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Abstract. The moment problem is about positive density functions
and this positivity restriction makes its application to sign-changing
functions limited. In this paper we generalize the moment problem to
complex density functions. This extended theory allows us to work
with an arbitrary real sequence by simply setting them as the real
parts of complex moments. As an application we take the moments
of sign-changing solutions of the heat equation at a backward time,
say t = −t0. Then the extended theory allows a construction of an
approximation of the solution which consists of n summations of el-
ementary functions. This approximation shows a geometric conver-
gence as n →∞ and of convergence order O(t

1
2p
− 2n+1

2 ) in Lp-norm as
t →∞. The use of the backward moments also gives a good approx-
imation for 0 < t ¿ 1 small. Numerical examples that show several
interesting properties are included.

1. Introduction

Let a sequence of real numbers αk ∈ R, 0 ≤ k ≤ 2n−1, be given. The
one dimensional truncated moment problem related to this sequence
is to find real ρi’s and ci’s, 1 ≤ i ≤ n, that satisfy

n∑

i=1

ρic
k
i = αk, k = 0, 1, · · · , 2n− 1 (1)
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(see, e.g., [4]). It is well known that, if the sequence αk’s are k-th
order moments of a positive density function, there exist such ρi’s
and ci’s in a unique way.

However, if αk’s are moments of a sign-changing density, or taken
arbitrary, then the existence and the uniqueness of the truncated mo-
ment problem are not guaranteed. Due to this positivity restriction
its application has been limited. For example, the theory was applied
to construct an approximation of higher order convergence for solu-
tions to the heat equation in [15]. However, this asymptotic theory
has been completed for positive solutions only and left incomplete for
sign-changing solutions. The main purpose of this paper is to gener-
alize the theory of moment problem to handle arbitrary sequences,
and then show the applicability of this extended theory by complet-
ing the higher order approximation theory in the heat equation. This
example convinces us that the generalization of the moment problem
to complex density functions increase its applicability considerably.

This paper consists of two parts. One is for the generalization of
the moment problem, and the other is for its application to the heat
equation. Consider the approximation theory developed in [15] which
exploits on the moments of the solution to the heat equation

ut = uxx, u(x, 0) = u0(x), u, x ∈ R, (2)

where the initial value u0(x) is assumed to have finite moments up to
2n-th order, i.e., x2nu0(x) ∈ L1(R). It is well known that the solution
to the heat equation is given as

u(x, t) =
∫

u0(c)φ(x− c, t)dc, x, c ∈ R, (3)

where φ is the heat kernel. This integration formula gives the exact
value of the solution. However, one may do the integration only ap-
proximately and hence finding an efficient way to compute such an
integration formula has been an important issue. Here, we find an
approximation of the solution using elementary functions.

Let αk(t) be the k-th order moments of the solution u(x, t), i.e.,

αk(t) :=
∫ ∞

−∞
xku(x, t)dx, k = 0, 1, · · · , 2n− 1.

Note that, even if the solution u(x, t) is not defined for a backward
time t < 0, the moment is well defined for all t ∈ R using the relations
in (28). This relation also indicates that the moments of the solution
to the heat equation is completely decided by the moments of the
initial time, and if two solutions share the same moments up to certain
order at a certain time, then they share the same moments forever.
Also note that the backward moments αk(−t0) is not a moment of
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a positive function even if u0(x) is positive and hence the classical
theory of the moment problem is not applicable in the case.

Consider the moment problem with these backward moments:

n∑

i=1

ρic
k
i = αk(−t0), t0 ≥ 0, k = 0, 1, · · · , 2n− 1. (4)

For the case with a positive initial value u(x, 0) ≥ 0 and t0 = 0,
there exist real solutions ρi, ck ∈ R and then the integral formula
(3) is successfully replaced as

∑n
i=1 ρiφ(x− ci, t) for time t large (see

[15]). However, this approximation is very poor for t small since it
approaches to a summation of dirac-delta distributions as t → 0.
Taking backward moments seems essential to obtain some regularity
for the initial approximation, and hence the generalization of the
moment problem is required even if the initial value is positive.

The generalization is rather simple. First introduce a positive func-
tion %0(x) ≥ 0 which can be taken in various ways. Take its moments

βk :=
∫

xk%0(x)dx, k = 0, 1, · · · , 2n− 1, (5)

and consider a complex valued moment problem

n∑

i=1

ρic
k
i = mk := αk + iβk, k = 0, 1, · · · , 2n− 1. (6)

(The letter i on the right side is to denote the imaginary unit which
should be distinguished from the index i from the context.) Note
that the solvability of (4) is not guaranteed in general even if com-
plex solutions are allowed. However, since the βk’s may provide extra
regularity, there exists a density function %0(x) such that the complex
moment problem (6) is solvable (see Theorem 1).

Consider a linear combination of translations of heat kernels,

Φn(z, t) :=
n∑

i=1

ρiφ(z − ci, t), t > 0, z ∈ C, (7)

where the heat kernel φ(x, t) is in the complex number sense, i.e.,

φ(z, t) =
1√
4πt

e−z2/4t, z ∈ C, t > 0. (8)

Since the αk’s in (6) are the backward moments of the solution u(x, t)
at t = −t0, i.e., αk := αk(−t0), the real part

ϕn(x, t) := Re(Φn(x, t + t0)) (9)
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satisfies

lim
t→−t0

∫
xkϕn(x, t)dx = Re(

n∑

i=1

ρic
k
i ) = αk(−t0), k = 0, 1, · · · , 2n−1.

Since ϕn(x, t) is also a solution of the heat equation, ϕn(x, t) and
u(x, t) share the same moments up to order 2n − 1. This agreement
of moments gives the following asymptotic convergence order (see [10,
15]):

‖ϕn(t)− u(t)‖p = O
(
t

1
2p
− 2n+1

2

)
as t →∞. (10)

Now the initial approximation lim
t→0

ϕn(x, t) has some regularity and
hence it can be a better initial approximation. In fact, if the initial
value is of age t0 > 0 (see [17]), then one may observe numerically
that, for any t ≥ 0,

‖u(t)− ϕn+1(t)‖∞
‖u(t)− ϕn(t)‖∞ → v

v + 2(t + t0)
as n →∞, (11)

where the constant v > 0 may depend on the initial value and t ≥ 0.
This geometric convergence indicates that ϕn(x, t) is an ideal replace-
ment of the integral formula in (3) for all t > 0. (Similar analysis is
given in [15] for the positive solutions with t0 = 0.)

Let a doubly indexed complex sequence αij ’s satisfy αij = αji.
Then the full complex K-moment problem related to this sequence is
to find a (positive) Borel measure µ that is supported on K ⊂ C and
satisfies

αij =
∫

zizj dµ, i, j ≥ 0. (12)

The measure corresponding to the truncated moment problem (6)
is an atomic representing measure µ =

∑n
i=1 ρiδ(x − ci). Depending

on the choice of K, the problem is called with the names Stielt-
jes (K = R+), Hamburger (K = R), Hausdorff (K = [a, b]), and
Toeplitz (K = T) (see [1,2,16,20]). If K ⊂ R, then αij =

∫
xi+jdµ =

αji = aij . Therefore, the doubly indexed sequence αij is actually a
singly indexed one which has real values. Hence the word ‘complex’
just indicates that the support K is a subset of complex numbers
C. (In this paper we allow the representing measure µ to have com-
plex values and the corresponding moment sequence αij ’s are truly
complex valued in the sense.) This full moment problem has been
extended to multidimensional spaces (see [3,18,19,21]). On the other
hand, the truncated moment problem is to find a (positive) Borel
measure that satisfies (12) for 0 ≤ i, j < n (see [4–6,11]). If K ⊂ R,
then the problem can be written as αk =

∫
xk dµ for 0 ≤ k < 2n,

and, if atomic representing measure is assumed, it is also written as
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(1). This truncated moment problem also has been recently extended
to multidimensional cases (see [7,8,12]).

There is a simpler way to control moments (see [10]). Let

ψ2n(x, t) ≡
2n−1∑

k=0

(−1)kαk

(k!)
√

4πt
∂k

x(e
−x2

4t ). (13)

Then one can easily check that lim
t→0+

∫
xkψ2n(x, t)dx = αk for 0 ≤

k < 2n. Since ψ2n is also a solution to the heat equation, it also gives
the same asymptotics in (10). However, this approximate solution
may diverge as n → ∞ if the time t > 0 is not large enough (see
[14]).

In this paper we have related the theory of truncated moment
problem to the heat equation on the real line, and hence the Ham-
burger’s case has been considered, i.e., K = R. For boundary value
problems one may consider Stieltjes or Hausdorff. To develop the ap-
proximation theory for the heat equation in a multidimensional space
in the context of this paper the truncated moment theory in several
variables will play the key role.

One natural question is to extend the higher asymptotic conver-
gence order to nonlinear problems. For example, long time asymp-
totics of the nonlinear fast diffusion equation has been studied through
spectrum analysis in [9] and the asymptotic convergence order corre-
sponding to (10) with n = 1 is obtained in [13]. The same convergence
order is also obtained for the Burgers equation using the Cole-Hopf
transformation for n = 1 [14] and then for general n’s taking the
method in (13). The use of age of the initial profile is introduced and
used in [17,23]. The technique using the backward moment in this
paper seems to give a good approximation if the backward time and
the age agree to each other. If one consider the initial approximations
only, then the technique in this paper gives an approximation theory
for general functions such as Fourier integrals or Gaussian quadrature
(see Figures 1– 4). These approximations also show oscillating behav-
ior if the initial value has a discontinuity. However, the behavior such
as Gibb’s phenomenon appears in a different way as one may observe
in Figure 4.

This paper consists as the following. In Section 2 the moment
problem is generalize to a complex density function. Then, arbitrary
real sequence can be embedded to a complex sequence that the cor-
responding complex moment problem is solvable. In Section 3 the
relation for the backward moment of the heat equation is given. Ap-
proximate solutions are constructed in Section 4 using the backward
moments and the extended complex moment problem. The property
of approximate solution constructed without a complex part is given
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in Section 5. A few numerical tests of approximate solutions are given
in Section 6.

2. Truncated moment problem with a complex density

In this section we extend the theory of moment problem to complex
density functions. The moment problem (1) with arbitrary real αk’s
will be understood as the real part of a complex moment problem.
Let βk be the k-th moment of a positive density %0(x) ≥ 0, i.e.,

βk =
∫

xk%0(x)dx, k = 0, 1, · · · , 2n− 1,

and mk’s be a sequence of complex numbers given by

mk := αk + iβk, k = 0, 1, · · · , 2n− 1.

We will follow the routine of the classical moment problems to solve
a complex valued moment problem,

n∑

i=1

ρic
k
i = mk, k = 0, 1, · · · , 2n− 1, (14)

where we are looking for complex solutions of ρi’s and ci’s. Let hk ∈
Cn×1 be a column vector and H ∈ Cn×n be the Hankel matrix given
by

hk := (mk,mk+1, · · · ,mk+n−1)t, k = 0, 1, · · · , n,
H := (mi+j), i, j = 0, 1, · · · , n− 1.

(15)

(Here, Cm×n stands for the collection of m × n complex matrices.)
Note that these Hankel matrices are symmetric and the j-th column is
hj−1. Similarly, we construct the Hankel matrices and column vectors
corresponding to the real sequences αk’s and βk’s:

ak := (αk, αk+1, · · · , αk+n−1)t, k = 0, 1, · · · , n,
bk := (βk, βk+1, · · · , βk+n−1)t, k = 0, 1, · · · , n,
A := (αi+j), i, j = 0, 1, · · · , n− 1,
B := (βi+j), i, j = 0, 1, · · · , n− 1.

(16)

The Hankel matrices and the moment vectors satisfy

H = A + iB, hk = ak + ibk, k = 0, 1, · · · , n.

Let 0 6= y ∈ Rn×1. Then,

ytBy =
n−1∑

i,j=0

yiyjβi+j =
∫ ( n−1∑

i,j=0

yix
iyjx

j
)
%0(x)dx

=
∫ ( n−1∑

k=0

ykx
k
)2

%0(x)dx > 0.
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Hence, the symmetric matrix B is positive definite.

Lemma 1. Let A and B be n × n real symmetric matrices. If B is
positive definite, then
(i) The matrix H := A + iB is non-singular.
(ii) For z ∈ Cn,

ztHz = 0 ⇐⇒ z = 0.

Proof. Let z := x + iy with x,y ∈ Rn×1 satisfy Hz = 0. Then, the
linear system Hz = 0 can be written as

(
H2n

) (
y
x

)
=

(
0
0

)
,

(
H2n

)
:=

(
B A
A −B

)
. (17)

Hence the singularity of the complex n× n matrix H is same as the
one of the 2n × 2n matrix H2n. Since the matrix B is invertible, a
block elimination gives

(
I 0

−AB−1 I

) (
B A
A −B

)
=

(
B A
0 −(B + AB−1A)

)
.

Since B is invertible, there exists x̃ ∈ Rn×1 such that Bx̃ = Ax.
Therefore,

xtAB−1Ax = (Bx̃)tB−1Bx̃ = x̃tBx̃ ≥ 0,

and hence AB−1A is at least semi-positive definite. Finally we have
that the Schur martix −(B + AB−1A) is negative definite and

det(H2n) = −det(B) det(B + AB−1A) < 0,

which completes the proof of the first part (i).
Let z = x + iy satisfy ztHz = 0, i.e.,

ztHz = (xtAx + ytAy) + i(xtBx + ytBy) = 0.

Since B is positive definite and xtBx+ytBy = 0, we have x = 0 = y
and hence z = 0. ut

Since H is invertible, there exists a solution Ψ = (ψ0, · · · , ψn−1)t

that satisfies
HΨ = hn. (18)

This can be written as
∑n−1

j=0 ψjhj = hn or

mn+k −
n−1∑

j=0

ψjmj+k = 0, k = 0, 1, · · · , n− 1. (19)
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Introduce an auxiliary polynomial,

gn(z) := zn −
n−1∑

j=0

ψjz
j , z ∈ C. (20)

Due to the fundamental theorem of algebra, there exist n complex
zeros of the polynomial gn(z) including multiplicities.

The next step is to investigate the multiplicity of zeros of the auxil-
iary polynomial gn(z). To do that we consider a linear functional S(f)
defined for a polynomial. For a given polynomial f(z) =

∑l
i=0 fiz

i,
S(f) is defined by

S(f) := f0m0 + · · ·+ flml =
l∑

i=0

fimi =
l∑

i=0

fi(αi + iβi). (21)

One may easily see that this is a linear functional and gives the
expectation of the polynomial restricted on the real line if the se-
quence mi’s are moments of a probability function. For example, if
mk =

∫
xkp(x)dx for all k, then

S(f) =
l∑

i=0

fimi =
l∑

i=0

fi

∫
xip(x) =

∫
f(x)p(x)dx. (22)

Remark 1. Since we are interested in the application to the solutions
of the heat equation in the real line, the moments mk’s and the func-
tional S(f) are defined as the line integral along the real axis. In
general one may consider a contour integral and define

S(f) :=
∮

C
f(z)p(z)dz =

∫ 1

0
f(z(t))p(z(t))z′(t)dt,

where z = z(t) is a parametrization of a closed curve C. For the case
with the unit circle is called ... (see [?]).

We set the conjugate of the polynomial f(z) =
∑l

i=0 fiz
i as

f(z) :=
l∑

i=0

f iz
i.

In the followings we consider basic properties related to this func-
tional and the zeros of the auxiliary polynomial gn(z).

Lemma 2. Let the imaginary part of mk’s be given by a positive den-
sity as in (6) and the linear functional S(f) is given by (21). Then,
(i) If f 6= 0, then S(ff) 6= 0.
(ii) If f(z) = (z − c1) · · · (z − ck), then f(z) = (z − c1) · · · (z − ck).
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(iii) The auxiliary polynomial gn(z) given by (20) satisfies

S(gn(z)zk) = 0, k = 0, 1, · · · , n− 1. (23)

Proof. (i) Let 0 6= f(z) =
∑l

i=0 fiz
i. Then, f(z)f(z) =

∑k
i,j=0 f ifjz

i+j .
Therefore, by Lemma 1(ii),

S(ff) =
k∑

i,j=0

f ifjmi+j = f t
Hf 6= 0,

where f = (f0, f1, · · · , fl)t.
(ii) Let f(z) = (z − c1) · · · (z − ck) =

∑k
i=0 fiz

i. Then, the coeffi-
cients fi’s are given by

fi =
∑

I∈Ai

( ∏

j∈I

cj

)
,

where Ai is the collection of all index sets consists of k − i indices.
Hence,

f i =
∑

I∈Ai

( ∏

j∈I

cj

)
=

∑

I∈Ai

( ∏

j∈I

cj

)
.

In other words f(z) = (z − c1) · · · (z − ck). The last claim (iii) is
obtained by comparing (19) and (20), i.e.,

S(gn(z)zk) = mn+k −
n−1∑

j=0

ψjmj+k = 0, k = 0, 1, · · · , n− 1.

ut
Lemma 3. Let the imaginary part of mk’s be given by a positive den-
sity as in (6) and the linear functional S(f) is given by (21). Then,
(i) If c ∈ C \R is a zero of gn(z), then its conjugate c̄ is not.
(ii) There is no real zero of gn(z) with multiplicity two or higher.
(iii) If αk = 0 for all k’s and %0(x) ≥ 0 is non-trivial, then gn(z) has
n-distinct complex zeros.

Proof. (i) Suppose that c and its conjugate c̄ are zeros of the poly-
nomial gn(z). Then one may write

gn(z) = (z − c)(z − c̄)(z − c3) · · · (z − cn).

Let h(z) = (z − c)(z − c3) · · · (z − cn). Then,

gn(z)(z − c̄3) · · · (z − c̄n) = h̄(z)h(z).

The linearity of the operator S and Lemma 2(iii) imply that

S(gn(z)(z − c̄3) · · · (z − c̄n)) = 0.
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However, Lemma 1(ii) implies that S(h̄h) 6= 0, which contradicts.
Therefore, if a c ∈ C is a zero of gn(z), then its conjugate c̄ is not.

(ii) Suppose that gn(z) has a real zero of multiplicity of two or
higher, say a ∈ R. Then we may write

gn(z) = (z − a)2(z − c3)(z − c4) · · · (z − cn).

Let h(z) = (z − a)(z − c3) · · · (z − cn). Then, since ā = a,

gn(z)(z − c̄3) · · · (z − c̄n) = h̄(z)h(z).

The arguments in the previous step derive the same contradiction.
Therefore, gn(z) has no real zero of multiplicity two or higher.

(iii) Suppose that c = a + ib is a complex zero of gn(z) with
multiplicity two or higher. First, b 6= 0 from (ii). Then we may write

gn(z) = ((z − a)− ib)2h(z), h(z) = (z − c3) · · · (z − cn).

Since (z − a)h̄(z) is a polynomial of degree n − 1, the linearity of S
and Lemma 2(iii) imply that S(gn(z)(z − a)h̄(z)) = 0. Since ak = 0
for all k, mk = βk and hence

S(gn(z)(z−a)h̄(z)) = i

∫
[(x−a)3−b2(x−a)−2ib(x−a)2]h̄(x)h(x)%0(x)dx.

The real part gives
∫

2b(x− a)2h̄(x)h(x)%0(x)dx = 0.

Since the integrand is non-negative, it contradicts to the assumption
that %0(x) ≥ 0 is non-trivial. Hence, there is no zero of multiplicity
two or higher. ut
Remark 2. For the real moment problem case the polynomial corre-
sponding to gn(z) has real zeros only, and all of them are of mul-
tiplicity one. Lemma 3(ii) says that the real zeros of the complex
polynomial gn(z) are also of multiplicity one for any choice for the
density function %0(x) ≥ 0 of the imaginary part. It is also shown
that the complex zeros are also of multiplicity one assuming trivial
real parts. We could not obtain such a result under a general choice
of αk’s and %0(x) ≥ 0 and left it as a conjecture. However, we can
easily show the existence of such a density function %0(x) ≥ 0 for
given αk’s.

Theorem 1. Let a sequence αk ∈ R, 0 ≤ k < 2n, be given. Then,
there exists a positive density function %0(x) ≥ 0 such that the se-
quence of complex moments,

mk := αk + iβk with βk :=
∫

xk%0(x)dx, 0 ≤ k < 2n,

has the following properties.
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(i) The polynomial gn(z) := zn − ∑n−1
i=0 ψiz

i has n-distinct zeros,
where Ψ := (ψ0, · · · , ψn−1)t solves (18).
(ii) The truncated complex moment problem,

n∑

i=1

ρic
k
i = mk(:= αk + iβk), k = 0, 1, · · · , 2n− 1, (24)

has a unique solution ρi, ci ∈ C.

Proof. (i) Let f(x) ≥ 0 be a non-trivial positive function and

γk(τ ; , f) = ταk + fk, fk :=
∫

xkf(x)dx.

For a given τ ≥ 0, let gn(z; f, τ) be the auxiliary polynomial given by
the moments γk(τ, f). (Hence, gn(z) in the theorem can be written as
gn(z; %0, 1). The existence of the polynomial is clear since the Hankel
matrix H is nonsingular.) We already know that gn(z; f, 0) has n-
distinct zeros, Lemma 3(iii), and hence there exists τ0 > 0 such that
gn(z; f, τ0) also has n-distinct zeros. Set %0(x) := f(x)/τ0. Then, since
βk :=

∫
xk%0(x)dx = fk/τ0,

γk(f, τ0) = τ0αk + fk = τ0(αk + βk) =: τ0mk.

Therefore, the corresponding linear systems (18) to the two sequences
γk(f, τ0) and mk are identical and hence gn(z) = gn(z; f, τ0), which
completes the proof of part (i).

(ii) Now we show the solvability of the complex moment problem
(24). (The proof is essentially same as the real moment problem case.)
Let ci’s be the n distinct zeros of the polynomial gn(z) for i = 1, · · · , n.
Since ci’s are distinct, there exists a unique solution that solves the
first n equations in (24), i.e., for 0 ≤ k < n. Now we complete the
proof using inductive arguments. Let 0 ≤ l ≤ n − 1. We will show
that the equation in (24) holds for k = n0 + l under the assumption
that equations hold for all 0 ≤ k < n0 + l. First observe that, since
ci’s are zeros of zlgn(z), l ≥ 0,

cn+l
i =

n−1∑

j=0

ψjc
j+l
i for any 1 ≤ i ≤ n0, k ≥ 0.

Using the relations (24) and (19) for k < n + l, we obtain

mn+l =
n−1∑

j=0

ψjmj+l =
n−1∑

j=0

ψj

n∑

i=1

ρic
j+l
i =

n∑

i=1

ρi

n−1∑

j=0

ψjc
j+l
i =

n∑

i=1

ρic
n+l
i .

Hence, (24) holds for k = n + l and hence for all k = 0, 1, · · · , 2n− 1
by induction. ut
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Remark 3. In general the moment problem
∑n

i=1 ρic
k
i = αk, 0 ≤ k <

2n, does not have a solution. However, Theorem 1 implies that there
always exist ρi’s and ci’s such that

Re
( n∑

i=1

ρic
k
i

)
= αk, k = 0, 1, · · · , 2n− 1. (25)

There are various ways to construct such ρi’s and ci’s. If a positive
density %0(x) ≥ 0 is given, one may construct one set of ρi’s and ci’s.
However, we do not have a criterion to choose the best one.

3. Moments of the backward heat equation

Let w(z, t) be the solution to the complex heat equation with a com-
plex initial value, i.e.,

wt = wzz, w(z, 0) = w0(z), z, w ∈ C. (26)

It is assumed that the initial value w0(z) decays fast enough as |z| →
∞ to get the k-th order moment γk(t) be well defined,

γk(t) =
∫ ∞

−∞
xkw(x, t)dx, k = 0, 1, · · · , 2n− 1 (27)

at least for the initial time t = 0. One can easily show how these
moments evolve as t varies.

Lemma 4. Suppose that the initial value w0(x) has finite moments
up to 2n-th order, i.e., x2nw0(x) ∈ L1(R). Then the moments of the
solution w(x, t) at time t ≥ 0 are given by

γ2k(t) =
∑k

l=0
(2k)!

(k−l)!(2l)! t
k−lγ2l(0),

γ2k+1(t) =
∑k

l=0
(2k+1)!

(k−l)!(2l+1)! t
k−lγ2l+1(0).

(28)

Furthermore, the linear combinations in (28) are well defined for all
t ∈ R and identical to the moments of the solution to the backward
heat equation if it is solvable up to the given time.

Proof. Integrating by parts gives

γ′0(t) =
∫

wtdx =
∫

wxxdx = [wx]∞−∞ = 0,

γ′1(t) =
∫

xwtdx =
∫

xwxxdx = [xwx − w]∞−∞ = 0.
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Hence, γ0(t) = γ0(0) and γ1(t) = γ1(0) are constants which gives (28)
for k = 0 and k = 1. For k ≥ 2,

γ′k(t) =
∫

xkwtdx =
∫

xkwxxdx

= [xkwx − kxk−1w]∞−∞ +
∫

k(k − 1)xk−2wdx

= k(k − 1)γk−2(t).

Hence, in summary, we have

d

dt
γk(t) =

{
0 , k = 0 or 1,

k(k − 1)γk−2(t), k ≥ 2.

This relation shows that the even numbered moments and the odd
numbered ones evolve separately and can be obtained inductively
by integrating lower order moments from γ0(t) or γ1(t) which are
constants. The formulas in (28) can be easily verified in that manner.

Consider a column vector m2n(t) = (γ0(t), · · · , γ2n−1(t))t and the
2n× 2n matrix A(t) that consists of the coefficients in (28). Then,

m2n(t) = A(t)m2n(0).

One may easily check that the matrix multiplication A(t)A(−t) is the
identity matrix for all t > 0. Hence A(t) is non-singular and the last
sentence of the lemma is clear. ut

An initial heat distribution w0 is called of age t0 ≥ 0 if there exists
a function w̃0(x) such that the solution w̃(x, t) to the heat equation
with w̃0 as its initial value satisfies w̃(x, t0) = w0(x) for all x ∈ R
and the t0 ≥ 0 is the maximum to have such a function w̃0. One may
find an estimate of such an age for a positive case from [17]. However,
this lemma indicates that moments of the solution to the backward
heat equation can be easily computed even if the backward problem
itself is not solvable. This is not strange at all. Since for any given
t0 > 0 there may exist W0(x) such that it has an age of older than t0
and shares the same moments up to order 2n − 1 with w0(x). Then
the backward moments are the ones for the initial value W0(x).

4. Truncated moment problem with moments from the past

Let u(x, t) be the solution of the heat equation with a real initial
value u0(x) where x2nu0(x) is integrable. Let αk(t) be the k-th order
moments at time t ∈ R, i.e.,

αk(t) :=
∫

xku(x, t)dx, k = 0, 1, · · · , 2n− 1. (29)
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Then, for t0 > 0, the backward moment αk(−t0) is well defined by
(28). Let %0(x) ≥ 0 be the density function in Theorem 1 correspond-
ing to the sequence αk := αk(−t0) and %(x, t) be the solution of the
heat equation

%t = %xx, %(x,−t0) = %0(x).
Then, Theorem 1 says that, for

βk(t) :=
∫

xk%(x, t)dx, k = 0, 1, · · · , 2n− 1, (30)

there exist ρi, ci ∈ C that satisfy
n∑

i=1

ρic
k
i = mk := αk(−t0) + βk(−t0). (31)

Now we employ these ρi’s and ci’s to construct an approximation

Φn(z, t) ≡
n∑

i=1

ρi√
4πt

e−(z−ci)
2/4t. (32)

It is clear that this linear combination of complex heat kernels is also
a solution to the heat equations. Let

w(x, t) = u(x, t) + i%(x, t).

Then, due to the linearity of the heat equation, the complex valued
function w(x, t) is a solution to the heat equation

wt = wxx, w(x, 0) = u0(x) + i%(x, 0), t > 0, x ∈ R. (33)

Since Φn(z, t) → ∑n
i=1 ρiδ(z − ci) as t → 0, the initial moments of

Φn(z, t), 0 ≤ k < 2n, are given by

lim
t→0

∫
xkΦn(x, t)dx =

n∑

i=1

ρic
k
i = αk(−t0) + iβ(−t0). (34)

Therefore, from the relations (28), we may conclude that Φn(x, t+t0)
and w(x, t) shares the same moments up to order 2n− 1. If the real
parts are compared, then

∫
xku(x, t)dx =

∫
xkRe(w(x, t))dx =

∫
xkRe(Φn(x, t + t0))dx,

and hence the solution u(x, t) and the real part of the approximation
Re(Φn(x, t + t0)) share the same moments up to order 2n− 1. Let

ϕn(x, t) := Re(Φn(x, t + t0)).

Then ϕn(x, t) is the approximation of the solution u(x, t) which is
our candidate to replace the integral formula of the solution .

We summarize the results in the following theorem.
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Theorem 2. Let u(x, t) be the solution to the heat equation with an
initial value u0(x) such that x2nu0(x) is integrable. Then, for any
given t0 > 0, there exist ρi, ci ∈ C such that

∫
xkϕn(x, t)dx =

∫
xku(x, t)dx, k = 0, 1, · · · , 2n− 1, (35)

where

ϕn(x, t) := Re
( n∑

i=1

ρi√
4π(t + t0)

e−(x−ci)
2/4(t+t0)

)
. (36)

Note that u(x, t) and ϕn(x, t) are getting smeared under the same
mechanism as t increases and share the same moments up to order
2n−1 forever. Hence, it is natural to expect that ϕn(x, t) approaches
to u(x, t) fast as t →∞. In fact higher order convergence orders have
been obtained in [10,15] using the agreement of moments, which is
the same order given in the following theorem. The proof is basically
same as the ones in [15] and hence skipped here.

Theorem 3. Let u(x, t) and ϕn(x, t) be the ones in Theorem 2 under
the same conditions. Then, for 1 ≤ p ≤ ∞,

lim
t→∞ t

2n+1
2
− 1

2p ‖ϕn(t)− u(t)‖p =
‖∂m

x (e
−x2

4 )‖p√
4π

∣∣∣
∫

E2n(x)dx
∣∣∣ < ∞,

(37)
where

E0(x) := ϕn(x, 0)− u(x, 0)
and

Ek(x) :=
∫ x

−∞
Ek−1(y)dy, 0 < k ≤ 2n. (38)

Remark 4. This simple theorem gives a surprising conclusion. Even if
the n× n Hankel matrix of a real valued solution u(x, t) is singular,
one may construct a complex valued approximation Φn(z, t) defined
on the complex plane by choosing an imaginary initial value, say
%0(x) := φ(x, ε) for example. There are various kinds of choices for
the imaginary part and a different kind of imaginary part gives a
different approximation. However, all of them shares the same real
part of their moments and hence they show good behavior for t > 0
large and n > 0 large. It is natural to ask a criterion to choose the
best imaginary part %0(x) ≥ 0 in a unique way. However, we do not
have one.

Remark 5. The approximation ϕn(x, t) has some regularity even for
the initial time t = 0 thanks to the t0 > 0 in (36). This improves the
initial approximation, in particular, if the initial value u0 is smooth.
It is natural to ask what is the optimal t0 to obtain the best approx-
imation result. Unfortunately, we do not have an answer.
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5. Real initial value case

In this section we consider the complex moment problem with zero
imaginary part %0(x) = 0. In other words we consider complex solu-
tions ρi, ci ∈ C that solve

n∑

i=1

ρic
k
i = αk ∈ R, k = 0, 1, · · · , 2n− 1. (39)

It is well-known that, if αk’s are moments of a positive function, this
problem has real solutions. Here we are interested in the case that
αk’s are not necessarily moments of a positive function. This mo-
ment problem is not solvable in general even if complex solutions are
considered. In particular the Hankel A given in (16) can be singular.
In this section we consider the property of solutions of the moment
problem and the approximation solution

Φn(z, t) ≡
n∑

i=1

ρi√
4πt

e−(z−ci)
2/4t

for the case that (39) is solvable.

Theorem 4. Let αk’s be real numbers. Suppose that the Hankel ma-
trix A = (αi+j) is non-singular and the auxiliary polynomial gn(z)
has n distinct zeros. If ci is a complex zero of the polynomial gn(z),
then its conjugate ci is also a zero. Furthermore, if cj = ci, then
ρj = ρi. The restriction of Φn(z, t) to the real line is real valued.

Proof. Since the αk’s are real, the Hankel matrix A and the vector
an in (16) are real valued. Hence the solution Ψ to the linear problem
AΨ = an consists of real numbers and hence the polynomial gn(z) =
zn −∑n−1

k=0 ψkz
k is of real coefficients. Hence if gn(z) has a complex

zero, its conjugate is also a zero.
Now we show that the ρi’s that solve the first n equations in (39)

satisfy ρj = ρi if cj = ci. After a reordering we may assume that
c2j−1 = c2j for j = 1, · · · , l and ci’s are real numbers for j > 2l. Let

ak,2j−1 := ck−1
2j−1 + ck−1

2j , ak,2j := i(ck−1
2j−1 − ck−1

2j ).

Then, since c2j−1 = c2j , these ak,i’s are real numbers for 0 < i ≤
2l. We should show that the solution ρi’s are given in the form of
ρ2j−1 = x2j−1 + ix2j and ρ2j = x2j−1− ix2j for j = 1, · · · , l. One may
easily check that the existence of such xi’s for 1 ≤ i ≤ 2l is equivalent
to the existence of real solutions to the following linear system with
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real coefficients:


a1,1 · · · a1,2l c0
2l+1 · · · c0

n
... · · · ...

... · · · ...
a2l,1 · · · a2l,2l c2l−1

2l+1 · · · c2l−1
n

a2l+1,1 · · · a2l+1,2l c2l
2l+1 · · · c2l

n
... · · · ...

... · · · ...
an,1 · · · an,2l cn−1

2l+1 · · · cn−1
n







x1
...

x2l

ρ2l+1
...

ρn




=




α0
...

α2l−1

α2l
...

αn−1




. (40)

One may easily check that the real matrix is obtained from the n×n
Vandermonde matrix that gives the first n-equations in (39) by simply
adding two columns or subtracting one from another. (Remember
that the ij-component of the Vandermonde matrix is ci−1

j .) One may
also easily show that the n × n matrix in (40) is invertible since
the Vandermonde is invertible. In other words there exist ρi’s and
ci’s satisfying the claims of the theorem. Since the solution to the
moment problem is unique, these are the ones.

Let x be a real number. Then
ρ√
4πt

e−(x−c)2/4t =
ρ√
4πt

e−(x−c)2/4t

Therefore,
ρ2j−1√

4πt
e−(x−c2j−1)2/4t =

ρ2j√
4πt

e−(x−c2j)2/4t, 1 ≤ j ≤ l.

It is now clear that the restriction of Φn(z, t) to the real line is real
valued. ut

Even if the moment problem (39) is not solvable in general, such
a case is very rare in the sense that it is of measure zero case. Hence
the point is that complex solutions should be included. It seems that
extension of the heat equation to the complex case will give many
benefits. Furthermore, even if ρi’s and ci’ are complex numbers, the
restriction of Φn(z, t) to the real numbers has real values.

6. Structure of the approximation

In this section we numerically investigate the property of the approx-
imation

ϕn(x, t) := Re
( n∑

i=1

ρi√
4π(t + t0)

e−(z−ci)
2/4(t+t0)

)
,

which was constructed in the previous sections. This approximation
is decided by the choice of the backward time t0 and the imaginary
part %0(x). We do not have a criterion to choose the t0 and %0. In
this section we just observe how these choices may make differences.
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6.1. Approximation using a single heat kernel

Examples that clearly show the benefit of using the complex moment
problem over the real one are the single heat kernel cases, i.e., n = 1.
Fundamental solutions are frequently employed as canonical solutions
of various problems. In many cases fundamental solutions are given
explicitly and play key roles in the analysis of general solutions. For
the heat equation case it is given by the Gaussian which is also called
the heat kernel. This real valued heat kernel is a signed function and
does not show a sign-changing property. In the following examples
we will see how a single heat kernel in the complex plane can show
the behavior of sign-changing solutions on the real line.

For the first example, consider an initial value

u0(x) :=
1√
4π

e
−(x+1)2

4 − 1√
8π

e
−x2

8 . (41)

Then the first two moments of the solution u(x, t) are given by

α0(t) = 0, α1(t) = 1.

Since they are constants, the backward moments are also given by
α0(−t0) = 0 and α1(−t0) = 1 for any backward time t0 > 0. For the

case n = 1, the complex function Φ1(z, t) = ρ1√
4πt

e
−(z−c1)2

4t should be
obtained by solving the following two moment equations

ρ1 = 0, c1 ρ1 = 1.

However, in this case, the corresponding 1×1 Hankel matrix A is the
zero matrix which is singular. It is clear that this moment problem is
not solvable even if the complex solutions are allowed. Therefore, one
should introduce an imaginary part. Let w(x, t) be a complex valued
solution to the heat equation with an initial value

w0(x) := u0(x) + i%0(x), %0(x) := φ(x + 0.5, 1),

where φ(x, t) is the heat kernel. Then the real part of the complex
solution w(x, t) is just u(x, t) for any choice of the imaginary part
%0(x). However, the real part of its approximation Φ1(x, t) depends
on the choice of %0(x). Under the above choice of %0(x), the first
two moments are given by α0(t) = i and α1(t) = 1 − 0.5i. Then the
corresponding moment equations are

ρ1 = i, c1 ρ1 = 1− 0.5i.

The solution of the moment problem is

ρ1 = i, c1 = −0.5− i.
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(b) Approximations at time t = 5

Fig. 1. The exact solution is given in a red line. Single heat kernel using a real
Gaussian is given in black lines. However, the complex Gaussian with an imaginary
part, blue dots, gives sign-changing behavior.

Let ϕ1(x, t) be the restriction of the real part of the approximation
Φ1(z, t) to the real line, i.e., ϕ1(x, t) := Re( ρ1√

4π(t+1)
e−(x−c1)2/4(t+1)).

Note that we are using the backward time t0 = 1 here. Then the
optimal convergence order in [15] is obtained as

lim
t→∞ t

( 3
2
− 1

2p
)‖u(t)− ϕ1(t)‖p =

‖∂2
ξ (e−

1
4
ξ2

)‖p√
4π

∣∣∣
∫ ∞

−∞
E2(x)dx

∣∣∣,

where 1 ≤ p ≤ ∞ and

E2(x) =
∫ x

−∞

∫ y

−∞
[ϕ1(s, 0)− u0(s)]dsdy.

Hence, we have obtained the optimal convergence order using the
generalized moment problem even if the corresponding Hankel matrix
for the initial value u0(x) is singular.

If α0 6= 0, then the approximation of the optimal order can be
obtained without using an imaginary part. For the second example,
consider such a case with an initial value

u0(x) :=
4√
4π

e
−(x+1)2

4 − 3√
8π

e
−x2

8 . (42)

This initial value is given in Figure 1(a) with a (red) line. Then, the
zero-th moment is α0 = 1 and hence the Hankel matrix A is non-
singular. The approximation without the imaginary part has been
computed using a backward time t0 = 1 which is given in Figure 1(a)
in (green) dots. In this case the approximation is a positive function.
On the other hand an approximation using the following imaginary
part,

%0(x) = 4φ(x + 0.5, 1)
(

=
4√
4π

e
−(x+0.5)2

4

)
,
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is given in (blue) circles. Notice that, since the backward moments
were used, the initial approximations are not spiky and the initial dif-
ference is not so big even if only one heat kernel is used. Furthermore,
the case with complex density function, the behavior of sign-change
is also represented using a single heat kernel. In Figure 1(b) the evo-
lution of the single heat kernels are given at time t = 5 with the exact
solution. One may clearly observe that they approach to each other.

6.2. Initial approximations using many heat kernels

The high order asymptotic convergence in Theorem 3 indicates that
ϕn(x, t) is a good approximation of the solution u(x, t) for all t ≥ 0
if it gives a good initial approximation. In fact, the approximation
showed an excellent behavior for t > 1 large in the numerical tests
in [15]. However, the approximation showed poor behavior for t ¿ 1
small. In the following test we mostly consider the initial approxima-
tion using backward moments with t0 > 0. Also note that this initial
approximation is not actually related to the heat equation. One may
consider it as an approximation technique such as a Fourier integral.

6.2.1. Continuous initial values Consider the smooth initial value in
(42) for the first example in this section. Using this initial value the
backward heat equation can be solved up to backward time t0 = 1.
Hence one may say that the age of this initial value is 1, and it seems
that taking backward time t0 = 1 will give the best result. In Figure
2(a) an approximation using backward moment with the backward
time t0 = 0.2 and n = 10 is given. Its imaginary part was not taken in
this example. One may observe a little bit of wiggling in this case. If
the backward time approaches to the maximum backward time t0 =
1, then the approximation agrees with the initial value completely.
In Figure 2(b) an approximation with t0 = 0.4 is given. Even if the
backward time is increased to t0 = 4, the initial approximation gives
a perfect match.

The initial value for the second example is

u0(x) =





2 sin(x) , −π
2 < x < 0,

sin(x) , 0 < x < π
2 ,

0 , otherwise,
(43)

which is continuous, but not differentiable. Graphs of the approxima-
tions are given in Figure 3. The initial value u0(x) is given in (red)
lines. Approximations obtained from moment problem using the real
Hankel matrixes are given in (blue) dots. In Figure 3(a) a backward
time t0 = 0.01 is used. One may observe certain oscillations in the
smooth regions. However, this approximation gives pretty correct ap-
proximation at the cusps.



Moments of a complex density and its application to heat equation 21

0.6

0.4

0

-0.2

4-4

0.2

80-8
(a) Initial approximation with t0 = 0.2
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(b) Initial approximation with t0 = 0.4

Fig. 2. Initial approximations with n = 10 agrees very well if the age of the initial
heat distribution is not zero and the backward time is close to it. In this example
the age of the initial heat distribution is one.
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Fig. 3. The initial value (43) is approximated using 10 heat kernels. The age of
the initial heat distribution is zero. Only the region x > 0 is given.

In Figure 3(b) a bigger backward time, t0 = 2.0, is used. There is
no oscillation at all for this case. However, it gives a poor approxima-
tion for the cusps. This approximation is too smooth to get it right.
From this example, one may see that some parts of the initial value
requires small backward time and other parts large ones. Hence it is
desirable to develop a technique to give a freedom in choosing the
backward time, say

ϕn(x, t) := Re
( n∑

i=1

ρi√
4π(t + ti)

e−(x−ci)
2/4(t+ti)

)
. (44)

The technique in this paper is the case that all ti’s are fixed to be
t0. A back ward time t0 = 0.1 gives better approximation for this
example.

6.2.2. Discontinuous initial values Approximation of a discontinu-
ous function gives extra difficulties. In this section we consider a
discontinuous initial value

u0(x) =
{

1 , −1 < x < 1,
0 , otherwise. (45)
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(c) n = 40, t0 = 0.2

Fig. 4. Initial approximations of a discontinuous function show oscillations. The
size of the oscillation is decreasing as n →∞.
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(c) Solutions at t = 0.01

Fig. 5. The initial oscillations disappear quickly. In this computation we set
n = 40 and t0 = 0.2. The exact solution and its approximation are given in lines
and dots, respectively.

Then the solution u(x, t) is given by

u(x, t) =
∫ x

−∞
[φ(y + 1, t)− φ(y − 1, t)]dy. (46)

In Figure 4 one may observe that the initial approximation has
an oscillating behavior. In these examples a different kind of Gibb’s
phenomenon is observed. One can clearly see that the maximum error
near the discontinuity is decreasing as n increases. The pattern of
the oscillation is also different. However, in Figure 5, the oscillation
disappears as time increases and the approximation agrees with the
exact solutions completely at t = 0.01. One can also say that, if
the initial value has regularity corresponding to the Figure 5(c), then
the approximation using corresponding backward time gives a perfect
initial match.

In Table 1 a comparison of the approximation error is given for
four cases doubling the time from t = 0.002 to t = 65.536. Two node
numbers of n = 10 and n = 20 and two backward times of t0 = 0.01
and t0 = 0.2 are compared. The errors are given in the uniform norm
in the table. One can clearly observe the asymptotic convergence
order given in Theorem 3. The convergence order at time t > 0 is
computed using the following relation:

asymptotic order ∼= ln(‖u(t/2)− ϕn(t/2)‖∞/‖u(t)− ϕn(t)‖∞)
ln(1/2)

.
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Table 1. The error in the table is given in L∞-norms.

n = 10, t0 = 0.01 n = 10, t0 = 0.2 n = 20, t0 = 0.01 n = 20, t0 = 0.2
t error order error order error order error order

0.002 1.33e-01 0.34 2.65e-01 0.23 3.21e-03 0.22 9.53e-02 0.23
0.004 8.31e-02 0.68 1.94e-01 0.45 1.22e-03 1.39 6.93e-02 0.46
0.008 3.17e-02 1.39 1.05e-01 0.88 7.78e-05 3.97 3.66e-02 0.92
0.016 4.79e-03 2.73 3.28e-02 1.68 3.05e-07 7.99 1.03e-02 1.83
0.032 1.86e-04 4.69 4.00e-03 3.03 6.00e-11 12.31 8.85e-04 3.54
0.064 1.79e-06 6.70 1.40e-04 4.84 1.12e-15 15.71 1.21e-05 6.19
0.128 5.86e-09 8.25 1.38e-06 6.66 4.57e-21 17.90 1.69e-08 9.49
0.256 9.59e-12 9.25 4.95e-09 8.13 7.91e-27 19.14 2.23e-12 12.89
0.512 1.05e-14 9.84 8.76e-12 9.14 8.64e-33 19.80 4.01e-17 15.76
1.024 9.16e-18 10.16 1.01e-14 9.76 7.44e-39 20.15 1.76e-22 17.80
2.048 7.14e-21 10.33 9.07e-18 10.12 5.67e-45 20.32 3.26e-28 19.04
4.096 5.24e-24 10.41 7.18e-21 10.30 4.06e-51 20.41 3.71e-34 19.74
8.192 3.73e-27 10.46 5.31e-24 10.40 2.83e-57 20.46 3.27e-40 20.11

16.384 2.61e-30 10.48 3.80e-27 10.45 1.94e-63 20.48 2.53e-46 20.30
32.768 1.82e-33 10.49 2.67e-30 10.47 1.32e-69 20.49 1.83e-52 20.40
65.536 1.26e-36 10.49 1.86e-33 10.49 8.90e-76 20.49 1.27e-58 20.45

7. Conclusions

The moment problem for positive density functions has been gener-
alized to complex density cases. This extended theory enabled us to
solve a truncated moment problem for any real sequence by consid-
ering it as the real part of a complex moment problem. Finally, the
approximation theory for the solutions to the heat equation is now
complete for general sign-changing solutions and for t > 0 small us-
ing this extended theory. To obtain certain regularity in the initial
approximation a method to use the backward moments has been de-
veloped. As a result we have obtained an approximation method for
a function such as the Fourier integral.

There are many questions remaining related to this work. The
construction ϕn(x, t) depends on the choice of the density function
%0(x) and the backward time t0 > 0. However, we do not have a crite-
rion to choose a better density function %0(x) and a better backward
time t0. It is conjectured that the complex moment problem (6) is
solvable for all nontrivial %0(x) ≥ 0. However, in Theorem 1, only
the existence of a density function %0(x) that gives the solvability
of (6) is given. The geometric convergence order in (11) is observed
numerically for the case with t0 = 0 in [14]. It seems required to
a more detailed numerical convergence test as n → ∞ for the case
with t0 > 0. However, it is not given here since this paper is more
focused on analysis. Analysis for the convergence as n →∞ seems a
challenging problem.
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