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SUMMARY

Suppose that we are given a setM of model structures for different sets of random variables
and that we want to use these model strictures in search of a modelH for the set of random variables
that are involved in at least one of the models inM. Assuming that the true model structure is of
an undirected graph, we investigate the relationship between a model and its marginal model and
then derive a rule of using the information that are found in the models inM for buildingH. Under
the assumption that the models inM are from the same data, we propose a method of combining
models inM and illustrate it through examples.

Some key words:Combined model structure; Graphical compatibility; Graph-separateness; Interac-
tion graph; Markovian subgraph; Prime separator; Self-connected separator.

1 INTRODUCTION AND PROBLEM

Suppose that we are given a set of models whose model structures are in the form of undirected
graphs and that we want to build a model of the variables that are involved in at least one of the
models in the given set. We may not have enough observed data for all the variables that we are
interested in or we may have observed data for only a part of the variables in addition to pieces of
information about the models for some subsets of variables. For example, suppose that we are given
two model structures of graphical models (Whittaker, 1990; Lauritzen, 1996),G1 andG2, which are
depicted in Figure 1.G1 is of variablesX1, X2, X3 andG2 of variablesX1, X3, X4. X1 andX3 are
shared by the two graphs. If they are marginal models from a graphical modelH, it is necessary
that the inter-relationships among each of the sets{X1, X2, X3} and{X1, X3, X4}, as indicated in
the two graphs in the figure, are satisfied inH. In this respect, it is imperative that, given a setM of
model structures of graphical models, we check whether the model structures are compatible with
each other among themselves before exploring existence of a model structure of which all of the
model structures inM are marginal models. We aim to address this issue under the assumption that
the model structures of all the graphical models that are considered in this paper are of undirected
graphs.

Fienberg & Kim (1999) and Kim (2006a) considered a problem of combining conditional graph-
ical log-linear structures and derived a combining rule for them based on the relation between the
log-linear model and its conditional version. A main feature of the relation is that conditional log-
linear structures appear as parts of their original model structure [see Theorems 3 and 4 in Fienberg
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Figure 1: Two model structures of graphical models.

& Kim (1999)]. The relationship becomes more explicit when the distribution is multivariate nor-
mal. LetX be a normal random vector. The precision matrix of the conditional distribution of a
subvectorX1 given the remaining part ofX is the same as theX1 part of the precision matrix ofX
[Section 5.7, Whittaker (1990)]. Marginals of a joint probability distribution are not in general rep-
resented as parts of the joint distribution. However, there is a way that we can express explicitly the
relationship between joint and marginal distributions under the assumption that the joint (as against
marginal) probability model is graphical and decomposable (Kim, 2006b).

In addressing the issue of information reuse in the form of combining graphical model struc-
tures, we can not help using independence graphs and related theories to derive desired results with
more clarity and refinement. The conditional independence embedded in a distribution can be ex-
pressed to some level of satisfaction by a graph in the form of graph-separateness [see, for example,
the separation theorem in p. 67, Whittaker (1990)]. We instrument the notion of conditional inde-
pendence with some particular sets of random variables in a model, where the sets form a basis of
the model structure so that the Markov property among the variables of the model may be preserved
between the model and its marginals. The sets are called prime separators for decomposable graphs
and self-connected (SC) separators for non-decomposable graphs and defined in sections 2 and 4
respectively.

It is shown that if we are given a graphical model with its independence graph,G, and some of
its marginal models, then we can find, under the assumption that the graphical model is decompos-
able, a graph, sayH, which is not smaller thanG and in which the graph-separateness in the given
marginal models is preserved. This graph-separateness is substantiated by the prime separators and
SC-separators which are found in the graphs of the marginal models. In combining marginal models
intoH, we see to it that these prime separators appear as the only prime separators inH when the
graphs are decomposable (Kim & Lee, 2008). In this paper, we will extend the graphical combina-
tion of marginal models to the case where the marginal models are not necessarily decomposable.

There have been a number of papers applying marginal models for data analysis during the last
15 years or so. Some of the applications are for parameter estimation of a model based on medical
data from crossover experiments (Balagtas, Becker & Lang, 1995), for estimating joint probabilities
by applying the iterative proportional fitting technique (Molenberghs & Lesaffre (1999), for analyz-
ing sociological data (Becker, 1994; Becker, Minick & Yang, 1998), and for analyzing contingency
table data with ordinal response variables (Colombi & Forcina, 2001). In most of these applications
of marginal models to multivariate statistical problems, we impose structural restrictions on certain
subsets of variables that are involved in a given data set (Liang, Zeger & Qaqish, 1992; Glonek &
McCullagh, 1995; Bergsma, 1997; Bartolucci & Forcina, 2002; Bergsma & Rudas, 2002; Rudas
& Bergsma, 2004). There also have been remarkable improvements in learning graphical models
in the form of a Bayesian network (Pearl 1986, 1988; Meek, 1995; Spirtes, Glymour & Scheines,
2000; Neapolitan, 2004) from data. This learning however is mainly instrumented by heuristic
searching algorithms since the model searching is usually NP-hard (Chickering, 1996). In our pro-
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posed method of structural learning, we will assume that only the information which is embedded
in a given set of marginal model structures is available.

This paper is organized in 7 sections. After introducing graphical terminologies and notation in
section 2, we derive a result which shows how two sets of graphs, where the graphs in one set are
some type of subgraphs of the graphs in the other set, are related in stochastic context and introduce
a type of graph, called a combined model structure (CMS), with regard to the relationship of the
two sets of graphs. In section 4, we consider some types of separators of undirected graphs, called a
self-connected separator and a prime separator, and use them to further investigate the relationship
between the two sets of graphs. We then consider the notion of graphical compatibility (Dawid &
Studeny, 1999) in section 5 as a necessary relationship between graphs and show existence of a
CMS of set of graphs when the compatibility condition is satisfied among the graphs. In section
6, we propose a combination method of graphs as a way of information reuse from a given set of
marginal models. Finally, in section 7, we close the paper with some discussion and concluding
remarks.

2 NOTATION AND PRELIMINARIES

We will consider only undirected graphs in the paper. We denote a graph byG = (V, E), whereV
is the set of the indexes of the variables involved inG andE is a collection of ordered pairs, each
pair representing that the nodes of the pair are connected by an edge. SinceG is undirected, that
(u, v) is in E is the same as that(v, u) is in E. If (u, v) ∈ E, we say thatu is a neighbor node of or
adjacent tov or vice versa. We say that a set of nodes ofG forms a complete subgraph ofG if every
pair of nodes in the set is adjacent to each other. If every node inA is adjacent to all the nodes inB,
we will say thatA is adjacent toB. The set of all the neighbor nodes of a nodev in G is denoted by
bdG(v); if v becomes a set,A say, we definebdG(A) = ∪v∈AbdG(v) \ A. We define the closure of
a setA asclG(A) = bdG(A) ∪A. We denote byC(G) the set of cliques ofG.

A path of lengthn is a sequence of nodesu = v0, · · · , vn = v such that(vi, vi+1) ∈ E,
i = 0, 1, · · · , n − 1 andu 6= v. If u = v, the path is called ann-cycle. If u 6= v andu andv are
connected by a path, we writeu  v. We define the connectivity component ofu as

[u] = {v ∈ V ; v  u} ∪ {u}.
We say that a path,v1, · · · , vn, v1 6= vn, is intersected byA if A∩{v1, · · · , vn} 6= ∅ and neither

of the end nodes of the path is inA. We say that nodesu andv are separated byA if all the paths
from u andv are intersected byA. In the same context, we say that, for three disjoint setsA,B,
andC, A is separated fromB by C if all the paths fromA to B are intersected byC and write
〈A|C|B〉G . The complement of a setA is denoted byAc and the cardinality of a setA by |A|. For
two collection of sets,A andB, we writeA ¹ B if, for every seta in A, there exists a setb in B
such thata ⊆ b.

For A ⊂ V , we define aninduced subgraphof G confined toA asGind
A = (A, E ∩ (A × A)).

We also define a graph, called aMarkovian subgraphof G confined toA, which is formed from
Gind

A by completing the boundaries inG of the connectivity components of the complement ofA
and denote it byGA. If G′ is a Markovian subgraph ofG, we writeG′ ⊆M G.

If G = (V, E), G′ = (V,E′), andE′ ⊆ E, then we say thatG′ is an edge-subgraph ofG and
write G′ ⊆e G. If G′ is a subgraph ofG, we callG a supergraph ofG′. For a graphG, we will denote
the set of nodes ofG by V (G).

The cliques are elementary graphical components and so we will call the intersection of neigh-
boring cliques a prime separator of the decomposable graphG. The prime separators in a decompos-
able graph may be extended to separators of prime graphs in some graphs, where the prime graphs
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are defined as the maximal subgraphs without a complete separator in Cox & Wermuth (1999). IfG
is not decomposable, separators are not obtained as intersections of neighboring cliques.

3 MARGINAL MODELS AND MARKOVIAN SUBGRAPHS

Suppose that we are given a probability model,P , with its interaction graph,G, and some of its
marginal models are also given whose interaction graphs are Markovian subgraphs ofG. In this sec-
tion, we will look into the relationship betweenP and the marginal models through the relationship
betweenG and the Markovian subgraphs.

A distributionP is said to beglobally Markovwith respect to a graphG if, for a triple (A,B, C)
of disjoint subsetsA,B,C of V , random vectorsXA andXB are conditionally independent given
an outcome of random vectorXC wheneverA is separated fromB by C in G.

In addition to the global Markov property, we will consider another property for a probability
distribution. A distributionP with probability functionf is said to befactorized(FA) according
to G [Section 3.2, Lauritzen (1996)] if for allc ∈ C(G) there exist non-negative functionsψc that
depend onx throughxc only such that

f(x) =
∏

c∈C(G)

ψc(x).

We will denote the collection of the distributions that are globally Markov with respect toG by
MG(G).

For a probability distributionP of XV , let the logarithm of the density ofP be expanded into
interaction terms and let the set of the maximal domain sets of these interaction terms be denoted by
Γ(P ), where maximality is in the sense of set-inclusion. We will call the set,Γ(P ), the generating
class ofP and denote byG(Γ(P )) = (V, E) the interaction graph ofP which satisfies, under the
hierarchy assumption for probability models,

(u, v) ∈ E ⇐⇒ {u, v} ⊆ a for somea ∈ Γ(P ).

It is well known in literature (Pearl & Paz, 1987) that if a probability distribution onXV is
positive, then the three types of Markov property, pairwise Markov (PM), locally Markov (LM),
and globally Markov (GM) properties relative to an undirected graph, are equivalent. Furthermore,
for any probability distribution, it holds that

(FA) =⇒ (GM) =⇒ (LM) =⇒ (PM) (1)

[see Proposition 3.8 in Lauritzen (1996)]. Under the positivity condition of the probability distribu-
tion, we have(FA) ⇐⇒ (PM) by Hammersley and Clifford (1971). From this and expression (1),
it follows, under the positivity condition, that

(FA) ⇐⇒ (GM).

For notation convenience, we will writeM(G) instead ofMG(G) and we will simply say that a
distributionP is Markov with respect toG whenP ∈ MG(G). ForA ⊂ V , we denote byJA the
collection of the connectivity components inGind

Ac and let

β(JA) = {bd(B); B ∈ JA}.
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Let PA be the marginal ofP onXA. We then definēΓ(PA) as

Γ̄(PA) = (Γ(P ) ∩A) ∪ β(JA). (2)

From this, it follows that

β(JA) ¹ Γ̄(PA) ¹ C(G(Γ̄(PA))).

The second¹ holds since it is possible that, for someB ∈ JA, bd(B) is a strict subset of a clique
in G(Γ̄(PA)).

The following result is immediate from (2).
THEOREM 1. For a distributionP of XV andA ⊆ V ,

G(Γ̄(PA)) = G(P )A.

Proof. By definition, the interaction graph corresponding to the right hand side of (2) isG(P )A.
Thus the result follows.

From this theorem and the fact thatΓ(PA) ¹ Γ̄(PA), we have

COROLLARY 1. For a distributionP of XV andA ⊆ V ,

PA ∈ M(G(P )A).

From Theorem 1, we can also derive a result concerning both the relationship between a distri-
butionP and a graphG and the relationship betweenPA andGA.

COROLLARY 2. For a distributionP of XV andA ⊆ V , suppose thatP ∈ M(G) for a graphG.
Then

PA ∈ M(GA).

Proof. SinceP ∈ M(G), we haveG(P ) ⊆e G. This implies thatG(P )A ⊆e GA. So, by Corollary
1, we have the desired result.

We callGA a Markovian subgraph ofG in the context of Corollary 2.
ForA ⊆ V , we defineM(G)A andL(GA) as

M(G)A = {PA; P ∈ M(G)}

and
L(GA) = {P ; PA ∈ M(GA)}.

M(G)A is the set of the marginal distributions onXA of a distributionP which is Markov with
respect toG; L(GA) is the set of the distributions ofXV whose marginalPA onXA is Markov with
respect toGA.

By definition and Corollary 2, we have the following:

L(G) = M(G),

M(G) ⊆ L(GA), (by Corollary 2) (3)

P ∈ L(GA) ⇐⇒ PA ∈ M(GA)
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and
M(G)A ⊆ M(GA).

The last expression holds since, if a distributionQ is in M(G)A, it means thatQ = PA for some
distributionP in M(G), and so, by Corollary 2, it follows thatQ ∈ M(GA).

It follows from (3) that, forA,B ⊆ V ,

M(G) ⊆ L(GA) ∩ L(GB).

We will derive a generalized version of this result below.
Let V be a set of subsets ofV . We will define another set of distributions,

L̃(GA, A ∈ V) = {P ; PA ∈ M(GA), A ∈ V}.

L̃(GA, A ∈ V) is the set of the distributions each of whose marginals is Markov with respect to its
corresponding Markovian subgraph ofG.

THEOREM 2. For a collectionV of subsets ofV with a graphG,

M(G) ⊆ L̃(GA, A ∈ V).

Proof. Let P ∈ M(G). Then, by (3),P ∈ L(GA) for A ∈ V. By definition,PA ∈ M(GA). Since
this holds for allA ∈ V, it follows thatP ∈ L̃(GA, A ∈ V). This completes the proof.

Theorem 2 shows the relationship between a graphical model with its graphG and a set of
Markovian subgraphs ofG. The setM(G) of the probability distributions each of which is Markov
with respect toG is contained in the set̃L(GA, A ∈ V) of the distributions each of which has its
marginals Markov with respect to their corresponding Markovian subgraphsGA, A ∈ V. This result
sheds light on our efforts in searching forM(G) since it can be found as a subset ofL̃(GA, A ∈ V).

Let G = (V, E) be the graph of a graphical model and letV1, V2, · · · , Vm be subsets ofV . The
m Markovian subgraphs,GV1 ,GV2 , · · · ,GVm , may be regarded as the structures ofm submodels of
the graphical model. In this context, we may refer to a Markovian subgraph as a marginal model
structure. For simplicity, we writeGi = GVi .

DEFINITION 1. Suppose there arem Markovian subgraphs,G1, · · · ,Gm. Then we say that graph
H of a set of variablesV is a combined model structure(CMS) ofG1, · · · ,Gm, if the following
conditions hold:
(i) ∪m

i=1Vi = V.
(ii) HVi = Gi, for i = 1, · · · ,m. That is,Gi are Markovian subgraphs ofH.

We will callH a maximal CMSof G1, · · · ,Gm if adding any edge toH invalidates condition
(ii) for at least onei = 1, · · · ,m.

Let M be the collection ofG(P )A, A ∈ V. We can construct a maximal CMS,H∗ say, by
adding edges, if any, toG in such a way that condition (ii) of Definition 1 is satisfied. Since

H∗A = G(P )A,

if we putG = G(P ) in Theorem 2, we end up with a summarizing expression,

M(G(P )) ⊆ M(H∗) ⊆ L̃ (G(P )A, A ∈ V) , (4)
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where the first inequality follows sinceG(P ) ⊆e H∗. SinceP ∈ M(G(P )), expression (4) implies
thatP is also Markov relative toH∗.

If two nodesu andv are separated in a Markovian subgraph of a graphG, then so are they
in G by the property of a graph. We can extend this result to disjoint sets. LetCG(A) denote the
collection of the cliques which include nodes ofA in G.

THEOREM 3. (Theorem 4.2, Kim & Lee (2008))LetG′ = (V ′, E′) be a Markovian subgraph ofG
and suppose that, for three disjoint subsetsA,B, C of V ′, 〈A|B|C〉G′ . Then

(i) 〈A|B|C〉G ;

(ii) For W ∈ CG(A) andW ′ ∈ CG(C), 〈W |B|W ′〉G .

4 MARKOVIAN SUBGRAPHS OF UNDIRECTED GRAPHS

Consider two Markovian subgraphs ofG onA andB, GA andGB. Then by the transitivity property
of the Markovian marginalization (Kim, 2006b),(GA)B is also a Markovian subgraph ofG, and
similarly for (GB)A. Furthermore, we can see, by definition, that

(GA)B = (GB)A = GA∩B. (5)

DEFINITION 2. For three disjoint and exhaustive subsets,A,B, andC, of V = V (G), we will call
C a self-connected (SC) separator inG, if the following conditions hold:

(i) 〈A|C|B〉G .

(ii) Gind
C is connected.

(iii) Gind
C does not contain anyn-cycle (n > 3) nor a clique ofG which consists of more than two

nodes.

(iv) Gind
A∪C andGind

B∪C each consists ofn-cycles (n > 3) or cliques ofG only.

According to the definition, we can see that, a SC-separator is given as a union of some inter-
sections ofn-cycles (n > 3) or cliques. For example, in Figure 2, the SC-separator,{1, 2, 4, 5, 6},
is the union of the intersections of the following two pairs of cycles:

7

2

5

6

8

1

43

Figure 2: An undirected graph of 8 nodes.
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Figure 3: Undirected graphs and their Markovian subgraphs. The slant “=” on nodev means thatv
is removed from the graph.

pair 1 : {1, 2, 4, 5, 6, 8} and{1, 2, 3, 4}
pair 2 : {1, 2, 4, 5, 6, 8} and{3, 4, 5, 6}

In this respect, it follows that, ifG is a decomposable graph, then all of its SC-separators are prime
separators.

Note that condition (iv) in the definition does not imply condition (ii). For example, if, in Figure
2, we letA = {3, 4}, B = {7, 8}, andC = {1, 2, 5, 6}, then conditions (i), (iii), (iv) are satisfied
for the three sets, but (ii) is not.

If G is Markovian-marginalized over a nodev which is included in a SC-separator of the graph
G, then new SC-separators are created inGV \{v}. For example, in column (b) of Figure 3, node
3 is removed from the graph at the top and the resultant Markovian subgraph is given at the bot-
tom, where{1, 2, 5} and{2, 4, 5} are new SC-separators. In column (c), node 2 is removed and
the removal yields a new SC-separator,{3, 5}, in the Markovian subgraph. In column (d), the
set{3, 5} is a SC-separator and removal of node 3 creates a new SC-separator{1, 5}. Note that
{1, 3, 5, 8, 9} forms a 5-cycle and{2, 3, 4, 5, 6, 7} forms a clique and that the removal creates a new
clique,{1, 2, 4, 5, 6, 7}, and a new SC-separator{1, 5}. On the other hand, removal of a node which
is not a member of a SC-separator does not create any new SC-separator as we see in column (a) of
Figure 3.

Let M andS be, respectively, a set of nodes to be removed and a set of nodes which form
SC-separators. Since Markovian subgraphs are not dependent upon the order of node-removal, we
can begin node-removal with the nodes inM ∩S or with the nodes inM \S. The only difference is
that the removal of a node inM \S simply reduces the size of a cycle or a clique while the removal
of a node inM ∩ S creates new SC-separators.

THEOREM 4. LetG′ be a Markovian subgraph of an undirected graphG. If A is a SC-separator in
G′, then there exists a SC-separator,S, in G such thatA ∩ S 6= ∅.

Proof. SinceA is a SC-separator inG′, we can find disjoint sets,B andC, in V (G′) \ A such
that A ∪ B ∪ C = V (G′) and〈B|A|C〉G′ . Then, by Theorem 3, it follows that〈B|A|C〉G . Let
D = V (G) \ V (G′). Then, by the property of an undirected graph, we have〈B|A ∪D|C〉G . Now,
we have only to show (i) that the setA ∪ D is itself a SC-separator or (ii) thatA ∪ D contains a
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SC-separator as a subset inG.
In case (i), we have the desired result. In case (ii), there are two possibilities. One possibility

is that there is a SC-separatorA′ in A ∪ D such thatA ⊆ A′, and the other thatA is itself a SC-
separator inG. In the former situation, at least one node is removed fromA′ in the marginalization
of G, and in the latter situation the removal takes place outside the neighborhood ofA in G. In
the latter situation,A itself is a SC-separator inG; and in the former situation, if nodev ∈ A′ is
removed fromG, all of its neighbor nodes become adjacent to each other, which means that new
SC-separators are created inGvc as in panels (b), (c), and (d) in Figure 3, wherevc = V (G) \ {v}.
If multiple nodes,v1, · · · , vr, are removed fromA′ \ A, we can see by the same argument that we
have new SC-separators inGR whereR = V (G) \ {v1, · · · , vr}. This completes the proof.

From this theorem, we can see that a SC-separator,S say, in a Markovian subgraph ofG means
that there is a SC-separator inG which shares at least one node withS. An analogous but more
tangible result holds whenG is decomposable. In the theorem below,χ(G) is the set of all the prime
separators of a decomposable graphG.

THEOREM 5. (Theorem 4 of Kim (2006b)) Let there be Markovian subgraphsGi, i = 1, 2, · · · ,m,
of a decomposable graphG. Then

(i) ∪m
i=1χ(Gi) ⊆ χ(G);

(ii) for any maximal CMSH,
∪m

i=1χ(Gi) = χ(H).

The above two theorems say that,
(a) whenG is decomposable, every prime separator that is found in a Markovian subgraph ofG is
also found inG; but
(b) whenG is not decomposable, every SC-separator,A say, that is found in a Markovian subgraph
of G has at least one SC-separator inG which shares at least one node withA.

There is another noteworthy difference between the two types of graphs. In a decomposable
graph, if a node which is included in a prime separator is removed, then a new clique is formed
by the nodes of the cliques that share the prime separator. This means that the prime separator
disappears with no trace left. On the other hand, if a node which is included in a SC-separator is
removed from a non-decomposable graph, then new SC-separators are created as shown in Figure
3 unless the SC-separator is shared by neighboring cliques only. From this, we can see that prime
separators in a decomposable graph may easily be lost in its Markovian subgraphs when at least one
of the nodes in a prime separator is removed. On the other hand, node-removal from a SC-separator,
S say, in a non-decomposable graph create new SC-separators in the Markovian subgraph which
share nodes withS if the number of the removed nodes fromS is less than|S|.

5 GRAPHICAL COMPATIBILITY AND EXISTENCE OF CMS’S

ForC ⊆ V (G) ∩ V (H), G andH are said to beC-compatible (Dawid & Studeny, 1999) if

GC = HC .

For graphs,G1, · · · ,Gk, and sets of nodes,A1, · · · , Ak−1, if Gi andGi+1 areAi-compatible for
i = 1, 2, · · · , k− 1, then we say thatG1 andGk are compatible with regard toGi, i = 2, · · · , k− 1.

9



DenoteV (Gi) by Vi and suppose that(G1)A1 = (G2)A1 and(G2)A2 = (G3)A2 . If there exist graphs,
G′ andG′′ , such that

G′V1
= G1 and G′V2

= G2

and
G′′V2

= G2 and G′′V3
= G3,

then it follows thatG′A2
= G′′A2

since

G′A2
= (G′V2

)A2 = G2
A2

= G3
A2

= (G′′V3
)A2 = G′′A2

,

where the first and the last equality hold by (5) and the inequality,A2 ⊆ V2 ∩ V3.
If we assume thatG1, · · · ,Gk are Markovian subgraphs of an undirected graphG, then there

must exist such graphs asG′ andG′′ for every pair of Markovian subgraphs that share at least one
node.

Let 〈i〉 = {1, 2, · · · , i}. Suppose thatVi ∩ Vi+1 6= ∅ for i = 1, 2, · · · , k − 1 and that we have
a graphG〈j〉 for 1 < j < k whose Markovian subgraphs areGi, i = 1, 2, · · · , j. Then there must
existG〈j+1〉 of which G〈j〉 andGj+1 are Markovian subgraphs. Otherwise, the assumption forG
becomes invalid. We state this in a formal manner below.
THEOREM 6. If two graphs,G andH, areC-compatible forC = V (G) ∩ V (H), then there exists
a CMS ofG andH.

Proof. WhenG = H, the result is trivial since a graph is a CMS of itself. Suppose that
|V (G)\V (H)| = 1. Then we can construct a graphH1 of whichG andH are Markovian subgraphs
as described below.

Let {α} = V (G) \ V (H). Then we can think of the following three cases:

(i) bdG(α) = C and there exists a connectivity componentg in H for whichC ⊆ clH(g).

(ii ) bdG(α) = C and there does not exist any connectivity component as in (i) but a connectivity
componentg′ for which∅ ⊂ clH(g′) ∩ C ⊂ C.

(iii ) bdG(α) ⊂ C, i.e.,〈α|bdG(α)|C \ clG(α)〉G .

In case (i): In this case,C ⊆ clH(g). So nodeα may be attached to any clique inH that is
connected toC in H, in such a way thath ∪ {α} may form a new clique inH1.

In case (ii ): In this case,α is attached toH to formH1 such thatbdH1(α) = C.
In case (iii ): If there exists a connectivity componentg in H such thatbdG(α) ⊆ clH(g) and

C \ bdG(α) = C \ clH(g), thenα can be attached to any clique inH that is connected tobdG(α) to
form a new clique inH1. If there is no such a connectivity component inH, then we attachα toH
such thatbdH1(α) = C.

Now suppose that|V (G) \ V (H)| > 1. Let G0 = GC andV (G) \ V (H) = {α1, · · · , αk}. Let
Ci = C ∪ {α1, · · · , αi} andGi = GCi for i = 1, · · · , k, whereGi⊆MGi+1, i = 0, 1, · · · , k − 1.
Then, by the transitivity property of Markovian subgraphs (Theorem 6 in Kim (2006b)), we have
Gi ⊆M G, i = 0, 1, · · · , k.

By applying the above argument, we can obtain a graphHi of whichHi−1 andGi are Markovian
subgraphs fori = 1, · · · , k, whereH0 = H. By the transitivity property of Markovian subgraphs,
we haveH ⊆M Hk. Therefore,H andG = Gk are Markovian subgraphs ofHk. This completes
the proof.
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This theorem can be extended to a set of graphs where each graph is compatible with at least
one of the other graphs of the set as shown in the following corollary.

COROLLARY 3. For graphsGi, i = 1, 2, · · · ,m, letG〈i〉 be a graph of whichGj is a Markovian sub-
graph,j ≤ i. If G〈i〉 andGi+1 areCi-compatible withCi = V (G〈i〉)∩V (Gi+1), i = 1, 2, · · · ,m−1,
then there exists a CMS ofGi, i = 1, 2, · · · ,m.

Proof. SinceG〈m−1〉 andGm areCm−1-compatible by the condition of the corollary, there
exists, by Theorem 6, a CMS,I, of G〈m−1〉 andGm. By the transitivity property of Markovian
subgraphs,I is a CMS ofGi, i = 1, 2, · · · ,m.

6 MARKOVIAN COMBINATION OF MARGINAL MODELS

In the proof of Theorem 6, we considered, to show existence of a CMS, how we can add an edge be-
tween a node inV (G)\V (H) and another node inH with no confliction with the node-separateness
that is found in at least one of the graphs. The two graphs in Figure 1 are{1, 3}-compatible and
their CMS’s are as in Figure 4. As for the two graphs in Figure 1, consider adding edges between
node4 in V (G2) \ V (G1) and some nodes inG1. Because of the node-separateness inG1, node 4
can only be adjacent to nodes 1 and 2 or to nodes 2 and 3 as in Figure 4.

Since a CMS,H say, of a pair of compatible graphs,G′ andG′′ say, is obtained in the form
of attaching the nodes inV (G′) \ V (G′′) (or V (G′′) \ V (G′)) to G′′ (or G′), it may be regarded as
combining the two graphs together. We will call this combination aMarkovian combinationin the
sense that

M(H) ⊆ L̃(G′,G′′);
in other words, a probability modelP which is globally Markov with respect toH has its marginals,
PV (G′) andPV (G′′), globally Markov with respect toG′ andG′′ respectively.

Since a maximal CMS has a better property than CMS’s in the context of Theorem 5, we will
propose a combination method for maximal CMS’s based on a set of marginal model structures.
In the combination, it is imperative that node-separateness is preserved between a graph and its
Markovian subgraph. This is reflected in the combination process in such a way that the following
condition is satisfied:
[Separateness condition] Let M be a set of Markovian subgraphs ofG andH a maximal CMS of

M. If two nodes are in a graph inM and they are not adjacent in the graph, then neither are
they inH. Otherwise, adjacency of the nodes inH is determined by checking separateness of
the nodes inM.

Two main rules of Markovian combination are ‘union’ and ‘check of separateness.’ We will
describe each of them below.

4

3

2

1

4

3

2

1

Figure 4: Two CMS’s of the graphs in Figure 1.
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edge between the nodes that appear
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Figure 5: Markovian combination of graphs. The Markovian subgaphsG1 andG2 of G are combined
in two steps, union and check of separateness. Different colors are used forG1 (in blue) andG2 (in
red). When an edge appears in both of the graphs, it is in black; an edge is colored green when its
two nodes are not in the same graph ofG1 or G2.

Union. Suppose we have two Markovian subgraphs,G1 andG2, of a graphG. If nodesu andv are
not separated in any ofG1 andG2, we put an edge between the two nodes. We do the same
for all the pairs of nodes that are not separated in any of the subgraphs.

If two nodes are not in the same subgraph, then we put an edge between them. If two nodes
are shared byG1 andG2 and they are connected by an edge in one subgraph but not in the
other, we leave them separated. We denote the graph resulting from this operation byG∗.

Check of separateness.We check if the separateness that is found inG1 andG2 holds inG∗ also. If
an edge inG∗ is in conflict with the separateness of some pair of nodes, we remove the edge
from G∗. We denote the graph resulting from this operation byG∗∗.

This combining process is illustrated in Figure 5. Note that in panel (a), edges, (3,4), (3,7), (4,5),
(5,7), are created since the nodes in each of the pairs are not in the same graph ofG1 or G2. Two of
the edges are removed in panel (b) since their existence are in conflict with the node-separateness
that is embedded inG1 andG2. The combined result contains two edges more than the true graph
G in Figure 5. It is interesting to note in this figure thatG1 andG2 are decomposable while none of
G and the combined graph is. This is an example that the Markovian combination of decomposable
graphs does not necessarily produce a decomposable combined graph.

Another illustration is given in Figure 6 where the graphG is not a chain of cycles as in Figure
5 but a more general form of undirected graphs. A 4-cycle{3, 4, 7, 8} is surrounded by a 7-cycle
{1, 2, 5, 6, 9, 10, 11} in the graph. The combined graph which appears in panel (b) contains all
the edges in the graphG in addition to the edges (1,4), (1,7), (5,7), and (7,10). These four edges
appeared inG1 or G2 and are not in conflict with any node-separateness that is found inG1 andG2.
Note, in Figures 5 and 6, that the black edges in panel (a) which appear in both of the graphs,G1 and
G2 in each of the figures, are preserved in the combined graph in panel (b). This is consequential
on the fact that the adjacency of a pair of nodes in both ofG1 andG2 is in no conflict with the

12



edge appearing in both of 

G2G1

(a) Union

1

2

6

3

4

5

7

8

9

10

11

1

2

6

3

4

5

7

8

9

10

11

21G  and G

21G  and G

1

2

6

3

4

5

7

8

11

10

9

1

2 4

5

7

9

11

1

6

3

4

8 10

11

7

(b) Check of separateness

edge between the nodes that appear
in only one of 

G

Figure 6: Markovian combination of graphs. In panel (a), there are 12 green edges for the pairs of
nodes that do not appear in the same graph ofG1 or G2. Three of the green edges remain in panel
(b).

node-separateness in both of the graphs.
The combined graphs which are obtained through the two operations are maximal CMS’s of a

given set of Markovian subgraphs as shown in the theorem below.

THEOREM 7. The combination process by the two operations of Union and Check of separateness
produces a maximal CMS.

Proof. LetM be a set of Markovian subgraphs of a graph. The “Union” operation puts an edge
between a pair of nodes,u andv say, unlessu andv are both in a graph inM and separated therein.
Denote the graph from this operation byG∗. It is obvious thatG′ ⊆e G∗V (G′) for everyG′ ∈M.

The “Check of separateness” operation removes edges fromG∗ in such a way that the following
condition is satisfied for everyG′ in M:

For any pair of non-adjacent nodesu andv in G′ and a setC in G′ which is disjoint with{u, v},

〈u|C|v〉G′ if and only if 〈u|C|v〉G∗ . (6)

Denote a graph obtained from this check-of-separateness byG∗∗. Then any pair of non-adjacent
nodes,u andv say, inG∗∗ mean either (i) that they are non-adjacent in at least one of the graphs
in M or (ii ) that they belong to different graphs each and putting an edge between the nodes incurs
conflicts with the node-separateness in some of the graphs inM.

Therefore, adding any edge toG∗∗ into another graphG′′ disqualifiesG′′ as a CMS of the graphs
in M. This means thatG′′ is a maximal CMS of the graphs inM.
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Interaction graphs (G1) of X1, X2, X3 G′
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Interaction graphs (G2) of X1, · · · , X4 G′′

Figure 7: Some simple examples where each of the graphs in the right column are not a Markovian
subgraph of any of the graphs on the left-hand side of⇐⇒.

7 FURTHER DISCUSSION

In Theorem 2, we are given a set of Markovian subgraphs ofG. But in reality, we are often
given a set of marginal model structures that are assumed to be interaction graphs of the marginal
models. The interaction graphs may not be Markovian subgraphs of the unknownG. In this case,
maximal CMS’s may not containG as an edge-subgraph. Simple examples of this situation are
displayed in Figure 7. In the first row of the figure are two interaction graphs (G1) for X1, X2, X3

and a subgraphG′ which is not Markovian with respect toG1, and similarly in the second row for
X1, · · · , X4. Under the hierarchy assumption for contingency tables, none of the graphical log-
linear models (1a), (2a), and (2a’) is compatible with the graphical submodels at the right ends of
the corresponding rows by Theorem 2.3 of Asmussen and Edwards (1983). The modelG′ in Figure
7 is possible with the graphical log-linear model (1b) in the figure when

E[(P (X{1,3} = x{1,3}|X2)] = P (X1 = x1)P (X3 = x3) for all x{1,3} ∈ X{1,3}, (7)

whereXi is the support ofXi andXa =
∏

i∈aXi. The graphical log-linear modelG′′ in Figure 7 is
also possible from the graphical model (2b) in the figure. Instances of this phenomenon follow.
Example1. Probability distributions corresponding to some of the graphs in Figure 7.We will
present contingency tables for which the pair of models, (1b) andG′ in Figure 7, are possible and so
are the pair of models, (2b) andG′′. WhenXi andXj are conditionally independent givenXk, we
will simply write i⊥⊥j|k.

(a) Concerning models (1b) andG′:

x2 x1 x3 P (X = x) x2 x1 x3 P (X = x)
0 0 0 1/24 1 0 0 2/24

1 3/24 1 6/24
1 0 2/24 1 0 1/24

1 6/24 1 3/24

This distribution satisfies that1⊥⊥3|2 and1⊥⊥3.

(b) Concerning models (2b) andG′′:
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x2 x3 x1 x4 P (X = x) x2 x3 x1 x4 P (X = x)
0 0 0 0 1/42 1 0 0 0 3/42

1 2/42 1 1/42
1 0 2/42 1 0 6/42

1 4/42 1 2/42
1 0 0 2/42 1 0 0 6/42

1 4/42 1 2/42
1 0 1/42 1 0 3/42

1 2/42 1 1/42

This distribution satisfies the conditional independencies displayed in graph (2b) in Figure 7.
The marginal forX{1,3,4} satisfies the conditional independence1⊥⊥4|3.

Although we have seen examples where subgraphs of graphical log-linear models are not Marko-
vian, Markovian subgraphs are usual situations under the hierarchy assumption for models. As indi-
cated in (7), in order for a subgraph to be non-Markovian, a certain set of equations must be satisfied
between the set of parameters of a joint model and that of its interested non-Markovian subgraph.
This implies that non-Markovian subgraphs are a rare situation under the hierarchy assumption as
long as interaction graphs are concerned. Furthermore, when the distribution is Normal, we can see
by its density function that the subgraphs are Markovian. Based on this point of view on Markovian
subgraphs, we have assumed in this paper that all the interaction graphs of subsetsVi of random
variables are Markovian.

The combination of model structures is in two steps, Union and Check of separateness. Suppose
we combine the graphs inM. At the ‘Union’ step, we put an edge between every pair of nodes
unless there exists at least one graph inM where both of the nodes appear and are not adjacent; at
the ‘Check of separateness’ step, we then remove an edge when its existence is in conflict with the
node-separateness in the graphs inM. In this process, we don’t need data but the model structures.
In this sense, the proposed method reuses the information that is embedded in the marginal model
structures for learning structures of a larger set of random variables which are involved in at least
one of the graphs inM.
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