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SUMMARY

Suppose that we are given a get of model structures for different sets of random variables
and that we want to use these model strictures in search of a fiiddethe set of random variables
that are involved in at least one of the modelsMh Assuming that the true model structure is of
an undirected graph, we investigate the relationship between a model and its marginal model and
then derive a rule of using the information that are found in the modeld iior building H. Under
the assumption that the modelsA are from the same data, we propose a method of combining
models inM and illustrate it through examples.

Some key word€Combined model structure; Graphical compatibility; Graph-separateness; Interac-
tion graph; Markovian subgraph; Prime separator; Self-connected separator.

1 INTRODUCTION AND PROBLEM

Suppose that we are given a set of models whose model structures are in the form of undirected
graphs and that we want to build a model of the variables that are involved in at least one of the
models in the given set. We may not have enough observed data for all the variables that we are
interested in or we may have observed data for only a part of the variables in addition to pieces of
information about the models for some subsets of variables. For example, suppose that we are given
two model structures of graphical models (Whittaker, 1990; Lauritzen, 1g9@ndG-, which are
depicted in Figure 1¢; is of variablesX;, X5, X3 andgG, of variablesX;, X3, X4. X; and X3 are

shared by the two graphs. If they are marginal models from a graphical mfydeis necessary

that the inter-relationships among each of the §ats, X, X35} and{ X, X3, X4}, as indicated in

the two graphs in the figure, are satisfieddn|In this respect, it is imperative that, given a adtof

model structures of graphical models, we check whether the model structures are compatible with
each other among themselves before exploring existence of a model structure of which all of the
model structures itM are marginal models. We aim to address this issue under the assumption that
the model structures of all the graphical models that are considered in this paper are of undirected
graphs.

Fienberg & Kim (1999) and Kim (2006a) considered a problem of combining conditional graph-
ical log-linear structures and derived a combining rule for them based on the relation between the
log-linear model and its conditional version. A main feature of the relation is that conditional log-
linear structures appear as parts of their original model structure [see Theorems 3 and 4 in Fienberg



Figure 1: Two model structures of graphical models.

& Kim (1999)]. The relationship becomes more explicit when the distribution is multivariate nor-
mal. LetX be a normal random vector. The precision matrix of the conditional distribution of a
subvectorX; given the remaining part & is the same as th¥; part of the precision matrix a&X
[Section 5.7, Whittaker (1990)]. Marginals of a joint probability distribution are not in general rep-
resented as parts of the joint distribution. However, there is a way that we can express explicitly the
relationship between joint and marginal distributions under the assumption that the joint (as against
marginal) probability model is graphical and decomposable (Kim, 2006b).

In addressing the issue of information reuse in the form of combining graphical model struc-
tures, we can not help using independence graphs and related theories to derive desired results with
more clarity and refinement. The conditional independence embedded in a distribution can be ex-
pressed to some level of satisfaction by a graph in the form of graph-separateness [see, for example,
the separation theorem in p. 67, Whittaker (1990)]. We instrument the notion of conditional inde-
pendence with some particular sets of random variables in a model, where the sets form a basis of
the model structure so that the Markov property among the variables of the model may be preserved
between the model and its marginals. The sets are called prime separators for decomposable graphs
and self-connected (SC) separators for non-decomposable graphs and defined in sections 2 and 4
respectively.

It is shown that if we are given a graphical model with its independence gfa@md some of
its marginal models, then we can find, under the assumption that the graphical model is decompos-
able, a graph, saj¥t, which is not smaller thag and in which the graph-separateness in the given
marginal models is preserved. This graph-separateness is substantiated by the prime separators and
SC-separators which are found in the graphs of the marginal models. In combining marginal models
into H, we see to it that these prime separators appear as the only prime separatarbém the
graphs are decomposable (Kim & Lee, 2008). In this paper, we will extend the graphical combina-
tion of marginal models to the case where the marginal models are not necessarily decomposable.

There have been a number of papers applying marginal models for data analysis during the last
15 years or so. Some of the applications are for parameter estimation of a model based on medical
data from crossover experiments (Balagtas, Becker & Lang, 1995), for estimating joint probabilities
by applying the iterative proportional fitting technique (Molenberghs & Lesaffre (1999), for analyz-
ing sociological data (Becker, 1994; Becker, Minick & Yang, 1998), and for analyzing contingency
table data with ordinal response variables (Colombi & Forcina, 2001). In most of these applications
of marginal models to multivariate statistical problems, we impose structural restrictions on certain
subsets of variables that are involved in a given data set (Liang, Zeger & Qagqish, 1992; Glonek &
McCullagh, 1995; Bergsma, 1997; Bartolucci & Forcina, 2002; Bergsma & Rudas, 2002; Rudas
& Bergsma, 2004). There also have been remarkable improvements in learning graphical models
in the form of a Bayesian network (Pearl 1986, 1988; Meek, 1995; Spirtes, Glymour & Scheines,
2000; Neapolitan, 2004) from data. This learning however is mainly instrumented by heuristic
searching algorithms since the model searching is usually NP-hard (Chickering, 1996). In our pro-
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posed method of structural learning, we will assume that only the information which is embedded
in a given set of marginal model structures is available.

This paper is organized in 7 sections. After introducing graphical terminologies and notation in
section 2, we derive a result which shows how two sets of graphs, where the graphs in one set are
some type of subgraphs of the graphs in the other set, are related in stochastic context and introduce
a type of graph, called a combined model structure (CMS), with regard to the relationship of the
two sets of graphs. In section 4, we consider some types of separators of undirected graphs, called a
self-connected separator and a prime separator, and use them to further investigate the relationship
between the two sets of graphs. We then consider the notion of graphical compatibility (Dawid &
Studeny, 1999) in section 5 as a necessary relationship between graphs and show existence of a
CMS of set of graphs when the compatibility condition is satisfied among the graphs. In section
6, we propose a combination method of graphs as a way of information reuse from a given set of
marginal models. Finally, in section 7, we close the paper with some discussion and concluding

remarks.
2 NOTATION AND PRELIMINARIES

We will consider only undirected graphs in the paper. We denote a gragh=byV, E'), whereV/

is the set of the indexes of the variables involvediand E is a collection of ordered pairs, each
pair representing that the nodes of the pair are connected by an edge.GSsuoadirected, that
(u,v) isin E is the same as thab, u) isin E. If (u,v) € E, we say that. is a neighbor node of or
adjacent ta or vice versa. We say that a set of nodeg dérms a complete subgraph Gfif every
pair of nodes in the set is adjacent to each other. If every noddsradjacent to all the nodes i,
we will say thatA is adjacent td3. The set of all the neighbor nodes of a nede G is denoted by
bdg(v); if v becomes a set] say, we definédg(A) = U,cabdg(v) \ A. We define the closure of
asetd asclg(A) = bdg(A) U A. We denote by’ (G) the set of cliques of.

A path of lengthn is a sequence of nodes = vy, --- ,v, = v such that(v;,v;+1) € E,
i=0,1,--- ,n—1andu # v. If u = v, the path is called an-cycle. Ifu # v andu andv are
connected by a path, we write= v. We define the connectivity componentwoés

[u] ={v eV; v=u}U{u}.

We say that a pathy, - - - , vy, v1 # vy, is intersected byl if AN{vy,--- ,v,} # 0 and neither
of the end nodes of the path is i We say that nodes andv are separated hy if all the paths
from v andv are intersected byl. In the same context, we say that, for three disjoint setB,
andC, A is separated fronB by C' if all the paths fromA to B are intersected by¢' and write
(A|C|B)g. The complement of a set is denoted byA© and the cardinality of a set by |A|. For
two collection of setsA and B, we write A < B if, for every seta in A, there exists a sétin B
such that C b.

For A C V, we define arinduced subgrapbf G confined toA asG7'¢ = (A, E N (A x A)).
We also define a graph, calledvéarkovian subgraptof G confined toA, which is formed from
gj;{‘d by completing the boundaries % of the connectivity components of the complementdof
and denote it by 4. If G’ is a Markovian subgraph &f, we writeG’ C,; G.

If G = (V,E), G = (V,E'), andE’ C E, then we say thaf’ is an edge-subgraph ¢f and
write G’ C. G. If G’ is a subgraph of/, we callG a supergraph of’. For a graphg, we will denote
the set of nodes @ by V' (G).

The cliques are elementary graphical components and so we will call the intersection of neigh-
boring cliques a prime separator of the decomposable gfaphe prime separators in a decompos-
able graph may be extended to separators of prime graphs in some graphs, where the prime graphs

3



are defined as the maximal subgraphs without a complete separator in Cox & Wermuth (1g99). If
is not decomposable, separators are not obtained as intersections of neighboring cliques.

3 MARGINAL MODELS AND MARKOVIAN SUBGRAPHS

Suppose that we are given a probability mode|,with its interaction graphg, and some of its
marginal models are also given whose interaction graphs are Markovian subgrgphis tifis sec-
tion, we will look into the relationship betwednand the marginal models through the relationship
betweerg and the Markovian subgraphs.

A distribution P is said to beglobally Markowwith respect to a grapd if, for a triple (A, B, C)
of disjoint subsetsi, B, C' of V, random vectors{ 4 and Xz are conditionally independent given
an outcome of random vectof- wheneverA is separated fron® by C'in G.

In addition to the global Markov property, we will consider another property for a probability
distribution. A distributionP with probability functionf is said to befactorized(FA) according
to G [Section 3.2, Lauritzen (1996)] if for all € C(G) there exist non-negative functions that
depend onx throughz. only such that

f@) = ] vela).

ceC(G)

We will denote the collection of the distributions that are globally Markov with respegt by
Mc(9).

For a probability distribution”? of Xy, let the logarithm of the density d? be expanded into
interaction terms and let the set of the maximal domain sets of these interaction terms be denoted by
I'(P), where maximality is in the sense of set-inclusion. We will call theISe®,), the generating
class of P and denote by (I'(P)) = (V, E) the interaction graph aP which satisfies, under the
hierarchy assumption for probability models,

(u,v) € E <= {u,v} Ca forsomea € I'(P).

It is well known in literature (Pearl & Paz, 1987) that if a probability distribution’on is
positive, then the three types of Markov property, pairwise Markov (PM), locally Markov (LM),
and globally Markov (GM) properties relative to an undirected graph, are equivalent. Furthermore,
for any probability distribution, it holds that

(FA) = (GM) = (LM) = (PM) 1)

[see Proposition 3.8 in Lauritzen (1996)]. Under the positivity condition of the probability distribu-
tion, we havg FF'A) <= (PM ) by Hammersley and Clifford (1971). From this and expression (1),
it follows, under the positivity condition, that

(FA) < (GM).

For notation convenience, we will write/ (G) instead ofM(G) and we will simply say that a
distribution P is Markov with respect t whenP € M(G). For A C V, we denote by7, the
collection of the connectivity components@{'¢ and let

B(Ta) ={bd(B); B € Ja}.
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Let P4 be the marginal of on X 4. We then defind'(P,4) as

I'(Pa) = (D(P)NA) U B(Ta). (2)
From this, it follows that
B(Ta) 2T (Pa) = C(G(T(Pa)))-

The secondk holds since it is possible that, for somec 74, bd(B) is a strict subset of a clique
in G(T'(Pa)).

The following result is immediate from (2).
THEOREM 1. For a distribution” of Xy andA C V,

G(T(Pa)) = G(P)a.

Proof. By definition, the interaction graph corresponding to the right hand side of )3 4.
Thus the result followd1
From this theorem and the fact tHatP,) < T'(P4), we have

COROLLARY 1. For a distributionP of Xy, andA C V,
Py e M(G(P)a).
From Theorem 1, we can also derive a result concerning both the relationship between a distri-
bution P and a graply and the relationship betwedty andG,4.

COROLLARY 2. For a distributionP of Xy andA C V, suppose thaP € M (G) for a graphg.
Then
Py € M(QA)

Proof. SinceP € M (G), we haveG(P) C. G. This implies thaG(P)4 C. Ga. So, by Corollary
1, we have the desired result.

We callG 4 a Markovian subgraph @ in the context of Corollary 2.

ForA C V, we defineM (G)4 andL(G4) as

M(G)a={Pa; PecM(@G)}

and
L(Ga) ={P; Pac M(Ga)}.

M(G) 4 is the set of the marginal distributions dfi4 of a distributionP which is Markov with
respect taj; L(G4) is the set of the distributions df;, whose marginaP4 on X 4 is Markov with
respect ta; 4.

By definition and Corollary 2, we have the following:

M(G) C L(Ga), (by Corollary 2) (3)
Pe L(QA) <— Py € M(QA)
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and
M(G)a € M(Ga).

The last expression holds since, if a distributi@ns in M(G) 4, it means that) = P, for some
distribution P in M (G), and so, by Corollary 2, it follows th& € M (G4).
It follows from (3) that, forA, B C V,

M(G) C L(Ga) N L(Gp).

We will derive a generalized version of this result below.
LetV be a set of subsets df. We will define another set of distributions,

L(Ga, AcV)={P; PyeM(Gs), AcV}.

L(Ga, A € V) is the set of the distributions each of whose marginals is Markov with respect to its
corresponding Markovian subgraph@f

THEOREM 2. For a collectiony of subsets oV with a graphg,
M(G) € L(Ga, A€ V).

Proof. Let P € M(G). Then, by (3),P € L(Ga) for A € V. By definition, P4 € M(G4). Since
this holds for allA € V, it follows thatP € L(Ga, A € V). This completes the prodf]

Theorem 2 shows the relationship between a graphical model with its graptd a set of
Markovian subgraphs @. The setM/(G) of the probability distributions each of which is Markov
with respect tag is contained in the set(G4, A € V) of the distributions each of which has its
marginals Markov with respect to their corresponding Markovian subgi@phd € V. This result
sheds light on our efforts in searching faf(G) since it can be found as a subsefdfj 4, A € V).

LetG = (V, E) be the graph of a graphical model andlgt V5, - - - , V,,, be subsets oF. The
m Markovian subgraph%jy, , Gv,, - - - , Gy,,, may be regarded as the structuresrofubmodels of
the graphical model. In this context, we may refer to a Markovian subgraph as a marginal model
structure. For simplicity, we writg; = Gy;.

DEFINITION 1. Suppose there arer Markovian subgraphgsyi, - - -, G,,. Then we say that graph
‘H of a set of variabled/ is a combined model structurg€CMS) ofG, - - - , G,,, if the following
conditions hold:
(i) Uy, Vi = V.
(i) Hy, = G, fori =1,--- ,m. Thatis,G; are Markovian subgraphs &f.

We will call H a maximal CMSof Gy, -- - , G, if adding any edge t@+ invalidates condition
(ii) for atleastonei = 1,--- ,m.

Let M be the collection off(P)4, A € V. We can construct a maximal CM&* say, by
adding edges, if any, t@ in such a way that conditionii) of Definition 1 is satisfied. Since

if we putg = G(P) in Theorem 2, we end up with a summarizing expression,

M(G(P)) € M(H*) C L(G(P)a, A€ V), (4)
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where the first inequality follows sing(P) C. H*. SinceP € M(G(P)), expression (4) implies
that P is also Markov relative tG{*.

If two nodesu andv are separated in a Markovian subgraph of a grépkhen so are they
in G by the property of a graph. We can extend this result to disjoint setsCd(et) denote the
collection of the cliques which include nodesAfn G.

THEOREM 3. (Theorem 4.2, Kim & Lee (2008))etG’ = (V’, E’) be a Markovian subgraph of
and suppose that, for three disjoint subsétsB3, C of V', (A|B|C)g'. Then

(i) (AB|C)g;

(i) For W € Cg(A) andW’ € Cg(C), (W|B|W')g.

4 MARKOVIAN SUBGRAPHS OF UNDIRECTED GRAPHS

Consider two Markovian subgraphs@bon A andB, G4 andGg. Then by the transitivity property
of the Markovian marginalization (Kim, 2006b)¢ 1) is also a Markovian subgraph ¢f and
similarly for (Gg) 4. Furthermore, we can see, by definition, that

(Ga)B = (GB)a = GanB- %)

DEFINITION 2. For three disjoint and exhaustive subsets,B, andC, of V = V(G), we will call
C a self-connected (SC) separatorgnif the following conditions hold:

() (A|C|B)g.
(i) Gindis connected.

(i) G4 does not contain any-cycle @ > 3) nor a clique ofG which consists of more than two
nodes.

(iv) G4 andGid., each consists of-cycles ¢ > 3) or cliques ofg only.

According to the definition, we can see that, a SC-separator is given as a union of some inter-
sections ofu-cycles ¢ > 3) or cliques. For example, in Figure 2, the SC-separdfor, 4, 5,6},
is the union of the intersections of the following two pairs of cycles:

6

Figure 2: An undirected graph of 8 nodes.
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Figure 3: Undirected graphs and their Markovian subgraphs. The slant “=" omwnoeens that
is removed from the graph.

pairl: {1,2,4,5,6,8} and{1,2,3,4}

pair2: {1,2,4,5,6,8} and{3,4,5,6}
In this respect, it follows that, iff is a decomposable graph, then all of its SC-separators are prime
separators.

Note that condition#) in the definition does not imply condition§. For example, if, in Figure
2, we letA = {3,4}, B = {7,8}, andC = {1,2,5,6}, then conditions (i), (iii), (iv) are satisfied
for the three sets, but (i) is not.

If G is Markovian-marginalized over a nodevhich is included in a SC-separator of the graph
g, then new SC-separators are createdyin,,. For example, in column (b) of Figure 3, node
3 is removed from the graph at the top and the resultant Markovian subgraph is given at the bot-
tom, where{1,2,5} and{2,4,5} are new SC-separators. In column (c), node 2 is removed and
the removal yields a new SC-separatf8, 5}, in the Markovian subgraph. In column (d), the
set{3,5} is a SC-separator and removal of node 3 creates a new SC-segdrdtpr Note that
{1,3,5,8,9} forms a 5-cycle and2, 3, 4, 5,6, 7} forms a clique and that the removal creates a new
clique,{1,2,4,5,6, 7}, and a new SC-separatpr, 5}. On the other hand, removal of a node which
is not a member of a SC-separator does not create any new SC-separator as we see in column (a) of
Figure 3.

Let M and S be, respectively, a set of nodes to be removed and a set of nodes which form
SC-separators. Since Markovian subgraphs are not dependent upon the order of node-removal, we
can begin node-removal with the nodeslihn S or with the nodes inl/ \ S. The only difference is
that the removal of a node it \ S simply reduces the size of a cycle or a clique while the removal
of a node inM N S creates new SC-separators.

THEOREM 4. LetG’ be a Markovian subgraph of an undirected graphif A is a SC-separator in
G’, then there exists a SC-separaty,in G such thatA N S # (.

Proof. Since A is a SC-separator i/, we can find disjoint sets3 andC, in V(G’) \ A such
that AU BU C = V(G') and(B|A|C)g. Then, by Theorem 3, it follows thgiB|A|C)g. Let
D =V (G)\ V(G'). Then, by the property of an undirected graph, we h@ei U D|C)g. Now,
we have only to show (i) that the sdtU D is itself a SC-separator or (ii) that U D contains a
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SC-separator as a subsetin

In case (i), we have the desired result. In case (ii), there are two possibilities. One possibility
is that there is a SC-separatdfin A U D such thatd C A’, and the other thatl is itself a SC-
separator irfj. In the former situation, at least one node is removed frdrim the marginalization
of G, and in the latter situation the removal takes place outside the neighborhobdhof. In
the latter situationA itself is a SC-separator iéi; and in the former situation, if node € A’ is
removed fromg, all of its neighbor nodes become adjacent to each other, which means that new
SC-separators are createdin as in panels (b), (c), and (d) in Figure 3, whefe= V (G) \ {v}.
If multiple nodesy, - - - , v,, are removed fromd’ \ A, we can see by the same argument that we
have new SC-separatorsdix whereR = V(G) \ {v1,--- ,v,}. This completes the prodf]

From this theorem, we can see that a SC-separéteay, in a Markovian subgraph gfmeans
that there is a SC-separatordhwhich shares at least one node wih An analogous but more
tangible result holds whef is decomposable. In the theorem belgu) is the set of all the prime
separators of a decomposable grgph

THEOREM 5. (Theorem 4 of Kim (2006b)) Let there be Markovian subgra@hs = 1,2,--- ,m,
of a decomposable gragh Then

(4) UiZix(9i) € x(9);

(#i) for any maximal CMSH,
UZ1x(Gi) = x(H).

The above two theorems say that,
(a) wheng is decomposable, every prime separator that is found in a Markovian subgrgpbk of
also found inG; but
(b) wheng is not decomposable, every SC-separatosay, that is found in a Markovian subgraph
of G has at least one SC-separatogiwhich shares at least one node with

There is another noteworthy difference between the two types of graphs. In a decomposable
graph, if a node which is included in a prime separator is removed, then a new clique is formed
by the nodes of the cliques that share the prime separator. This means that the prime separator
disappears with no trace left. On the other hand, if a node which is included in a SC-separator is
removed from a non-decomposable graph, then new SC-separators are created as shown in Figure
3 unless the SC-separator is shared by neighboring cliques only. From this, we can see that prime
separators in a decomposable graph may easily be lost in its Markovian subgraphs when at least one
of the nodes in a prime separator is removed. On the other hand, node-removal from a SC-separator,
S say, in a non-decomposable graph create new SC-separators in the Markovian subgraph which
share nodes witly' if the number of the removed nodes frdiris less thanS|.

5 (GRAPHICAL COMPATIBILITY AND EXISTENCE OF CMS'S
ForC C V(G)NV(H),G andH are said to b&'-compatible (Dawid & Studeny, 1999) if
o =Hce.

For graphsGi, - - , Gk, and sets of nodesdy,--- , Ax_1, if G; andG; ., are A;-compatible for
i=1,2,--- ,k—1,then we say tha#; andG, are compatible with regard @,i =2,--- ,k — 1.
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Denotel/ (G;) by V; and suppose th&61) 4, = (G2) 4, and(G2) 4, = (G3) ,. If there exist graphs,
G andg”, such that
Gy, = G1 and Gy, = G2

and
gV2 =G, and gV3 = G3,

then it follows thalg, | = G, since

g:42 = (g(/Q)A2 = g1242 = g?{z = (g;;g)AQ = 9227

where the first and the last equality hold by (5) and the inequality V> N V5.

If we assume thaf, - - - , G, are Markovian subgraphs of an undirected grgphhen there
must exist such graphs g andg” for every pair of Markovian subgraphs that share at least one
node.

Let (i) = {1,2,---,i}. Suppose that; N V;1 # ( fori = 1,2,--- |k — 1 and that we have
a graphg?) for 1 < j < k whose Markovian subgraphs afg i = 1,2, --- ,j. Then there must
existGU 1) of which G andg;; are Markovian subgraphs. Otherwise, the assumptio® for
becomes invalid. We state this in a formal manner below.

THEOREM 6. If two graphs,G andH, are C-compatible forC' = V(G) N V(H), then there exists
a CMS ofG andH.

Proof. WhenG = 'H, the result is trivial since a graph is a CMS of itself. Suppose that
[V(G)\V(H)| = 1. Then we can construct a graptt of whichG and? are Markovian subgraphs
as described below.

Let{a} = V(G) \ V(H). Then we can think of the following three cases:

(i) bdg(a) = C and there exists a connectivity componeiim H for which C' C cly(g).

(if) bdg(a) = C and there does not exist any connectivity component as in (i) but a connectivity
componeny’ for which() C cly(¢')NC C C.

(iii) bdg(a) c C, i.e.,<a|bdg(oz)‘0 \ Clg(oz»g.

In case (): In this case(C' C cly(g). So nodex may be attached to any clique H that is
connected t@ in 7, in such a way thak U {a} may form a new clique ift{!.

In case {{): In this caseq is attached tdt to form H! such thabdy («) = C.

In case iii): If there exists a connectivity componepin H such thatdg(a) C cly(g) and
C\ bdg(a) = C'\ cly(g), thena can be attached to any cliquefithat is connected tidg(«) to
form a new clique irf{'. If there is no such a connectivity componentinthen we attacl to H
such thabdy: (o) = C.

Now suppose thal’(G) \ V(H)| > 1. LetGy = Ge andV(G) \ V(H) = {a1, -+ ,a}. Let
C; =CU{ay, - ,a;} andgG; = Gg, fori = 1,--- |k, whereG;CpG;1,i = 0,1,--- , k — 1.
Then, by the transitivity property of Markovian subgraphs (Theorem 6 in Kim (2006b)), we have
GiCmG,i=0,1,--- k.

By applying the above argument, we can obtain a gfdpbf which~! andg; are Markovian
subgraphs foi = 1, --- , k, whereH® = H. By the transitivity property of Markovian subgraphs,
we haveH C,; H*. Therefore;H andG = G, are Markovian subgraphs @t*. This completes
the proof.0
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This theorem can be extended to a set of graphs where each graph is compatible with at least
one of the other graphs of the set as shown in the following corollary.

COROLLARY 3. ForgraphsG;,i = 1,2,--- ,m, letG" be a graph of whiclg; is a Markovian sub-
graph,j <. If ¢ andg;,, are C;-compatible withC; = V(G)NV (Giy1),i =1,2,--- ,m—1,
then there existsaCMS 6f, i = 1,2,--- ,m.

Proof. SinceG(™~1 andg,, are C,,_;-compatible by the condition of the corollary, there
exists, by Theorem 6, a CMS, of G/~ andg,,. By the transitivity property of Markovian
subgraphs] isa CMS ofG;,i =1,2,--- ,m. O

6 MARKOVIAN COMBINATION OF MARGINAL MODELS

In the proof of Theorem 6, we considered, to show existence of a CMS, how we can add an edge be-
tween a node iV (G) \ V (H) and another node K with no confliction with the node-separateness
that is found in at least one of the graphs. The two graphs in Figure {l1asé-compatible and
their CMS'’s are as in Figure 4. As for the two graphs in Figure 1, consider adding edges between
node4 in V(Gs) \ V(G1) and some nodes i@;. Because of the node-separatenesg;innode 4
can only be adjacent to nodes 1 and 2 or to nodes 2 and 3 as in Figure 4.

Since a CMS/H say, of a pair of compatible graphg, andG” say, is obtained in the form
of attaching the nodes i (G') \ V(G") (or V(G") \ V(G")) to G” (or G’), it may be regarded as
combining the two graphs together. We will call this combinatidviaakovian combinatiorin the
sense that

M(H) € L(¢',G");

in other words, a probability modét which is globally Markov with respect t& has its marginals,
Py (gry and Py (g, globally Markov with respect tg’ andG"” respectively.

Since a maximal CMS has a better property than CMS'’s in the context of Theorem 5, we will
propose a combination method for maximal CMS'’s based on a set of marginal model structures.
In the combination, it is imperative that node-separateness is preserved between a graph and its
Markovian subgraph. This is reflected in the combination process in such a way that the following
condition is satisfied:

[Separateness conditioh Let M be a set of Markovian subgraphs@andH a maximal CMS of
M. If two nodes are in a graph i and they are not adjacent in the graph, then neither are
they inH. Otherwise, adjacency of the nodegHris determined by checking separateness of
the nodes iTM.

Two main rules of Markovian combination are ‘union’ and ‘check of separateness.” We will
describe each of them below.

2 2
4 4
3 3

Figure 4: Two CMS’s of the graphs in Figure 1.
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8
4 6 »3 & 8
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G G, G,
— edge appearing in both of Gjand Gy
edge between the nodes that

3 S inorly oneof Grand Gz T 3 >
1 /] 7 1 [ 7
2 8 2 8

4 6 4 6

(a) Union (b) Check of separateness

Figure 5: Markovian combination of graphs. The Markovian subggplasdg, of G are combined

in two steps, union and check of separateness. Different colors are uggd(fotblue) andg, (in

red). When an edge appears in both of the graphs, it is in black; an edge is colored green when its
two nodes are not in the same graplgefor G,.

Union. Suppose we have two Markovian subgraghsandg,, of a graphg. If nodesu andv are
not separated in any @¢f; andg», we put an edge between the two nodes. We do the same
for all the pairs of nodes that are not separated in any of the subgraphs.

If two nodes are not in the same subgraph, then we put an edge between them. If two nodes
are shared by, andG- and they are connected by an edge in one subgraph but not in the
other, we leave them separated. We denote the graph resulting from this operagian by

Check of separatenessWe check if the separateness that is foun@iimndg, holds inG* also. If
an edge irg* is in conflict with the separateness of some pair of nodes, we remove the edge
from G*. We denote the graph resulting from this operatiorgby.

This combining process is illustrated in Figure 5. Note that in panel (a), edges, (3,4), (3,7), (4,5),
(5,7), are created since the nodes in each of the pairs are not in the same gyajpn @§. Two of
the edges are removed in panel (b) since their existence are in conflict with the node-separateness
that is embedded i; andG,. The combined result contains two edges more than the true graph
G in Figure 5. It is interesting to note in this figure tliatandg, are decomposable while none of
G and the combined graph is. This is an example that the Markovian combination of decomposable
graphs does not necessarily produce a decomposable combined graph.

Another illustration is given in Figure 6 where the grapis not a chain of cycles as in Figure
5 but a more general form of undirected graphs. A 4-cyélet, 7,8} is surrounded by a 7-cycle
{1,2,5,6,9,10,11} in the graph. The combined graph which appears in panel (b) contains all
the edges in the graph in addition to the edges (1,4), (1,7), (5,7), and (7,10). These four edges
appeared irj; or G, and are not in conflict with any node-separateness that is fougdamdg,.
Note, in Figures 5 and 6, that the black edges in panel (a) which appear in both of the §iagtns,
G- in each of the figures, are preserved in the combined graph in panel (b). This is consequential
on the fact that the adjacency of a pair of nodes in botly,0nd G- is in no conflict with the
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8 10

11

5 —— edge appearing in both of Gpand G

edge between the nodes that appear
inonly one of Gyand G

(@) Union (b) Check of separateness

Figure 6: Markovian combination of graphs. In panel (a), there are 12 green edges for the pairs of
nodes that do not appear in the same grapfi;abr Go. Three of the green edges remain in panel

(b).

node-separateness in both of the graphs.
The combined graphs which are obtained through the two operations are maximal CMS’s of a
given set of Markovian subgraphs as shown in the theorem below.

THEOREM 7. The combination process by the two operations of Union and Check of separateness
produces a maximal CMS.

Proof. Let M be a set of Markovian subgraphs of a graph. The “Union” operation puts an edge
between a pair of nodes,andv say, unless andv are both in a graph im and separated therein.
Denote the graph from this operation §¥. It is obvious thaty’ C. g;(g,) for everyGg’ € M.

The “Check of separateness” operation removes edgesdiamsuch a way that the following
condition is satisfied for every’ in M:

For any pair of non-adjacent nodesndv in G’ and a se in G’ which is disjoint with{u, v},

(u|Clv)g if and only if (u|Clv)g-. (6)

Denote a graph obtained from this check-of-separateness byThen any pair of non-adjacent
nodes,u andv say, inG** mean eitheri] that they are non-adjacent in at least one of the graphs
in M or (ii) that they belong to different graphs each and putting an edge between the nodes incurs
conflicts with the node-separateness in some of the graphs.in

Therefore, adding any edgeds* into another graply” disqualifies;” as a CMS of the graphs
in M. This means that” is a maximal CMS of the graphs im. O
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1A3 1/\3 — 1e 3

a
Interaction graphsd;) of X1, X, X3 g’
'< > '< v '< > — l\/“
3
(2a) 2a) (2b)
Interaction graphs) of X1, --- , X g"

Figure 7: Some simple examples where each of the graphs in the right column are not a Markovian
subgraph of any of the graphs on the left-hand side-ef.

7 FURTHER DISCUSSION

In Theorem 2, we are given a set of Markovian subgraph8.oBut in reality, we are often
given a set of marginal model structures that are assumed to be interaction graphs of the marginal
models. The interaction graphs may not be Markovian subgraphs of the unkholmrthis case,
maximal CMS’s may not contaig as an edge-subgraph. Simple examples of this situation are
displayed in Figure 7. In the first row of the figure are two interaction gra@hsfér X, Xo, X3
and a subgraph’ which is not Markovian with respect @, and similarly in the second row for
X1,---,X4. Under the hierarchy assumption for contingency tables, none of the graphical log-
linear models (1a), (2a), and (2a") is compatible with the graphical submodels at the right ends of
the corresponding rows by Theorem 2.3 of Asmussen and Edwards (1983). TheGhiodeigure
7 is possible with the graphical log-linear model (1b) in the figure when

E[(P(X{LS} = ${173}|X2)] = P(Xl = l’l)P(Xg = J]g) fOI’ a” ZL’{173} S X{LS}’ (7)

ica Vi~ The graphical log-linear modét’ in Figure 7 is
also possible from the graphical model (2b) in the figure. Instances of this phenomenon follow.
Examplel. Probability distributions corresponding to some of the graphs in FiguréA\ie will
present contingency tables for which the pair of models, (1b)AmiFigure 7, are possible and so
are the pair of models, (2b) agf. WhenX; and X; are conditionally independent give¥y,, we
will simply write i 1L j|k.

whered; is the support ofX; and X, =[],

(a) Concerning models (1b) arg:

x9g x z3 P(X =x) x9 x z3 P(X =x2x)
0O 0 O 1/24 1 0 O 2124
1 3/24 1 6/24
1 0 2124 1 0 1/24
1 6/24 1 3/24

This distribution satisfies thatl 3|2 and1_1. 3.

(b) Concerning models (2b) ar@’:
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xe w3 x1 wmy P(X =1 x9 w3 x1 x4 P(X =1
0O 0O 0 O 1/42 1 0 0 O 3/42

1 2/42 1 1/42

1 0 2/42 1 0 6/42

1 4/42 1 2/42

1 0 O 2142 1 0 O 6/42

1 4/42 1 2/42

1 0 1/42 1 0 3/42

1 2/42 1 1/42

This distribution satisfies the conditional independencies displayed in graph (2b) in Figure 7.
The marginal forXy, 5 4, satisfies the conditional independericie4|3. O

Although we have seen examples where subgraphs of graphical log-linear models are not Marko-
vian, Markovian subgraphs are usual situations under the hierarchy assumption for models. As indi-
cated in (7), in order for a subgraph to be non-Markovian, a certain set of equations must be satisfied
between the set of parameters of a joint model and that of its interested non-Markovian subgraph.
This implies that non-Markovian subgraphs are a rare situation under the hierarchy assumption as
long as interaction graphs are concerned. Furthermore, when the distribution is Normal, we can see
by its density function that the subgraphs are Markovian. Based on this point of view on Markovian
subgraphs, we have assumed in this paper that all the interaction graphs of $tilidemndom
variables are Markovian.

The combination of model structures is in two steps, Union and Check of separateness. Suppose
we combine the graphs iM. At the ‘Union’ step, we put an edge between every pair of nodes
unless there exists at least one grapiMnwhere both of the nodes appear and are not adjacent; at
the ‘Check of separateness’ step, we then remove an edge when its existence is in conflict with the
node-separateness in the graphdn In this process, we don'’t need data but the model structures.

In this sense, the proposed method reuses the information that is embedded in the marginal model
structures for learning structures of a larger set of random variables which are involved in at least
one of the graphs inM.
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