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Abstract: Suppose that we rank-order the conditional probabilities for a group of

subjects that are provided from a Bayesian network model of binary variables. The

conditional probability is the probability that a subject has a certain attribute given

an outcome of some other variables and the classification is based on the rank-order.

Under the condition that the class sizes are equal across the classes and that all the

variables in the model are positively associated with each other, we compare the clas-

sification results between models which share the same model structure. Simulation

results indicate that the agreement level of the classification between models is con-

siderably high with the exact agreement for about half of the subjects or more and

the agreement up to level 1 for about 90% or more.

Keywords: Agreement level; Bayesian network; Conditional probability; Model sim-

ilarity; Positive association.

1 Introduction and Problem

Consider a problem of rank-ordering a group of subjects according to the conditional

probability that a subject possesses a certain attribute given the outcome of a set

of covariates. If we need to classify them into one of L classes according to the

rank-order, it becomes a classification problem. This is an example of discretizing

continuous values by rank-ordering, which takes place in a variety of performance

assessment in education, sports, finance, etc. The rank-orders may be discrepant

between raters due to different standards of thresholds among others. We will con-

sider a rank-order based classification problem using the probability values which are

produced from a Bayesian network (BN) model(Pearl 1988; Jensen 1996)

1Authors’ Addresses: Sung-Ho Kim, Department of Mathematical Sciences, KAIST, Daejeon,
305-701, S. Korea, e-mail: sung-ho.kim@kaist.edu; Geon Youp Noh, Department of Mathematical
Sciences, KAIST, Daejeon, 305-701, S. Korea, e-mail: dryleaf0@kaist.ac.kr.
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Literature abounds on agreement measures between raters or classifiers (Cohen

1960; Spitzer, Cohen, Fleiss, and Endicott, 1967; Fleiss 1981; Messatfa 1992; Pires and

Branco 1997; Albatineh, Niewiadomska-Bugaj, and Mihalko 2006; Brusco and Steinly

2008), where the agreement measure accounts for the level of agreement relative to the

level of agreement by chance. The value of the measure is between 0 and 1, 1 indicating

a perfect agreement between raters. This kind of agreement measures are very useful

when we compare raters in a relative sense. In this paper, we are interested in a

detailed description of agreement such as proportions of perfect agreement, agreement

up to level 1, etc.

BNs are useful in representing graphically the relationships among the variables

which are interpretable in generic terms as causal. In this paper, we will consider BN

models of binary variables each taking on 0 or 1. When all the variables in the model

are categorical with finite number of category levels, we can compute conditional

probabilities of a set of variables given another set of variables in the model by ap-

plying the method called evidence propagation method (Lauritzen and Spiegelhalter

1988) and computer programs such as HUGIN (Andersen, Jensen, Olesen, and Jensen

1989), ERGO (Noetic Systems 1991), and MSBNx (MSBNx 2001) are available for

the computing.

Suppose that we rank-order the conditional probabilities for a group of subjects

that are provided from a BN model. The conditional probability is given in the form

of P (U = 1|X = x) where X is a random vector. If we classify the subjects in such

a way that the class sizes are equal across the classes, the classification is analogous

to assigning rank-order-based grade scores to students. If two BN models provide

the conditional probabilities for the same group of subjects and the rank-orders of

the probability values are similar to each other between the two models, then the

agreement level between the two classification results will be very high. We will

investigate the agreement level between the BN models which satisfy some conditions

as described in sections 4 and 5.

We will introduce a notion of similarity between BN models whose model struc-

tures are the same. The only difference between them is in the marginal probability

or the conditional probability of a variable, X say, given the variables at its parent

nodes, i.e., the nodes at the arrow tails of X, in the BN (see Figure 1). Assuming

that the variables in a model are positively associated (Holland and Rosenbaum 1986;

Junker and Ellis 1997) with each other, we will investigate agreement levels in clas-
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sification between a pair of BN models, where one model is a similar model of the

other.

This investigation is of practical value since it will provide us with a BN model

whose overall agreement level with a group of BN models is relatively high under the

assumption of positive association among the variables that are involved in the model.

As for a BN model, the positive association between variables can be interpreted as a

positively causal relationship. In cognitive science, we assume that knowledge states

and task performances are positively causally related (Mislevy 1994) and we can find

many such examples in biological, medical, and behavioral sciences among others.

This paper is organized in 6 sections. Section 2 gives a brief review on positive

association among binary variables. Section 3 then introduces the notion of similarity

between BN models and proposes a BN model which is most similar to a given

BN model under some condition. In section 4, we describe a method of computing

agreement levels of classifications between a pair of BN models and then results of a

simulation experiment are presented. The simulation experiment extends in section

5 to the case where the comparison is made between a set of BN models and a BN

model which satisfy a certain condition. Section 6 concludes the paper with some

summarizing remarks.

2 A Brief Review on Positive Association

We will use U for unobservable variables and X for observable variables. For

a pair of n-vectors u and v of the same length, we write u ¹ v when ui ≤ vi for

i = 1, · · · , n, and write u ≺ v if u ¹ v and ui < vi for at least one i = 1, · · · , n.

In a BN such as the graph in Figure 1, if a pair of nodes a and b are connected by

an arrow with the arrow heading towards b from a, we call node a a parent node of

node b and call node b a child node of node a. If a node does not have any parent

node, it is called a root node. U1 is the only root node in the figure.

Theorem 1. Let U and X be binary variables, taking on the values 0 or 1. If

0 < P (U = 1) < 1 and 0 < P (X = 1) < 1 (1)

then the following two inequalities are equivalent:

P (X = 1|U = 0) < P (X = 1|U = 1) (2)
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P (U = 1|X = 0) < P (U = 1|X = 1). (3)

Proof. See Theorem 1 in Kim (2005).

Expression (2) can be re-expressed as

P (X = 1|U = 1)P (X = 0|U = 0)

P (X = 0|U = 1)P (X = 1|U = 0)
> 1,

which means that U and X are positively associated.

Theorem 1 can be extended to random vectors as the theorem below.

Theorem 2. Let X = (X1, · · · , XI) and U = (U1, · · · , UK) where all the Xi’s and

Uk’s are binary, taking on 0 or 1. Then the following two statements are equivalent.

(i) For i = 1, 2, · · · , I,

P (Xi = 1|u) < P(Xi = 1|v), when u ≺ v. (4)

(ii) For k = 1, 2, · · · , K,

P (Uk = 1|x) < P(Uk = 1|y), when x ≺ y. (5)

The strict inequality(<) in both Eqs.(4) and (5) may be replaced by the plain inequality

(≤).

Proof. See Theorem 2 in Kim (2005).

Inequality (4) is equivalent to that

P (v|Xi = 1)

P (u|Xi = 1)
>

P (v)

P (u)
>

P (v|Xi = 0)

P (u|Xi = 0)
.

2

U1

U3

X1
X3

X6X5

X4

X2

U

Figure 1: A BN where U variables are latent and X variables observable.
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This inequality says that U = v is more likely than U = u when Xi = 1 than when

Xi = 0. Furthermore, we can compare the likeliness of Uk = 1 for individual Uk’s as

in Theorem 2.

When the < and ≺ in expression (4) are replaced by ≤ and ¹, respectively, we

have

P (Xi = 1|u) ≤ P(Xi = 1|v), when u ¹ v. (6)

This expression actually means that the conditional distribution of Xi given U = v

is stochastically larger than that of Xi given U = u. Holland and Rosenbaum (1986)

discuss properties concerning positive association among the X variables when the

X variables are conditionally stochastically ordered given U. Junker and Ellis (1997)

characterize such X variables in more generic terms such as conditional association

and vanishing conditional dependence. We will call expression (6) the condition of

positive association between the sets, {X1, · · · , XI} and {U1, · · · , UK}.

3 Similarity Between BN Models

Consider two BN models which are the same in model structure but not necessarily

in distribution. Let the graph be denoted by G = (V, E) where V and E are,

respectively, the set of nodes and the set of arrows between nodes. If two nodes u and

v are connected by an arrow from u to v, the arrow is represented by (u, v). So, (v, u)

cannot be in E if (u, v) ∈ E. Such a graph is called a directed acyclic graph (DAG)

when there is no sequence of arrows, (ui, ui+1), i = 1, 2, · · · , n, such that u1 = un+1.

As for a DAG G, we define a set pa(v) for a node v, as pa(v) = {u; (u, v) ∈ E}.
For two BN models, BN1 and BN2, of XV , assume that they have the same graph,

say G, and denote their probability distributions by D1 and D̂1 respectively. In other

words, the BN models, BNi, i = 1, 2, are defined as BNi = (G, Di). The probability

function Pm of Dm, m = 1, 2, is expressed as

Pm(xV ) =
∏
v∈V

Pm
v|pa(v)(xv|xpa(v)).

In other words, Dm is defined in terms of the conditional distributions of Xv condi-

tional on its parent variables. In this respect, we can compare the two distributions

by comparing the conditional or marginal distributions of each variable between the
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two models. We define the similarity measure between BN1 and BN2 as

∑
v∈V

∑
xv

∑
xpa(v)

(
P 1

v|pa(v)(xv|xpa(v))− P 2
v|pa(v)(xv|xpa(v))

)2
.

We denote the support of Xv by Xv and let, for A ⊆ V , XA =
∏

v∈AXv. If all the

variables are binary, the similarity measure can be re-expressed as

∑
v∈V

∑
x∈Xpa(v)

(
P 1

v|pa(v)(1|x)− P 2
v|pa(v)(1|x)

)2
. (7)

We will denote this measure by ψ(BN1, BN2).

We can think of a probability distribution for P 1
v|pa(v)(1|y), y ∈ Xpa(v), regarding

P 1
v|pa(v)(1|y) itself as a random variable, under the condition that the positive associ-

ation condition (6) is satisfied among Xv, v ∈ V . We will denote the distribution of

P 1
v|pa(v)(1|y), y ∈ Xpa(v), by Dv

1 .

Now suppose that D̂1 is not known and that we want to find a distribution, say

D1, for which E(ψ(BN1, BN2)) is minimized where the expectation is made with

respect to the distribution D1. By the definition of the similarity measure in (7),

it follows that E(ψ(BN1, BN2)) is minimized when D1 consists of the conditional

probabilities of Xv, v ∈ V conditional on Xpa(v) which are given by

E(P 1
v|pa(v)(1|xpa(v)))

where the expectation is made with respect to D1.

For Xv, we denote by δv(x) the number of 1’s in the vector of xpa(v) and by κv(x)

the number of vectors y ∈ Xpa(v) such that δv(y) = δv(x).

Theorem 3. Let the expression in (7) be modified as

Q =
∑
v∈V

∑
x∈Xpa(v)

(
P 1

v|pa(v)(1|x)− gv(δv(x))
)2

for some functions gv, v ∈ V , where gv is defined on the set {0, 1, · · · , |pa(v)|}. If

we regard P 1
v|pa(v)(1|x) as random variables with distribution D1, then Q is minimized

when

gv(δv(x)) =
1

κv(x)

∑

y ∈ Xpa(v) :
δv(y) = δv(x)

E(P 1
v|pa(v)(1|y)). (8)
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Proof: Since Q is quadratic in gv(δ(x)), we have

dQ

dgv(δv(x))
=

d

dgv(δv(x))

∑
v

∑
y∈Xpa(v)

E
(
P 1

v|pa(v)(1|x)− gv(δv(x))
)2

= 2
∑

y ∈ Xpa(v) :
δv(y) = δv(x)

E
(
P 1

v|pa(v)(1|y)− gv(δv(x))
)

= 0.

Thus, Q is minimized when

gv(δv(x)) =
1

κv(x)

∑

y ∈ Xpa(v) :
δv(y) = δv(x)

E
(
P 1

v|pa(v)(1|y)
)
.

Suppose that |pa(v)| = 3. Then

Xpa(v) = {(0, 0, 0)︸ ︷︷ ︸
0

, (0, 0, 1), (0, 1, 0), (1, 0, 0)︸ ︷︷ ︸
1

, (0, 1, 1), (1, 0, 1), (1, 1, 0)︸ ︷︷ ︸
2

, (1, 1, 1)︸ ︷︷ ︸
3

}, (9)

where the elements (x’s) are grouped according to δ(x). For four vectors, x0,x1,x2,x3,

in (9), with δ(xi) = i, we have that

x0 ≺ xi ≺ x3, i = 1, 2. (10)

But not every pair in Xpa(v) is ordered. For instance, (0, 1, 0) and (1, 0, 1) are not

ordered.

Recall that, under the positive association condition, Pv|pa(v)(1|x) ≤ Pv|pa(v)(1|y)

for x,y ∈ Xpa(v), when x ¹ y. In constructing a BN model for XV under the

positive association condition on Pv|pa(v), we can think of assigning probability values

as follows:

For simplicity of argument, we consider the case that |pa(v)| = 3. If we are given 8

values between 0 and 1 in a random manner from some distribution, we assign these

values to Pv|pa(v)(1|x), x ∈ Xpa(v), in the order of the elements in (9) from small to

large allowing order distortions between some of Pv|pa(v)(1|x) values for which the x’s

are not comparable in the sense of ¹.

Since the values are assigned in a random manner to the Pv|pa(v)(1|x)’s for which

the x’s are not comparable with each other, Theorem 3 says that, if the conditional
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probability of Xv conditional on Xpa(v) depends upon δv(X) only in a BN model and

minimizes E(Q), then the desired conditional probability is given by the right-hand

side of (8).

Suppose we are given a BN model BN1 = (G,D1). A BN model for which gv

values are used in place of P 1
v|pa(v)(1|xpa(v)) will be called the similar BN model of

BN1 and be denoted by B̂N1. A BN model BN1 itself is not ready for computation

for classification since the conditional probability P 1
v|pa(v)(1|xpa(v)) is yet a random

variable therein. When the conditional probability is replaced with a list of numeric

values corresponding to the values of xpa(v) for every node v, we will call the BN

model an actual BN model of BN1. In other words, a BN1 is to its actual BN model

what a random variable is to its outcome or observed value.

We will compare the performance of B̂N1 with the actual BN model of BN1 in

next section.

4 An Example of Similar BN Models

The agreement level of the classifications between the two models, an actual model

of BN1 and B̂N1, is defined as follows:

Suppose we compare predictions for subject j with regard to Xk and denote

the class levels from an actual BN model and the similar BN model of BN1,

respectively, by Y a
jk and Y s

jk. We define ejk = Y s
jk − Y a

jk. So, if the class levels

range from 1 through L, then −L + 1 ≤ ejk ≤ L − 1. Suppose that there are

N subjects for whom classifications are to be made. Then we can define the

agreement level up to difference d (d > 0) by

αk
d =

∑

h: |h|≤d

rkh (11)

where

rkh =
the number of cases that ejk = h

N
.

We will use αk
0 and αk

1 as the two primary indices of agreement. As for BN1,

we will consider the beta distribution with parameters a and b (denoted by B(a, b))

and some of its variations for P 1
v|pa(v)(1|x), x ∈ Xpa(v). Since P 1

v|pa(v)(1|x) are ordered

according to x under the positive association condition, we may use a set of order

statistics of a random sample from B(a, b) for P 1
v|pa(v)(1|x).
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Let V be partitioned into {V1, V2} and suppose that we are interested in classifying

for XV2 given an outcome of XV1 . In Figure 2, XV2 = (U1, · · · , U6). In the rest of

this section, we obtain the α values for Xv, v ∈ V2, by a simulation experiment for a

given distribution D1. Denote by xi the outcome of X for the ith case of data and by

xik the kth component of xi. For a set A, let xi,A = (xik, k ∈ A).

In the simulation, we obtained the α values as follows:

(i) For a given BN1 = (G,D1), construct a similar BN model, B̂N1.

(ii) Generate a set of numeric values of the conditional probabilities, {P 1
v|pa(v)(1|x), v ∈

V } from D1 and construct an actual BN model using the generated values.

(iii) Generate N vector values, xi, i = 1, · · · , N , of XV from the actual model.

(iv) For each k ∈ V2, obtain Y a
ik and Y s

ik for i = 1, 2, · · · , N . Y a
ik = h if the rank of

P (Xik = 1|xi,V1) is larger than N(h − 1)/L and not larger than Nh/L, where

P (Xik = 1|xi,V1)’s are computed in the actual model and the rank is assigned

in the reverse order of the magnitude of P (Xik = 1|xi,V1), i = 1, 2, · · · , N . Y s
ik’s

are obtained analogously except that P (Xik = 1|xi,V1)’s are computed in B̂N1.

(v) For each k ∈ V2, obtain rkh, −L + 1 ≤ h ≤ L− 1.

(vi) Repeat steps (ii)-(v) B times and compute the average of the B rkh values for

each k ∈ V2.

It is important to note in the above process that the values of XV are generated

from an actual model of BN1 and the comparison of class levels between the actual

U1

U6

U2 U5

U4

U3

X2

X9X8

X7

X4

X5

X6
X1

X3

Figure 2: A BN where classifications are made for U variables based on X variables.
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and the similar models are based on the conditional probabilities, P (Xik = 1|xi,V1),

k ∈ V2. We denote by r̄kh the average of the rkh values and replace the rkh in (11) by

r̄kh as in

αk
d =

∑

h: |h|≤d

r̄kh. (12)

Since B different sets of numeric values of the conditional probabilities, {P 1
v|pa(v)(1|x), v ∈

V }, are used for actual BN models from BN1, the α values as in (12) can be regarded

as an estimate of the mean of the agreement level of the classifications between the

actual BN model and the similar BN model, when D1 is the true distribution for

{P 1
v|pa(v)(1|x), v ∈ V }. In the simulation experiment below, we set N = 1, 000 and

B = 100.

We will take as an example B(0.2, 0.4) for D1, v ∈ V . When the conditional

probabilities, {P 1
v|pa(v)(1|x), v ∈ V }, are given as order statistics from U(0, 1) =

B(1, 1), the P 1
v|pa(v) values tend to be evenly dispersed over the interval between 0

and 1. But the P 1
v|pa(v)(1|x) values are more likely to appear near the end points

of the interval when they are from B(0.2, 0.4). In the case of educational testing, if

Xv is an item score (1 for correct answer, 0 otherwise) and Xpa(v) is a set of vectors

of the knowledge states (1 for good enough, 0 otherwise) of the knowledge units

that are required for the test item, then the P 1
v|pa(v) values tend to be small when

δ(xpa(v)) < |pa(v)| and near 1 otherwise (see, for example, Mislevy(1994)). In this

respect, the Beta distribution is a reasonable choice for D1.

The mean of the jth smallest among a random sample of size n from a Beta

distribution is not available in a closed form, and the gv values are computed by a

numerical approach. Table 1 lists the gv values for |pa(v)| ≤ 6, which are used for

constructing B̂N1 corresponding to D1 = B(0.2, 0.4).

It is indicated in Table 2 when L = 5 that, on average, the classifications from

the two types of models, the actual and the similar models, exactly agree for about

57% of the cases (see the column of α0 in the table) and the average of the six values

in the last column is about 0.93.

It is worthwhile to note in Table 1 that the gv(0) values become very small as

|pa(v)| increases. If we consider educational testing with multiple choice tests, these

values are unreasonably small since multiple choice tests allow guessing for selecting

response options. An example of the distribution D1 for this situation is

0.85 · B(a, b) + 0.1, (13)
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Table 1: The gv values of (8) for |pa(v)| ≤ 6 when D1 is B(0.2, 0.4)

|pa(v)| = 0 : gv(0) = 0.3333 |pa(v)| = 1 : gv(i) =

{
0.1328 if i = 0

0.5338 if i = 1

|pa(v)| = 2 : gv(i) =





0.0299 if i = 0

0.2783 if i = 1

0.7567 if i = 2

|pa(v)| = 3 : gv(i) =





0.0035 if i = 0

0.0801 if i = 1

0.5072 if i = 2

0.9012 if i = 3

|pa(v)| = 4 : gv(i) =





0.0002 if i = 0

0.0116 if i = 1

0.2185 if i = 2

0.7508 if i = 3

0.9724 if i = 4

|pa(v)| = 5 : gv(i) =





0.0000 if i = 0

0.0010 if i = 1

0.0537 if i = 2

0.4580 if i = 3

0.9100 if i = 4

0.9940 if i = 5

|pa(v)| = 6 : gv(i) =





0.0000 if i = 0

0.0000 if i = 1

0.0082 if i = 2

0.1829 if i = 3

0.7136 if i = 4

0.9749 if i = 5

0.9988 if i = 6

which means that guessing shrinks the range of the conditional probabilities from

B(a, b) to 0.85 · B(a, b) + 0.1.

Given the gv values of (8) corresponding to the D1 = B(0.2, 0.4), we can easily

obtain the gv values corresponding to D1 = aB(0.2, 0.4) + (0.95 − a). In expression

(8), P 1
v|pa(v)(1|y) is regarded as a random variable from a distribution D1. So if we

denote by ga
v the gv values corresponding to D1 = aB(0.2, 0.4) + (0.95− a), and by g∗v

corresponding to D1 = B(0.2, 0.4), then it follows from expression (8) that

ga
v = ag∗v + (0.95− a). (14)
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Table 2: α and r̄kh values with L = 5 and B = 50 for the model in Figure 2 when D1

is B(0.2, 0.4)

Ui r̄k,−4 r̄k,−3 r̄k,−2 r̄k,−1 α0 r̄k1 r̄k2 r̄k3 r̄k4 α1

U1 0.000 0.002 0.023 0.186 0.544 0.182 0.050 0.012 0.001 0.912
(0.000) (0.007) (0.025) (0.056) (0.100) (0.053) (0.050) (0.031) (0.004) (0.083)

U2 0.000 0.001 0.024 0.190 0.565 0.180 0.035 0.006 0.001 0.934
(0.000) (0.002) (0.026) (0.060) (0.097) (0.051) (0.030) (0.016) (0.003) (0.056)

U3 0.000 0.002 0.017 0.173 0.611 0.166 0.026 0.004 0.000 0.950
(0.000) (0.008) (0.026) (0.057) (0.138) (0.061) (0.035) (0.009) (0.001) (0.058)

U4 0.001 0.001 0.021 0.165 0.607 0.179 0.026 0.001 0.000 0.951
(0.004) (0.005) (0.025) (0.059) (0.113) (0.066) (0.037) (0.003) (0.001) (0.054)

U5 0.000 0.002 0.020 0.159 0.624 0.173 0.020 0.002 0.000 0.957
(0.000) (0.005) (0.022) (0.071) (0.117) (0.058) (0.026) (0.005) (0.000) (0.043)

U6 0.000 0.005 0.045 0.193 0.486 0.180 0.061 0.020 0.009 0.860
(0.001) (0.011) (0.040) (0.075) (0.126) (0.055) (0.050) (0.048) (0.037) (0.127)

Average 0.000 0.002 0.025 0.178 0.573 0.177 0.036 0.007 0.002 0.927
NOTE: The values in the parentheses are standard deviations.

We can see in Table A.1 in Appendix that the α0 and α1 values when D1 =

0.85B(0.2, 0.4) + 0.1 are about 60% and 95%, respectively. In both of the cases, the

α0 and α1 values are larger than 50% and 90%, respectively. We will extend the

simulation experiment to a more general version of D1 in next section.

5 Agreement Levels Between Two Types of BN

Models

In the preceding section we compared classifications between an actual model of BN1

and its similar model, B̂N1, where D1 = B(0.2, 0.4). In this section we will consider

D1 as a mixed distribution which is given by

C + (0.95− C)× B(A,B) (15)

where A,B,C are independent Uniform random variables over the interval (0.1, 0.95).

This means that P 1
v|pa(v)(1|xpa(v)) as appearing in Theorem 3 has its expected value

E(E(P 1
v|pa(v)(1|xpa(v))|A,B,C)) = 0.7375, where we note that the mean of the Beta

random variable with the random parameters A and B is equal to 0.5. We selected

the Uniform distribution over the interval (0.1, 0.95) to avoid too small or too large

12



values of P 1
v|pa(v)(1|xpa(v)).

The mixed distribution is equivalent to the family of distributions,

F = {c + (0.95− c)× B(a, b); a, b, c ∈ [0.1, 0.95]} (16)

where each distribution in F is equally likely. Suppose that, for each node v in a BN

model, its conditional probability P 1
v|pa(v)(1|xpa(v)) follows a distribution in F and that

the distributions may be different across the nodes of the BN model. Also suppose

that we have an actual BN model of BN1 with D1 given by (15). Its similar BN model

is constructed, in light of Theorem 3, by using gv’s which are obtained by taking the

distribution of P 1
v|pa(v)(1|xpa(v)) as

0.525 + 0.425× B(0.525, 0.525), (17)

which we will denote by D̂1.

We computed the agreement levels between the two types of BN models, BN1

and B̂N1, and summarized the levels in terms of the three quantities, the first(Q1),

the second(Q2), and the third(Q3) quartiles of B(=100) (α0, α1)-values which are

obtained by iterating the comparison of the classifications between the two models

100 times. At each iteration, we construct an actual model of BN1 and use the gv’s

Table 3: α0 and α1 values for the model in Figure 2.
(a) D1 as given by (15) is used for actual models and D̂1 as in (17) for the similar
model.

α0 α1

U1 U2 U3 U4 U5 U6 U1 U2 U3 U4 U5 U6

min 0.316 0.305 0.392 0.270 0.281 0.251 0.725 0.695 0.662 0.740 0.760 0.564
Q1 0.466 0.464 0.522 0.508 0.512 0.446 0.894 0.897 0.936 0.912 0.929 0.837
Q2 0.552 0.540 0.601 0.590 0.588 0.542 0.944 0.944 0.976 0.974 0.972 0.925
Q3 0.655 0.674 0.701 0.691 0.691 0.626 0.979 0.979 0.992 0.992 0.993 0.975
max 0.853 0.875 0.824 0.862 0.954 0.874 1.000 1.000 1.000 1.000 1.000 1.000

(b) D̂1 as in (17) is used for both the actual and the similar models.
α0 α1

U1 U2 U3 U4 U5 U6 U1 U2 U3 U4 U5 U6

min 0.341 0.324 0.328 0.350 0.376 0.251 0.825 0.746 0.850 0.751 0.803 0.600
Q1 0.548 0.514 0.589 0.593 0.625 0.501 0.938 0.937 0.969 0.962 0.980 0.893
Q2 0.634 0.645 0.673 0.698 0.709 0.601 0.974 0.978 0.993 0.991 0.995 0.956
Q3 0.731 0.714 0.751 0.779 0.797 0.675 0.993 0.994 1.000 1.000 1.000 0.988
max 0.891 0.868 0.893 0.926 0.921 0.864 1.000 1.000 1.000 1.000 1.000 1.000
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(U1, · · · , U6) in the order of α0, α1 for the 12 X-coordinate points

(a) D1 for the actual model and D̂1

for the similar model.
(b) D̂1 for both of the actual and the

similar models.

Figure 3: Medians (Q2) of the α values for the six U variables which are listed in
Tables 3 and A.2. The first six of the twelve points on the X-axis indicate the six U
variables, U1, · · · , U6, for α0, and the remaining six for α1. M1, · · · , M5 in the graph
are another notation of M1, · · · ,M5, respectively.

from D̂1 in expression (17) for the similar model, B̂N1. The result is summarized in

Table 3(a) for the BN model in Figure 2.

The mixed distribution D1 can be regarded as representing our uncertainty on the

true values of the conditional probabilities P 1
v|pa(v)(1|xpa(v)); while D̂1 as representing

the mean of the unknown true values. In Table 3(b), we summarize the comparison

result between the actual and similar models which share the same distribution D̂1.

In other words, the comparison of the classifications is made between two models for

which P 1
v|pa(v)(1|xpa(v))’s are obtained from the same distribution D̂1. The comparison

thus shows us the agreement level which is affected by the chancy fluctuation of the
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rank-orders between the two models.

For convenience, we will call the four BN models in Figures 2, A.1, · · · , A.4,

models 1, 2, · · · , 5, respectively, in the order of their figures, where the last four

figures are in Appendix. The five BN models are different as follows. Model 2 is

obtained by adding to model 1 six arrows between U variables and X variables and

one arrow between U variables. Model 3 is obtained by removing arrows from model

2 so that U1, U4, and U6 become root nodes and the three sets, {U1, U2, U3, U5}, {U4},
and {U6}, are marginally independent among themselves. By removing all the arrows

between the U variables in model 3 we obtain model 4 so that all the U variables

are marginally independent among themselves. On the contrary, model 5 is obtained

from model 2 by connecting every pair of the U variables with an arrow.

The main difference between the first two of the five BN models is that all the X

variables each has multiple parent nodes while it is not the case in model 1. As for

models 2, 3, 4, and 5, we see more independencies among the U variables in the order

of models 5, 2, 3, 4. We considered this variation among the model structures to see

if this variation affects the agreement level, which is not likely as is shown in Figure 3.

The Q2 values (or medians) of the α values as listed in Tables 3 and A.2 are depicted

in the figure. The first six points on each curve are the Q2 values of the α0 values

for U1, · · · , U6, and the remaining six points correspond to the Q2 values of the α1

values. We can see in both of the panels in Figure 3 that models M1 (or M5) and M4

are farthest apart on average among all the possible pairs of the models. However, we

can check in Tables 3 and A.2 that the medians of the α values from model 1 belong

to the mid-50% interval of the corresponding α values from model 4 or vice versa for

at least half of the U variables. This indicates that the model structure or marginal

independencies among U variables may not be very influential on the agreement level

between the two types of models, the actual and the similar models.

As aforementioned, D1 is a mixed distribution in Table 3(a). We thus can say

that D1 is to D̂1 what a random variable is to its mean. When we are not sure of the

distribution of P 1
v|pa(v)(1|xpa(v)), we can use an ’averaged’ version of the distribution

in the form of D̂1. Comparison of the agreement levels between panels (a) and (b) are

important in this context. It is worthwhile to note in the table that, for every variable

Ui, Q1 of the α values in panel (b) lies between Q1 and Q3 in panel (a). The same result

holds for other models in Figures A.1, A.2, A.3, and A.4, as is summarized in Table

A.2 in Appendix. This result suggests that when we are not sure of the true values of
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P 1
v|pa(v)(1|xpa(v)), we may use instead the ’averaged’ version D̂1 for classification and

use the agreement level of the classifications between two types of models, BN1 and

B̂N1, as an index of credibility in classifying via an alternative model B̂N1.

6 Concluding Remarks

When a BN model contains unobservable variables, we usually use an EM method

Dempster, Laird, and Rubin (1977) for estimating the conditional probabilities of the

variables in the BN model. If many variables are involved in the BN model, then

the parameter estimation is time-consuming and the estimates tend to be contami-

nated with larger errors than when the model is of a moderate size (Kim 2002). In

this respect, when the BN model is of a large size and involves unobservable binary

variables and the classification is given in terms of rank-order based class levels of

probabilities, the similar BN model is recommended as a reasonable alternative.

The notion of similarity between models is defined under the premise that the

models are of the same model structure. In the definition, we assume that the un-

derlying distribution, D1, is known. But, in reality, we have data for observable

variables only and the classification is usually made for unobservable variables. It

may be desirable, when a timely service of classification is required and an acceptable

development of a BN model is yet in progress, that we use some alternative model for

the classification which is made within some pre-specified tolerable limits. The simu-

lation experiment strongly suggests, under the positive association condition, that we

may use a similar model, B̂N1, for classification in addition to the agreement levels

which are computed by comparing the two types of models, BN1 and B̂N1.

A main idea behind the proposed similar model approach for classification is

analogous to Bayesian approach for statistical inference. We use a D̂1 distribution

for the similar model which is obtained under a prior assumption on the conditional

probabilities, P 1
v|pa(v)(1|xpa(v)). Suppose that we have a data set of the observable

variables, XV1 , and that we are not sure of the probability models of XV except its

model structure, which is given in a BN. Then we assume a set of prior distributions

for the parameters of the distribution of the conditional probabilities, P 1
v|pa(v)(1|xpa(v)),

which all together form a mixed distribution, D1, and regard the data as obtained

from a distribution in F in expression (16). We use the similar model with D̂1 for

classification along with the agreement level which is obtained in the same way as for
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Table 3(a).

It is pointed out in Simon (1981) that discrete features are closer to a knowledge-

level representation than continuous ones, and we often express our opinions or

feelings using the rank-order based categorized terms such as ‘very little,’ ‘little,’

‘medium,’ ‘much,’ and ‘very much.’ In particular, for survey and assessment in

medicine, education, and marketing among others, we usually use category levels

instead of continuous values. The similar model as proposed in this paper can be

used as a surrogate classifier of a group of subjects when consistency of classifica-

tion is required, provided that we can reasonably assume a mixed distribution D1 as

illustrated in expression (15).

Appendix

Table A.1: α and r̄kh values with L = 5 and B = 50 for the model in Figure 2 when
D1 is 0.85 · B(0.2, 0.4) + 0.1

Ui r̄k,−4 r̄k,−3 r̄k,−2 r̄k,−1 α0 r̄k1 r̄k2 r̄k3 r̄k4 α1

U1 0.000 0.004 0.029 0.178 0.594 0.176 0.018 0.001 0.000 0.948
(0.001) (0.008) (0.024) (0.042) (0.110) (0.048) (0.025) (0.003) (0.001) (0.051)

U2 0.000 0.003 0.030 0.172 0.602 0.172 0.020 0.001 0.000 0.947
(0.000) (0.004) (0.029) (0.040) (0.111) (0.053) (0.028) (0.003) (0.000) (0.057)

U3 0.000 0.003 0.029 0.190 0.564 0.189 0.025 0.000 0.000 0.942
(0.001) (0.008) (0.029) (0.046) (0.117) (0.062) (0.038) (0.001) (0.000) (0.066)

U4 0.000 0.002 0.022 0.163 0.635 0.168 0.010 0.000 0.000 0.966
(0.000) (0.004) (0.027) (0.046) (0.121) (0.066) (0.016) (0.000) (0.000) (0.038)

U5 0.000 0.002 0.021 0.162 0.639 0.165 0.011 0.001 0.000 0.966
(0.002) (0.005) (0.024) (0.053) (0.127) (0.071) (0.015) (0.004) (0.000) (0.034)

U6 0.002 0.007 0.040 0.185 0.550 0.171 0.036 0.007 0.002 0.906
(0.007) (0.013) (0.040) (0.052) (0.138) (0.059) (0.039) (0.015) (0.006) (0.092)

Average 0.000 0.004 0.029 0.175 0.597 0.173 0.020 0.002 0.000 0.946
NOTE: The values in the parentheses are standard deviations.

Three more results in addition to the result of section 5 follow. These results

correspond to three different BN models as displayed in Figures A.1, A.2, A.3, and

A.4 below.
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Figure A.1: A BN which is obtained by adding dashed arrows to the BN in Figure 2.
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Figure A.2: A BN which is obtained by removing some arrows from the BN in Figure
A.1.
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Figure A.3: A BN which is obtained by removing all the arrows between the U nodes
from the BN in Figure A.2.
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Figure A.4: A BN which is obtained by connecting all the U nodes in the order of
node-labels in the BN in Figure A.2.

Table A.2: α0 and α1 values for the models in Figures A.1, A.2, A.3, and 3.

For model 2 in Figure A.1:

(a) D1 given by (15) is used for actual models and D̂1 in (17) for the similar model.

α0 α1

U1 U2 U3 U4 U5 U6 U1 U2 U3 U4 U5 U6

min 0.351 0.332 0.267 0.335 0.323 0.232 0.708 0.715 0.633 0.806 0.779 0.661
Q1 0.480 0.470 0.481 0.497 0.469 0.437 0.907 0.895 0.909 0.930 0.932 0.864
Q2 0.540 0.556 0.585 0.567 0.565 0.511 0.938 0.929 0.958 0.966 0.961 0.914
Q3 0.609 0.605 0.685 0.686 0.647 0.582 0.963 0.967 0.991 0.990 0.988 0.951
max 0.780 0.832 0.854 0.928 0.907 0.725 0.999 1.000 1.000 1.000 1.000 0.997

(b) D̂1 as in (17) is used for both the actual and the similar models.
min 0.263 0.366 0.384 0.339 0.318 0.286 0.808 0.832 0.892 0.888 0.856 0.587
Q1 0.527 0.550 0.602 0.584 0.585 0.481 0.952 0.949 0.965 0.974 0.971 0.905
Q2 0.616 0.620 0.673 0.675 0.665 0.554 0.976 0.979 0.990 0.990 0.992 0.943
Q3 0.687 0.691 0.761 0.764 0.751 0.635 0.994 0.992 1.000 1.000 1.000 0.976
max 0.920 0.863 0.919 0.905 0.957 0.783 1.000 1.000 1.000 1.000 1.000 1.000
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(Table A.2 continued)

For model 3 in Figure A.2:

(a) D1 and D̂1 are the same as for model 2.
α0 α1

U1 U2 U3 U4 U5 U6 U1 U2 U3 U4 U5 U6

min 0.252 0.267 0.206 0.209 0.307 0.287 0.630 0.749 0.384 0.641 0.705 0.638
Q1 0.439 0.449 0.405 0.450 0.454 0.434 0.857 0.872 0.857 0.872 0.880 0.860
Q2 0.500 0.530 0.483 0.567 0.559 0.504 0.897 0.932 0.925 0.950 0.953 0.898
Q3 0.556 0.614 0.575 0.672 0.653 0.565 0.941 0.972 0.968 0.974 0.983 0.935
max 0.730 0.749 0.812 0.920 0.848 0.775 1.000 1.000 1.000 1.000 1.000 0.984

(b) D̂1 as in (17) is used for both the actual and the similar models.
min 0.291 0.324 0.347 0.319 0.259 0.219 0.744 0.763 0.699 0.663 0.766 0.739
Q1 0.534 0.540 0.527 0.573 0.537 0.466 0.929 0.946 0.947 0.946 0.946 0.891
Q2 0.611 0.601 0.613 0.684 0.679 0.540 0.962 0.976 0.978 0.982 0.984 0.931
Q3 0.675 0.679 0.705 0.752 0.761 0.593 0.979 0.993 0.994 0.998 0.999 0.962
max 0.807 0.882 0.854 0.901 0.912 0.818 1.000 1.000 1.000 1.000 1.000 1.000

For model 4 in Figure A.3:

(a) D1 and D̂1 are the same as for model 2.
min 0.215 0.147 0.102 0.113 0.159 0.182 0.439 0.714 0.311 0.213 0.472 0.635
Q1 0.414 0.424 0.313 0.335 0.426 0.413 0.840 0.855 0.723 0.802 0.840 0.853
Q2 0.522 0.502 0.472 0.508 0.540 0.490 0.925 0.929 0.877 0.906 0.916 0.909
Q3 0.676 0.624 0.612 0.611 0.639 0.587 0.959 0.955 0.946 0.971 0.962 0.942
max 0.876 0.919 0.863 0.882 0.939 0.917 1.000 0.996 1.000 1.000 0.999 0.995

(b) D̂1 as in (17) is used for both the actual and the similar models.
min 0.223 0.196 0.221 0.240 0.126 0.225 0.512 0.215 0.525 0.578 0.431 0.631
Q1 0.526 0.484 0.506 0.550 0.505 0.462 0.923 0.921 0.919 0.941 0.929 0.889
Q2 0.605 0.578 0.625 0.670 0.650 0.542 0.961 0.956 0.970 0.982 0.970 0.942
Q3 0.722 0.686 0.750 0.781 0.764 0.651 0.987 0.978 0.994 0.999 0.987 0.967
max 0.952 0.876 0.965 0.989 0.942 0.963 1.000 1.000 1.000 1.000 1.000 0.999

For model 5 in Figure 3:

(a) D1 given by (15) is used for actual models and D̂1 in (17) for the similar model.
min 0.170 0.320 0.300 0.240 0.300 0.260 0.620 0.800 0.590 0.720 0.670 0.660
Q1 0.458 0.490 0.518 0.520 0.500 0.467 0.880 0.907 0.930 0.940 0.910 0.900
Q2 0.510 0.550 0.600 0.595 0.605 0.550 0.920 0.945 0.970 0.970 0.960 0.950
Q3 0.590 0.630 0.680 0.710 0.702 0.620 0.960 0.970 0.990 0.990 0.990 0.970
max 0.810 0.780 0.810 0.840 0.830 0.880 1.000 1.000 1.000 1.000 1.000 1.000

(b) D̂1 as in (17) is used for both the actual and the similar models.
min 0.340 0.350 0.330 0.390 0.190 0.240 0.720 0.840 0.560 0.650 0.650 0.810
Q1 0.510 0.577 0.590 0.628 0.610 0.550 0.940 0.960 0.970 0.970 0.970 0.940
Q2 0.615 0.650 0.700 0.710 0.695 0.625 0.970 0.980 0.990 0.990 0.990 0.975
Q3 0.712 0.720 0.763 0.780 0.760 0.700 0.990 0.990 1.000 1.000 1.000 0.990
max 0.850 0.920 0.930 0.920 0.900 0.870 1.000 1.000 1.000 1.000 1.000 1.000
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