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Abstract. In the present paper, we count orientable small covers over cubes.
We also prove that the ratio of orientable small covers to all things approaches
to 0 as n increases.

1. Introduction

A small cover, defined by Davis and Januszkiewicz in [2], is an n-dimensional
closed smooth manifold M with a smooth action of standard real torus Z

n
2 action

such that the action is locally isomorphic to a standard action of Z
n
2 on R

n and the
orbit space M/Z

n
2 is a simple convex polytope. For instance, RPn with a natural

action of Z
n
2 is a small cover over an n-simplex. In general, real toric manifolds,

the set of real points of a toric manifold, provide examples of small covers. Hence
we may think of small covers as a topological generalization of real toric manifolds
in algebraic geometry.

Small covers over hypercubes are known to be real Bott manifolds, which is
obtained as iterated RP 1 bundles starting with a point, where each fibration is the
projectivization of a Whitney sum of two real line bundles, see [3] for details. The
author found the 1-1 correspondence between the set of real Bott manifolds and the
set of acyclic digraphs in the previous work [1], and hence he calculate the number
of them.

In the present paper, we investigate the number of orientable small covers over
cubes. Orientable small covers are well studied by Nakayama and Nishimura [4].
They find an orientability condition for a small cover. Using this, we establish the
formula of the number of orientable small covers over cubes and show that the ratio
On/Rn approaches 0 as n increases, where On is the number of orientable small
covers and Rn is the number of small covers over an n-cube.

2. Orientable small covers over cubes

Let P be an n-dimensional simple polytope with m facets. Two small covers
M1 and M2 over P are said to be Davis-Januszkiewicz equivalent (or simply, D-J
equivalent) if there is a weak Z

n
2 -equivariant homeomorphism f : M1 → M2 which
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It is well-known that all small covers over P can be distinguished by the map λ
from the set of facets of P to Z

n
2 , called the characteristic function, which satisfies

the non-singularity condition; {λ(Fi1), . . . , λ(Fin
)} is a basis of Z

n
2 whenever the

intersection Fi1 ∩ · · · ∩ Fin
is non-empty, where {F1, . . . , Fm} is the set of facets of

P .
We may assign an n × m-matrix Λ to the characteristic function λ by ordering

the facets and choosing a basis for Z
n
2 , i.e.,

Λ = (λ(F1) · · ·λ(Fn)) .

If P is an n-cube, with the assumption that the facets Fj and Fn+j do not intersect
for 1 ≤ j ≤ n, then D-J equivalence classes of small covers are classified by n × 2n
matrices of the following form

Λ ∼ (En|Λ∗),

where En is the identity matrix and Λ∗ is the square matrix of size n all of whose
principal minors are 1. We refer the reader to [1] or [3] for details.

Let M(n) be the set of Z2-matrices of size n all of whose principal minors are 1
and let Gn be the set of acyclic simple digraphs with labelled n nodes. In [1], we
have a bijection φ : Gn → M(n) by

φ : G 7→ A(G) + En,

where A(G) is the vertex adjacency matrix of G and En is the identity matrix of
size n (see Figure 1).

On the other hand, we have the nice orientability condition for small covers due
to Nakayama and Nishimura in [4].

Theorem 2.1 ([4]). Let M be a small cover over P with Λ. Then M is orientable
if and only if the sum of entries of the i-th column of Λ is odd for all i = 1, . . . , n.

Corollary 2.2. Let M be a small cover over In with Λ = (En|Λ∗). Then M
is orientable if and only if φ−1(Λ∗) is the graph all of whose vertices have even
indegrees.

Proof. Let G be a graph and A its vertex adjacency matrix. Then the sum of entries
of the i-th column of A means the indegree of i-th vertex of G (see Appendix). Note
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that the sum of entries of each column of Λ∗ − En is even, and hence the corollary
follows Theorem 2.1 immediately. �

3. The number of orientable small covers

Let Rn be the number of acyclic digraphs with labelled n nodes. The following
is the recursive formula for Rn due to R.W.Robinson in [5].

Rn =

n
∑

k=1

(−1)k+1

(

n

k

)

2k(n−k)Rn−k.

Let On ⊂ Gn be the set of graphs all of whose vertices have even indegrees and
let On be the cardinality of On (we use the alphabet ‘O’ instead of ‘E’ although
they have ‘even’ indegree vertices, because the ‘O’ is the abbreviation of the word
‘Orientable’). Then On is equal to the number of orientable small covers over In

up to D-J equivalence.

Theorem 3.1. Let Rk be the number of labelled acyclic digraphs with k vertices.
Then,

On =

n
∑

k=1

(−1)k+1

(

n

k

)

2(k−1)(n−k)Rn−k.

Proof. We count matrices in M(n) all of whose the sum of entries of each column
are odd. Let us denote the sum of entries of the i-th column of an n× n-matrix A
by ci(A). Since an acyclic digraph has always a 0-indegree vertex, there is some i
such that ci(A) = 1 for all A ∈ M(n). Assume ci1 = · · · = cik

= 1, where k ≥ 1.
Since all principal minors of A are 1, the diagonal entries of A are all 1. Thus, by
a conjugation, we may assume that A is of the following form:

(1)

(

Ek S
0 T

)

,

where Ek is the identity matrix of size k, T is an (n − k) × (n − k)-matrix and S
is a k × (n − k)-matrix. Note that A ∈ M(n) if and only if T ∈ M(k). Thus we
may control only one row of S for making all ci(A)’s are odd. This implies the
number of A’s of the form (1) whose ci(A)’s are odd for all i is 2(k−1)(n−k)Rn−k.
By applying the Principle of Inclusion-Exclusion, we get the formula for On. �

Here are a few values of On.

n 0 1 2 3 4 5 6 7 · · ·
On 1 1 1 4 43 1156 74581 11226874 · · ·

Let us consider the chromatic generating functions of Rn and On, i.e., we set

R(x) =

∞
∑

n=0

Rn

xn

n!2(n

2)
, and O(x) =

∞
∑

n=0

On

xn

n!2(n

2)
.

Corollary 3.2. Let F (x) =
∑

∞

n=0
xn

n!2(
n

2)
. Then

O(x) =
1 − F (−x)

F ′(−x)
.



4 SUYOUNG CHOI

Proof. Let us consider chromatic generating functions A(x), B(x) and C(x) with
respect to the sequence An, Bn and Cn, respectively. Note that if C(x) = A(x)B(x),
then Cn =

∑n

k=0 AkBn−k

(

n
k

)

2k(n−k). Thus, we have F (−x)R(x) = 1 (see [6]) and

R
(x

2

)

F (−x) + O(x) =

∞
∑

n=0

Rn

2n

xn

n!
(

n

2

) = R
(x

2

)

.

Hence we have O(x) = F
(

−x
2

)

−1
(1−F (−x)). On the other hand, F ′(x) = F

(

x
2

)

,
which proves the corollary. �

Let G(x) =
F ( x

2
)

1−F (x) . We obtain estimates for On by analyzing the behavior of the

function G(x). Since F (x) has an isolated zero α ≈ −1.488, G(x) has an isolated
zero 2α. Hence

G(x) ∼ G′(2α)(x − 2α).

Hence we have

O(x) =
1

G(−x)
∼

1

G′(2α)(−x − 2α)
= −

(1 − F (2α)

αF (α
2 )

∞
∑

n=0

(

−
x

2α

)n

,

and hence On ∼ K2(n

2)n!
(

− 1
2α

)n
, where K = − (1−F (2α)

αF( α

2 )
≈ 2.197.

Corollary 3.3. The ratio On+1

Rn+1
/On

Rn
approaches to 1

2 as n increases. In particular,

the ratio On

Rn
approaches 0 as n increases.

Proof. Since R(x)F (−x) = 1 and F (x) has an isolated zero α, we have Rn ∼

C2(n

2)n!
(

− 1
α

)n
, where C = − 1

F(α

2 )
. Therefore On

Rn

∼ K
C2n , and this proves the

corollary. �

Appendix. Graph theory terminology

We review the terminology and notation in graph theory, following [7]. A directed
graph or digraph G is a triple (V, E, ϕ), where V = {v1, . . . , vn} is a set of vertices, E
is a set of directed edges, and ϕ is a map from E to V ×V . If ϕ(e) = (u, v), then e is
called an edge from u to v, with initial vertex u and final vertex v. This is denoted
u = int e and v = fin e. If u = v then e is called a loop. If ϕ is injective and has no
loops, then G is called simple. In this case, we denote e by (u, v) for simplify and G
can be represented by (V, E). We shall assume that every graph is simple through
the paper. A walk of length k from vertex u to v is a sequence v0, v1, . . . , vk such
that v0 = u and vk = v, where (vi, vi+1) ∈ E for all i = 0, . . . , k − 1. If all the vi’s
are distinct except for vo = vk, then the walk is called a cycle. G is acyclic if there
is no cycle of any length in G. The outdegree of a vertex v, denoted outdeg(v), is
the number of edges of G with initial vertex v. Similarly the indegree of v, denoted
indeg(v), is the number of edges of G with final vertex v.

On the other hand, all digraphs can be represented by matrices. Define an
n × n-matrix A = (Aij) by

Aij =

{

1, if (vi, vj) ∈ E;
0, otherwise.

The matrix A is called the (vertex) adjacency matrix of G. Remark that the sum
of entries of i-th column of A is equal to indeg(vi) and the sum of entries of j-th
row of A is equal to outdeg(vj).
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