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Abstract

The aim of this paper is to address some results closely related to the conjecture
of Kosniowski about the number of fixed points on a unitary S1-manifold with only
isolated fixed points. More precisely, if certain S1-equivariant Chern characteristic
number of a unitary S1-manifold M is non-zero, we give a sharp lower bound on
the number of isolated fixed points in terms of certain integer powers in the S1-
equivariant Chern number. In addition, in this paper we also deal with the case of
oriented unitary Tn-manifolds.

1 Introduction and Main results

A smooth manifold equipped with a complex vector bundle structure on the stable
tangent bundle is called a unitary manifold or stable complex manifold, while a smooth
manifold equipped with a complex vector bundle structure on the tangent bundle is
called a almost complex manifold. If a Lie group G acts smoothly on a unitary manifold
(resp., almost complex manifold) and if the differential of each element of G preserves
the given complex vector bundle structure, then M is called a unitary G-manifold (resp.,
almost complex G-manifold). In particular, a unitary torus manifold (or unitary toric
manifold) is a closed oriented stable complex manifold of real dimension 2n admitting an
effective Tn-action with a non-empty fixed-point set. In fact, in this case the fixed-point
set consists of only isolated points, since the action of Tn is assumed to be effective.

Now let S1 act on a closed connected manifold whose fixed points are all isolated.
Since the tangent space at a fixed point has the complex structure determined by the
isotropy representation of S1, the real dimension of M is always even, although the
complex structure is not canonical, in general. However, it is the case if the manifold is
a unitary S1-manifold. Let P be an isolated fixed point. Then the tangent space TPM
has two orientations: one induced from the orientation of M and the other induced
from the complex structure. We define the sign of the point P by

ε(P ) = ±1,
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depending on whether or not these two orientations agree. Note that if the manifold M
is an almost complex S1-manifold, then we always have ε(P ) = 1.

The aim of this paper is to address some results closely related to the following
conjecture of Kosniowski ([4], Conjecture A) about the number of fixed points on a
unitary S1-manifold with only isolated fixed points.

Conjecture 1.1. Let M be a connected oriented closed unitary S1-manifold of di-
mension 2n with only isolated fixed points. If M does not bound a unitary S1-manifold
equivariantly, then the number of isolated fixed points is greater than or equal to a linear
function f(n) of n.

According to the paper [4] of Kosniowski, the linear function f(n) is expected to be
n
2 . This conjecture suggests that the number of fixed points is large if the dimension is
large and if the manifold is not a boundary. In view of our results of this paper (e.g.,
Theorem 1.3 below), however, his conjecture seems to be a little bit rough. Related,
but not directly, to this conjecture, note also that recently there are some works ([9],
[6], [5]) by Pelayo and Tolman, Li and Liu, and Li (see also [7]).

On the other hand, as in the book ([3], Appendix D, Section 1.5) of Guillemin,
Ginzburg, and Karshon concerning the equivariant boundedness of a stable complex
T k-manifold, cobordant oriented stable complex manifolds have the same characteristic
numbers, and the converse is also true. For the sake of clarity and later reference, we
state this fact as follows.

Theorem 1.2. For each 1 ≤ k ≤ n, let M be a closed oriented stable complex manifold
admitting a T k-action with isolated fixed points. Then M bounds a unitary T k-manifold
equivariantly if and only if all T k-equivariant Chern characteristic numbers of M are
zero.

With these understood, our first main result that can be regarded as a more refine-
ment of the conjecture of Kosniowski is

Theorem 1.3. Let M be a unitary S1-manifold of dimension 2n with only isolated
fixed points. Let i1, i2, · · · , in be non-negative integers such that i1 + 2i2 + · · ·+nin = n.
Suppose that M does not bound a unitary S1-manifold equivariantly in such a way that

〈c1(M)i1c2(M)i2 · · · cn(M)in , [M ]〉 6= 0.

Then the number of isolated fixed points is greater than or equal to

max{i1, i2, · · · , in}+ 1.

Here ci(M) means the i-th S1-equivariant Chern class of M .
Note that S6 has the standard almost complex structure which can be given by

writing it as the quotientG2/SU(3) of the Lie groupG2 by SU(3), and it can be provided
with a suitable S1-action with two isolated fixed points. Thus, S6 equipped with the
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standard almost complex structure does not bound a unitary S1-manifold equivariantly
(see [4], p. 338 for details). Since the number of isolated fixed points of an effective
S1-action on S6 is equal to the Euler-Poincaré characteristic of S6, 〈c3(S6), [S6]〉 is equal
to two that is clearly non-zero. Hence, the example of S6 shows that the lower bound
of Theorem 1.2 is very sharp. In Section 2, we will also provide more concrete and
interesting case concerning the conjecture of Kosniowski (see Corollary 2.4).

As an easy consequence of Theorem 1.2, we can reprove a result of Hattori ([2],
Corollary 4.3).

Corollary 1.4. Let M be a closed oriented unitary S1-manifold of dimension 2n with
only isolated fixed points. If

〈c1(M)n, [M ]〉 6= 0,

then the number of the isolated fixed points is greater than or equal to n+ 1.

As another special case, the following corollary holds.

Corollary 1.5. Let M be a closed oriented unitary S1-manifold of dimension 2n with
non-empty isolated fixed points. Suppose that M does not bound a unitary S1-manifold
equivariantly. Then the number of the isolated fixed points is greater than or equal to 3,
unless n is equal to 1 or 3.

Proof. Since the number of isolated fixed points of an effective S1-action is equal to the
Euler Poincare characteristic of M , 〈cn(M), [M ]〉 is non-zero. Hence, it follows from
Theorem 1.2 that the number of isolated fixed points is greater than or equal to 2. On
the other hand, a corollary of Theorem 5 in [4] says that if M is a unitary S1-manifold
with two fixed points, then M bounds S1-equivariantly or the dimension of M is two
or six. Therefore, in our case M cannot have two isolated fixed points. This completes
the proof of Corollary 1.5

It has been known that a circle action on an even dimensional manifold cannot have
only one isolated fixed point (e.g., see [1], Proposition 3.3). Corollary 1.5 and its proof
reproves this fact and more for certain unitary S1-manifolds. Note also that the lower
bound in Corollary 1.5 is very sharp, as the complex projective space CP 2 clearly shows.

Our second main result which is an immediate consequence of Theorem 1.2 is the fol-
lowing theorem which is also closely related to the conjecture of Kosniowski (Conjecture
1.1).

Theorem 1.6. Let M be a closed oriented unitary Tn-manifold of dimension 2n with
only isolated fixed points. Let i1, i2, · · · , in be non-negative integers such that i1 + 2i2 +
· · · + nin = n. Suppose that M does not bound a unitary Tn-manifold equivariantly in
such a way that

〈(cTn

1 (M))i1(cT
n

2 (M))i2 · · · (cTn

n (M))in , [M ]〉 6= 0.
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Then the number of the isolated fixed points is greater than or equal to

max{i1, i2, · · · , in}+ 1.

Here cT
n

i (M) means the i-th Tn-equivariant Chern class of M (see Section 3 for
more details).

We organize this paper as follows. In Section 2, we give a lower bound on the
number of fixed points for a unitary S1-manifold with only isolated fixed points under
the non-triviality of certain S1-equivariant Chern characteristic number. In the same
section, we also present a result related to the conjecture of Kosniowski, Conjecture 1.1
(see Corollary 2.4). In Section 3, in a similar vein we give a lower bound on the number
of fixed points for a unitary Tn-manifold with only isolated fixed points.

2 Proof of Theorem 1.3: unitary S1-manifolds

The goal of this section is to first set up some basic notations and give some elementary
material for the later use. Then we give a proof of Theorem 1.3 which will play an
important role in the proof of Theorem 1.6.

Let E be a complex vector bundle of rank m over a smooth manifold M of real
dimension 2n. For the sake of simplicity, let S1 act on a unitary M whose fixed points
are all isolated, and let P1, P2, · · · , Pr denote all the fixed points. Now suppose that
the S1-action on M can be lifted to E. Then the fiber EPi at the point Pi is a complex

S1-module to which we can associate integer weights a
(i)
1 , a

(i)
2 , · · · , a(i)m .

For instance, the tangent bundle TM can be taken to be such a complex vector

bundle E, so that TPiM can be written as ⊕nj=1V
(i)
j . Here V

(i)
j is isomorphic to C by

an isomorphism under which the representation of S1 on V
(i)
j is given by t 7→ tk

(i)
j with

some non-zero integer k
(i)
j . We may also assume without loss of generality that the

integer weights k
(i)
1 , k

(i)
2 , · · · , k(i)n are chosen in such a way that the orientations on

V
(i)
j = C induce the orientation of TPiM .

Let us denote by σj(Pi) the j-th elementary symmetric function of n variables k
(i)
1 ,

k
(i)
2 , · · · , k(i)n . Then the well-known ABBV localization theorem of Atiyah, Bott, Berline

and Vergne can be stated as follows.

Theorem 2.1. Let M be a unitary S1-manifold of dimension 2n with only isolated
fixed points P1, P2, · · · , Pr. Assume that i1 + 2i2 + · · · + nin is equal to n for some
non-negative integers i1, i2, · · · , in. Then we have

(2.1) 〈c1(M)i1c2(M)i2 · · · cn(M)in , [M ]〉 =
r∑
i=1

ε(Pi)
σ1(Pi)

i1σ2(Pi)
i2 · · ·σn(Pi)

in∏n
j=1 k

(i)
j
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In order to prove the main theorem, we need to set up more notations. For each
1 ≤ j ≤ n, let

{σj(Pi)}ri=1 = {τ (j)1 , τ
(j)
2 , · · · , τ (j)lj

}.

Here we may assume without loss of generality that all τ
(j)
1 , τ

(j)
2 , · · · , τ (j)lj

are non-zero

(and distinct, by definition). Note also that lj is always less than or equal to r. Now
we are ready to state and prove the following

Theorem 2.2. Let M be a unitary S1-manifold of dimension 2n with only isolated fixed
points P1, P2, · · · , Pr. Let i1, i2, · · · , in be non-negative integers such that i1+2i2+ · · ·+
nin = n. Suppose that

(2.2) 〈c1(M)i1c2(M)i2 · · · cn(M)in , [M ]〉 =
r∑
i=1

ε(Pi)
σ1(Pi)

i1σ2(Pi)
i2 · · ·σn(Pi)

in∏n
j=1 k

(i)
j

6= 0.

Then r is greater than or equal to max{i1, i2, · · · , in}+ 1.

Proof. For the sake of simplicity, assume that i1, i2, · · · , ik are all non-zero integers in
the equation (2.2), since the proof of other cases is similar. Then it follows from the
assumption (2.2) that

(2.3) 〈c1(M)i1c2(M)i2 · · · ck(M)ik , [M ]〉 =

r∑
i=1

ε(Pi)
σ1(Pi)

i1σ2(Pi)
i2 · · ·σk(Pi)ik∏n

j=1 k
(i)
j

6= 0

with i1 + 2i2 + · · ·+ kik = n and i1, i2, · · · , ik ≥ 1.
Due to the ABBV localization formula and the dimensional reason, the following

lemma is obvious, but it plays an important role in the proof.

Lemma 2.3. For each 0 ≤ t1 ≤ i1 − 1, we have

r∑
i=1

ε(Pi)
σ1(Pi)

t1σ2(Pi)
i2 · · ·σk(Pi)ik∏n

j=1 k
(i)
j

= 0.

Now, assume first that i1 is greater than or equal to l1. Then we will derive a
contradiction. Therefore, we can conclude that i1 is strictly less than l1. Since l1 is
always less than or equal to r, we should have i1 + 1 ≤ r.

For the proof, let

As =
∑

1≤i≤r, σ1(Pi)=τ
(1)
s

ε(Pi)
σ2(Pi)

i2 · · ·σk(Pi)ik∏n
j=1 k

(i)
j

, 1 ≤ s ≤ l1.
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Then, it follows from Lemma 2.3 that we can obtain a system of equations, as follows.

A1 +A2 + · · ·+Al1 = 0

τ
(1)
1 A1 + τ

(1)
2 A2 + · · ·+ τ

(1)
l1
Al1 = 0

· · ·

(τ
(1)
1 )i1−1A1 + (τ

(1)
2 )i1−1A2 + · · ·+ (τ

(1)
l1

)i1−1Al1 = 0.

(2.4)

Since i1 is assumed to be greater than or equal to l1, τ
(1)
1 , τ

(1)
2 , · · · , τ (1)l1

are mutually
distinct, and the coefficient matrix of the first l1 lines in the system of equations (2.4)
is non-singular, we should have

A1 = A2 = · · · = Al1 = 0.

But this would imply from the equation (2.3) that

〈c1(M)i1c2(M)i2 · · · ck(M)ik , [M ]〉 =

l1∑
s=1

(τ (1)s )i1As = 0,

which is clearly a contradiction to the hypothesis of Theorem 2.1.
Now apply the exactly same argument to all other cases of i1, i2, · · · , ik, so that we

can conclude that ij + 1 ≤ lj ≤ r for j = 2, 3, · · · , k. To do so, Lemma 2.3 needs to
be suitably modified in such a way that we can apply it to the cases of i2, i3, · · · , ik,
and clearly it can be made without any difficulty. This implies that r is greater than or
equal to

max{i1, i2, · · · , in}+ 1,

which completes the proof of Theorem 2.2.

As an interesting corollary related to the conjecture of Kosniowski above, we have
the following

Corollary 2.4. Let M be a closed connected unitary S1-manifold of dimension 2n with
only isolated fixed points. Let i1, i2, · · · , in be positive integers such that i1 + 2i2 + · · ·+
kik = n. If M satisfies

〈c1(M)i1c2(M)i2 · · · ck(M)ik , [M ]〉 6= 0,

then the number r of isolated fixed points is greater than or equal to

f(n) :=

[
2n

k(k + 1)

]
+ 1.

In particular, if k = 2, then r ≥ f(n) =
[
n
3

]
+ 1.
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Proof. By Theorem 2.2, the number r is greater than or equal to max{i1, i2, · · · , ik}+1.
Assume that max{i1, i2, · · · , ik} is attained at il. Since we have

n = i1 + 2i2 + · · ·+ kik ≤ (1 + 2 + · · ·+ k)il =
k(k + 1)

2
il,

il is greater than or equal to 2n
k(k+1) . Since r is an integer, r is greater than or equal to

f(n), as required. This completes the proof.

3 Proof of Theorem 1.6: unitary T n-manifolds

The goal of this section is to give a proof of Theorem 1.6 which is related to Conjecture
1.1. To do so, we first need to recall some basic notions of a unitary torus manifold.

Let M be a closed oriented unitary manifold of dimension 2n. Then there is a closed,
connected real codimension 2 submanifold of M fixed by a certain circle subgroup of Tn

which contains at least one fixed point. This is called a characteristic submanifold of M ,
and M has only finitely many characteristic submanifolds. Let M1,M2, · · · ,Mm denote
such characteristic submanifolds. For each 1 ≤ i ≤ m, let Ti be the circle subgroup of
Tn fixing Mi pointwise, and let ζi denote the corresponding normal bundle of Mi. Then
for each fixed point P one can write the tangent space TPM as a representation of Tn

as
TPM = ⊕i∈I(P )ζi|P ,

where I(P ) = {i |P ∈Mi} ⊂ {1, 2, · · · ,m}, and ζi|P is the restriction of ζi to the fixed
point P . Note that in case of a unitary torus manifold, the order of I(P ) is n. The
total Tn-equivariant Chern characteristic class c(M) of the tangent bundle TM of M
can be written as

cT
n
(M) =

∏
i∈{1,2,··· ,m}

(1 + λi),

where λi is the element in H2
Tn(M ;Z) associated with each characteristic submanifold

Mi (see [8] for more details). Thus, the total equivariant Chern class of TM restricted
to an isolated fixed point P is given by

cT
n
(M)|P =

∏
i∈I(P )

(1 + λi|P ) = 1 +
n∑
i=1

σ̃i(P ),

where σ̃i(P ) for 1 ≤ i ≤ n denotes the i-th elementary symmetric function over n
variables λi|P .

For an n-tuple (i1, i2, · · · , in) of non-negative integers, the Tn-equivariant Chern
characteristic number of an oriented unitary Tn-manifold is defined by

〈(cTn

1 (M))i1(cT
n

2 (M))i2 · · · (cTn

n (M))in , [M ]〉 ∈ H∗(BTn;Z) = Z[t1, t2, · · · , tn],

7



where cT
n

i (M) is the i-th equivariant Chern class of M . Note that in case of an oriented
unitary Tn-manifold like an oriented unitary S1-manifold, the Tn-equivariant Chern
characteristic number defined as above may not be zero, even though the sum i1 +2i2 +
· · ·+nin is greater than dimM

2 = n. For the sake of simplicity, in this paper as in Section
2 we only deal with the case that i1 + 2i2 + · · ·+ nin is equal to n.

The goal of this section is to prove the following

Theorem 3.1. Let M be a closed connected unitary Tn-manifold (or torus manifold) of
dimension 2n with only isolated fixed points. Let i1, i2, · · · , in be non-negative integers
such that i1+2i2+ · · ·+nin = n. Suppose that M does not bound a unitary Tn-manifold
equivariantly in such a way that

〈(cTn

1 (M))i1(cT
n

2 (M))i2 · · · (cTn

n (M))in , [M ]〉 6= 0.

Then the number of the isolated fixed points is greater than or equal to

max{i1, i2, · · · , in}+ 1.

Proof. The proof of this theorem is completely similar to Theorem 2.1. To be more
precise, let P1, P2, · · · , Pr denote all the isolated fixed points. Then, for each 1 ≤ j ≤ r,
let

{σ̃j(Pi)}ri=1 = {τ̃ (j)1 , τ̃
(j)
2 , · · · , τ̃ (j)lj

}.

Here τ̃
(j)
s is not an integer but an element in H∗(BTn;Z) = Z[t1, t2, · · · , tn], contrary

to the values of τ
(j)
s ’s. But it is important to note that at any rate lj is less than or

equal to r.
It is obvious that the ABBV localization formula (Theorem 2.1) in our case can be

stated as follows.

〈(cTn

1 (M))i1(cT
n

2 (M))i2 · · · (cTn

n (M))in , [M ]〉

=

r∑
i=1

ε(Pi)
σ̃1(Pi)

i1 σ̃2(Pi)
i2 · · · σ̃n(Pi)

in

σ̃n(Pn)
.

(3.1)

For the sake of simplicity, as before assume that i1, i2, · · · , ik are all non-zero integers
in the equation (3.1). Then, analogously to Lemma 2.3, the following lemma holds due
to the ABBV localization formula and the dimensional reason.

Lemma 3.2. For each 0 ≤ t1 ≤ i1 − 1, we have

r∑
i=1

ε(Pi)
σ̃1(Pi)

t1 σ̃2(Pi)
i2 · · · σ̃k(Pi)ik

σ̃n(Pi)
= 0.
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Next, let

Ãs =
∑

1≤i≤r,σ̃1(Pi)=τ̃
(1)
s

ε(Pi)
σ̃2(Pi)

i2 · · · σ̃k(Pi)ik
σ̃n(Pi)

, 1 ≤ s ≤ l1.

With these understood, it is now easy to see that we can apply the exactly same argu-
ments as in the proof of Theorem 2.1 in order to show that i1 < l1 ≤ r. So we leave the
details of the rest of the proof to the reader.

Similarly, it is also true that ij < lj ≤ r for all 2 ≤ j ≤ n. This completes the proof
of Theorem 3.1.

This completes the proof of Theorem 3.1.
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