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Abstract: Suppose that we rank-order the conditional probabilities for a group of
subjects that are provided from a Bayesian network model of binary variables. The
conditional probability is the probability that a subject has a certain attribute given
an outcome of some other variables and the classification is based on the rank-order.
Under the condition that the class sizes are equal across the classes and that all the
variables in the model are positively associated with each other, we compare the clas-
sification results between models which share the same model structure. Simulation
results indicate that the agreement level of the classification between models is con-
siderably high with the exact agreement for about half of the subjects or more and

the agreement up to level 1 for about 90% or more.

Keywords: Agreement level; Bayesian network; Conditional probability; Model sim-

ilarity; Positive association.

1 Introduction and Problem

Consider a problem of rank-ordering a group of subjects according to the conditional
probability that a subject possesses a certain attribute given the outcome of a set
of covariates. If we need to classify them into one of L classes according to the
rank-order, it becomes a classification problem. This is an example of discretizing
continuous values by rank-ordering, which takes place in a variety of performance
assessment in education, sports, finance, etc. The rank-orders may be discrepant
between raters due to different standards of thresholds among others. We will con-
sider a rank-order based classification problem using the probability values which are
produced from a Bayesian network (BN) model(Pear] 1988; Jensen 1996)
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Literature abounds on agreement measures between raters or classifiers (Cohen
1960; Spitzer, Cohen, Fleiss, and Endicott, 1967; Fleiss 1981; Messatfa 1992; Pires and
Branco 1997; Albatineh, Niewiadomska-Bugaj, and Mihalko 2006; Brusco and Steinly
2008), where the agreement measure accounts for the level of agreement relative to the
level of agreement by chance. The value of the measure is between 0 and 1, 1 indicating
a perfect agreement between raters. This kind of agreement measures are very useful
when we compare raters in a relative sense. In this paper, we are interested in a
detailed description of agreement such as proportions of perfect agreement, agreement
up to level 1, etc.

BNs are useful in representing graphically the relationships among the variables
which are interpretable in generic terms as causal. In this paper, we will consider BN
models of binary variables each taking on 0 or 1. When all the variables in the model
are categorical with finite number of category levels, we can compute conditional
probabilities of a set of variables given another set of variables in the model by ap-
plying the method called evidence propagation method (Lauritzen and Spiegelhalter
1988) and computer programs such as HUGIN (Andersen, Jensen, Olesen, and Jensen
1989), ERGO (Noetic Systems 1991), and MSBNx (MSBNx 2001) are available for
the computing.

Suppose that we rank-order the conditional probabilities for a group of subjects
that are provided from a BN model. The conditional probability is given in the form
of P(U = 1|X = x) where X is a random vector. If we classify the subjects in such
a way that the class sizes are equal across the classes, the classification is analogous
to assigning rank-order-based grade scores to students. If two BN models provide
the conditional probabilities for the same group of subjects and the rank-orders of
the probability values are similar to each other between the two models, then the
agreement level between the two classification results will be very high. We will
investigate the agreement level between the BN models which satisfy some conditions
as described in sections 4 and 5.

We will introduce a notion of similarity between BN models whose model struc-
tures are the same. The only difference between them is in the marginal probability
or the conditional probability of a variable, X say, given the variables at its parent
nodes, i.e., the nodes at the arrow tails of X, in the BN (see Figure 1). Assuming
that the variables in a model are positively associated (Holland and Rosenbaum 1986;

Junker and Ellis 1997) with each other, we will investigate agreement levels in clas-



sification between a pair of BN models, where one model is a similar model of the
other.

This investigation is of practical value since it will provide us with a BN model
whose overall agreement level with a group of BN models is relatively high under the
assumption of positive association among the variables that are involved in the model.
As for a BN model, the positive association between variables can be interpreted as a
positively causal relationship. In cognitive science, we assume that knowledge states
and task performances are positively causally related (Mislevy 1994) and we can find
many such examples in biological, medical, and behavioral sciences among others.

This paper is organized in 6 sections. Section 2 gives a brief review on positive
association among binary variables. Section 3 then introduces the notion of similarity
between BN models and proposes a BN model which is most similar to a given
BN model under some condition. In section 4, we describe a method of computing
agreement levels of classifications between a pair of BN models and then results of a
simulation experiment are presented. The simulation experiment extends in section
5 to the case where the comparison is made between a set of BN models and a BN
model which satisfy a certain condition. Section 6 concludes the paper with some

summarizing remarks.

2 A Brief Review on Positive Association

We will use U for unobservable variables and X for observable variables. For

a pair of n-vectors u and v of the same length, we write u < v when u; < v; for
i=1,---,n,and write u < v if u < v and u; < v; for at least onet =1,--- ,n.

In a BN such as the graph in Figure 1, if a pair of nodes a and b are connected by

an arrow with the arrow heading towards b from a, we call node a a parent node of

node b and call node b a child node of node a. If a node does not have any parent

node, it is called a root node. Uj is the only root node in the figure.

Theorem 1. Let U and X be binary variables, taking on the values 0 or 1. If
0<PU=1)<1 and 0<P(X=1)<1 (1)
then the following two inequalities are equivalent:
PX=1U=0)< P(X =1U=1) (2)
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P(U=1|X =0) < P(U = 1|X = 1). (3)
Proof. See Theorem 1 in Kim (2005). O

Expression (2) can be re-expressed as

P(X =1|U =1)P(X = 0|U = 0)
P(X =0/U =1)P(X = 1|U = 0)

> 1,

which means that U and X are positively associated.

Theorem 1 can be extended to random vectors as the theorem below.

Theorem 2. Let X = (Xy,---,X;) and U = (Uy,--- ,Uk) where all the X;’s and

Uy ’s are binary, taking on 0 or 1. Then the following two statements are equivalent.
(i) Fori=1,2,---,1,

P(X;=1|u) < P(X; =1|v), when u=<wv. (4)

(ii) Fork=1,2,--- | K,
P(U =1]x) < P(Uy = 1]y), when x <y. (5)
The strict inequality(< ) in both Eqs.(4) and (5) may be replaced by the plain inequality
(<)
Proof. See Theorem 2 in Kim (2005). O

Inequality (4) is equivalent to that

P(v|X;=1) - P(v) - P(v|X; =0)
PulX;=1) " P(u) = Pu|X;=0)

m ®

Figure 1: A BN where U variables are latent and X variables observable.



This inequality says that U = v is more likely than U = u when X; = 1 than when
X; = 0. Furthermore, we can compare the likeliness of U, = 1 for individual U,’s as
in Theorem 2.

When the < and < in expression (4) are replaced by < and =, respectively, we

have

P(X;=1u) < P(X; =1|v), when u=wv. (6)

This expression actually means that the conditional distribution of X; given U = v
is stochastically larger than that of X; given U = u. Holland and Rosenbaum (1986)
discuss properties concerning positive association among the X variables when the
X variables are conditionally stochastically ordered given U. Junker and Ellis (1997)
characterize such X variables in more generic terms such as conditional association
and vanishing conditional dependence. We will call expression (6) the condition of

positive association between the sets, { Xy, -+, X;} and {Uy, -+ ,Ux}.

3 Similarity Between BN Models

Consider two BN models which are the same in model structure but not necessarily
in distribution. Let the graph be denoted by G = (V, E) where V and E are,
respectively, the set of nodes and the set of arrows between nodes. If two nodes u and
v are connected by an arrow from u to v, the arrow is represented by (u,v). So, (v, u)
cannot be in F if (u,v) € E. Such a graph is called a directed acyclic graph (DAG)
when there is no sequence of arrows, (u;, u;y1), ¢ = 1,2,--- ,n, such that u; = u,41.
As for a DAG G, we define a set pa(v) for a node v, as pa(v) = {u; (u,v) € E}.

For two BN models, BN; and BN,, of Xy, assume that they have the same graph,
say G, and denote their probability distributions by D; and 1/?\1 respectively. In other
words, the BN models, BN;, i = 1,2, are defined as BN; = (G, D;). The probability

function P™ of D,,, m = 1,2, is expressed as

P (xy) = H Pla) (To[Xpa(w))-

veV

In other words, D,, is defined in terms of the conditional distributions of X, condi-
tional on its parent variables. In this respect, we can compare the two distributions

by comparing the conditional or marginal distributions of each variable between the
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two models. We define the similarity measure between BN; and BN, as

Z Z Z v|pa v) xv’xpa ) Pv|pa(u (xv’Xpa(v)))2 .

vEV Zv Xpa(v)

We denote the support of X, by X, and let, for A CV, X4 =[]

variables are binary, the similarity measure can be re-expressed as

Z Z |pa v) 1‘X) P} vlpa(v) (HX))Q (7)

veV xeX, pa(v)

X,. If all the

vEA

We will denote this measure by ¢)(BNy, BNs).

We can think of a probability distribution for Pvl|pa(v)(1|y)7 y € Xpa), regarding
Pvl|pa(v)(1b’) itself as a random variable, under the condition that the positive associ-
ation condition (6) is satisfied among X,, v € V. We will denote the distribution of
Pvl|pa(v)(1|y)a y e Xpa(v);\by Dy.

Now suppose that D; is not known and that we want to find a distribution, say
D, for which E(¢)(BN;, BNs)) is minimized where the expectation is made with
respect to the distribution D;. By the definition of the similarity measure in (7),
it follows that E(¢(BN;, BN;)) is minimized when D; consists of the conditional
probabilities of X,, v € V' conditional on X, which are given by

E(P1|pa (v) (1|Xpa(v)))

where the expectation is made with respect to D;.

For X, we denote by d,(x) the number of 1’s in the vector of X,4(,) and by x,(x)
the number of vectors y € Xpq() such that 6,(y) = d,(x).
Theorem 3. Let the expression in (7) be modified as

Q=" (Pl (1) — 9.(6,(x)))’

veV xeX, pa(v)
for some functions g,, v € V, where g, is defined on the set {0,1,--- ,|pa(v)|}. I
we regard P ipa(o) (1X) as random variables with distribution Dy, then Q is minimized
when
1
W) = s Y Bl () )
! € Xpagw) :
51)(3’) = 0y(x)



Proof: Since @ is quadratic in g,(d(x)), we have

dQ ,
dg,(6,(x)) dgv o Z D E(Plpap (1) = 9.(0,(x)))

v yeX pa(v)

= 2 Z E(Piwmy)—gv@(x)))=o.

Suppose that |pa(v)| = 3. Then

Xpa(v) = {(0,0,0), (0,0, 1), (O, 1,0), (1,0, O), (0, 1, 1), (1,0, 1)7 (1, 1,0), (1, 1, 1)}, (9)
T Y ) Y —

3

where the elements (x’s) are grouped according to §(x). For four vectors, x°, x!, x?, x3,

n (9), with 6(x’) = i, we have that
x'<x'<x* i=1,2 (10)

But not every pair in Xjpq(,) is ordered. For instance, (0,1,0) and (1,0,1) are not
ordered.

Recall that, under the positive association condition, P,jpew)(1|X) < Pyjpaw)(1]y)
for x,y € Apuw), when x = y. In constructing a BN model for Xy under the
positive association condition on Py, we can think of assigning probability values

as follows:

For simplicity of argument, we consider the case that |pa(v)| = 3. If we are given 8
values between 0 and 1 in a random manner from some distribution, we assign these
values to Pyjpa(v)(1/X), X € A, in the order of the elements in (9) from small to
large allowing order distortions between some of Pyj,q(v)(1]x) values for which the x’s

are not comparable in the sense of <.

Since the values are assigned in a random manner to the P,q@)(1]x)’s for which

the x’s are not comparable with each other, Theorem 3 says that, if the conditional
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probability of X, conditional on X, depends upon 6,(X) only in a BN model and
minimizes E(Q), then the desired conditional probability is given by the right-hand
side of (8).

Suppose we are given a BN model BN; = (G,D;). A BN model for which g,
values are used in place Ef\ Pj|pa(v)(1|xpa(v)) will be called the similar BN model of
BN; and be denoted by BN;. A BN model BN itself is not ready for computation
for classification since the conditional probability Pv1|pa(v)(1|xpa(v)) is yet a random
variable therein. When the conditional probability is replaced with a list of numeric
values corresponding to the values of Xp,,) for every node v, we will call the BN
model an actual BN model of BN;. In other words, a BN is to its actual BN model
what a random variable is to its outcome or observed value.

We will compare the performance of E]Vl with the actual BN model of BN; in

next section.

4 An Example of Similar BN Models

The agreement level of the classifications between the two models, an actual model
of BN; and ﬁ, is defined as follows:

Suppose we compare predictions for subject j with regard to X, and denote
the class levels from an actual BN model and the similar BN model of BNy,
respectively, by Y7 and Y. We define e, = Y3 — Y. So, if the class levels
range from 1 through L, then —L 41 < e, < L — 1. Suppose that there are
N subjects for whom classifications are to be made. Then we can define the

agreement level up to difference d (d > 0) by
o/j = Z T'kh (11)

where
the number of cases that ej; = h

N

We will use af and of as the two primary indices of agreement. As for BNy,

Tkh =

we will consider the beta distribution with parameters a and b (denoted by B(a, b))

and some of its variations for P (1x), X € Xpq(). Since Py,

according to x under the positive association condition, we may use a set of order

(v (1]x) are ordered

statistics of a random sample from B(a,b) for Pv1|pa(v)(1|x).
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Let V' be partitioned into {V;, V5} and suppose that we are interested in classifying
for Xy, given an outcome of Xy,. In Figure 2, Xy, = (Uy,---,Us). In the rest of
this section, we obtain the « values for X,,, v € V5, by a simulation experiment for a
given distribution D;. Denote by x; the outcome of X for the i*" case of data and by
x;, the k' component of x;. For a set A, let XA = (v, k € A).

In the simulation, we obtained the « values as follows:

(i) For a given BN; = (G, Dy), construct a similar BN model, BN,.

(ii) Generate a set of numeric values of the conditional probabilities, {Pv1| paw) (LX), v €

V'} from D; and construct an actual BN model using the generated values.
(iii) Generate N vector values, x;, i = 1,--- , N, of Xy from the actual model.

(iv) For each k € V5, obtain Y,§ and Y for i = 1,2,--- | N. Y¢ = h if the rank of
P(Xix = 1|x;,) is larger than N(h — 1)/L and not larger than Nh/L, where
P(Xi; = 1|x;1,)’s are computed in the actual model and the rank is assigned
in the reverse order of the magnitude of P(X;, = 1|x;1,), 1 =1,2,--- ,N. Y3’s

are obtained analogously except that P(X;, = 1|x;1,)’s are computed in Eﬁl
(v) For each k € Vi, obtain 7, —L+1 < h <L —1.

(vi) Repeat steps (ii)-(v) B times and compute the average of the B ry, values for
each k € V5.

It is important to note in the above process that the values of Xy, are generated

from an actual model of BN; and the comparison of class levels between the actual

Figure 2: A BN where classifications are made for U variables based on X variables.



and the similar models are based on the conditional probabilities, P(X;x = 1|x;14),
k € V5. We denote by 7y, the average of the 7y, values and replace the 1y, in (11) by
Trp as in
ab = > T (12)
h: |h|<d

Since B different sets of numeric values of the conditional probabilities, {PU1| pa(w) (LX), v €
V'}, are used for actual BN models from BNy, the a values as in (12) can be regarded
as an estimate of the mean of the agreement level of the classifications between the
actual BN model and the similar BN model, when D; is the true distribution for
{r, vl\pa(v
B = 100.

We will take as an example 5(0.2,0.4) for Dy, v € V. When the conditional
probabilities, {P7}|pa(v)(1lx), v € V}, are given as order statistics from U(0,1) =
B(1,1), the P}

vlpa(v)

and 1. But the P!

v|pa

of the interval when they are from 5(0.2,0.4). In the case of educational testing, if

y(1|x), v € V}. In the simulation experiment below, we set N = 1,000 and

values tend to be evenly dispersed over the interval between 0

(v (1[x) values are more likely to appear near the end points

X, is an item score (1 for correct answer, 0 otherwise) and Xpa(v) 18 a set of vectors
of the knowledge states (1 for good enough, 0 otherwise) of the knowledge units

that are required for the test item, then the Pv1 ») values tend to be small when

§(Xpa(v)) < |pa(v)| and near 1 otherwise (see, fozJ e(xample, Mislevy(1994)). In this
respect, the Beta distribution is a reasonable choice for D;.

The mean of the jth smallest among a random sample of size n from a Beta
distribution is not available in a closed form, and the g, values are computed by a
numerical approach. Table 1 lists the g, values for |pa(v)| < 6, which are used for
constructing E]Vl corresponding to D; = B(0.2,0.4).

It is indicated in Table 2 when L = 5 that, on average, the classifications from
the two types of models, the actual and the similar models, exactly agree for about
57% of the cases (see the column of ag in the table) and the average of the six values
in the last column is about 0.93.

It is worthwhile to note in Table 1 that the g¢,(0) values become very small as
|pa(v)| increases. If we consider educational testing with multiple choice tests, these
values are unreasonably small since multiple choice tests allow guessing for selecting

response options. An example of the distribution D; for this situation is
0.85- B(a, b) + 0.1, (13)
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Table 1: The g, values of (8) for |pa(v)| < 6 when Dy is 5(0.2,0.4)

lpa(v)| =0: ¢,(0) = 0.3333

0.0299
lpa(v)] =2: g,(1) =< 0.2783
0.7567

(

0.0002
0.0116
lpa(v)| =4: g,(i) =< 0.2185
0.7508
| 0.9724

(0.0000
0.0000
0.0082
lpa(v)] =6: g,(i) = ¢ 0.1829
0.7136
0.9749
0.9988

iti=0
ifi=1
it i =2
ifie=0
ifi=1
ife=2
ifi=3
ifi=4
ifi=0
ifi=1
ifie=2
ifi=3
ifie=4
ifi=5
ifi=6

[pa(v)| =1
[pa(v)] =3
[pa(v)] =5 :

90(7)

90(7)

v (Z)

{

(

(

\

0.1328
0.5338
0.0035
0.0801
0.5072
0.9012

0.0000
0.0010
0.0537
0.4580
0.9100
0.9940

ifi=0
ifi=1
ifi=0
ifi=1
ifi =2
ifi=3
iti=0
ifti=1
iti =2
iti=3
iti=4
ifi=5

which means that guessing shrinks the range of the conditional probabilities from

B(a,b) to 0.85 - B(a,b) + 0.1.

Given the g, values of (8) corresponding to the D; = B(0.2,0.4), we can easily

obtain the g, values corresponding to D; = a3(0.2,0.4) + (0.95 — a). In expression

(8), Pvl‘pa(v)(ﬂy) is regarded as a random variable from a distribution D;. So if we

denote by ¢¢ the g, values corresponding to Dy = al3(0.2,0.4) 4 (0.95 — a), and by g

corresponding to D; = B(0.2,0.4), then it follows from expression (8) that

gy = ag, +(0.95 — a).

11

(14)



Table 2: a and 7, values with L = 5 and B = 50 for the model in Figure 2 when D,

is B(0.2,0.4)
U; Tk,—4 Tk,—3 Tk,—2 Tk—1 ag Tk Tk2 Tk3 T4 a%]
U, 0.000 0.002 0.023 0.186 0.544 0.182 0.050 0.012 0.001 0.912
(0.000) (0.007) (0.025) (0.056) (0.100) (0.053) (0.050) (0.031) (0.004) (0.083)
U, 0.000 0.001 0.024 0.190 0.565 0.180 0.035 0.006 0.001 0.934
(0.000) (0.002) (0.026) (0.060) (0.097) (0.051) (0.030) (0.016) (0.003) (0.056)
Us 0.000 0.002 0.017 0.173 0.611 0.166 0.026 0.004 0.000 0.950
(0.000) (0.008) (0.026) (0.057) (0.138) (0.061) (0.035) (0.009) (0.001) (0.058)
Uy 0.001 0.001 0.021 0.165 0.607 0.179 0.026 0.001 0.000 0.951
(0.004) (0.005) (0.025) (0.059) (0.113) (0.066) (0.037) (0.003) (0.001) (0.054)
Us 0.000 0.002 0.020 0.159 0.624 0.173 0.020 0.002 0.000 0.957
(0.000) (0.005) (0.022) (0.071) (0.117) (0.058) (0.026) (0.005) (0.000) (0.043)
Us 0.000 0.005 0.045 0.193 0.486 0.180 0.061 0.020 0.009 0.860
(0.001) (0.011) (0.040) (0.075) (0.126) (0.055) (0.050) (0.048) (0.037) (0.127)
Average  0.000 0.002 0.025 0.178 0.573 0.177 0.036 0.007 0.002 0.927

NOTE: The values in the parentheses are standard deviations.

We can see in Table A.1 in Appendix that the ay and «aq values when D; =

0.858(0.2,0.4) + 0.1 are about 60% and 95%, respectively. In both of the cases, the
ap and «; values are larger than 50% and 90%, respectively. We will extend the

simulation experiment to a more general version of D; in next section.

5 Agreement Levels Between Two Types of BN
Models

In the preceding section we compared classifications between an actual model of BN,
and its similar model, E]Vl, where D; = B(0.2,0.4). In this section we will consider

D as a mixed distribution which is given by
C'+(0.95—-C) x B(A, B) (15)

where A, B, C are independent Uniform random variables over the interval (0.1, 0.95).
This means that Pj‘pa(v)(ﬂxpa(v)) as appearing in Theorem 3 has its expected value
E(E(Pyl‘pa(v)(1\xpa(v))|A, B,C)) = 0.7375, where we note that the mean of the Beta
random variable with the random parameters A and B is equal to 0.5. We selected

the Uniform distribution over the interval (0.1, 0.95) to avoid too small or too large
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values of Pvl‘pa(v) (1 |Xpa(v))‘

The mixed distribution is equivalent to the family of distributions,

F ={c+(0.95 - ¢) x B(a,b); a,b,c € [0.1,0.95]} (16)

where each distribution in F is equally likely. Suppose that, for each node v in a BN
model, its conditional probability Pvl‘ pa(w) (1 Xpa(v)) follows a distribution in F and that
the distributions may be different across the nodes of the BN model. Also suppose
that we have an actual BN model of BN; with D; given by (15). Its similar BN model
is constructed, in light of Theorem 3, by using g,’s which are obtained by taking the

distribution of Pv1|pa(v)(1yxpa(v)) as

0.525 + 0.425 x B(0.525,0.525), (17)

which we will denote by 7/3\1

We computed the agreement levels between the two types of BN models, BN;
and 5171, and summarized the levels in terms of the three quantities, the first(Q1),
the second(Q)2), and the third(Q3) quartiles of B(=100) (ag, ay)-values which are
obtained by iterating the comparison of the classifications between the two models

100 times. At each iteration, we construct an actual model of BNy and use the g,’s

Table 3: ay and ay values for the model | in Figure 2.

(a) Dy as given by (15) is used for actual models and Dy
model.

as in (17) for the similar

(7)) aq
U U, Us Uy Us Us Uy U, Us Uy Us Us
min 0.316 0.305 0.392 0.270 0.281 0.251 0.725 0.695 0.662 0.740 0.760 0.564
@1 0466 0464 0.522 0.508 0.512 0.446 0.894 0.897 0.936 0.912 0.929 0.837
Q> 0552 0.540 0.601 0.590 0.588 0.542 0.944 0.944 0976 0.974 0972 0.925
Qs 0.655 0.674 0.701 0.691 0.691 0.626 0.979 0.979 0.992 0992 0.993 0.975
max 0.853 0.875 0.824 0.862 0.954 0.874 1.000 1.000 1.000 1.000 1.000 1.000
(b) D, as in (17) is used for both the actual and the similar models.
(7)) a7
Uy U, Us Uy Us Us Uy U, Us Uy Us Us
min 0.341 0.324 0.328 0.350 0.376 0.251 0.825 0.746 0.850 0.751 0.803 0.600
@1 0548 0.514 0.589 0.593 0.625 0.501 0.938 0.937 0.969 0.962 0.980 0.893
Q2 0.634 0.645 0.673 0.698 0.709 0.601 0974 0.978 0.993 0.991 0.995 0.956
Qs 0.731 0.714 0.751 0.779 0.797 0.675 0.993 0.994 1.000 1.000 1.000 0.988
max 0.891 0.868 0.893 0.926 0.921 0.864 1.000 1.000 1.000 1.000 1.000 1.000
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Figure 3: Medians (Q2) of the « values for the six U variables which are listed in
Tables 3 and A.2. The first six of the twelve points on the X-axis indicate the six U
variables, Uy, - - - , Ug, for ag, and the remaining six for oc;. M1, -- - M5 in the graph
are another notation of My, .-, M5, respectively.

from 2/)\1 in expression (17) for the similar model, E]Vl The result is summarized in
Table 3(a) for the BN model in Figure 2.

The mixed distribution D; can be regarded as representing our uncertainty on the
true values of the conditional probabilities P}, (1[Xpa(v)); While D, as representing
the mean of the unknown true values. In Table 3(b), we summarize the comparison
result between the actual and similar models which share the same distribution Z/D\l
In other words, the comparison of the classifications is made between two models for
which Pvl‘ pa(w) (1 Xpa(v))’s are obtained from the same distribution D;. The comparison

thus shows us the agreement level which is affected by the chancy fluctuation of the
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rank-orders between the two models.

For convenience, we will call the four BN models in Figures 2, A.1, ---, A4,
models 1, 2, ---, 5, respectively, in the order of their figures, where the last four
figures are in Appendix. The five BN models are different as follows. Model 2 is
obtained by adding to model 1 six arrows between U variables and X variables and
one arrow between U variables. Model 3 is obtained by removing arrows from model
2 so that Uy, Uy, and Ug become root nodes and the three sets, {Uy, Us, Us, Us}, {U,},
and {Us}, are marginally independent among themselves. By removing all the arrows
between the U variables in model 3 we obtain model 4 so that all the U variables
are marginally independent among themselves. On the contrary, model 5 is obtained
from model 2 by connecting every pair of the U variables with an arrow.

The main difference between the first two of the five BN models is that all the X
variables each has multiple parent nodes while it is not the case in model 1. As for
models 2, 3, 4, and 5, we see more independencies among the U variables in the order
of models 5, 2, 3, 4. We considered this variation among the model structures to see
if this variation affects the agreement level, which is not likely as is shown in Figure 3.
The @3 values (or medians) of the « values as listed in Tables 3 and A.2 are depicted
in the figure. The first six points on each curve are the ()5 values of the oy values
for Uy,--- ,Us, and the remaining six points correspond to the Q5 values of the a;
values. We can see in both of the panels in Figure 3 that models M; (or Ms) and M,
are farthest apart on average among all the possible pairs of the models. However, we
can check in Tables 3 and A.2 that the medians of the a values from model 1 belong
to the mid-50% interval of the corresponding « values from model 4 or vice versa for
at least half of the U variables. This indicates that the model structure or marginal
independencies among U variables may not be very influential on the agreement level
between the two types of models, the actual and the similar models.

As aforementioned, D; is a mixed distribution in Table 3(a). We thus can say
that Dy is to Z/)\l what a random variable is to its mean. When we are not sure of the
distribution of Pv1|pa(v)(]‘|xpa(v))’ we can use an 'averaged’ version of the distribution
in the form of D;. Comparison of the agreement levels between panels (a) and (b) are
important in this context. It is worthwhile to note in the table that, for every variable
Ui, Q1 of the a values in panel (b) lies between ()7 and 3 in panel (a). The same result
holds for other models in Figures A.1, A.2, A.3, and A.4, as is summarized in Table

A.2 in Appendix. This result suggests that when we are not sure of the true values of
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Pl

vlpa(v)
use the agreement level of the classifications between two types of models, BN; and

(1|%Xpa(v)), we may use instead the "averaged’ version D, for classification and
E]Vl, as an index of credibility in classifying via an alternative model E]Vl

6 Concluding Remarks

When a BN model contains unobservable variables, we usually use an EM method
Dempster, Laird, and Rubin (1977) for estimating the conditional probabilities of the
variables in the BN model. If many variables are involved in the BN model, then
the parameter estimation is time-consuming and the estimates tend to be contami-
nated with larger errors than when the model is of a moderate size (Kim 2002). In
this respect, when the BN model is of a large size and involves unobservable binary
variables and the classification is given in terms of rank-order based class levels of
probabilities, the similar BN model is recommended as a reasonable alternative.

The notion of similarity between models is defined under the premise that the
models are of the same model structure. In the definition, we assume that the un-
derlying distribution, D;, is known. But, in reality, we have data for observable
variables only and the classification is usually made for unobservable variables. It
may be desirable, when a timely service of classification is required and an acceptable
development of a BN model is yet in progress, that we use some alternative model for
the classification which is made within some pre-specified tolerable limits. The simu-
lation experiment strongly suggests, under the positive association condition, that we
may use a similar model, Eﬁl, for classification in addition to the agreement levels
which are computed by comparing the two types of models, BN; and E]Vl

A main idea behind the proposed similar model approach for classification is
analogous to Bayesian approach for statistical inference. We use a 1/?\1 distribution
for the similar model which is obtained under a prior assumption on the conditional
probabilities, P1}|pa(v)(1]xpa(v)). Suppose that we have a data set of the observable
variables, Xy,, and that we are not sure of the probability models of Xy except its
model structure, which is given in a BN. Then we assume a set of prior distributions
for the parameters of the distribution of the conditional probabilities, Pvl| pa(o) (1]%pa(w)),
which all together form a mixed distribution, D;, and regard the data as obtained
from a distribution in F in expression (16). We use the similar model with D, for

classification along with the agreement level which is obtained in the same way as for
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Table 3(a).

It is pointed out in Simon (1981) that discrete features are closer to a knowledge-
level representation than continuous ones, and we often express our opinions or
feelings using the rank-order based categorized terms such as ‘very little,” ‘little,’
‘medium,’” ‘much,” and ‘very much.” In particular, for survey and assessment in
medicine, education, and marketing among others, we usually use category levels
instead of continuous values. The similar model as proposed in this paper can be
used as a surrogate classifier of a group of subjects when consistency of classifica-
tion is required, provided that we can reasonably assume a mixed distribution D; as

illustrated in expression (15).

Appendix

Table A.1: a and 7y, values with L =5 and B = 50 for the model in Figure 2 when
D, is 0.85-5(0.2,0.4) + 0.1

U; Th,—4 Tk,—3 Tk,—2 Tr,—1 ap Tr1 Tra Tk3 Tka a1
Uq 0.000 0.004 0.029 0.178 0.594 0.176 0.018 0.001 0.000 0.948
(0.001) (0.008) (0.024) (0.042) (0.110) (0.048) (0.025) (0.003) (0.001) (0.051)
Us 0.000 0.003 0.030 0.172 0.602 0.172 0.020 0.001 0.000 0.947
(0.000) (0.004) (0.020) (0.040) (0.111) (0.053) (0.028) (0.003) (0.000) (0.057)
Us 0.000 0.003 0.029 0.190 0.564 0.189 0.025 0.000 0.000 0.942
(0.001) (0.008) (0.020) (0.046) (0.117) (0.062) (0.038) (0.001) (0.000) (0.066)
Uy 0.000 0.002 0.022 0.163 0.635 0.168 0.010 0.000 0.000 0.966
(0.000) (0.004) (0.027) (0.046) (0.121) (0.066) (0.016) (0.000) (0.000) (0.038)
Us 0.000 0.002 0.021 0.162 0.639 0.165 0.011 0.001 0.000 0.966
(0.002) (0.005) (0.024) (0.053) (0.127) (0.071) (0.015) (0.004) (0.000) (0.034)
Us 0.002 0.007 0.040 0.185 0.550 0.171 0.036 0.007 0.002 0.906
(0.007) (0.013) (0.040) (0.052) (0.138) (0.059) (0.039) (0.015) (0.006) (0.092)
Average 0.000 0.004 0.029 0.175 0.597 0.173 0.020 0.002 0.000 0.946

NOTE: The values in the parentheses are standard deviations.

Three more results in addition to the result of section 5 follow. These results
correspond to three different BN models as displayed in Figures A.1, A.2, A.3, and
A 4 below.
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Figure A.2: A BN which is obtained by removing some arrows from the BN in Figure
A.l.

Figure A.3: A BN which is obtained by removing all the arrows between the U nodes
from the BN in Figure A.2.
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Figure A.4: A BN which is obtained by connecting all the U nodes in the order of
node-labels in the BN in Figure A.2.

Table A.2: ag and «; values for the models in Figures A.1, A.2, A.3, and 3.

For model 2 in Figure A.1:

(a) Dy given by (15) is used for actual models and D, in (17) for the similar model.

(e} aq

Uy U, Us Uy Us Us Uy U, Us Uy Us Us

min 0351 0.332 0.267 0.335 0.323 0.232 0.708 0.715 0.633 0.806 0.779 0.661
@1 0480 0470 0481 0.497 0.469 0.437 0.907 0.895 0.909 0.930 0.932 0.864
Q2 0.540 0.556 0.585 0.567 0.565 0.511 0.938 0.929 0.958 0.966 0.961 0.914
Qs 0.609 0.605 0.685 0.686 0.647 0.582 0.963 0.967 0.991 0.990 0.988 0.951
max 0.780 0.832 0.854 0.928 0.907 0.725 0.999 1.000 1.000 1.000 1.000 0.997

(b) D; as in (17) is used for both the actual and the similar models.

min 0.263 0.366 0.384 0.339 0.318 0.286 0.808 0.832 0.892 0.888 0.856 0.587
Q1 0527 0.550 0.602 0.584 0.585 0.481 0.952 0949 0965 0974 0971 0.905
Q2 0616 0.620 0.673 0.675 0.665 0.554 0.976 0.979 0.990 0.990 0.992 0.943
Qs 0.687 0.691 0.761 0.764 0.751 0.635 0.994 0.992 1.000 1.000 1.000 0.976
max 0.920 0.863 0.919 0.905 0.957 0.783 1.000 1.000 1.000 1.000 1.000 1.000
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(Table A.2 continued)
For model 3 in Figure A.2:

(a) D; and D; are the same as for model 2.

(e} aq

Uy U, Us; Uy Us Us Uy U, Us; Uy Us Us

min 0.252 0.267 0.206 0.209 0.307 0.287 0.630 0.749 0.384 0.641 0.705 0.638
@1 0439 0449 0405 0.450 0.454 0.434 0.857 0.872 0.857 0.872 0.880 0.860
Q2 0.500 0.530 0.483 0.567 0.559 0.504 0.897 0.932 0.925 0.950 0.953 0.898
Qs 0556 0.614 0.575 0.672 0.653 0.565 0.941 0972 0968 0974 0.983 0.935
max 0.730 0.749 0.812 0.920 0.848 0.775 1.000 1.000 1.000 1.000 1.000 0.984

(b) D; as in (17) is used for both the actual and the similar models.

min 0.291 0.324 0.347 0.319 0.259 0.219 0.744 0.763 0.699 0.663 0.766 0.739
@1 0534 0.540 0.527 0.573 0.537 0.466 0.929 0946 0.947 0946 0.946 0.891
@2 0.611 0.601 0.613 0.684 0.679 0.540 0.962 0976 0978 0.982 0.984 0.931
Qs 0.675 0.679 0.705 0.752 0.761 0.593 0.979 0993 0.994 0.998 0.999 0.962
max 0.807 0.882 0.854 0.901 0.912 0.818 1.000 1.000 1.000 1.000 1.000 1.000

For model 4 in Figure A.3:

(a) D; and D, are the same as for model 2.

min 0.215 0.147 0.102 0.113 0.159 0.182 0.439 0.714 0.311 0.213 0472 0.635
@1 0414 0424 0313 0335 0.426 0.413 0.840 0.855 0.723 0.802 0.840 0.853
Q2 0522 0.502 0472 0.508 0.540 0.490 0.925 0929 0.877 0.906 0.916 0.909
Qs 0.676 0.624 0.612 0.611 0.639 0.587 0.959 0955 0.946 0971 0.962 0.942
max 0.876 0919 0.863 0.882 0.939 0.917 1.000 0.996 1.000 1.000 0.999 0.995

(b) Dy as in (17) is used for both the actual and the similar models.

min 0.223 0.196 0.221 0.240 0.126 0.225 0.512 0.215 0.525 0.578 0.431 0.631
@1 0526 0.484 0.506 0.550 0.505 0.462 0.923 0921 0919 0941 0.929 0.889
Q2 0.605 0.578 0.625 0.670 0.650 0.542 0.961 0956 0.970 0.982 0.970 0.942
Qs 0.722 0.686 0.750 0.781 0.764 0.651 0.987 0978 0.994 0.999 0.987 0.967
max 0.952 0.876 0.965 0.989 0.942 0.963 1.000 1.000 1.000 1.000 1.000 0.999

For model 5 in Figure 3:

(a) Dy given by (15) is used for actual models and D; in (17) for the similar model.

min 0.170 0.320 0.300 0.240 0.300 0.260 0.620 0.800 0.590 0.720 0.670 0.660
@1 0.458 0.490 0.518 0.520 0.500 0.467 0.880 0.907 0.930 0.940 0.910 0.900
Q2 0.510 0.550 0.600 0.595 0.605 0.550 0.920 0945 0.970 0.970 0.960 0.950
Qs 0590 0.630 0.680 0.710 0.702 0.620 0.960 0.970 0.990 0.990 0.990 0.970
max 0.810 0.780 0.810 0.840 0.830 0.880 1.000 1.000 1.000 1.000 1.000 1.000

(b) Dy as in (17) is used for both the actual and the similar models.

min 0.340 0.350 0.330 0.390 0.190 0.240 0.720 0.840 0.560 0.650 0.650 0.810
@1 0510 0.577 0.590 0.628 0.610 0.550 0.940 0.960 0.970 0.970 0.970 0.940
Q2 0.615 0.650 0.700 0.710 0.695 0.625 0.970 0.980 0.990 0.990 0.990 0.975
Qs 0.712 0.720 0.763 0.780 0.760 0.700 0.990 0.990 1.000 1.000 1.000 0.990
max 0.850 0.920 0.930 0.920 0.900 0.870 1.000 1.000 1.000 1.000 1.000 1.000
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