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Summary.
A vector autoregressive(VAR) process is a multivariate version of time series. When it involves
a number of variables which are too many for the length of the process, we encounter compu-
tational obstacles which include an issue of singular matrix. Several methods were proposed in
literature to handle high-dimensional sparse data problems, most of which are however based
on the iid-observations assumption. We propose in this paper a Bayesian approach for mod-
eling a VAR process. A main idea in the approach is that we apply Bayesian methods for
estimating the coefficient parameters of the VAR model by imposing priors on the coefficients
of the model and the variance of the noise which are instrumental for computational feasibil-
ity and estimate stability. The shrinkage parameter which is deemed as a hyper-parameter is
then sought for under some optimality conditions by applying a variation of cross-validation.
The proposed method is compared favorably with other methods known in literature through
simulated data and it is also applied to real world data from systems biology. The model
structure from the real world data was simpler by the proposed method with at least as good
efficiency when compared with other methods.

Keywords: covariance stationarity; high-dimensional data; likelihood function; parameterized
cross validation; score function; separation strategy; shrinkage hyper-parameters

1. Introduction1

In multivariate data analysis, high-dimensional sparse data problems are commonplace2

nowadays. As data collection technologies improve, so the dimensionality of data explodes3

far beyond the number of observations or the data size, which is conspicuous in biology and4

medicine among others. In addition to the sparsity of data, when the iid-assumption has5

no ground for the data, computational load usually adds up in the estimation process. We6

will address an issue of statistical learning with high-dimensional sparse time series data.7

A vector autoregressive (VAR) model is useful for representing the inter-relationship8

among a set of random variables which are autoregressive. Let yt = [yt1, . . . , ytd]
′, t =9
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1, . . . , T, denote (d× 1) vectors of time series variables. A VAR model of order p is repre-10

sented by11

yt =

p∑
k=1

Akyt−k + c+ εt, (1)

where Ak, k = 1, . . . , p, are (d × d) coefficient matrices, c is a (d × 1) vector, and εt is a12

(d × 1) noise vector process with mean zero and covariance matrix V , i.e., E[εt] = 0, and13

E[εtε
′
τ ] = V if t = τ and 0 if t ̸= τ .14

The VAR models became popular for analyzing dynamic behavior of economic and15

financial time series by Sims (1980). Due to flexibility and generality in specifying the16

correlations between past and future realizations of the variables, VAR models have plenty17

of applications to forecasting (Sims, 1982; Doan et al., 1984). VAR models are also useful18

for structural inference. Once the coefficients of a VAR model are estimated, the underlying19

causal network can be inferred by inspecting the nonzero coefficients of the model, which20

imply Granger causality between variables (Granger, 1969; Sims, 1972).21

In this work we focus on improving accuracy of estimation of the coefficients which are22

given in matrices Ak, k = 1, . . . , p, especially in case that the number of observations, T , is23

not large enough relative to the dimensionality of data, d. The ordinary least squares (OLS)24

method is a standard way for estimating the coefficients provided that T is large enough.25

When T is smaller than d, however, the OLS is of no use. This may be one of the reasons26

that the VAR model has not been widely used in research areas such as systems biology and27

functional magnetic resonance imaging (fMRI). Data sets from these areas usually consist of28

up to tens or hundreds of thousands of variables while the number of observed time points,29

T , is often at most one hundred.30

The ridge regression method, which is a kind of penalized least squares methods, is an31

alternative to the OLS method when the data size is not large enough. The ridge regression32

was introduced by Hoerl and Kennard (1970) to deal with the difficulties caused by the33

correlations among the predictors. In the ridge regression, we consider a parameter related34

to the penalty term in addition to the parameters involved in the regular regression model.35

This parameter is often called the regularization parameter or the shrinkage parameter,36

and it is used to achieve some level of shrinkage of estimates. A value of the parameter is37

chosen at an initial stage of the ridge regression analysis. Literature abounds concerning the38

shrinkage parameter of the ridge regression. For example, Golum et al. (1979) describe the39

generalized cross validation for determining the shrinkage parameter of the ridge regression.40

But no known method of estimating the shrinkage parameter will guarantee smaller values41

of the mean squared error (MSE) than the OLS. Moreover, a wild use of the shrinkage42

parameter without any assumptions on the coefficients would keep us from statistically43

meaningful interpretation.44

In general, a shrinkage estimator refers to an estimator that incorporates a factor of45

shrinkage into estimation. Stein (1956) developed a sort of explicit shrinkage estimators,46

and it was improved by James and Stein (1961). The James-Stein type shrinkage estima-47

tors were shown to always achieve lower MSE than the OLS estimator. This improvement48

motivated lots of developments of shrinkage estimators for other classes of parameters in-49

cluding covariance matrices. Especially, Ledoit and Wolf (2004) proposed a linear shrinkage50

estimator with a uniformly minimum MSE for covariance matrices. They showed that the51

proposed estimator is invertible and well-conditioned for large dimensional covariance matri-52

ces, which means that inverting it does not amplify estimation errors even if the dimension53

is large compared with the sample size.54
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Schäfer and Strimmer (2005b) further exploited the Ledoit and Wolf (2004) lemma for55

analytic calculation of the optimal shrinkage level, and suggested a nonparametric shrinkage56

method for covariance matrices. The nonparametric shrinkage method adopted the so-57

called separation strategy in which we express a covariance matrix in terms of variance and58

correlation matrices. A (n× n) covariance matrix, Σ , is expressed as59

Σ = D
1
2RD

1
2 (2)

where D is the diagonal matrix with diagonal entries (Σ )ii, i = 1, . . . , n, and R is the (n×n)60

correlation matrix. The nonparametric shrinkage method can be applied for estimation of61

two shrinkage parameters. One is for the estimation of the variance matrix, D, and the62

other for the estimation of correlation matrix, R. The nonparametric shrinkage method63

is computationally convenient and it does not assume any specific underlying distribution.64

Also its theoretical approach to minimizing the MSE is appropriate for data with a small65

number of observations.66

Barnard et al. (2000) further investigated the separation strategy from the perspective67

of Bayesian analysis. They noted that the primary motivation for the separation strategy68

is its flexibility and directness. First, it enables us to deal with individual components of69

variances. For example, in a Bayesian analysis, we can assess marginal distributions for70

the variance components and deal with tails of the distributions of individual components.71

This flexible assessment of individual variance components are especially useful when each72

variable of the data has different scale units, e.g., height, weight, speed, and so on. Second,73

we gain computational convenience by dealing with D and R separately. In the absence74

of reliable knowledge of the dependence structure, it is better to deal with D and R sep-75

arately than to blindly use such models as the inverse-Wishart distribution. Third, since76

we don’t have much a priori information to distinguish among the entries (R)ij , i ̸= j,77

the prior distribution for (R)ij should be invariant to permutations of indices, i.e., (R)ij ’s78

are exchangeable in the sense of de Finetti (1972). Finally, most practitioners are more79

comfortable about thinking in terms of variances and correlations rather than in terms of80

the spectral decomposition of Σ . The nonparametric shrinkage method was applied for81

estimating autocovariance matrices and coefficient matrices for high-dimensional VAR pro-82

cesses (Opgen-Rhein and Strimmer, 2007c) and for analyzing high-dimensional data from83

systems biology (Opgen-Rhein and Strimmer, 2007a,b,c; Schäfer and Strimmer, 2005b).84

Despite the aforementioned advantages, however, there are two pitfalls in applying the85

nonparametric shrinkage method as far as VAR models are concerned. First, independence86

is assumed among the observations in the data, where nonzero autocovariances are apparent87

in the data. So the estimated shrinkage parameters are prone to bias and inconsistency.88

Second, it attempts to estimate the autocovariance matrices while the purpose of estimation89

is to obtain VAR model coefficients. Since obtaining VAR model coefficients from the90

estimated autocovariance matrices involves matrix inversion, the estimates are vulnerable to91

noisy fluctuation in the data. And the number of parameters in the autocovariance matrices92

is larger than that in the coefficient matrices, which is an additional computational burden.93

On the other hand, it is known that shrinkage is implicit in Bayesian inference. That is,94

the use of a prior distribution makes the maximum likelihood estimator (MLE) to shrink95

according as the priors implicate (Carlin, 2009; Koop and Korobilis, 2010). A simple choice96

for prior distributions in a Bayesian VAR model analysis is the natural conjugate prior, i.e.,97

normal and Wishart distributions. Alternative prior distributions include the Minnesota98

prior by Doan et al. (1984) and Litterman (1986). But these priors require their parameters99

to be specified beforehand.100
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A noninformative prior is often adopted in Bayesian inference as an alternative choice101

to typical prior distributions. It is useful when no reliable prior information concerning the102

model parameters exists. The uniform prior and the Jeffreys prior (Jeffreys, 1961) are of103

this kind. However, care must be exercised in making inferences from a Bayesian analysis104

with noninformative priors when the data size is not large enough. Sun and Ni (2004) noted105

that a uniform prior on the VAR model coefficients leads to the MLE which is the same as106

the OLS estimates.107

As is well known, we apply empirical Bayes approach to estimate hyper-parameters.108

Akaike (1980) and Morris (1983) showed examples of the maximum marginal likelihood109

estimators (MMLE) for empirical Bayes approach, but the MMLE approach still requires110

enough number of data observations. Akaike (1978) developed an evaluation procedure of111

the prior distribution in a Bayesian analysis, which is based on the Kullback-Leibler (KL)112

divergence. This method can be applied when the true distribution is known, and the113

suggested expected predictive distribution is not easy to calculate in many cases. However,114

this approach gives rise to the notion that the prior distributions can be evaluated through115

posterior distributions and that the KL divergence can be used for the evaluation.116

In this paper we propose empirical Bayes approaches to shrinkage estimation of VAR117

model coefficients. We first decompose the VAR model coefficient matrices into variance118

and correlation components. This decomposition differs from that of the nonparametric119

shrinkage method in the sense that the nonparametric shrinkage method decomposes the120

autocovariance matrices while we decompose the model coefficient matrices in the proposed121

method. In this way we can take advantage of the separation strategy while avoiding the122

pitfalls mentioned above. Herein the variance components and the correlation components123

are estimated separately. We modified the nonparametric shrinkage method by incorpo-124

rating the dependency structure of the autocovariance that is latent in the data into the125

estimation process of variance components. As for estimating the correlation components,126

we applied a Bayesian method and obtained conditional posterior distributions for making127

inferences on the correlation components.128

The shrinkage parameter involved in the estimation of the correlation components is one129

of the hyper-parameters. We know that selection of prior distributions affects estimation130

especially when the data are of a small size. Therefore, we present analysis results with novel131

score functions with a view to derive an optimal value of the shrinkage parameter. Moreover,132

we propose a computational methodology which is called the parameterized cross-validation133

(PCV) for finding the optimal value of the shrinkage parameter. The PCV method was134

developed motivated from an earlier work by Koo, Lee, and Kil (2008), and it is effective135

especially for the data with few observations.136

We evaluated the proposed method using simulated data sets. The experimental results137

demonstrate that the proposed method performs better than existing methods. And we138

applied the proposed method to real world data from systems biology, which ends up with139

causal networks which are far sparser than those by Opgen-Rhein and Strimmer (2007c).140

This paper is organized in six sections. In Section 2 we describe the nonparametric141

shrinkage method of Schäfer and Strimmer (2005b) and Opgen-Rhein and Strimmer (2007c)142

which was inspirational for our work. In Section 3 we suggest the decomposition of VAR143

model coefficients into variance components and correlation components, and propose a144

modification to the nonparametric shrinkage method for the estimation of the variance145

components. In Section 4 we present a Bayesian approach for the shrinkage estimation of146

the correlation components. We then analyze novel score functions to obtain an optimal147

value of the shrinkage parameter. Moreover the PCV method is described in search of the148
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optimal value of the shrinkage parameter. In Section 5 we demonstrate experimental results149

based on simulated data sets and real world data sets. Conclusions are given in Section 6.150

2. Preliminaries151

Let xt = [y′
t−1, . . . ,y

′
t−p]

′, t = p+ 1, . . . , T, denote (dp× 1) vectors of predictors. Then the152

VAR model (1) is re-expressed as153

yt = Φ′xt + c+ εt, (3)

where
Φ = [A1, . . . , Ap]

′

represents a (dp× d) coefficient matrix, and εt is a (d× 1) noise vector process with mean
zero and covariance matrix V . We denote the mean-corrected data matrices corresponding
to xt and yt by X and Y , respectively, that is,

X =

 x′
p+1 − x̄′

...
x′
T − x̄′

 , Y =

 y′
p+1 − ȳ′

...
y′
T − ȳ′


where x̄ = 1

T−p

∑T
t=p+1 xt and ȳ = 1

T−p

∑T
t=p+1 yt are sample mean vectors.154

The OLS estimate of Φ is given by

Φ̂ = (X ′X)
−1

X ′Y.

The OLS estimate cannot be calculated when the number of observations, T , is small relative155

to the dimensionality, d. The nonparametric shrinkage (NS) method was proposed by156

Schäfer and Strimmer (2005b) for inference on large-scale covariance matrices, and Opgen-157

Rhein and Strimmer (2007c) applied it for estimation of VAR model coefficients.158

For notational convenience, let zt = [x′
t,y

′
t]
′ denote the ((dp+ d)× 1) data vectors and159

Z = [X,Y ] denote the corresponding mean-corrected data matrix. Then the sample covari-160

ance matrices, Ŝ1 = 1
T−p−1X

′X and Ŝ2 = 1
T−p−1X

′Y , are submatrices of Ŝ = 1
T−p−1Z

′Z,161

and Φ̂ is represented by Φ̂ =
(
Ŝ1

)−1

Ŝ2.162

Moreover, suppose that the vector process yt is covariance-stationary, that is, its first
and second order moments are independent of the time t. Let µz = E[zt] and

Σ = E
[
(zt − µz) (zt − µz)

′]
.

Σ is often referred to as the 0th autocovariance matrix of zt (Hamilton, 1994). And we define163

µx = E[xt], µy = E[yt], Σ1 = E
[
(xt − µx) (xt − µx)

′]
, and Σ2 = E

[
(xt − µx) (yt − µy)

′]
.164

Then Σ1 and Σ2 are submatrices of Σ . Under the assumption that Σ is positive definite,165

Σ1 is also positive definite and the diagonal entries of Σ are all positive. Then Φ and Σ166

are related as in167

Φ = Σ−1
1 Σ2. (4)

Once a shrinkage estimate Ŝ∗ of Σ is obtained, we denote the submatrices of Ŝ∗ corre-
sponding to Ŝ1 and Ŝ2 of Ŝ by Ŝ∗

1 and Ŝ∗
2 , respectively. Then the shrinkage estimate Φ̂∗ of

Φ is determined from Ŝ∗ by

Φ̂∗ =
(
Ŝ∗
1

)−1

Ŝ∗
2 .
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The NS method derives James-Stein type shrinkage estimators (Stein, 1956; James and

Stein, 1961) to obtain Ŝ∗. Specifically, let ŝij denote the (i, j) entry of Ŝ. Then it is
expressed by sample variances and sample correlations as

ŝij = r̂ij
√

ŝiiŝjj .

Ŝ∗ is obtained by shrinking the sample variances and the sample correlations, respectively.168

The sample variances are shrunken toward their median as in169

ŝ∗ii = λvŝmed + (1− λv)ŝii, i = 1, . . . , dp+ d, (5)

where 0 ≤ λv ≤ 1 is a shrinkage parameter and ŝmed is the median of the sample vari-170

ances, i.e., ŝmed = median(ŝ11, . . . , ŝdp+d,dp+d). ŝmed is taken as the shrinkage target of171

the estimates of the variances, σii, i = 1, . . . , dp + d, where σii denotes the variance of the172

ith component of zt, i.e., σii is the (i, i) entry of Σ . We will also use the median as the173

shrinkage target for our proposed method. Contrary to the sample variances, the sample174

correlations are shrunken, in the NS method, toward zero as175

r̂∗ij =

{
(1− λ)r̂ij , if i ̸= j
1, if i = j

(6)

where 0 ≤ λ ≤ 1 is a shrinkage parameter. Finally, the (i, j) entry of Ŝ∗ is obtained by

ŝ∗ij = r̂∗ij

√
ŝ∗iiŝ

∗
jj .

Schäfer and Strimmer (2005b) describe how the NS method determines the shrinkage176

parameters λv and λ. In this section we only describe how λv is determined. λ is determined177

in the same way.178

Schäfer and Strimmer (2005b) consider the mean of the sum of squared error losses as179

a cost function:180

R(λv) = E

[
dp+d∑
i=1

(ŝ∗ii − σii)
2

]
. (7)

Under the assumption that the first two moments of the distributions of ŝii and ŝmed exist,181

the cost function is expanded as follows:182

R(λv) =

dp+d∑
i=1

{
λ2
vVar(ŝmed) + (1− λv)

2Var(ŝii)

+2λv(1− λv)Cov(ŝmed, ŝii)

+ (λvE[ŝmed − ŝii] + Bias(ŝii))
2
}
.

The optimal value of λv is obtained by minimizing this function. From dR/dλv = 0, we183

have184

λ∗
v =

∑dp+d
i=1 {Var(ŝii)− Cov(ŝmed, ŝii)− Bias(ŝii)E[ŝmed − ŝii]}∑dp+d

i=1 E[(ŝmed − ŝii)2]
. (8)

For the sake of simplicity, Schäfer and Strimmer (2005b) make two assumptions. First,185

they assume that the observations in the data are independent and identically distributed,186



Empirical Bayesian Shrinkage Estimation 7

so that Bias(ŝii) is zero. Second, they assume that ŝmed is almost constant, so that187

Cov(ŝmed, ŝii) is near zero. These assumptions yield the optimal value of λv given by188

λ∗
v =

∑dp+d
i=1 Var(ŝii)∑dp+d

i=1 E[(ŝmed − ŝii)2]
. (9)

Concerning expression (9), Schäfer and Strimmer (2005b) made some interpretations with189

regard to the optimal value of the shrinkage parameter. The smaller the variance of ŝii gets,190

the smaller λ∗
v becomes; and the smaller the mean squared difference between ŝmed and ŝii191

is, the larger λ∗
v becomes.192

Schäfer and Strimmer (2005b) suggested to replace the expectation and the variance in
(9) by their sample counterparts, yielding

λ̂∗
NS,v =

∑dp+d
i=1 V̂arNS(ŝii)∑dp+d

i=1 (ŝmed − ŝii)2
,

where V̂arNS(ŝii) is calculated as follows: let wtii = (zti − z̄i)
2 and w̄ii =

1
T−p

∑T
t=p+1 wtii.193

Then ŝii =
1

T−p−1

∑T
t=p+1 wtii, and the variance is further expanded under the assumption194

that wtii, t = p+ 1, . . . , T, are independent as195

V̂arNS(ŝii) =
1

(T − p− 1)2
V̂arNS

(
T∑

t=p+1

wtii

)

=
1

(T − p− 1)2

T∑
t=p+1

V̂arNS (wtii) .

Under the independence assumption among wtii’s, the unbiased sample estimate of Var (wtii)
is given by

V̂arNS (wtii) =
1

T − p− 1

T∑
t=p+1

(wtii − w̄ii)
2.

To keep the value of λ̂∗
NS,v within (0, 1), we use instead λ̂∗∗

NS,v given by λ̂∗∗
NS,v = max(0,196

min(1, λ̂∗
NS,v)).197

The NS method is available when T is substantially smaller than d. However, it is under198

the assumption that wtii, t = p+1, . . . , T, are independent, which is obviously incongruous199

with time series data. In next section we will propose a modification to the NS method for200

estimation of Var(ŝii).201

3. Modification to the nonparametric shrinkage method202

3.1. Decomposition of VAR model coefficients203

From (4), the coefficient matrix Φ is decomposed as follows.204

Theorem 1. The following variance-correlation decomposition holds for the submatri-205

ces Σ1 and Σ2 of Σ:206

Σ1 = D
1
2
1 R1D

1
2
1 , Σ2 = D

1
2
1 R2D

1
2
2 , (10)
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where D1 is a (dp × dp) diagonal matrix with diagonal entries σii, i = 1, . . . , dp, D2 is a207

(d× d) diagonal matrix with diagonal entries σii, i = dp+1, . . . , dp+ d, and R1 and R2 are208

correlation matrices. Moreover, from (4), the coefficient matrix Φ is decomposed as209

Φ = D
− 1

2
1 ΨD

1
2
2 (11)

where Ψ = R−1
1 R2.210

In (11), we regard Ψ as the correlation component of Φ, and (D1, D2) as its variance211

component. From Theorem 1, we get the idea that an estimate of Φ is obtained by estimat-212

ing Ψ and (D1, D2). Then the total number of parameters to be estimated slightly increases213

from d2p, for Φ, to d2p + dp + d, for Ψ and (D1, D2). On the other hand, it is much less214

than (dp + d)(dp + d + 1)/2, for Σ , which is the number of the parameters estimated by215

the NS method in Opgen-Rhein and Strimmer (2007c). Moreover, this decomposition of Φ216

into Ψ and (D1, D2) takes advantage of the separation strategy mentioned in Barnard et al.217

(2000), that is, the flexibility and directness from the computational aspect. In subsequent218

sections we will propose shrinkage estimation methods based on this variance-correlation219

decomposition of Φ.220

3.2. Estimation of variance component221

In this subsection we suggest a modification to the NS method described in Section 2 for222

the shrinkage estimation of (D1, D2). Note that the diagonal entries of D1 and D2 are223

the variances of the components of zt, i.e., σii, i = 1, . . . , dp + d. Thus, the shrinkage224

estimators, ŝ∗ii, of the variances in (5) with the optimal value, λ∗
v, of λ in (9) is considered225

for the estimation of (D1, D2).226

In the simplification of (8) into (9), we were under two assumptions. First, we assumed227

that Bias(ŝii) is ignorably small. If the observations, zti, t = p+ 1, . . . , T, in the data were228

independent and identically distributed, then the bias would be zero. But this is usually229

violated for time series data. We rather rely on the fact that the bias decreases to zero at a230

fast rate as T increases (Anderson, 1971). Second, we assumed that Cov(ŝmed, ŝii) is small231

enough. If d gets larger, then the covariance will become smaller because the median will232

less be affected by a change in the value of a single sample variance. A larger covariance233

value implies both ŝii and ŝmed move in a more similar direction and so the shrinkage234

parameter is less influential. In this respect we consider the simplified expression (9).235

We propose a different way of estimating Var(ŝii) in expression (9) as

λ̂∗
EB,v =

∑dp+d
i=1 V̂arEB(ŝii)∑dp+d

i=1 (ŝmed − ŝii)2
.

Since wtii, t = p+ 1, . . . , T, are not independent, it follows that236

V̂arEB(ŝii) =
1

(T − p− 1)2
V̂arEB

(
T∑

t=p+1

wtii

)

=
1

(T − p− 1)2

 T∑
t=p+1

V̂arEB (wtii) +
T∑

t=p+1

T∑
τ=p+1
τ ̸=t

ĈovEB (wtii, wτii)

 .
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If wtii, t = p+1, . . . , T, were independent, the covariance terms would become zero and only237

the variance terms would remain. But they are dependent on each other, so the covariance238

terms should not be ignored.239

If we regard {wtii} as a covariance-stationary time series, the following estimates are240

typical choices for the variance terms and the covariance terms:241

V̂arEB (wtii) =
1

T − p

T∑
t=p+1

(wtii − w̄ii)
2, (12)

242

ĈovEB (wtii, wt+k,ii) =

{
1

T−p

∑T−k
t=p+1(wtii − w̄ii)(wt+k,ii − w̄ii), for k ≥ 0

1
T−p

∑T+k
t=p+1(wt−k,ii − w̄ii)(wtii − w̄ii), for k < 0

. (13)

Expressions (12) and (13) are used in literature for time series analysis (Hamilton, 1994; Wei,243

2005). Wei (2005) compared the estimator, ĈovEB (wtii, wt+k,ii), defined by (13) with the244

estimator T−p
T−p−k ĈovEB (wtii, wt+k,ii) from the perspective of bias and variance of estimator.245

As for bias, both of the estimators are biased estimators. But the bias of the latter increases246

faster than that of the former as Var(w̄ii) increases. So if there are only a small number of247

observations, the former estimator is preferred. As for variance, the variance of the latter is248

larger than that of the former, and the difference depends on k. So if k is large, the former249

estimator is preferred. Wei (2005) pointed out that the former estimator was shown to have250

smaller MSEs in some cases.251

4. Empirical Bayes approach to estimation of correlation components252

In this section we suggest a Bayesian approach for the shrinkage estimation of Ψ = R−1
1 R2.

Note that in Section 2 the shrinkage estimators, r̂∗ij , of the correlations are defined in (6)

with a shrinkage parameter λ. This can be rewritten by using matrices as follows. Let R̂
denote the ((dp + d) × (dp + d)) sample correlation matrix with entries r̂ij , and R̂1 and

R̂2 denote the submatrices of R̂ corresponding to Ŝ1 and Ŝ2 of Ŝ. Then, each entry of R̂1

and R̂2 is shrunken toward zero except for the diagonal entries of R̂1 to yield the shrinkage
estimators, R̂∗

1 and R̂∗
2, as

R̂∗
1 = (1− λ)R̂1 + λI

and

R̂∗
2 = (1− λ)R̂2.

The shrinkage estimator, Ψ̂∗, of Ψ is defined, based on R̂∗
1 and R̂∗

2, by253

Ψ̂∗ = (R̂∗
1)

−1R̂∗
2. (14)

In this section we derive Ψ̂∗ from conditional posterior distributions obtained by applying254

a Bayesian method. Then we present analysis results with novel score functions to obtain255

an optimal value, λ∗, of the shrinkage parameter λ which is one of the hyper-parameters.256

Moreover we propose a computational methodology for calculating λ∗, especially for the257

data with few observations.258
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4.1. Bayesian approach for shrinkage estimation259

From model (3) we get260

ys
t = Ψ ′xs

t + cs +D
− 1

2
2 εt, (15)

where ys
t = D

− 1
2

2 yt, x
s
t = D

− 1
2

1 xt, and cs = D
− 1

2
2 c denote the standardized vectors. In this261

section, we assume that the variance component, (D1, D2), is known.262

Suppose that the noise vectors εt in (15) are iid with the multivariate normal distribution263

with mean zero and covariance matrix V = σ2D2. Then, from (15), the likelihood function264

of
(
Ψ , σ2, cs

)
is265

L(Ψ , σ2, cs) =
T∏

t=p+1

Nd(yt|Φ′xt + c, σ2D2)

=

T∏
t=p+1

[
1

(2π)d/2|σ2D2|1/2
exp

{
− 1

2σ2

∥∥∥D− 1
2

2 (yt − Φ′xt − c)
∥∥∥2}]

=

(
1

2π

)d(T−p)/2(
1

|D2|

)(T−p)/2(
1

σ2

)d(T−p)/2

× exp

{
− 1

2σ2

T∑
t=p+1

∥ys
t −Ψ ′xs

t − cs∥2
}
. (16)

We apply a noninformative prior distribution of cs. That is,

π(cs) ∝ m1 > 0.

The likelihood function of (Ψ , σ2) is obtained as in

L(Ψ , σ2) =

∫
L(Ψ , σ2, cs)π(cs)dcs.

Since we have266

T∑
t=p+1

∥ys
t −Ψ ′xs

t − cs∥2 = (T − p) ∥cs − (ȳs −Ψ ′x̄s)∥2

+
T∑

t=p+1

∥ys
t −Ψ ′xs

t − (ȳs −Ψ ′x̄s)∥2

where ȳs = 1
T−p

∑T
t=p+1 y

s
t and x̄s = 1

T−p

∑T
t=p+1 x

s
t are the sample mean vectors, we get267

L(Ψ , σ2) ∝ m1

(
1

2π

)d(T−p−1)/2(
1

|D2|

)(T−p)/2(
1

σ2

)d(T−p−1)/2(
1

T − p

)d/2

× exp

{
− 1

2σ2

T∑
t=p+1

∥ys
t −Ψ ′xs

t − (ȳs −Ψ ′x̄s)∥2
}
. (17)

The MLE of (Ψ , σ2) is obtained by maximizing the likelihood function (17), which is
given in the closed form as

Ψ̂ = ((Xs)′Xs)
−1

(Xs)′Y s
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and

σ̂2 =
1

T − p

∥∥∥Y s −XsΨ̂
∥∥∥2

when the inverse exists, where Xs and Y s are the mean-corrected data matrices defined by

Xs =

 (xs
p+1)

′ − (x̄s)′

...
(xs

T )
′ − (x̄s)′

 , Y s =

 (ys
p+1)

′ − (ȳs)′

...
(ys

T )
′ − (ȳs)′

 ,

and the matrix norm ∥A∥ for an (m× n) matrix A is defined by

∥A∥ =

√√√√ m∑
i=1

n∑
j=1

A2
ij =

√
trace(A′A) .

Note that if we replace (D1, D2) with the sample variances, (D̂1, D̂2), then Ψ̂ is re-268

expressed in terms of the sample correlation matrices as269

Ψ̂ = R̂−1
1 R̂2 =

(
1

T − p− 1
(Xs)′Xs

)−1
1

T − p− 1
(Xs)′Y s, (18)

and Ψ̂∗ = Ψ̂ when λ = 0.270

Ψ̂∗ can be obtained by the following Bayesian procedure. We impose prior distributions271

for the parameters Ψ and σ2. The shrinkage parameter λ is regarded as a hyper-parameter272

for the prior distributions. As for the prior of Ψ , we take the multivariate normal distribu-273

tion given by274

π1(Ψ |σ2, λ) =

d∏
i=1

dp∏
j=1

N

(
Ψij

∣∣∣∣ 0, (1− λ)σ2

λ(T − p− 1)

)
, 0 < λ < 1, (19)

where Ψij is the (i, j) entry of Ψ . This prior reflects our view-point that the coefficients,275

{Ψij}, are dispersed around 0 and exchangeable in the sense of de Finetti (1972). Actually,276

the assumption of the zero prior mean is already reflected in the shrinkage estimator (14).277

We take for the prior of σ2 an inverse gamma distribution given by278

π2(σ
2) = IG(σ2|α, β), α, β > 0. (20)

The inverse gamma distribution is known to be a conjugate prior of the normal distribution.279

Now we are ready to calculate the conditional posterior of (Ψ , σ2) given λ.280

Theorem 2. With the likelihood given in (17) and the priors in (19) and (20), the281

following holds:282

(a) The conditional posterior distribution of Ψ given σ2 and λ is the multivariate normal
distribution given by

π1(Ψ |σ2, λ; {yt}Tt=1) =
d∏

i=1

Ndp(Ψi|Ψ̂∗
i , K̂

∗(σ2, λ))
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where Ψi and Ψ̂∗
i represent the ith column vectors of Ψ and Ψ̂∗, respectively, and

K̂∗(σ2, λ) = σ2

(
(Xs)′Xs +

λ(T − p− 1)

1− λ
I

)−1

.

That is, the conditional posterior mean is the same as the shrinkage estimator, Ψ̂∗,283

with the shrinkage parameter λ.284

(b) The conditional posterior distribution of σ2 given λ is the inverse gamma distribution
given by

π2(σ
2|λ; {yt}Tt=1) = IG(σ2|α̂∗, β̂∗(λ)),

where

α̂∗ = α+
d(T − p− 1)

2
and285

β̂∗(λ) = β +
1

2
trace

(
(Y s)′Y s − (Y s)′Xs

(
(Xs)′Xs +

λ(T − p− 1)

1− λ
I

)−1

(Xs)′Y s

)

= β +
1

2

(∥∥∥Y s −XsΨ̂∗
∥∥∥2 + λ(T − p− 1)

1− λ

∥∥∥Ψ̂∗
∥∥∥2) .

(c) The marginal likelihood of λ is given by286

L(λ) =

∫ ∫
L(Ψ , σ2)π1(Ψ |σ2, λ)π2(σ

2)dΨdσ2

∝ 1

(β̂∗(λ))α̂∗

(
λ

1− λ

)d2p/2 ∣∣∣∣(Xs)′Xs +
λ(T − p− 1)

1− λ
I

∣∣∣∣−d/2

. (21)

Proof. See Appendix A.287

In search for an optimal value of λ, maximizing the marginal likelihood of λ is one of288

the typical methods in Bayesian analysis . From (21), we have289

2

d
logL(λ) = const.+ dp log λ− 2α̂∗

d
log β̂∗(λ)− log

∣∣∣(1− λ)R̂1 + λI
∣∣∣ (22)

where R̂1 is the sample correlation matrix as in (18). Some properties of the maximum290

marginal likelihood estimator (MMLE), λ̂, are summarized from (22) as follows:291

(a) The term dp log λ implies that λ̂ increases as dp increases.292

(b) We can show that β̂∗(λ) is an increasing function of λ as follows:

2
(
β̂∗(λ)− β

)
= trace

(
(Y s)′Y s − (Y s)′Xs

(
(Xs)′Xs +

λ(T − p− 1)

1− λ
I

)−1

(Xs)′Y s

)
and293

d

dθ
trace

(
(Y s)′Y s − (Y s)′Xs ((Xs)′Xs + θI)

−1
(Xs)′Y s

)
=

d∑
i=1

(Y s
i )

′Xs ((Xs)′Xs + θI)
−2

(Xs)′Y s
i

≥ 0
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where Y s
i is the ith column vector of Y s. Since 2α̂∗/d = 2α/d+T −p−1 is increasing294

in T , the term, −2α̂∗

d log β̂∗(λ), enforces λ̂ to decrease as T increases.295

(c) The smaller T is, the more the eigenvalues of R̂1 become zero when T < dp. Hence a296

larger λ̂ is consequential for a smaller T .297

But the MMLE is unreliable when T is small relative to d. This point of concern leads298

us to another way of searching for an optimal value of λ.299

4.2. Empirical Bayes analysis for shrinkage parameter300

In this section we present analysis results based on some criteria regarding the prior and301

posterior distributions in search of an optimal value of λ.302

4.2.1. Bounded variance principle303

In (19), we presumed that the prior mean for each Ψij is zero. However, if the prior variance304

is too large, the prior mean loses its influence. In this respect, when T is small relative to305

d, it is desirable that we bound the variance of the prior distribution from above.306

From the prior distributions, π1(Ψ |σ2, λ) and π2(σ
2), in (19) and (20), we can derive307

that308

Var(Ψij |λ) = Var(E[Ψij |σ2, λ]|λ) + E
[
Var(Ψij |σ2, λ)|λ

]
=

1− λ

λ(T − p− 1)

β

α− 1

where α and β are the hyper-parameters of π2(σ
2) in (20). Therefore, for some constant309

m2 > 0, the inequality, Var(Ψij |λ) ≤ m2, implies that an optimal value, λ∗, of λ satisfies310

λ∗ ≥ 1

m3(T − p− 1) + 1
(23)

for some constant m3 > 0.311

4.2.2. Analysis based on Kullback-Leibler divergence312

In this section we will consider a score function of λ based on the so-called Kullback-Leibler313

(KL) divergence. The KL divergence between two probability densities f and g is defined314

by315

DKL(f ||g) =
∫

f log
f

g
. (24)

As is well known, the KL divergence is nonnegative with DKL(f ||g) = 0 if and only if f = g.316

We define (Ψ∗, σ∗2, cs∗) as the value of (Ψ , σ2, cs) that minimizes the KL divergence be-317

tween the true distribution f(xt,yt) = f(yt|xt)f(xt) and the distribution g(xt,yt|Ψ , σ2, cs) =318

g(yt|Ψ , σ2, cs,xt)f(xt) from our probability model. We suppose that (Ψ∗, σ∗2, cs∗) is the319

unique minimizer of the KL divergence, which can be verified by using the true VAR model320

in (15) with parameters (Ψ , V, cs) and the density function g(yt|Ψ , σ2, cs,xt) in (16).321

A basic result from a Bayesian analysis is that the posterior distribution π(Ψ , σ2, cs|
{yt}Tt=1) becomes concentrated about (Ψ∗, σ∗2, cs∗) as T increases (Gelman et al., 1995).
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This limiting distribution is usually represented by the Dirac delta function or the Dirac
measure (Aliprantis and Burkinshaw, 1998). The Dirac delta function δ(Ψ |Ψ∗) is loosely
defined by

δ(Ψ |Ψ∗) =

{
+∞, if Ψ = Ψ∗

0, if Ψ ̸= Ψ∗

and it satisfies that ∫
Rdp×d

δ(Ψ |Ψ∗)dΨ = 1.

Then δ(Ψ |Ψ∗) represents the limit of a posterior density as T → ∞. The Dirac delta
function is rigorously defined as a probability measure. Let ∆Ψ∗ be the distribution on
Rdp×d such that for any subset A ⊂ Rdp×d, ∆Ψ∗(A) = 1 if Ψ∗ ∈ A and 0 otherwise. Then
∆Ψ∗ represents the limit of a posterior distribution as T → ∞. The Lebesgue integral with
respect to ∆Ψ∗ satisfies ∫

Rdp×d

f(Ψ)∆Ψ∗(dΨ) = f(Ψ∗)

for every compactly supported continuous function f(Ψ). A common abuse of notation is
to define the integral of δ(Ψ |Ψ∗) against a continuous function f(Ψ) by∫

Rdp×d

f(Ψ)δ(Ψ |Ψ∗)dΨ = f(Ψ∗).

We aim to find a value λ∗ of λ for which the distribution f(Ψ , {yt}Tt=p+1|λ∗,xp+1)
converges to the Dirac delta function δ(Ψ |Ψ∗) at a fast rate. To assess the quality of a value
of λ, we consider the so-called cross entropy between δ(Ψ |Ψ∗) and f(Ψ , {yt}Tt=p+1|λ,xp+1).
The cross entropy between two probability densities f and g is defined by

H(f, g) = −
∫

f log g.

The KL divergence (24) is re-expressed as322

DKL(f ||g) =

∫
f log f −

∫
f log g

= const.+H(f, g).

If f is a fixed reference distribution, minimization of the KL divergence between f and g is323

equivalent to minimization of the cross entropy.324

By using the Jensen’s inequality, we can calculate the upper bound of the expectation325

of the cross entropy between δ(Ψ |Ψ∗) and f(Ψ , {yt}Tt=p+1|λ,xp+1) as in326

Theorem 3. Based on the density function (16) with (Ψ , σ2, cs) = (Ψ∗, σ∗2, cs∗), it327

follows that328

E
[
H(δ(Ψ |Ψ∗), f(Ψ , {yt}Tt=p+1|λ,xp+1))

∣∣Ψ∗, σ∗2, cs∗
]

≤ − logm4 −
d2p

2
log θ(λ)

+

(
α+

d(T − p− 1) + d2p

2

)
log

(
β +

d(T − p− 1)

2
σ∗2 +

1

2
θ(λ) ∥Ψ∗∥2

)
(25)

where m4 is a constant that does not depend on (Ψ , σ2, λ), and θ(λ) = λ(T −p−1)/(1−λ).329
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Proof. See Appendix A.330

Let Q(λ;Ψ∗, σ∗2) denote the right-hand side of the inequality in (25). The optimal value,331

λ∗, of λ is obtained by minimizing Q(λ;Ψ∗, σ∗2) with respect to λ. From dQ/dλ = 0, we332

have333

λ∗ =
d2p

G(Ψ∗, σ∗2)(T − p− 1) + d2p
(26)

where

G(Ψ∗, σ∗2) =
∥Ψ∗∥2 (2α+ d(T − p− 1))

2β + d(T − p− 1)σ∗2 .

Moreover, if d(T − p − 1) is relatively large, then α and β are ignorable and we get the334

approximation as335

G(Ψ∗, σ∗2) ≈ ∥Ψ∗∥2

σ∗2 . (27)

If the entries of Ψ∗ are bounded by a constant M , i.e.,
∣∣Ψ∗

ij

∣∣ ≤ M , then we have ∥Ψ∗∥2 ≤336

M2d2p, which implies G(Ψ∗, σ∗2) = O(d2).337

The results (26) and (27) suggest that the optimal value of λ has a parametric form as338

follows.339

Corollary 4. The optimal value, λ∗, of λ has the following parametric form:340

λ∗ =
d2p

ν(T − p− 1) + d2p
(28)

where ν > 0 is a constant depending only on the parameter (Ψ , V ) in (15), and it satisfies341

ν = O(d2).342

In conclusion, results (23) and (26) with (27) are congruent with Corollary 4. The343

larger the number of observations gets, the smaller the optimal value of λ becomes. Also,344

the larger the dimensionality gets, the closer the optimal value of λ gets to 1. Moreover345

(26) suggests that if ∥Ψ∗∥ is large, then it means that the variables in the data are highly346

correlated, which ends up with a small optimal value of λ. On the other hand, if σ∗2 is347

large, it implies that the data are contaminated with a large amount of noise, which ends348

up with a large optimal value of λ. The interpretation of the optimal value of λ is at least349

in tune with our intuition and that described by Schäfer and Strimmer (2005b).350

4.3. Parameterized cross validation351

In this section we present a computational method in search of an optimal value λ∗ of the352

shrinkage parameter λ. This method is referred to as the PCV method which was first353

proposed by Koo, Lee, and Kil (2008) for estimating the parameterized form of risk bounds354

for prediction models. We use the PCV method for estimating the parameterized form of355

the optimal shrinkage parameter.356

The conventional cross-validation (CV) methods, including the k-fold CV method, have357

widely been used in regression and time series model selection (Seber and Lee, 2003; Tsay,358

2005). When they are applied to model selection for time series data, the data pairs of359

inputs and outputs are considered together, e.g., (xs
t,y

s
t), t = p + 1, . . . , T . A part of the360

data pairs, called the training set, is used to train a model, while the other part of the361
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data pairs, called the validation set, is used to evaluate the performance of the model. CV362

methods select the model which is optimal under given criteria by using the validation set.363

This is critical in case that there is a small number of observations. The PCV method364

selects the model which is optimal for the whole data (Koo, Lee, and Kil, 2008).365

The PCV method is carried out as follows. In Corollary 4 we suggested the parameter-
ized form of λ∗ for VAR models. Especially, the term ν in (28) is a constant with respect
to T . From (28) we have

λ∗

1− λ∗ =
d2p

ν(T − p− 1)
.

Let γ = − log ν and ϕ(λ) = log(λ/(1− λ)). Then

γ = ϕ(λ∗) + log

(
T − p− 1

d2p

)
.

First, we consider the k-fold CV for estimating γ. We randomly partition the given data
pairs (xs

t,y
s
t), t = p+1, . . . , T, into k sets of nearly equal sizes. Suppose the ith set of pairs

is selected as the validation data for evaluating a model, and the remaining k − 1 sets are
used as the training data. From the training data, we can get the sample mean vectors
x̄s(i) and ȳs(i). Then, after forming the mean-corrected data matrices Xs(i) and Y s(i), we

can calculate the coefficient matrix Ψ̂∗(i) as in (14) for 0 < λ ≤ 1. By using the validation

data, (xs,val
t (i),ys,val

t (i)), t = 1, . . . ,Mi, we can find the optimal value of λ that minimizes
the prediction error defined by

Mi∑
t=1

∥∥∥ys,val
t (i)− ȳs(i)− (Ψ̂∗(i))′(xs,val

t (i)− x̄s(i))
∥∥∥2 .

Let λ̂∗(i) denote the optimal value of λ for the ith validation set. The ith estimate of γ is
calculated by

γ̂(i) = ϕ(λ̂∗(i)) + log

(
Ni − 1

d2p

)
where Ni is the number of data pairs in the training data.366

Next, we determine the optimal value λ̂∗
EB based on the k-fold CV results. Let us define367

γ̂∗ =
1

k

k∑
i=1

γ̂(i) (29)

=
1

k

k∑
i=1

ϕ(λ̂∗(i)) +
1

k

k∑
i=1

log

(
Ni − 1

d2p

)
. (30)

Since Ni, i = 1, . . . , k, are nearly equal among themselves, the second term of (30) may be
regarded as a constant. The first term therein is the arithmetic mean of the logit. Finally,
γ̂∗ in (29) is used as an estimate of − log ν, and thus λ̂∗

EB is obtained from (28) by

λ̂∗
EB =

d2p

exp{−γ̂∗}(T − p− 1) + d2p
.
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5. Experiments368

We conducted a series of experiments with simulated data sets and real world data sets.369

We examined several methods of estimating VAR model coefficients such as ordinary least370

squares (OLS), ridge regression (Ridge), nonparametric shrinkage method (NS), and the371

empirical Bayesian shrinkage method (EB) which is proposed in this paper. We compared372

their performance in the context of parameter estimation and structure learning. We then373

applied the EB method to the real world data set and built a VAR model along with some374

interpretations.375

5.1. Estimation based on simulated data sets376

We generated multivariate time series data from VAR models of order p ∈ {1, 2, 3} with377

dimension d ∈ {5, 10, 20, 40, 80, 160} and number of observations T ∈ {10, 20, 40, 80, 160}.378

The covariance matrix for a noise vector was set to V = I. Among d2p coefficients in the379

coefficient matrix Φ, only d coefficients were set to nonzero values and the other coefficients380

zero. The values of the nonzero coefficients were drawn uniformly from the set, [−1,−0.2]∪381

[0.2, 1]. For notational convenience, we will denote by VAR(p, d) a VAR model of order p382

and dimension d.383

We generated 30 data sets from each of the VAR models for one experiment. For each of
the 30 data sets for given p, d, and T , we estimated the coefficient matrix Φ and calculated

an estimate, M̂SE, of the MSE of Φ̃, E

[∥∥∥Φ − Φ̃
∥∥∥2], given by

M̂SE =
1

30

30∑
l=1

∥∥∥Φ − Φ̃(l)
∥∥∥2 =

1

30

30∑
l=1

dp∑
i=1

d∑
j=1

(
Φij − Φ̃(l)ij

)2
where Φ is the true coefficient matrix and Φ̃(l) is the estimate of Φ based on the lth data384

set.385

Figs. 1 and 2 display the contours of the M̂SE, and scatter plots of 30 (λ̂∗, λ̂∗
v) pairs386

obtained by the NS method. Data were generated from a VAR(1, 5) model for Fig. 1, and387

a VAR(1, 40) model for Fig. 2. The number of observations is T = 20, 40, and 80 for panels388

(a), (b), and (c), respectively.389

The contours of Figs. 1 and 2 show that each M̂SE surface is convex with a unique390

minimum. The M̂SE surfaces clearly indicate that smaller shrinkage parameters should391

be used for larger T , whereas larger shrinkage parameters should be used for larger d.392

Moreover, since the M̂SE contours are elliptic and vertically prolate, we can see that the393

M̂SE’s are less sensitive to λ̂∗
v than λ̂∗.394

Figs. 3 and 4 are counterparts of Figs. 1 and 2, respectively, that are based on the395

estimate results from the EB method. We can see in the four figures that the 30 points396

of (λ̂∗, λ̂∗
v) from the EB method appear closer to the minimum point of the M̂SE surface397

than those from the NS method. This phenomenon is more apparent in Figs. 5 and 6 which398

show boxplots of the 30 estimates of λ by the NS and the EB method, respectively. We399

can also see in the four figures, Figs. 1, 2, 3, and 4, that the points, (λ̂∗, λ̂∗
v), are scattered400

over a wider area as T gets smaller for fixed p and d. The same phenomenon is displayed401

by boxplots for the values, λ̂∗, in Figs. 5 and 6.402

We compared M̂SE values between the four methods, the OLS, Ridge, NS, and EB403

methods. The comparison is displayed in Fig. 7 for VAR(1, d), d = 5, 10, 20, 40. We can see404
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(a) p = 1, d = 5, T = 20 (b) p = 1, d = 5, T = 40 (c) p = 1, d = 5, T = 80

Fig. 1. Contours of M̂SE’s and scatter plots of (λ̂∗, λ̂∗
v) pairs obtained by the NS method. Data were

generated from a VAR(1, 5) model, and the numbers of observations are T = 20, 40, and 80 for (a),
(b), and (c), respectively.
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Fig. 5. Box plots of the λ̂∗ values obtained by the NS method, and box plots of the optimal λ values
at which minimum M̂SE is achieved. Data were generated from VAR(1, d) models with d = 5, 10,
20, 40, 80, and 160 for (a), (b), (c), (d), (e), and (f), respectively.
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Fig. 6. Box plots of the λ̂∗ values obtained by the EB method, and box plots of the optimal λ values
at which minimum M̂SE is achieved. Data were generated from VAR(1, d) models with d = 5, 10,
20, 40, 80, and 160 for (a), (b), (c), (d), (e), and (f), respectively.
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Fig. 7. The M̂SE’s by the four methods, the OLS, Ridge, NS, and EB methods. Data were generated
from VAR(1, d) models with d = 5, 10, 20, and 40 for (a), (b), (c), and (d), respectively.

in the figure that the Ridge method produces Φ̃’s that are unstable when T is relatively405

small and that the NS method yields larger M̂SE values than the EB method. We can see406

analogous results for VAR(2, d) and VAR(3, d) which are displayed in Figs. 17 and 18 in407

Appendix B.408

The comparison of the M̂SE values between the NS and the EB method is summarized

in Fig. 8 via boxplots of the 30 log ratios of M̂SE values from as many simulated data sets.
The log ratio from the lth simulated data set is obtained by

logratio(l) = log

(
M̂SENS(l)

M̂SEEB(l)

)
,

where M̂SENS denotes the M̂SE by the NS method and analogously for M̂SEEB. The409

figure shows a larger M̂SE values by the NS method over a wider range than the EB410

method. The discrepancy between the two methods diminishes as d increases, which one411
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can anticipate from the results displayed in Figs. 5 and 6.412

5.2. Structure inference based on simulation data from a VAR(1,40)413

A VAR model is a causal model whose model structure is determined by its nonzero coef-414

ficients. As indicated in (1), the causal relationship between any two variables is defined415

as follows: the jth variable y·j does not Granger-cause the ith variable y·i if the coefficient416

matrices satisfy (A1)ij = · · · = (Ap)ij = 0 (Granger, 1969; Sims, 1972; Hamilton, 1994).417

In a graphical representation of a VAR model structure, each node corresponds to a vari-418

able and each directed edge corresponds to the Granger-causality between the connected419

variables, the arrow heading from a causal node to its effect node.420

A typical way of checking Granger-causality is to conduct an F test of the null hypothesis421

H0 : (A1)ij = · · · = (Ap)ij = 0 after estimating coefficient matrices by the OLS (Seber and422

Lee, 2003). However the OLS is not appropriate for data with T not large enough for d423

and p, and the test should be conducted repeatedly for each i and j, which accompanies424

another computational burden.425

Therefore it is preferred to run a statistical test using partial correlations instead of426

coefficient matrices in case of data sets with small T and large d (Schäfer and Strimmer,427

2005a; Opgen-Rhein and Strimmer, 2007c). A partial correlation corr(y·i, x·j |x·rest) between428

two variables y·i and x·j represents the correlation between the two variables conditioned on429

the rest of the predictor variables. It is shown in Whittaker (1990) that in the multivariate430

normal linear regression model, Φji = 0 if and only if corr(y·i, x·j |x·rest) = 0.431

Specifically, the partial correlations are directly related to the VAR coefficients (Whit-432

taker, 1990) as follows. First of all, the VAR model is described by433

y·i = Φ1ix·1 + · · ·+ Φdp,ix·dp + ci + ε·i

= Φjix·j +

dp∑
k=1,k ̸=j

Φkix·k + ci + ε·i

for i = 1, . . . , d. Next, for each (i, j), by switching the role of y·i and x·j , that is, letting x·j434

be the response variable, the model is expressed as435

x·j = Θjiy·i +

dp∑
k=1,k ̸=j

Θkix·k + vj + η·j

where Θ is a (dp × d) coefficient matrix, vj is a scalar, and η·j is a noise random variable
with mean zero. Finally, the estimated partial correlation is obtained from the estimated
coefficient matrices Φ̃ and Θ̃ by

ĉorr(y·i, x·j |x·rest) = sign
(
Θ̃ji

)√
Φ̃jiΘ̃ji .

For simulation experiment, we generated multivariate time series data from a VAR(1, 40)436

model with numbers of observations T ∈ {10, 20, 40, 80, 160}. The covariance matrix for a437

noise vector was set as V = I. The number of nonzero coefficients in the coefficient matrix438

Φ was set at 450. The values of the nonzero coefficients were drawn uniformly from the439

set, [−0.5,−0.1] ∪ [0.1, 0.5]. Fig. 9 displays the subgraph with the 30 strongest-intensity440
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Fig. 8. Box plots of the log ratios of the M̂SE’s to compare the NS method and the EB method. Data
were generated from VAR(1, d) models with d = 5, 10, 20, 40, 80, and 160 for (a), (b), (c), (d), (e),
and (f), respectively.
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Fig. 9. The subgraph with the 30 strongest-intensity edges of an actual VAR(1,40) model which
is used for a simulation experiment, where solid and dotted lines indicate positive and negative
coefficients, respectively.

edges of the VAR(1,40) network, where solid and dotted lines indicate positive and negative441

coefficients, respectively.442

We generated 30 data sets from each of the VAR models for one experiment. For443

each of the 30 data sets for given p, d, and T , we applied the NS and the EB methods444

to obtain (λ̂∗, λ̂∗
v). After estimating the VAR model coefficients, we calculated the partial445

correlations. Since there are d2p = 1600 coefficients in Φ, we obtained d2p = 1600 estimated446

partial correlations for each of the NS and the EB methods.447

The estimated partial correlations represent the significance of the causal relationship448

between each pair of variables, based on which a statistical test is conducted in search of449

nonzero entries of the coefficient matrix. We can compare the NS and the EB methods by450

evaluating the estimated partial correlations through the receiver operating characteristic451

(ROC) curves. Partial correlations were estimated from each of the 30 data sets with p = 1,452

d = 40, and T = 40 by each of the EB and the NS method, and the ROC curves were453

created as in Fig. 10. We can see in the figure that the EB method performs far better than454

the NS method.455

Fig. 11 (a) displays the precision score by each of the two estimation methods, which is456

the proportion of the correctly selected edges out of the 450 edges whose true coefficients457

are nonzero. These correctly selected edges are also called true positives. It is apparent in458

the figure that the EB method performs better than the NS method.459

Fig. 11 (b) and (c) display the difference in the average number of true positives in more460

detail. In Fig. 11 (b), the difference increases up to around 50 edges. This number is more461

than 10% of the total number of actual nonzero coefficients. To see the significance of the462

difference, we conducted paired t-tests for testing H0 : pEB = pNS against H1 : pEB > pNS
463

where pEB and pNS are the true positive rates of the EB and the NS methods, respectively.464

The p-values of the test are shown by the green dotted line in Fig. 11 (b) which are obtained465

based on 30 data sets generated for each VAR model.466

Fig. 11 (c) shows the difference in the true positives in more detail. We classified the467

model coefficients according to their absolute values into one of the four intervals: [0.1, 0.2),468
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Fig. 10. ROC curves by the NS and the EB method using simulated data with T = 40 from a
VAR(1,40) model.

[0.2, 0.3), [0.3, 0.4), and [0.4, 0.5]. We investigated the difference in the true positives for469

each interval. We can see in the figure that the difference in the true positive rate gets470

relatively higher for the interval, [0.1, 0.2), among the four intervals as T gets larger. This471

may be interpreted as a higher efficiency of edge detection for the EB method in comparison472

with the NS method.473

5.3. Structure inference based on simulation data from a VAR(1,400)474

In the preceding subsection, we compared the performance of the EB method with others,475

in particular with the NS method, for relatively small VAR models where the number of476

nonzero Φij ’s is equal to the dimensionality, d, of the model. In this subsection, we will477

compare the NS and EB methods in the context of structure learning using a larger model,478

VAR(1, 400) with lots of nonzero Φij ’s.479

A VAR model is a causal model whose model structure is determined by its nonzero480

coefficients. As indicated in (1), the causal relationship between any two variables is defined481

as follows: the jth variable y·j does not Granger-cause the ith variable y·i if the coefficient482

matrices satisfy (A1)ij = · · · = (Ap)ij = 0 (Granger, 1969). In a graphical representation483

of a VAR model structure, each node corresponds to a variable and each directed edge484

corresponds to the Granger-causality between the connected variables, the arrow heading485

from a causal node to its effect node.486

For checking the Granger-causality, it is preferred to run a statistical test using partial487

correlations instead of conducting F tests which are based on the OLS estimates (Seber488

and Lee, 2003) in case of data sets with small T and large d (Schäfer and Strimmer, 2005a).489

Let corr(y·i, x·j |x·rest) denote the partial correlation between two variables y·i and x·j . It is490

shown in Whittaker (1990) that in the multivariate normal linear regression model, Φji = 0491

if and only if corr(y·i, x·j |x·rest) = 0. For the calculation of the partial correlations from492

shrinkage estimates, see Schäfer and Strimmer (2005a).493
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Fig. 11. Results by the NS and the EB methods in the selection of the edges of VAR networks. Data
were generated from a VAR(1, 40) model with 450 nonzero coefficients.
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Fig. 12. Results by the EB and NS methods in the selection of the edges of VAR networks. Data
were generated from a VAR(1, 400) model.

For simulation experiments, we generated multivariate time series data from a VAR(1, 400)494

model with T ∈ {10, 20, 40, 80, 160}. The covariance matrix for a noise vector was set to495

V = 0.012I. The number of nonzero Φij was set at 4000, whose values were drawn uniformly496

from the set, [−0.5,−0.1] ∪ [0.1, 0.5]. For each of the 30 data sets generated for given p, d497

and T , we applied the NS and EB methods to obtain (λ̂∗, λ̂∗
v) and d2p = 160000 estimated498

partial correlations.499

Fig. 12 (a) displays the precision score by each of the two estimation methods, which is500

the proportion of the correct edges out of the 4000 edges which are selected in accordance501

with the absolute values of the estimated partial correlations. The correctly selected edges502

are called the true positives. It is apparent in the figure that the EB method performs far503

better than the NS method when T ≥ 80 and more or less at the same level when T ≤ 40.504

Fig. 12 (b) displays the difference in the average number of true positives between the505

EB and NS methods in more detail, where the difference increases up to 710 edges when506

T = 160 which is about 18% out of 4000 edges. Moreover, we classified the model coefficients507

according to their absolute values into one of the four intervals: [0.1, 0.2), [0.2, 0.3), [0.3, 0.4),508

and [0.4, 0.5], and we investigated the difference in true positives for each interval. In the509

figure the difference for the interval [0.1, 0.2) grows relatively faster among the four intervals510

as T gets larger. For instance, the difference for the interval [0.1, 0.2) increased from 36 at511

T = 80 to 94 at T = 160 while the difference for the interval [0.4, 0.5) increased from 103 at512

T = 80 to 190 at T = 160. This can be interpreted as a higher efficiency of edge detection513

for the EB method in comparison with the NS method.514

The NS and EB methods were compared through the receiver operating characteristic515

(ROC) curves as in Fig. 13 (a) and through the partial sum of true positives as in Fig. 13516

(b) based on the estimated partial correlations for data with T = 80. We denote by seqNS517

the sequence of the edges which are arranged in the order of the absolute values of the518

estimated partial correlations from large to small that are obtained by the NS method, and519

similarly for seqEB . The partial sum of true positives are the number of the correct edges520

out of the first k edges in seqNS (or seqEB). We will denote the partial sum for the first k521

edges in seqNS by τNS(k) and similarly for τEB(k).522
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Fig. 13. (a) The ROC curves based on the estimated partial correlations and (b) partial sums of the
true positives out of the first k edges in seqNS and in seqEB . Data were generated from a VAR(1, 400)
model with T = 80.
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Fig. 14. τEB(k)−τNS(k) for k = 250, 500, 1000(1000)4000. Data were generated from a VAR(1, 400)
model with T = 80.

Table 1. The numeric version of Fig. 14. The values are the mean and the standard deviation of
τEB(k)− τNS(k) based on the 30 iterations of experiment.

Intervals τEB(k) − τNS(k)
of true k =250 500 1000 2000 3000 4000

coefficient Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
[0.1, 0.2) -0.7 1.8 -0.4 2.6 3.4 5.1 18.3 6.3 29.5 9.0 36.4 11.3
[0.2, 0.3) -0.8 3.8 2.5 4.3 16.3 7.2 53.9 12.4 73.2 17.4 86.2 17.9
[0.3, 0.4) 3.3 4.9 14.0 6.8 48.6 11.1 87.8 15.2 108.7 19.7 110.6 19.2
[0.4, 0.5] 8.8 6.1 23.6 8.5 59.2 13.2 98.2 19.7 102.6 17.2 103.4 17.4

[0.1, 0.5] 10.6 6.9 39.7 12.1 127.6 20.3 258.1 40.5 314.0 53.5 336.6 54.1
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The graph in Fig. 13 (b) is zoomed in Figure 14 whose numeric version is Table523

1. Note in the graph that (τEB(k) − τNS(k))/k = 0.04, 0.08, 0.13, 0.13, 0.10, 0.08 for524

k = 250, 500, 1000(1000)4000, respectively. This result is noteworthy. For instance, that525

(τEB(k) − τNS(k))/k = 0.13 when k = 1000 means that 13% or 128 more actual edges526

are found among the first 1000 edges in seqEB than in seqNS . In other words, the NS527

method chose wrongly 128 more edges than the EB method, whose actual coefficients are528

zero, in the first 1000 of seqNS . What is more interesting is that among the 128 false529

positive edges by the NS method, 108 edges are as to the actual edges whose absolute val-530

ues of coefficient are not smaller than 0.3. We see more differences in the true positives531

between the two methods where the strengths of the actual edges are relatively higher.532

This phenomenon is more or less the same for the other k values, as we can check in both533

Figure 14 and Table 1. This result is obtained when T = 80. An analogy of this result is534

also expected when T = 160 as is indicated in Figure 12 (b). Note that, when T = 160,535

(τEB(4000) − τNS(4000))/4000 = 710/4000 = 0.18 which is considerably large in favor of536

the EB method.537

We had similar results as above for data from VAR(1,400) models with other large538

numbers of non-zero Φij ’s. For instance, when the number of non-zero Φij ’s is 2000 with539

T = 80, τEB(2000) − τNS(2000) = 221; when the number of non-zero Φij ’s is 6000 with540

T = 80, τEB(k)− τNS(k) = 252, 1013, respectively, for k = 2000, 6000. As far as structure541

learning is concerned, the simulation experiment strongly indicates that the EB method542

performs at least as good as the NS method.543

5.4. Inference for VAR model based on real world data544

The real world data we used for the experiment are obtained from an examination study on545

the synthesis and functions of enzymes of starch metabolism in leaves of Arabidopsis thaliana546

(Smith et al., 2004). Microarray analysis of diurnal changes in the starch transcriptome was547

carried out in the examination study. Opgen-Rhein and Strimmer (2007c) have downloaded548

original data of 22,814 probes and 11 time points for each of the two biological replicates from549

experiment no. 60 of the NASCArrays repository (Craigon et al., 2004) and preprocessed550

it to obtain the data with a subset of 800 genes. The data set descriptions are available in551

the package GeneNet in R programming language.552

We estimated the VAR coefficients and the corresponding partial correlations using both553

of the EB and the NS methods. The estimates of (λ, λv) are (λ̂∗
EB, λ̂

∗
EB,v) = (0.866, 0.013)554

and (λ̂∗
NS, λ̂

∗
NS,v) = (0.141, 0.035) by the EB and the NS methods, respectively. Note that555

λ̂∗
EB ≫ λ̂∗

NS for the data with T = 22 and d = 800.556

The local FDR algorithm described by Strimmer (2008) was applied to the estimated557

partial correlations to select VAR networks. A VAR network with 2266 edges connecting558

510 nodes was recommended by the EB method. Fig. 15 depicts the subgraph with 150559

edges connecting 59 nodes. Opgen-Rhein and Strimmer (2007c) applied the NS method560

and recommended a VAR network with 7381 edges connecting 707 nodes using the local561

FDR algorithm. We notice that the EB method ended up with a VAR model of a smaller562

size. This result seems mostly due to λ̂∗
EB and λ̂∗

NS, i.e., a larger shrinkage on the cross-563

autocorrelations results in a sparser model structure.564

The difference in λ̂∗ between the two methods is reflected in the difference in the empir-
ical distribution of the partial correlations between the two methods as displayed in Fig. 16.
We can see in the figure that more estimates of the partial correlations are clustered near
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Fig. 15. Subgraph with 150 edges obtained by the EB method. The solid and dotted lines indicate
positive and negative partial correlation coefficients, respectively, and the line intensity denotes their
strength. Two green nodes are newly added to the “yellow” web nodes which are found in Opgen-
Rhein and Strimmer (2007c).
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zero by the EB method than by the NS method. The empirical distribution is approximated
by a mixture distribution

f(r) = η0f0(r;κ) + (1− η0)fA(r), 0 < η0 < 1,

where f0 is called a null distribution and fA the alternative distribution. The distribution of
a sample (partial) correlation coefficient, say r, is derived under the normality assumption
in Hotelling (1953). When corr(y·i, x·j |x·rest) = 0, the distribution of r is given by

f0(r;κ) = (1− r2)(κ−r)/2 Γ(κ/2)

π1/2Γ((κ− 1)/2)
, −1 ≤ r ≤ 1,

where κ is the degree of freedom. The variance of the sample partial correlation coefficient
equals the inverse of κ, i.e. Var(r) = 1/κ. The local FDR algorithm estimates κ and η0 from
the estimated partial correlations. We can see in Fig. 16 that the EB method has a larger κ
value which implies a smaller variance of the null distribution, and a larger η0 value which
implies a smaller fraction, 1−η0, for the nonzero partial correlations. Especially, η0 directly
affects the number of edges of a VAR network through the following local area-based FDR
score (Strimmer, 2008)

fdr(r) = Pr(zero partial correlation|r) = η0f0(r;κ)

f(r)
.

An edge in a VAR network is selected if fdr(r) ≤ 0.2. Hence a larger η0 value results in a565

sparser model structure.566

In Opgen-Rhein and Strimmer (2007c), the subgraph of 150 edges of the VAR network567

obtained by the NS method (call it NS-VAR network) has hub nodes colored in red and a568

web of highly connected genes colored in yellow. In the VAR network of Fig. 15 (call it EB-569

VAR network), the nodes are colored in the same manner as in Opgen-Rhein and Strimmer570

(2007c), and we found nodes 21 and 677 added to the “yellow” web nodes of Opgen-Rhein571

and Strimmer (2007c). These nodes are colored green in Fig. 15. When comparing the two572

VAR networks, it is worthwhile to note that the “yellow” nodes in the web are connected by573

far more edges in the EB-VAR network than the NS-VAR network, which is concomitant574

with fewer edges outside the densely intra-connected web in the EB-VAR network. As a575

matter of fact we could check in Figs. 19 and 20 in Appendix B that, out of 100 strongest576

edges, 84 edges were found in the “yellow” web in the EB-VAR network while they are 46577

edges in the NS-VAR network. Besides that, all the 20 “yellow” web nodes appeared in the578

EB-VAR network plus the 2 ”green” nodes while they are just 18 in the other network.579

We present the EB-VAR network of 300 edges in Fig. 21 in Appendix B in order to help580

readers have a better understanding of the model structure. Since the edges are selected581

in the order of the edge intensity, we can see that the interrelationships among the nodes582

in the “yellow” web plus the two green nodes are relatively higher in the full model. The583

150-edge and the 300-edge EB-VAR networks look quite different, which is just a matter of584

order of node-appearance in the network according to the edge intensity.585

Since the VAR networks have directed edges, all genes are classified either as genes586

having mostly outgoing edges or as genes having mostly incoming edges. Genes having587

mostly outgoing edges are likely to be key regulatory genes. Among the hub nodes in588

Fig. 21 in Appendix B, the following nodes have mostly outgoing edges: node 570, an AP2589

transcription factor, node 81, a DNA-directed RNA polymerase, node 539, a transcription590
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Type of Statistic: Correlation (kappa = 81673.2, eta0 = 0.9862)
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Fig. 16. Empirical distributions of the partial correlations obtained (a) by the EB method and (b)
by the NS method, respectively, for the data considered in Section 5.4. The dotted line depicts the
null distribution and the solid line the alternative distribution. The empirical distribution depicted by
the histogram is approximated by a mixture of the null and alternative distributions. κ and η0 are
explained in the text.
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factor, node 328, an ATPase, and node 783, a RNA methyltransferase. On the other hand,591

the following nodes seem to have mostly incoming edges: node 573, an unknown protein,592

and node 679, an unknown protein.593

Although the EB-VAR and the NS-VAR networks share structural similarity very much,594

there are some noteworthy differences as well. Some nodes have many connections in the595

VAR network of the NS method, but not in the network of the EB method, and vice versa.596

Such differences will be examined in future works in cooperation with relevant biologists.597

6. Conclusion598

A main idea in the proposed method is that we search for an optimal value, λ̂∗, of the599

shrinkage parameter under a Bayesian framework where the shrinkage parameter is set as600

a hyper-parameter for the priors on the parameters of the VAR model. The value λ̂∗ is601

then selected so that the prediction error is minimized. The selection is made through602

the parameterized cross-validation. We assume that the shrinkage parameter is bounded603

away from zero in forming priors on the VAR coefficients but it does no harm to the604

estimation since the shrinkage parameter moves along with the sample size as compromising605

counterparts during the searching process of λ̂∗. As the sample size increases, λ̂∗ tends to606

decrease under the formal framework imposed by the priors, the chosen VAR model, and607

the optimization criterion.608

The proposed method or the EB method for short is compared favorably with the609

existing methods including the OLS, the Ridge, and the nonparametric shrinkage (NS)610

method using simulated data sets. When compared with the NS method, the EB method611

performed better in the context of the mean squared error and the ROC curve whether the612

sample size is smaller than the minimum required sample size for a given model or not. It613

is worthwhile to note that the EB method was more powerful in detecting edges of weaker614

intensities (i.e., a smaller absolute value of the coefficient) as the sample size increases.615

As for the analysis of the real world data, the EB method is shown to be very conservative616

in comparison with the NS method considering that the EB method suggests a VAR network617

of 510 nodes with 2266 edges while the network is of 707 nodes with 7381 edges for the NS618

method. The node-edge ratios are 4.4 and 10.4 for the EB and the NS method, respectively.619

The VAR network by the NS method had 2.4 times as many edges as the network by the620

EB method. Results of the simulation experiment strongly indicates a higher conservative621

tendency by the EB method than by the NS method when the sample size is far smaller622

than the dimensionality of data. While being conservative, the EB method seems to detect623

such nodes as 21 and 677 as new member nodes of the densely connected “yellow” web624

which was formed by the NS method.625

We applied the proposed method for building a VAR model of a pre-specified order p.626

The method can also be used for selecting a best VAR model by comparing, for different627

values of p, values of such an evaluator as the prediction error sum of squares which is used628

in the parameterized cross-validation of section 4.3. The VAR model with the smallest value629

of the evaluator would be the one to recommend as the most appropriate. The algorithm630

of the proposed method is written in R programming language and available upon request631

to the authors.632
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A. Appendix A: Proofs633

A.1. Proof of Theorem 2634

First, we calculate the joint density function f(Ψ , σ2,yp+1, . . . ,yT |λ,xp+1) as follows:635

f(Ψ , σ2,yp+1, . . . ,yT |λ,xp+1)

= L(Ψ , σ2)π(Ψ |σ2, λ)π(σ2)

∝
(

1

σ2

)α+d(T−p−1)/2+d2p/2+1(
λ

1− λ

)d2p/2

exp

{
− β

σ2

}
× exp

{
− 1

2σ2

(
∥Y s −XsΨ∥2 + λ(T − p− 1)

1− λ
∥Ψ∥2

)}
. (31)

Since (Xs)′Y s =
(
(Xs)′Xs + λ(T−p−1)

1−λ I
)
Ψ̂∗, we get636

∥Y s −XsΨ∥2 + λ(T − p− 1)

1− λ
∥Ψ∥2

=
d∑

i=1

(
∥Y s

i −XsΨi∥2 +
λ(T − p− 1)

1− λ
∥Ψi∥2

)

=

d∑
i=1

(
(Y s

i )
′Y s

i − (Y s
i )

′Xs

(
(Xs)′Xs +

λ(T − p− 1)

1− λ
I

)−1

(Xs)′Y s
i

)

+

d∑
i=1

(
Ψi − Ψ̂∗

i

)′(
(Xs)′Xs +
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)(
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)
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)′ (
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i

)
.

Therefore637

f(Ψ , σ2,yp+1, . . . ,yT |λ,xp+1)

∝
(

1

σ2

)α+d(T−p−1)/2+d2p/2+1(
λ

1− λ

)d2p/2

exp

{
− β̂∗(λ)

σ2
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(
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)′ (
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=
Γ(α̂∗)

(β̂∗(λ))α̂∗

(
2πλ

1− λ

)d2p/2 ∣∣∣∣(Xs)′Xs +
λ(T − p− 1)

1− λ
I

∣∣∣∣−d/2

×IG(σ2|α̂∗, β̂∗(λ))
d∏

i=1

Ndp(Ψi|Ψ̂∗
i , K̂

∗(σ2, λ)). (32)
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Next, the conditional posterior of (Ψ , σ2) given λ is obtained by638

π(Ψ , σ2|λ; {yt}Tt=1) =
f(Ψ , σ2,yp+1, . . . ,yT |λ,xp+1)∫ ∫

f(Ψ , σ2,yp+1, . . . ,yT |λ,xp+1)dΨdσ2

= IG(σ2|α̂∗, β̂∗(λ))
d∏

i=1

Ndp(Ψi|Ψ̂∗
i , K̂

∗(σ2, λ)),

which is the product of the conditional posterior of σ2 and the conditional posterior of Ψ .
The marginal likelihood of λ is

L(λ) =

∫ ∫
L(Ψ , σ2)π(Ψ |σ2, λ)π(σ2)dΨdσ2,

which is easily calculated from (32).639

A.2. Proof of Theorem 3640

Let θ(λ) = λ(T − p− 1)/(1− λ). We begin with the joint density function (31):641

f(Ψ , σ2, {yt}Tt=p+1|λ,xp+1)

= m5

(
1

σ2

)α+d(T−p−1)/2+d2p/2+1(
θ(λ)

T − p− 1

)d2p/2

exp

{
− β

σ2

}
× exp

{
− 1

2σ2

(
∥Y s −XsΨ∥2 + θ(λ) ∥Ψ∥2

)}
where m5 is a constant that does not depend on (Ψ , σ2, λ). If we integrate this with respect642

to σ2, then, through the density of Gamma distribution,643

f(Ψ , {yt}Tt=p+1|λ,xp+1)

=

∫
f(Ψ , σ2, {yt}Tt=p+1|λ,xp+1)dσ

2

= m4θ(λ)
d2p
2

(
β +

1

2
∥Y s −XsΨ∥2 + 1

2
θ(λ) ∥Ψ∥2

)−α−d(T−p−1)/2−d2p/2

(33)

where m4 is a constant that does not depend on (Ψ , σ2, λ).644

The cross entropy between δ(Ψ |Ψ∗) and f(Ψ , {yt}Tt=p+1|λ,xp+1) is645

H(δ, f) = −
∫

δ(Ψ |Ψ∗) log f(Ψ , {yt}Tt=p+1|λ,xp+1)dΨ

= − log f(Ψ∗, {yt}Tt=p+1|λ,xp+1). (34)

Let εst = ys
t − (Ψ∗)′xs

t − cs∗. The term ∥Y s −XsΨ∗∥2 is expanded as646

∥Y s −XsΨ∗∥2 =
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εsτ

∥∥∥∥∥
2
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∥εst∥
2 − 1

T − p
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T∑

τ=p+1

εsτ

∥∥∥∥∥
2

.
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Based on the density function (16), we note that

εst|(Ψ∗, σ∗2, cs∗,xs
t) ∼ Nd(0, σ

∗2I) .

Therefore it follows that

E
[
∥εst∥

2
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2
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and647
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Thus,648

E
[
∥Y s −XsΨ∗∥2

∣∣∣Ψ∗, σ∗2, cs∗
]

= E

 T∑
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= d(T − p)σ∗2 − dσ∗2

= d(T − p− 1)σ∗2 . (35)

From the Jensen’s inequality, we get649

E

[
log

(
β +

1

2
∥Y s −XsΨ∗∥2 + 1

2
θ(λ) ∥Ψ∗∥2

)]
≤ log

(
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1

2
θ(λ) ∥Ψ∗∥2

)
. (36)

And from (33), (34), (35) and (36), we get the result in Theorem 3.650
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B. Appendix B: Supplemental figures651
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Fig. 17. The M̂SE’s by the four methods, the OLS, Ridge, NS, and EB methods. Data were gener-
ated from VAR(2, d) models with d = 5, 10, 20, and 40 for (a), (b), (c), and (d), respectively.
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Fig. 18. The M̂SE’s by the four methods, the OLS, Ridge, NS, and EB methods. Data were gener-
ated from VAR(3, d) models with d = 5, 10, 20, and 40 for (a), (b), (c), and (d), respectively.
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Fig. 19. Subgraph with the 100 strongest-intensity edges obtained by the EB method. The solid and
dotted lines indicate positive and negative partial correlation coefficients, respectively, and the line
intensity denotes their strength.
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Fig. 20. Subgraph with the 100 strongest-intensity edges obtained by the NS method. The solid and
dotted lines indicate positive and negative partial correlation coefficients, respectively, and the line
intensity denotes their strength.
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Fig. 21. Subgraph with the 300 strongest-intensity edges obtained by the EB method. The solid and
dotted lines indicate positive and negative partial correlation coefficients, respectively, and the line
intensity denotes their strength.
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