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Abstract. A general framework of a two-level nonoverlapping Schwarz algorithm for the Stokes problem is

developed. This framework allows both discontinuous and continuous pressure finite element spaces. The coarse

problem is built by algebraic manipulation after selecting appropriate primal unknowns just like in BDDC algorithms.

Performance of the suggested algorithm is presented depending on the selection of finite elements and primal un-

knowns. Under the same set of primal unknowns, the algorithm for the case with discontinuous pressure functions

outperforms one with continuous pressure functions. For the two-dimensional Stokes problem, the algorithm with a

set of primal unknowns consisting of velocity unknowns at corners, averages of velocity components over common

edges, and pressure unknowns at corners presents good scalability when continuous pressure test functions are used.

In both two- and three-dimensional Stokes problems, an improvement can be made for the case with continuous pres-

sure test functions by applying the suggested algorithm to the interface problem, which is obtained by eliminating

velocity unknowns and pressure unknowns interior to each subdomains.
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1. Introduction. There have been considerable researches on domain decomposition

methods for the Stokes problem [3, 8, 9, 10, 12, 13, 14, 15, 18]. In the work based on the

nonoverlapping subdomain partitions, Neumann-Neumann algorithms, BDDC and FETI-DP

algorithms have been developed and presented good scalability [8, 9, 10, 14, 15, 18]. Those

algorithms utilizing overlapping subdomains have been also considered in [3, 12, 13] for the

Stokes problem and almost incompressible elasticity problems.

In the approaches using nonoverlapping partitions, quite complicated primal unknowns

are necessary to achieve a good scalability so that the design and implementation of the

algorithms become difficult especially in the three dimensional problems. On the other hand,

in the approaches using overlapping partitions, an additional coarse triangulation is required

to build a coarse problem of the methods.

In the recent works [9, 10, 7, 11] developed by the authors jointly with Park, a good

scalability can be obtained using only the primal velocity unknowns differently to previously

developed methods [12, 13, 14, 15, 18]. In [7], a two-level nonoverlapping preconditioner was
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built by using a close connection of the dual and primal formulations of the Stokes problem

and convergence analysis for the GMRES iteration applied to the two-level nonoverlapping

preconditioner was provided.

The algorithm developed in [10] is a FETI-DP algorithm with a lumped preconditioner.

FETI-DP algorithms belong to a family of dual iterative substructuring methods, which are

known to be one of the most scalable domain decomposition methods for solving numerical

partial differential equations, see [4, 5]. A pair of inf-sup stable velocity and pressure finite

element spaces is introduced to a given triangulation of the domain and the continuity of the

finite element spaces is relaxed by decomposing the given domain into many subdomains.

Among the degrees of freedom on subdomain interfaces, some are selected as primal un-

knowns. A strong continuity is enforced to the primal unknowns and at the remaining part of

unknowns on the interface the continuity is imposed weakly by using Lagrange multipliers.

After elimination of the unknowns other than the Lagrange multipliers, a system on the dual

unknowns, i.e., the Lagrange multipliers, is solved iteratively with a preconditioner, which

accelerates the convergence of the iteration. Velocity at subdomain corners are selected as

the primal unknowns in the two-dimensional case and additionally averages of the velocity

over common faces are selected as primal unknowns in the three-dimensional case. In [9, 10]

it was proved that such selection of the primal unknowns gives the condition number bound,

C(H/h)(1 + log(H/h)) in 2D and C(H/h) in 3D for the FETI-DP algorithm with the

lumped preconditioner.

As a primal counterpart of FETI-DP algorithms, BDDC (Balancing Domain Decompo-

sition by Constraints) algorithms were introduced by Dohrmann [2] and further analyzed by

Mandel and Dohrmann [16]. Their close connection to the FETI-DP algorithms was studied

in [15, 1, 6, 17]. In our previous work [7], we developed a primal counterpart of the FETI-DP

algorithm for solving the Stokes problem. The primal algorithm was derived similarly to the

work in [15]. In the primal formulation, by using its close connection to the dual form of

the Stokes problem, a preconditioner for the primal form was designed so that the resulting

preconditioned linear system has all its eigenvalues as positive real numbers. The primal

counterpart of the FETI-DP algorithm turned out to be a two-level nonoverlapping Schwarz

algorithm.

The two-level nonoverlapping Schwarz algorithm can be applied to more general finite

element spaces such as Taylor-Hood finite elements with continuous pressure functions. In

this work, numerical experiments are carried out for the two-level nonoverlapping Schwarz

algorithm with various choices of finite element spaces and primal unknowns. Between the

cases with discontinuous and continuous pressure test functions under the same set of primal

unknowns, the case with discontinuous pressure test functions shows much better perfor-

mance. On the other hand, in the case of the continuous pressure test functions the Stokes

problem can be reduced to an interface problem by eliminating velocity and pressure un-
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knowns interior to each subdomains. The elimination process is called the static condensa-

tion, see [2]. The same algorithm can be applied to the interface problem and it shows much

better performance. In the two-dimensional case we observe good scalability with the set of

primal unknowns consisting of velocity unknowns at corners, edge averages of each velocity

components, and pressure unknowns at corners, when the algorithm is applied to the inter-

face problem. We also plot distribution of eigenvalues of the preconditioned system. For the

three-dimensional case, we observe that the static condensation results in a better distribution

of eigenvalues.

In Section 2, we introduce a model problem and in Section 3 we develop a general

framework for a two-level nonoverlapping Schwarz method for the Stokes problem. Previous

theories for the convergence are discussed in Section 4 and numerical experiments are carried

out in Section 5. Throughout this paper, C denotes a generic positive constant which does

not depend on any mesh parameters and the number of subdomains.

2. A model problem and finite element spaces. We consider the Stokes problem,

−4u +∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω,

(2.1)

where Ω is a bounded polygonal (polyhedral) domain inR2 (R3) and f ∈ [L2(Ω)]2 ([L2(Ω)]3).

A triangulation is provided for the domain Ω and a pair of velocity and pressure spaces (V̂ , P̂ )

is equipped for the triangulation.

The functions in the velocity space V̂ are continuous across the elements with zero trace

on the boundary of Ω and those in the pressure space P̂ can be continuous as well. We

note that our algorithm is not limited to discontinuous pressure spaces only. We enforce the

average zero condition on the pressure space and denote the resulting pressure space by P̂0,

i.e.,

P̂0 = P̂
⋂

L2
0(Ω),

where L2
0(Ω) is the space of square integrable functions that have zero average in Ω. We

assume that the pair (V̂ , P̂0) is inf-sup stable and obtain a discrete problem for (2.1):

Find (û, p̂) ∈ (V̂ , P̂0) satisfying
∫

Ω

∇û · ∇v dx−
∫

Ω

p̂∇ · v dx =
∫

Ω

f · v dx, ∀v ∈ V̂ ,

−
∫

Ω

∇ · û q dx = 0, ∀q ∈ P̂0.

(2.2)

In our approach, we consider an equivalent problem by employing the pressure space P̂

instead of P̂0 and obtain the following algebraic system:
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Find (û, p̂) ∈ (V̂ , P̂ ) such that

(2.3)

(
K̂ B̂T

B̂ 0

)(
û

p̂

)
=

(
f

0

)
,

where K̂ is the stiffness matrix corresponding to
∫
Ω
∇û · ∇v dx and B̂ is the matrix to the

term − ∫
Ω
∇ · û q dx with q ∈ P̂ . The advantage of using P̂ is that we do not need to

deal with the global pressure component so that we will not necessarily have primal pressure

unknowns in our domain decomposition methods, see [9, 10, 7]. In the following section, we

will develop a two-level nonoverlapping Schwarz algorithm applied to the above algebraic

system (2.3) obtained from the pair (V̂ , P̂ ).

3. A two-level nonoverlapping Schwarz algorithm. We now decompose Ω into a

nonoverlapping subdomain partition {Ωi}N
i=1 in such a way that subdomain boundaries align

to the given triangulation in Ω. We introduce local finite element spaces,

V (i) = V̂ |Ωi
and P (i) = P̂ |Ωi

.

In the product spaces V and P defined as

V =
N∏

i=1

V (i) and P =
N∏

i=1

P (i),

the functions can be discontinuous across the subdomain boundaries. When the pressure

functions in P̂ are discontinuous, P is essentially the same as P̂ .

Among those unknowns in V , we select some unknowns on the subdomain interface

as primal unknowns and enforce strong continuity to obtain Ṽ , where functions can be dis-

continuous at the remaining part of the interface unknowns. We call the remaining interface

unknowns dual unknowns. The notations, u
(i)
I , u

(i)
∆ , and u

(i)
Π are used to denote the un-

knowns at the interior part of Ω(i), the dual unknowns on ∂Ω(i), and the primal unknowns on

∂Ω(i), respectively. The spaces V
(i)
I , V

(i)
∆ , and V

(i)
Π consist of the corresponding velocity un-

knowns, u
(i)
I , u

(i)
∆ , and u

(i)
Π , respectively. For the pressure unknowns p in P , we may select

the primal unknowns when P̂ consists of continuous pressure functions. For this case, we use

p
(i)
I , p

(i)
∆ , and p

(i)
Π to denote interior unknowns, dual unknowns, and the primal unknowns,

respectively. As in the velocity spaces, we introduce related pressure spaces P
(i)
I , P

(i)
∆ , and

P
(i)
Π .

We now introduce restriction operators to each subdomain Ωi,

Rp,i : P → P (i) and Rv,i : V → V (i),

and the corresponding extension operators

RT
p,i : P (i) → P and RT

v,i : V (i) → V.
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Let
(

K(i) B(i)

B(i)T
0

)

be the matrix of the local Stokes problem discretized with the pair of finite element spaces

(V (i), P (i)).

We introduce extension operators

R̃v : V̂ → Ṽ and R̃p : P̂ → P̃ .

We note that by using these extension operators the system of the Stokes problem in (2.3)

discretized by the pair (V̂ , P̂ ) can be rewritten as

(3.1)

(
K̂ B̂T

B̂ 0

)
=

(
R̃T

v 0

0 R̃T
p

) (
K̃ B̃T

B̃ 0

) (
R̃v 0

0 R̃p

)
,

where
(

K̃ B̃T

B̃ 0

)

is the system of the Stokes problem discretized by the pair (Ṽ , P̃ ),

We suggest a preconditioner, which is similar to the one in [7] for the Stokes problem

discretized with discontinuous pressure finite element spaces,

(3.2) M−1 =

(
R̃T

v Dv 0

0 RT
p Dp

)(
K̃ B̃T

B̃ 0

)−1 (
DvR̃v 0

0 DpR̃p

)
.

Here Dv and Dp are diagonal matrices with weight factors for velocity unknowns ũ ∈ Ṽ and

pressure unknowns p̃ ∈ P̃ . The weight factors in Dv are defined as

Dv(xv) =

{
1

ν(xv) for the dual unknowns,

1 for the interior and primal unknowns,

where the notation xv is used to denote the node corresponding to each velocity unknown

and ν(xv) is the number of subdomains containing the node xv . The weight factors in Dp are

defined similarly.

We introduce local velocity and pressure spaces consisting of interior and dual unknowns,

V (i)
r = V

(i)
I × V

(i)
∆ and P (i)

r = P
(i)
I × P

(i)
∆ .

From these local spaces, we obtain corresponding product spaces

Vr =
N∏

i=1

V (i)
r and Pr =

N∏

i=1

P (i)
r .
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Let

A(i)
rr =




K
(i)
II K

(i)
I∆ B

(i)
II

T
B

(i)
∆I

T

K
(i)
∆I K

(i)
∆∆ B

(i)
I∆

T
B

(i)
∆∆

T

B
(i)
II B

(i)
I∆ 0 0

B
(i)
∆I B

(i)
∆∆ 0 0




, A
(i)
rΠ =




K
(i)
IΠ B

(i)
ΠI

T

K
(i)
∆Π B

(i)
Π∆

T

B
(i)
IΠ 0

B
(i)
∆Π 0




,

A
(i)
ΠΠ =

(
K

(i)
ΠΠ B

(i)
ΠΠ

T

B
(i)
ΠΠ 0

)
, A

(i)
Πr = A

(i)
rΠ

T
.

Using these matrices, we obtain the assembled matrices

Arr = diagi(A
(i)
rr ), AΠr =

(
R

(1)
Π

T
A

(1)
Πr · · · R

(N)
Π

T
A

(N)
Πr

)
,

and

AΠΠ =
N∑

i=1

R
(i)
Π

T
A

(i)
ΠΠR

(i)
Π ,

where R
(i)
Π : V̂Π × P̂Π → V

(i)
Π × P

(i)
Π is the restriction of the primal unknowns to the

subdomain Ω(i). We introduce the coarse problem matrix,

SΠΠ = AΠΠ −AΠrA
−1
rr AT

Πr.

Let Rr : V̂ × P̂ → Vr × Pr and RΠ : V̂ × P̂ → V̂Π × P̂Π be restriction operators and

Dr =

(
Dr,v 0

0 Dr,p

)

be the matrix of weight factors corresponding to the unknowns in Vr × Pr. Here Dr,v and

Dr,p are submatrices of Dv and Dp in (3.2), respectively. The preconditioner M−1 is then

written as

(3.3) M−1 = RT
r DrA

−1
rr DrRr + RT

0 S−1
ΠΠR0,

where

R0 = RΠ −AΠrA
−1
rr DrRr.

We note that the preconditioner consists of solving independent local Stokes problem dis-

cretized by the pair (V (i)
r , P

(i)
r ) and solving one global coarse problem associated to the

primal unknowns.

In our algorithm, the average free condition on pressure functions is relaxed to remove the

global component in the pressure function, see (2.3). This results in one null space component
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(0, 1) ∈ (V̂ , P̂ ). We introduce the L2-orthogonal projection PS onto S , a subspace of (V̂ , P̂ )

which is orthogonal to the null space N = {(0, 1)}. Since the system in (2.3) is indefinite, the

GMRES method is used as an iterative solver. Therefore the system is solved on the subspace

S with the GMRES method, i.e., the GMRES method is applied to

PT
S M̂−1PSPT

S

(
K̂ B̂T

B̂ 0

)
PS

(
û

p̂

)
= PT

S M̂−1PSPT
S

(
f

0

)
,

where M̂−1 is the preconditioner in (3.3). Since PS is the orthogonal projection and the

residual vector r from (2.3) is in the subspace S , we only need to enforce PT
S on the current

preconditioned residual vector z once at each iteration.

4. Previous theories for convergence and static condensation. In this section, we will

discuss the convergence of the GMRES method applied to our algorithm. The convergence of

the GMRES method was analyzed in our previous work [7] for the case with discontinuous

pressure spaces. For this case, our algorithm selects primal velocity unknowns which are

unknowns at subdomain corners or averages of each velocity components over common edges

in two dimensions. To achieve a scalability in three dimensions, averages of each velocity

components over common faces in addition to velocity unknowns at corners are required.

The two-level nonoverlapping Schwarz algorithm applied to the case with a discontinu-

ous pressure space is a primal counterpart of the FETI-DP algorithm developed in [9, 10, 11].

Using this, it was shown that the preconditioned primal form and the FETI-DP algorithm

have the same spectra except zero and one. Therefore the preconditioned primal form in

the two-level nonoverlapping Schwarz algorithm has its eigenvalues all positive. In de-

tail, the minimum eigenvalue is bounded below by a constant which is independent of the

mesh size, and the number of subdomains and the maximum eigenvalue follows the growth

(H/h)(1 + log(H/h)) with primal unknowns consisting of velocity unknowns at corners in

the two dimensions. In the two-dimensional case, by using averages of velocity unknowns

over edges rather than velocity unknowns at corners a better bound CH/h of the maximum

eigenvalue was obtained. The same bound CH/h of the maximum eigenvalue was analyzed

for the three-dimensional case with primal unknowns consisting of velocity unknowns at cor-

ners and averages of velocity unknowns over common faces.

However, in the case of continuous pressure spaces there does not exist the correspond-

ing FETI-DP algorithm which results in a positive definite system. In this paper, we study

performance of our method for the continuous pressure spaces by carrying out numerical ex-

periments. To the best of our knowledge there has not been even numerical study on nonover-

lapping domain decomposition methods applied to the continuous pressure spaces.

As we will see in our numerical results in Section 5, iteration counts in continuous pres-

sure finite elements are quite large compared to those in discontinuous pressure finite ele-

ments. One advantage of using continuous pressure finite elements is that the algebraic sys-
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tem (3.1) can be reduced to the unknowns on the subdomain interface by eliminating velocity

and pressure unknowns located at the interior of each subdomains. This requires solving local

Stokes problems. We call this process the static condensation. After the elimination process,

we are left with the system of the interface unknowns UΓ,

(4.1) SΓΓUΓ = gΓ,

where

UΓ =

(
uΓ

pΓ

)

and SΓΓ is the Schur complement matrix of (3.1). Here uΓ and pΓ denote velocity and

pressure unknowns located on the subdomain interface, respectively.

The preconditioner (3.2) can also be modified according to the static condensation. Just

like in the previous section, we then build the local and coarse problems in the preconditioner

by algebraic manipulation on the system (4.1) after selecting an appropriate set of primal

unknowns from UΓ.

The resulting algorithm obtained from the static condensation is a BDDC method for the

Stokes problem with continuous pressure finite elements. We also note that a BDDC algo-

rithm for the Stokes problem was studied in [15] for the case with discontinuous pressure

finite elements. However there has been no theoretical or numerical study carried out for

the case with continuous pressure finite elements. In the work [15], the average zero condi-

tion is enforced on pressure functions and primal pressure unknowns, which are constant in

each subdomains, appear in the construction of the preconditioner. The static condensation

in [15] produced a system with velocity unknowns on the subdomain interface and the primal

pressure unknowns while the algebraic system considered in this paper can be reduced to the

interface problem with both velocity and pressure unknowns on the subdomain interface, see

(4.1).

We stress that in our framework, we are more free to choose primal unknowns, for ex-

ample, we may select the set of primal unknowns from only velocity unknowns without in-

troducing any primal pressure unknowns. Such selection of primal unknowns can make im-

plementation much simpler and produces a symmetric and positive definite coarse problem

matrix in the preconditioner.

5. Numerical experiments. We perform numerical experiments of our method for the

Stokes problem. In two dimensions, we consider a model problem in the unit square do-

main, Ω = [0, 1]2, and divide it into a uniform rectangular partition. Here Nd = 32 means

that the domain Ω is partitioned into 3× 3 uniform square subdomains. We triangulate each

subdomain with uniform triangles and then we use (H/h)2 to denote the number of trian-

gles in each subdomain. To each triangle, we associate a Taylor-Hood finite element space,
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TABLE 1

Iteration counts in our method for the two-dimensional Stokes problem with the Taylor-Hood finite element

space P2(h) − P1(h). Iter: iteration count, WOS: results without the static condensation, WS: results with the

static condensation, Nd: number of subdomains, H/h: local problem size factor, vc: the set of primal unknowns

consisting of velocity unknowns at corners, vc + ve: the set of primal unknowns consisting of velocity unknowns at

corners and averages of velocity unknowns over edges.

Iter (WOS/WS) Nd = 32 Iter (WOS/WS) H/h = 4

H/h vc vc + ve Nd vc vc + ve

2 45/27 40/25 32 69/25 59/21

3 58/24 46/24 42 92/30 71/24

4 69/25 59/21 52 108/34 70/26

5 78/24 66/23 62 117/37 69/24

6 85/25 71/23 82 138/44 67/26

7 93/27 88/23 102 146/44 69/27

8 94/26 90/22 122 147/48 67/26

P2(h)−P1(h), where both the velocity and pressure functions are continuous. Since our sys-

tem (3.1) is indefinite, we apply the GMRES method for solving the preconditioned system.

We report iteration counts required in the GMRES method to get the relative residual norm

reduced by a factor of 106.

In Table 1, we report the results obtained from the two dimensional model problem. Here

we selected the primal unknowns from only velocity unknowns and tested the algorithm for

both systems with and without the static condensation. The performance in the case without

the static condensation is not quite satisfactory for both sets of primal unknowns, the set vc

consisting of velocity unknowns at corners and the set vc + ve consisting of averages of

velocity unknowns over edges in addition to the velocity unknowns at corners. In the case

of the static condensation, we observe good performance with respect to the local problem

size factor H/h as well as the number of subdomains Nd. Comparing the selection of primal

unknowns, we observe that the additional primal unknowns result in better scalability for

increasing the number of subdomains while there seems to be not much improvement related

to the local problem size.

In Table 2, we present the performance of our method applied to the finite element space

with discontinuous pressure functions. Here we used P1(h) − P0(2h) finite element space.

As we mentioned, we can not reduce the system (3.1) to the interface problem with both

velocity and pressure unknowns, since the pressure functions can be discontinuous. We report

the iteration count of the GMRES method applied to (3.1) with the preconditioner (3.2).

Here we select velocity unknowns at corners as the primal unknowns. As proved in [10],

the preconditioned system has all positive eigenvalues and its performance is similar to that

obtained from the corresponding FETI-DP algorithm, which was shown to have the condition
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TABLE 2

Iteration counts in our method for the two-dimensional Stokes problem with P1(h) − P0(2h) and the set of

primal unknowns consisting of velocity unknowns at corners. Iter: iteration count, Nd: number of subdomains,

H/h: local problem size factor.

H/h Iter (Nd = 32) Nd Iter (H/h = 8)

4 14 32 17

6 15 42 21

8 17 52 23

10 19 62 24

12 20 82 25

14 21 102 26

16 22 122 26

number bound C(1+log(H/h))(H/h). Comparing the results in Tables 1 and 2, we observe

that our algorithm with the static condensation gives quite competitive results in the case of

the continuous pressure function. We note that the factors H/h = 4 in Table 1 and H/h = 8

in Table 2 give the same number of velocity unknowns in each subdomain.

In the case of the continuous pressure function, we may include the pressure unknowns

at subdomain corners as the primal unknowns. In Table 3 we tested our method for the two-

dimensional Stokes problem by choosing velocity unknowns at subdomain corners, velocity

averages over common edges, and pressure unknowns at subdomain corners as the primal un-

knowns. We observe good performance in both cases, increasing the local problem size factor

H/h and the number of subdomains Nd. With the static condensation and with additional pri-

mal unknowns, the pressure unknowns at corners, we get the iteration counts which present

better performance than the result in Table 2 with the discontinuous pressure functions.

In Figure 1, we plot eigenvalues of the preconditioned system in our method for various

selection of primal unknowns and for the choice of pressure functions. Here we consider the

two-dimensional Stokes problem. In the case of discontinuous pressure functions with the

velocity unknowns at corners as the primal unknowns, the eigenvalues are all positive except

one zero eigenvalue, which is due to the extension of the pressure space P̂0 to P̂ by relaxing

the average zero condition. This case is supported by the theory developed in our previous

work [10].

For the case with continuous pressure functions, we also present plots of eigenvalues

with different choices of primal unknowns in Figure 1. The results presented here is from

the preconditioned system without the static condensation. In both cases that the primal un-

knowns consist of the velocity unknowns at corners only and consist of the velocity unknowns

at corners and velocity averages over edges, we obtain complex eigenvalues and we observe

that the real parts of all eigenvalues are positive. By adding velocity averages, we observe less
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TABLE 3

Iteration counts in our method for the two-dimensional Stokes problem with the Taylor-Hood finite element

space P2(h) − P1(h) using the primal unknowns consisting of velocity unknowns at corners, averages of velocity

unknowns over edges, and pressure unknowns at corners. Iter: iteration count, WOS: results without the static

condensation, WS: results with the static condensation, Nd: number of subdomains, H/h: local problem size

factor.

H/h Iter (WOS/WS) Nd = 32 Nd Iter (WOS/WS) H/h = 4

2 14/14 32 28/16

3 22/15 42 29/16

4 28/16 52 30/16

5 35/16 62 30/15

6 41/17 82 30/16

7 47/17 102 30/16

8 48/18 122 30/15

number of pure complex eigenvalues and better distribution of eigenvalues. When pressure

unknowns at corners are included in the set of primal unknowns, we obtain all the eigenvalues

positive except one zero eigenvalue; the similar property was proved for the preconditioned

system with discontinuous pressure functions in [10, 7].

In Figure 2, we plot eigenvalues of the preconditioned system in two-dimensional Stokes

problem for the cases without and with static condensation. We observe that the static con-

densation makes the distribution of eigenvalues more clustered near one and less clustered

near zero, which results in faster convergence in the GMRES iteration. In the case of static

condensation, we observe complex eigenvalues for all three sets of primal unknowns. In

the algorithm with static condensation and with the largest set of primal unknowns, veloc-

ity unknowns at corners, averages of velocity unknowns over common edges, and pressure

unknowns at corners, there is no nonzero eigenvalues clustered near zero and all nonzero

eigenvalues are located in a region away from zero.

In Table 4, we present performance of our method for the three-dimensional Stokes prob-

lem with Q2(h) − Q1(h) finite elements. We consider a model problem in the unit cubic

domain Ω = [0, 1]3 and we triangulate it with uniform cubes. Subdomain partition is aligned

to the given triangulation and N3 means the domain Ω is partitioned into N×N×N uniform

cubic subdomains. The algorithm is tested for various selection of primal unknowns. Results

with the static condensation are also reported.

In the left columns, the performance regarding to the local problem size factor H/h is

presented for both the cases without and with the static condensation. Here we fix the subdo-

main partition Nd = 33 and increase the local problem size. We observe good performance

for the sets of primal unknowns, vc + vf and vc + vf + pc, with the static condensation,

where vc and pc denote velocity unknowns and pressure unknowns at corners, respectively,
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FIG. 1. Plots of eigenvalues in the two-dimensional Stokes problem with P1(h)− P0(2h) (H/h = 8, Nd =

32) and with P2(h) − P1(h) (H/h = 4, Nd = 33): vc denotes the set of primal unknowns consisting of velocity

unknowns at corners only, vc + ve denotes the set of primal unknowns consisting of velocity unknowns at corners

and averages of velocity unknowns over edges, and vc + ve + pc denotes the set of primal unknowns consisting of

velocity unknowns at corners, averages of velocity unknowns over edges, and pressure unknowns at corners.

and vf denotes averages of velocity unknowns over common faces. The notation vc + vf is

used for the set of primal unknowns with vc and vf . We can see that the static condensation

improves convergence a lot in the GMRES iteration. As observed already in [9, 7], more

primal unknowns other than velocity unknowns at corners are required to achieve scalability

in the three-dimensional problem.

In the right columns of Table 4, performance of our method is given for the number of

subdomains Nd. Here we fix the number of elements in each subdomain with H/h = 4 and

increase the number of subdomains. For the cases with vc+vf and vc+vf +pc, we observe

good scalability. The static condensation reduces the iteration count almost by half.

In the three-dimensional Stokes problem, the static condensation improves the scalability

quite well while additional primal pressure unknowns at corners seem to give a little improve-

ment in the scalability. For the three-dimensional Stokes problem, our method with the set

of primal unknowns, velocity unknowns at corners and averages of velocity unknowns over

faces, and with the static condensation, could provide quite good performance.
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FIG. 2. Plots of eigenvalues in the two-dimensional Stokes problem with P2(h) − P1(h) (H/h = 4, Nd =

33): vc denotes the set of primal unknowns consisting of velocity unknowns at corners, vc + ve denotes the set

of primal unknowns consisting of velocity unknowns at corners and averages of velocity unknowns over edges, and

vc + ve + pc denotes the set of primal unknowns consisting of velocity unknowns at corners, averages of velocity

unknowns over edges, and pressure unknowns at corners.

In Figure 3, we plot eigenvalues of the preconditioned system in our method for the

three-dimensional Stokes problem. We compare the results from various selection of pri-

mal unknowns and for the cases with or without the static condensation. Differently to the

two-dimensional case, we observe complex eigenvalues for all cases. When the static con-

densation is applied to the case with velocity unknowns at corners as the primal unknowns, it

does not improve the distribution of eigenvalues, remaining many eigenvalues clustered near

zero. For the other two cases with a larger set of primal unknowns including averages of

velocity over faces or pressure unknowns at corners, we observe that the static condensation

gives better distribution with more eigenvalues clustered near one and less eigenvalues near

zero. Comparing the last two cases regarding to the sets of primal unknowns with and without

pressure unknowns at corners, we can see that additional pressure unknowns seem to give a

little improvement in achieving a better performance.
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