3) .743(1) .236(60) 129.99(16)
R4 58(4) .628(3) .257(27) 340.10(2)
L41 50(5) .587(8) .266(15) 242.92(7)
L9 47(6) .519(32) .277(5) 289.28(4)
L27 45(7) .563(19) .266(14) 285.54(5)
R5 45(8) .466(50) .269(11) 83.35(29)
L3 44(9) .579(9) .247(44) 68.39(34)
L44 44(10) .604(5) .253(34) 139.24(15)
R6 44(11) .628(4) .240(53) 93.32(24)
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