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Abstract

Let M be a positive quaternionic Kähler manifold of dimension 4m.
We already showed that if the symmetry rank is greater than or equal to[

m
2

]
+2 and the fourth Betti number b4 is equal to one, then M is isometric

to HP m. The goal of this paper is to report that we can improve the lower
bound of the symmetry rank by one for higher even dimensional positive
quaternionic Kähler manifolds. Namely, it is shown in this paper that if
the symmetry rank of M with b4(M) = 1 is greater than or equal to m

2
+1

for m ≥ 10, then M is isometric to HP m. One of the main strategies of
this paper is to apply a more delicate argument of Frankel type to positive
quaternionic Kähler manifolds with certain symmetry rank.

1 Introduction and Main Results

A compact quaternionic Kähler manifold M is a Riemannian manifold of real di-
mension 4m whose holonomy group is contained in the Lie group Sp(m)Sp(1) =
Sp(m) × Sp(1)/Z2 in SO(4m) for m ≥ 2. Such a manifold is called positive if
it has the positive scalar curvature. It is known that every quaternionic Kähler
manifold is simply connected and Einstein. Moreover, it is easy to see from a
well-known theorem of Meyers that every positive quaternionic Kähler manifold
is compact. It is common to define a 4-dimensional quaternionic Kähler man-
ifold to be both Einstein with non-zero scalar curvature and self-dual. While
many complete, non-compact, non-symmetric quaternionic Kähler manifolds
with negative scalar curvature are known to exist, so far the only known ex-
amples of positive (compact) quaternionic Kähler manifolds are the so-called
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Wolf spaces: Wolf proved that for each compact simple Lie group G, there is a
symmetric space G/H. For examples, the classical ones are

HPm =
Sp(m + 1)

Sp(m)× Sp(1)
,

Gr2(Cm+2) =
SU(m + 2)

S(U(m)×U(2))
,

˜Gr4(Rm+4) =
SO(m + 4)

S(O(m)×O(4))
,

and there are five more exceptional cases. Moreover, a theorem of Alekseevsky
asserts that there are no other compact homogeneous positive quaternionic
Kähler manifolds (e.g., see [1]).

Quite recently, in the paper [10] R. Kobayashi and K. Onda announced a
proof of the LeBrun-Salamon conjecture saying that every irreducible positive
quaternioinic Kähler manifold is isometric to one of the Wolf spaces. Their proof
crucially uses the Ricci flow technique developed by G. Perelman, S. Bando and
W. X. Shi (see [12], [2] and [15]).

Every positive quaternionic Kähler manifold admits a twistor space which is
a complex contact Fano manifold. It is also true that a contact Fano manifold
is a twistor space of a positive quaternionic Kähler manifold if and only if it
admits a Kähler-Einstein metric. However, it is generally believed that every
contact Fano manifold admits a Kähler-Einstein manifold. In view of the recent
result of Kobayashi-Onda and Wolf, it seems to be reasonable to conjecture that
every contact Fano manifold with the second Betti number b2 = 1 is indeed a
symmetric space.

In this paper, we take a quite different approach to classify positive quater-
nionic Kähler manifolds, which is likely to contain much weaker, but more geo-
metric and so meaningful, results than those of Kobayashi and Onda. In other
words, we exclusively consider positive quaternionic Kähler manifolds with an
isometry group of certain rank. For instance, it is known in [14] that every 16-
dimensional positive quaternionic Kähler manifold admits an isometry group of
dimension 8. Hence such a manifold admits an isometric torus action of rank
at least 2.

In the papers [4] and [5], Fang showed that for m even integer every posi-
tive quaternionic Kähler 4m-manifold with sym-rank(M) ≥ m

2 +3 is isometric
to HPm or Gr2(Cm+2). (Here the symmetry rank sym-rank (M, g) (or simply
sym-rank (M)) of a Riemannian manifold with a Riemannian metric g is de-
fined as the rank of the isometry group Isom (M, g). Equivalently, it can be
defined as the largest number r such that a r-dimensional torus acts effectively
and isometrically on M). Moreover, the first named author showed in [8] that
every positive quaternionic Kähler 4m-manifold with sym-rank(M) ≥ [m

2 ]+3 is
isometric to HPm or Gr2(Cm+2), regardless of the parity of the integer m. One
of the crucial arguments in the proof is an extended version of connectedness
theorem in [4] in the presence of the group action. Recently, in the paper [9]
we were able to improve the lower bound of the paper [8] further by one under
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the assumption of the fourth Betti number b4 = 1 by applying more delicate
arguments. On the other hands, the classification of low dimensional positive
quaternionic Kähler manifolds has already been done by N. Hitchin, Poon and
Salamon, Herrera and Herrera (see [7], [13] and [6] for more details).

The aim of this paper is to give a classification result of positive quaternionic
Kähler manifolds satisfying both the fourth Betti number b4(M) = 1 and sym-
rank(M) ≥ m

2 + 1. Our first main result is

Theorem 1.1. Let M be a positive quaternionic Kähler manifold of dimension
4m with an isometric T k-action. If k is greater than or equal to 6, then the
dimension of any fixed point component of the S1-action induced from the T k-
action is greater than or equal to 4k.

We will prove Theorem 1.1 by contradiction, in Section 2. Namely, otherwise
we would find two fixed point components under the induced T k−3-action. Then
let γ denote a minimizing geodesic joining between two fixed point components,
and use the second variation of γ. Since every positive quaternionic Kähler
manifold has a positive scalar curvature of M , we can derive a contradiction to
Proposition 1.2 in [4]. (See Section 2 for more details.)

Our second main result is

Theorem 1.2. Let M be a positive quaternionic Kähler manifold of dimension
4m with b4(M) = 1. If the symmetry rank satisfies sym-rank(M) ≥ m

2 + 1 for
m ≥ 10, then M is isometric to HPm.

This theorem is actually a corollary of Theorem 1.1. We will prove it by
using a mathematical induction starting from the case m = 10. The restriction
on the dimension in Theorem 1.2 might be improved or removed, but to do so
we probably need new insights or techniques. So we hope to return this issue in
a future paper. Along the proof of Theorem 1.2. the following rigidity theorem
of LeBrun and Salamon will be crucially used.

Theorem 1.3 ([11]). The second homotopy group π2(M) of a positive quater-
nionic Kähler manifold M is a finite group with 2-torsion or Z, and M is
isometric to HPn or Gr2(Cn+2), according to π2(M) = 0 or Z.

We also need the following connectedness theorem whose statement without
the presence of a group action is due to Fang in [4]:

Theorem 1.4 ([8]). Let M be a positive quaternionic Kähler manifold of di-
mension 4m. If N is a quaternionic Kähler submanifold of dimension 4n, then
the inclusion N ↪→ M is (2n − m + 1)-connected. Furthermore, if there is a
Lie group G acting isometrically on M and fixing N pointwise, then the inclu-
sion map is (2n−m + 1 + δ(G))-connected, where δ(G) is the dimension of the
principal orbit of G.

We organize this paper as follows. In Section 2, we give a proof of Theorem
1.1 which is one of the key ingredients to prove Theorem 1.2. In order to
prove Theorem 1.2, we use the mathematical induction on the dimension of a
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positive quaternionic Kähler manifold with certain symmetry rank. To do so,
we need to deal with a positive quaternionic Kähler manifold of dimension 40
with an isometric T 6-action, and Section 3 is devoted to the classification of such
manifolds. Finally, in Section 4 we give a proof of our main Theorem 1.2 which
will be based on the classification of a positive quaternionic Kähler manifold of
dimension 40 with an isometric T 6-action established in Section 3.

2 Proof of Theorem 1.1

In this section we give a proof of Theorem 1.1 which will play a crucial role in
the proof of Theorem 1.2. To do so, as before let M be a positive quaternionic
Kähler manifold of dimension 4m. Assume that M admits an isometric T k-
action. Let V denote a fixed point component of the S1-action induced from
the T k-action.

We begin with this section by setting up some notations for later use. When
T i acts on M , we denote by Fix(T i,M) the fixed point set of T i-action. One of
the connected components of Fix(T i, M) will be often denoted by Fix(T i, M)0.
We shall also denote by Ni one of the connected components of Fix(T i,M),
and di will always mean its dimension. With these notations in place, note that
we can choose Ni+1 in Fix(S1, Ni) ⊂ Fix(T i+1,M). Thus one can consider the
following chain at x:

x ∈ Nk ⊂ Nk−1 ⊂ · · · ⊂ N1 ⊂ M.

Therefore, from now on we will always assume without further mentioning that
there is the relation Ni ⊂ Ni−1 ⊂ M for 2 ≤ i ≤ k.

As mentioned in Section 1, we prove Theorem 1.1 by contradiction. Hence
suppose that V has the dimension less than or equal to 4k− 4. Note that, since
V admits T k−1-action by its construction, it follows from Theorem B in [4] that
the dimension of V should be greater than or equal to 4k − 8. Then we claim
the following lemma.

Lemma 2.1. There exist two fixed-point components contained in V under the
T k−3-action induced from the T k−1-action on V (k ≥ 6).

Proof. We divide the proof into two cases:
Case 1: Assume first that the dimension of V is equal to 4k − 4.

For the sake of simplicity, let N0 = V . Then, for each 0 ≤ i ≤ k − 2, we
can define a fixed-point component Ni inductively in such a way that Ni+1 =
Fix(S1, Ni)0. So clearly we have the following inclusions:

V = N0 ⊃ N1 ⊃ · · · ⊃ Nk−1.

In particular, note that Nk−3 admits an isometric T 2-action. Thus we
have dim(Nk−3) ≥ 4 by Theorem B in [4]. Moreover, we have dim(Nk−3) ≤
dim(N0)− 4(k − 3) = (4k − 4)− 4(k − 3) = 8 in this case.
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If dim(Nk−3) = 8 then dim(Nk−4) = 12 by the effectiveness of the isometric
action. Then it follows from Theorem 1.2 in [5] that Nk−4 should be isometric
to HP 3 or Gr2(C5).

Now note that dim(Ni)−dim(Ni+1) = 4 for 0 ≤ i ≤ k− 5. Let di = dim Ni.
Then it is easy to see that

2 + di+1/2− di/4 = 2 + di+1/2− (di+1 + 4)/4 = 1 + di+1/4 ≥ 3,

since di+1 ≥ 12. Thus we have

π2(V ) = π2(N1) = . . . = π2(Nk−4).

This implies that V is actually isometric to HP k−1 or Gr2(Ck+1).
Next assume that dim(Nk−3) = 4. If dim(N1) = 4k − 8, then by Theorem

1.2 in [5], V is isometric to HP k−1 or Gr2(Ck+1).
If dim(N1) = 4k − 12, N1 admits the maximal symmetry rank. Note that

dim(Ni) = 4k − 8− 4i for 1≤ i ≤ k − 3. Hence dim(N1)− dim(N2) = 4. Again
by Theorem 1.2 in [5] and 4k − 12 ≥12 (k ≥ 6), N1 is isometric to HP k−3 or
Gr2(Ck−1). Since

1/2(4k − 12)− 1/4(4k − 4) + 2 ≥ k − 3 ≥ 3

(i.e., N1 → V is at least 3-connected), V is isometric to HP k−1 or Gr2(Ck+1).
Now we are ready to consider the following subcases in more detail:

Subcase 1.1: V is isometric to HP k−1.
Note that the Euler characteristic χ(V ) = k of V is greater than or equal to

6, since k ≥ 6. If dim(Nk−3) = 8, Nk−3 is isometric to HP 2. Thus χ(Nk−3) = 3.
Similarly, for the case of dim(Nk−3) = 4, by Hitchin in [7], Nk−3 is S4 or

CP 2. Thus χ(Nk−3) ≤3. Notice that dim(Fix(T 2, Nk−3)) is less than or equal
to 4, due to the conditions of dim(Nk−3) ≤ 8 and the existence of an isometric
T 2-action on Nk−3.

For i = 1, 2, let Wi denote the fixed point components of dimension 4 under
the T k−1-action on V . Since the Euler characteristic χ(V ) of V is greater
than or equal to 6, we can consider the following three possibilities: either
Fix(T k−1, V ) contains six isolated fixed points x1, . . . , x6 or three isolated fixed
points x1, x2, x3 and W1 or the union W1 ∪W2.

Assume first that Fix(T k−1, V ) contains six isolated fixed points x1, . . . , x6.
Let

T k−1 = S1
1 × S1

2 × · · · × S1
k−1,

where S1
j (1 ≤ j ≤ k − 1) is the unit circle group. Then, by considering

the isotropy representation at x1 of the T k−1-action, we can choose K1 to be
Fix(T k−1/(S1

1×S1
2), V )0 containing the isolated fixed point x1. Since χ(K1) ≤ 3,

we may assume without loss of generality that Fix(S1
1×S1

2 ,K1)\{x1, x2, x3} = ∅.
Note that there exists no fixed point component of dimension 2.

Similarly, by considering the isotropy representation of the T k−1-action at
x4, we can choose another fixed point component K2 to be Fix(T k−1/(S1

1 ×
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S1
2), V )0 containing the isolated fixed point x4. We then claim that K1 ∩K2 is

empty. Indeed, otherwise then K1 should coincide with K2. But then K1 would
contain x4, which is clearly a contradiction. Similar arguments apply to other
two cases. Therefore we have completed the proof of Lemma 2.1 in this Subcase
1.1.

Subcase 1.2: V is isometric to Gr2(Ck+1).
Let m = k − 1. It is well-known that

(2.1) χ(Gr2(Cm+2)) = (m + 2)(m + 1)/2.

If dim(Nk−3) = 8, then χ(Nk−3) ≤ 6. On the other hands, if dim(Nk−3) = 4,
then by Hitchin ([7]), Nk−3 = CP 2 or S4 and so χ(Nk−3) ≤ 3. Thus we always
have χ(Nk−3) ≤ 6. Since k ≥ 6, χ(Gr2(Ck+1)) = (k + 1)k/2 ≥ 21.

Without a loss of generality, we let K1 = Nk−3 =Fix(T k−1/(S1
1 × S1

2), V )0.
Since χ(K1) ≤ 6 and χ(V ) ≥ 21, there exists an x4 ∈ Fix(T k−1, V \ K1).
Consider the fixed point component K2 = Fix(T k−1/(S1

1 × S1
2), V )0 containing

x4. Then we have K1 ∩K2 = ∅.
Case 2: Assume next that the dimension of V is equal to 4k − 8 (≥ 16).

Observe that the fixed point set for the T k−1-action is isolated. We can
assume that

T k−1 = S1
0 × ...× S1

k−2,

where S1
l (0 ≤ l ≤ k − 2) is the unit circle group.

At x ∈ Fix(T k−1, V ), we can assume that T k−2 = T k−1/S1
0 acts left quater-

nionically linearly on Tx(V ).
Let Nl =Fix(S1

1 × ...× S1
l , V )0. Then dim(Nl) = 4k − 8− 4l. Assume that

Fix(T k−1, V ) consists of x1, x2, x3, .... Let K1 =Fix(S1
1 × ...× S1

k−3, V )0 3 x1.
Since χ(K1) ≤ 3, Fix(S1

0 × S1
k−2,K1) \ {x1, x2, x3} = ∅. Let K2 =Fix(S1

1 × ...×
S1

k−3, V )0 3 x4. Then K1 ∩K2 = ∅.
This completes the proof of Lemma 2.1.

Now we are ready to prove Theorem 1.1. By Lemma 2.1, we can take
two disjoint totally geodesic submanifolds K1 and K2 in Fix(T k−3, V ) whose
dimension satisfies 4 ≤ dim Ki ≤8 for i = 1, 2. Let L = K1 ×K2, fi : Ki → V
the quaternionic immersions for each i = 1, 2, and f = (f1, f2). Let s be the
distance between K1 and K2 and let γ : [0, s] → V be a minimizing geodesic
from K1 to K2.

Let V be the real linear vector space spanned by vectors (W (0),W (1)), where
W is a parallel vector field along γ so that W is orthogonal to γ̇, Iγ̇, Jγ̇, and
Kγ̇. Then the quaternionic dimension of V is equal to dimH(V ) − 1. Notice
that IW as well as JW and KW is orthogonal to all of γ̇, Iγ̇, Jγ̇, and Kγ̇.
This implies that (IW (0), IW (1)), (JW (0), JW (1)), and (KW (0), KW (1)) are
actually in V.

Lemma 2.2.
dimH(V ∩ f∗(T(γ(0)=x,γ(s)=y)L)) ≥ 1.
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Proof. For the sake of simplicity, let G = T k−3.
We first consider the case that dim V = 4k − 4 and dim K1 = dim K2 = 4.

Suppose on the contrary that dimH(V ∩ f∗(T(x,y)L)) = 0. Let v1 be a unit
vector in the tangent space of (K1)γ(0), P a parallel transport from γ(0) to γ(s)
along γ, and v the parallel vector field along γ such that v(0) = v1. Then,
by assumption, v(s) = P (v1) is in the normal space ((K2)γ(s))⊥ of the tangent
space (K2)γ(s).

Since G acts on ((K2)γ(s))⊥ \{0} fixed-point freely, there must exist g 6= 1 ∈
G such that dg(P (v1)) 6= P (v1), so that 〈dg(P (v1)), P (v1)〉 <‖ P (v1) ‖2. Since
P is an isometry and v(0) is a tangent vector of K1 fixed by the group action
of G, we have

1 =‖ v1 ‖2γ(0)= 〈dg(v1), v1〉γ(0) = 〈P (dg(v1)), P (v1)〉γ(s)

= 〈dg(P (v1)), P (v1)〉γ(s) <‖ P (v1) ‖2= 1,

which is a contradiction. Hence V has at least quaternionic dimension 1.
Next we deal with the case that dim K1 = 8 and dim K2 = 4. Again suppose

that dimH(V ∩ f∗(T(x,y)L)) = 0. Then notice that any vector in (K1)γ(0) is
transported to ((K2)γ(s))⊥ and that any vector in (K1)γ(0) is transported to
Fix(G, ((K2)γ(s))⊥). Thus Vγ(s) contains

P ((K1)γ(0))⊕ ((K2)γ(s))⊥ \ Fix(G, ((K2)γ(s))⊥)⊕ (K2)γ(s).

Notice that G acts on ((K2)γ(s))⊥ \ Fix(G, ((K2)γ(s))⊥) nontrivially. Since

dimH(P ((K1)γ(0)) + dimH(((K2)γ(s))⊥ \ Fix(G, ((K2)γ(s))⊥))+
dimH((K2)γ(s)) ≥ dimHK1 + dim G + dimHK2 = k,

(2.2)

and dimH V = k−1, this is a contradiction. That is, V has at least quaternionic
dimension 1.
If dimV = 4k − 4 and dimK1 =dimK2 = 8, we will prove by similar process in
the above case (cf. (2.2)).

dim Vγ(s) ≥ dimHK1 + dim G + dimHK2 = 2 + (k − 3) + 2 = k + 1

It is a contradiction. That is, V has at least quaternionic dimension 1.
Finally, if dim V = 4k− 8, dim K1 = 4, and dimK2 ≥ 4, then this time we have

dim G + dimHK1 + dimHK2 ≥ k − 1.

It is again a contradiction since dimH V = k−2. Thus V has at least quaternionic
dimension 1.

This completes the proof of Lemma 2.2.

By Lemma 2.2, there exists a parallel field X along γ. Since K1 and K2 are
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positive quaternionic Kähler manifolds by a theorem of Berger in [3], we have

L′′X(0) + L′′IX(0) + L′′JX(0) + L′′KX(0) = −
∫ s

0

〈R(T, X)T,X〉

+ 〈R(T, IX)T, IX〉+ 〈R(T, JX)T, JX〉+ 〈R(T, KX)T, KX〉dt

= −
∫ s

0

λ

n + 2
‖ T ‖2‖ X ‖2 dt < 0,

(2.3)

where λ > 0 is Einstein constant and T = γ′(t). Since γ is minimizing, it is a
contradiction. This proves Theorem 1.1.

3 Positive quaternionic Kähler manifolds of di-
mension 40

The aim of this section is to classify positive quaternionic Kähler manifolds of
dimension 40 which admits an isometric T 6-action. We need to consider this
case in detail in order to apply the mathematical induction.

Throughout this section, let M be a positive quaternionic Kähler manifold of
dimension 40 with an isometric T 6-action. By Theorem 0.3 in [11], all odd Betti
numbers are equal to zero. Thus χ(M) > 0, so there exist x ∈ Fix(T 6,M)0.

Consider the following chain at x (∈ N6):

M ⊃ N1 ⊃ · · · ⊃ N5 ⊃ N6,

and let di denote the dimension of Ni for 1 ≤ i ≤ 6, as before. By the repre-
sentation T 6 → Sp(n)xSp(1)x, there exists subgroup T 5 such that T 5 acts left
quaternionically linearly (cf. 7 page in [4]). Thus without loss of generality we
can assume that N1 admits T 5-action acting left quaternionically linearly at x.

Then we have the following lemma.

Lemma 3.1. The following three cases of 6-tuples (d1, d2, d3, d4, d5, d6) do not
occur:

(32, 24, 16, 8, 4, 0), (32, 24, 12, 8, 4, 0), (32, 16, 12, 8, 4, 0).

Proof. Suppose not. Then, the fixed point set should be isolated. In this proof,
we will use the Euler characteristic of N3.
Case 1: Assume that (d1, d2, d3, d4, d5, d6) = (32, 24, 16, 8, 4, 0). Then we claim
that χ(N3) ≥ 6. If b2(N3) = 1, N3 is isometric to Gr2(C6) and thus χ(N3) ≥ 6.

Recall that by a theorem of Salamon in [14] we have the following formula:

(3.1) 3b4 = b6 + 2b8 + 1,

where b2(N3) =0. From (3.1), b4(N3) ≥ 1. If b6(N3) = b8(N3) = 0, it is
a contradiction from (3.1). Thus b6(N3) + b8(N3) ≥ 1. Thus χ(N3) = 2 +
2(b4(N3) + b6(N3) + b8(N3)) ≥6. This prove the claim.
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Set T 6 = S1
1 × . . .× S1

6 and let N3 = Fix(S1
4 × S1

5 × S1
6 ,M)0. Then, by the

assumption, Fix(S1
1 × S1

2 × S1
3 , N3) is isolated. So we may assume that

Fix(S1
1 × S1

2 × S1
3 , N3) ⊇ {x1, ..., x4}.

Now, let C1 be Fix(T 6/S1
1 ,M)0 containing x1. Since dim C1 = 4, we have

χ(C1) ≤ 3 by [7]. So we may assume that Fix(S1
1 , C1) \ {x1, x2, x3} = ∅. Let C4

be Fix(S1
2 ×S1

3 , N3)0 containing x4. Note that by the definition of a fixed point
component, C1 ∩ C4 = ∅. Note also that by construction Fix(S1

2 × S1
3 , N3) ⊃

C1 ∪ C4. Recall that dim C4 = 4 by assumption.
Let γ be a minimizing geodesic from C1 to C4 such that γ(0) = p ∈ C1 and

γ(l) = q ∈ C4 where l is the distance from C1 to C4. Note that S1
2 × S1

3 acts on
(C4)⊥q \ {0} fixed-point freely.

Let P denote the parallel transport from p to q along γ. Then we claim
that for some v 6= 0 ∈ (C1)p, P (v) ∈ (C4)q. To see it, suppose on the contrary
that for any v 6= 0 ∈ (C1)p such that ‖ v ‖= 1, P (v) ∈ (C4)⊥q . Clearly there
exists g ∈ S1

2 ×S1
3 such that g ·P (v) 6= P (v). Then apply an argument as in the

previous section. That is, we have

1 =‖ v ‖2= 〈g · v, v〉 = 〈P (g · v), P (v)〉
= 〈g · P (v), P (v)〉 <‖ P (v) ‖2= 1.

It is a contradiction. This proves the claim. Let X be a parallel vector field
along γ such that X(0) = v ∈ (C1)p and X(l) ∈ (C4)q.

Finally, we have

L′′X(0) + L′′IX(0) + L′′JX(0) + L′′KX(0) < 0.

(cf. (2.3) in Section 2) Since γ is minimizing, it is a contradiction.
Case 2: Assume that (d1, d2, d3, d4, d5, d6) = (32, 24, 12, 8, 4, 0) or (32, 16, 12, 8, 4, 0).
Since d3 − d4 = 4, by Theorem 1.2 in [5], N3 is isometric to HP 3 or Gr2(C5).
Thus χ(N3) ≥ 4. The rest of the proof is completely similar to Case 1. So we
leave it to the reader. This completes the proof of Lemma 3.1.

Recall that an isometric G-action on a quaternionic Kähler manifold M is
called of quaternionic type if ρx : G → Sp(1)x is trivial for any G-fixed point
point x.

Theorem 3.2. Let M be a positive quaternionic Kähler manifold of dimension
40 with an isometric T 6-action. If b4(M) is equal to 1, then M is isometric to
HP 10.

Proof. χ(M) > 0. Thus Fix(T 6,M) 3 x. Since M admits an isometric T 6-
action, we may assume that at least T 5 acts left quaternionically linearly on
Tx(M). Especially, we can assume that T 5 acts left quaternionically linearly on
Tx(N1) where N1 =Fix(S1,M)0. If Ni =Fix(T i, M)0, Consider a chain at x :

N1 ⊇ N2 ⊇ N3 3 x.
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Notice that by Theorem 1.1 d1 should be greater than or equal to 24. Now we
consider all possible dimensions which the submanifold N1 can have.

If d1 = 36, by Theorem 1.2 in [4], M is isometric to HP 10 or Gr2(C12). Since
b4(Gr2(C12)) > 1, M is isometric to HP 10. On the other hands, Consider the
case (d1, d2) = (32, 20). Since N3 admits an isometric T 3 acting quaternionically
linearly on Tx(N3), d3 ≥ 12. Thus for (d1, d2, d3, d4) = (32, 20, 12, 8) (resp.
(28, 20, 16, d4)), it follows from Theorem 1.2 in [4] that N3 (resp. N2) is isometric
to quaternionic Kähler space or complex Grassmannian space, since d3−d4 = 4
(resp. d2−d3 = 4). By Theorem 1.4, we have π2(N3) = π2(M) (resp. π2(N2) =
π2(M)). Thus M is isometric to HP 10, since b4(M) = 1.

The proof of other remaining cases is completely similar. So we leave it to
the reader. This completes the proof of Theorem 3.2.

Finally we close this section with a remark.

Remark 3.3. Let M be a positive quaternionic Kähler manifold manifold of
dimension 4m+4 with an isometric Tm. If 4m ≥ 24, then m ≥ [(m+1)/2]+ 3.
Thus it follows from [8] that M is isometric to HPm+1 or Gr2(Cm+3).

4 Proof of Theorem 1.2

In this section, we give a proof of Theorem 1.2. Essentially the proof is a direct
corollary of Theorem 1.1. We use the mathematical induction on the dimension
of a positive quaternionic Kähler manifold.

To do so, notice that the case of odd m is already dealt with by the main
result of the paper [9]. Thus it suffices to consider the case that m is even. In
the following proof, we continue to use the notations in Section 2. In particular,
recall that N1 is a fixed point component in M of the induced S1-action. The
proof goes in two steps as follows.
Step 1: Assume first that m = 10. This case has already been proved in
Theorem 3.2.
Step 2: Next assume that the theorem holds for all dimensions less than or
equal to 8s0 (s0 ≥ 5). For simplicity, let l = 2s0 + 2. Let M be a positive
quaternionic Kähler 4l-manifold with b4(M) = 1 and an isometric T

l
2+1-action.

We then want to show that M is actually isometric to HP l.
Indeed, if dimN1 = 4(l − 1), N1 has codimension 4 in M . Since l ≥ 12,

M is isometric to HP l or Gr2(Cl+2) (cf. Theorem 1.2 in [5]). If p = s0 + 3
and 4p ≤ dim(N1) ≤ 4(l − 2), it follows from the induction hypothesis that
N1 is isometric to a quaternionic projective space, since b4(M) = b4(N1) and
sym-rank(N1) ≥ l/2.

From π2(M) = π2(N1) = 0 (cf. Theorem 1.4), by the rigidity theorem of
LeBrun and Salamon in [11], M is isometric to HP l.

Now it remains to consider the case that dim N1 ≤ 4(s0 + 2). To do so, first
note that dim N1 ≥ 4(l/2− 1) = 4s0 (cf. Theorem B in [4]). Hence we need to
consider the following two subcases:
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(1) 4s0 ≤ dim N1 ≤ 4s0 + 4.

(2) dim N1 = 4s0 + 8.

However, for the case (1), it is easy to see that the case that N1 has dimension
4s0 or 4s0 +4 with symmetry rank s0 +1 ≥ 5 does not occur, since by Theorem
1.1 the dimension of N1 should be greater than or equal to

4
(

l

2
+ 1

)
= 2l + 4 = 4s0 + 8.

On the other hand, if N1 has dimension 4s0 + 8 with symmetry rank s0 + 1 ≥ 6
as in the case (2), we have π2(N1) = 0 or Z by Remark 3.3. Thus we have
π2(M) = 0 or Z, thanks to Theorem 1.4 and so the relation π2(N1) = π2(M).
By Theorem 1.3, M is isometric to HP l or Gr2(Cl+2). Since b4(M) = 1, M is
isometric to HP l. This completes the proof of Theorem 1.2.
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