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A FETI-DP FORMULATION FOR THE THREE-DIMENSIONAL STOKES
PROBLEM WITHOUT PRIMAL PRESSURE UNKNOWNS *
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Abstract. A scalable FETI-DP (Dual-Primal Finite Element Tearing and Interconnecting) algorithm for the
three-dimensional Stokes problem is developed and analyzed. This is an extension of the previous work for the two-
dimensional problem in [8]. Advantages of this approach are the coarse problem without primal pressure unknowns
and the use of a relatively cheap lumped preconditioner. Especially in three dimensions, these advantages provide a
more robust and faster FETI-DP algorithm. In three dimensions, the velocity unknowns at subdomain corners and the
averages of velocity unknowns over common faces are selected as the primal unknowns in the FETI-DP formulation.
Its condition number bound is analyzed to be C'(H/h), where C is a positive constant which is independent of any

mesh parameters and H/h is the number of elements across each subdomain. Numerical results are included.
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1. Introduction. FETI-DP (Dual-Primal Finite Element Tearing and Interconnecting)
algorithms are known to be the most scalable domain decomposition methods, which are iter-
ative substructuring methods based on Lagrange multipliers. The solution of a linear system,
which is obtained from discretization of partial differential equations, is decoupled by a sub-
domain partition. The continuity on decoupled interface unknowns is then enforced in both
primal and dual sense. Among these decoupled unknowns primal unknowns are selected to
enforce strong continuity and Lagrange multipliers are introduced to enforce weak continuity
at the remaining part of unknowns on the interfaces, which are called dual unknowns. The
primal unknowns contribute to the coarse problem of the FETI-DP algorithms. The unknowns
other than the Lagrange multipliers are eliminated by solving independent local problems and
the global coarse problem. The resulting system on the Lagrange multipliers is solved by an
iterative method combined with a preconditioner. The FETI-DP algorithms have been suc-
cessfully developed for the elliptic problems and elasticity problems [1, 2, 5, 6, 9, 10]. This
family of algorithms was also extended to the Stokes problem [7, 11, 12, 13]. These results
can be applied to a more general form of Stokes equations with nonconstant viscosity.

In all these works for the Stokes problem, the compatibility condition on the dual velocity
unknowns is required in each subdomain. As a consequence of this requirement, the velocity

averages on edges in addition to the velocity unknowns at the subdomain corners are selected
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as primal unknowns in two dimensions. In three dimensions, introduction of face averages
and more complicated primal unknowns related to edges is unavoidable. By enforcing the
compatibility condition on the dual velocity unknowns in each subdomain, additional primal
unknowns of pressure components, that are constant in each subdomain, appear in these algo-
rithms. This gives an indefinite coarse problem with both primal velocity and primal pressure

unknowns.

In our previous work [8], we developed a new FETI-DP algorithm for the Stokes problem
in two dimensions. In this algorithm, only velocity unknowns at the subdomain corners
are selected as primal variables to reduce complication of the implementation. The primal
pressure components are not used contrary to other approaches for the Stokes problem. In this
formulation, we can eliminate all the pressure unknowns by solving local Stokes problems,
since such selection of the primal velocity unknowns results in the dual velocity unknowns
which guarantee the solvability of the local Stokes problems without eliminating spurious
pressure components. The Dirichlet-type preconditioners are no longer relevant to the FETI-
DP formulation and a lumped preconditioner is naturally employed. Its condition number
bound C(H/h)(1 + log(H/h)) was proved with the constant C' depending on the inf-sup
constant of a certain pair of velocity and pressure spaces. Furthermore it was shown that the
inf-sup constant is independent of any mesh parameters for rectangular subdomain partitions.

This method can be considered as an extension of the work in [14] to the Stokes problem.

In this paper, we extend the FETI-DP algorithm without primal pressure unknowns to
the three-dimensional Stokes problem. We note that in all the previous approaches to make
the local Stokes problem satisfy compatibility condition, quite complicated primal velocity
unknowns are selected in three dimensions; see [13]. This makes them less practical in three
dimensions. Our goal is to develop a scalable FETI-DP algorithm for the three-dimensional
problem with relatively less complicated primal unknowns and with the computationally more
efficient lumped preconditioner. By relaxing the compatibility condition on the dual veloc-
ity unknowns, we can select relatively small set of primal unknowns, which are the primal
velocity unknowns at the subdomain corners. For the scalability of the method in three di-
mensions, additional primal unknowns, which are velocity averages over common faces, are
introduced. Note that this set of primal unknowns is not enough to produce the dual velocity
unknowns which satisfy the compatibility condition in the three-dimensional Stokes problem.
We also list requirements for the selection of primal velocity unknowns which can be used in

the FETI-DP formulation without primal pressure unknowns; see Remarks 2.1 and 4.4.

The resulting coarse problem of our method consists of only the primal velocity un-
knowns and becomes symmetric and positive definite. This allows to use a more practical
Cholesky solver for the coarse problem in contrast to indefinite coarse problems appeared
in [11, 12, 13, 16]. Combined with the lumped preconditioner, a scalable condition number
bound C'(H/h) is obtained for the FETI-DP algorithm, of which bound is improved by one
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less log factor than that of the two-dimensional case [8]. Note that the lumped precondi-
tioner provides a computationally more efficient FETI-DP algorithm for three-dimensional
problems; see [1, 14]. This bound is the same as that of the FETI-DP method for the elliptic
problem with a lumped preconditioner and with the same set of primal unknowns, which are
unknowns at the subdomain corners and averages of solutions over common faces; see [14,
Lemma 4].

This paper is organized as follows. In Section 2, the FETI-DP formulation without any
primal pressure unknowns will be derived and in Section 3 some preliminary results will be
provided. The analysis of a condition number bound will be carried out in Section 4. In
the final section, numerical results will be presented. Throughout this paper, C' stands for a

generic positive constant that does not depend on any mesh parameters.
2. FETI-DP formulation.

2.1. A model problem and finite element spaces. We consider the three-dimensional

Stokes problem,

—Au+Vp=f inQ,
2.1 V-u=0 in{,
u =0 on 01,

where € is a bounded polyhedral domain in R® and f € [L?(Q)]°.

We introduce an inf-sup stable finite element space ()? , P) for a given triangulation in
Q). Let P be a pressure finite element space with functions which can be discontinuous across
the element boundaries and X be a velocity finite element space with functions which are
continuous across the element boundaries. We then enforce the average zero condition in €2
on the pressure finite element functions and the zero boundary condition on the velocity finite
element functions. We denote the resulting velocity space by X and the resulting pressure

space by P. In a more detail,

P - PO,

where L2() consists of square integrable functions with their average zero in ).
From the finite element space ()? , P), we obtain a discrete problem of (2.1):
find (@,p) € (X, P) satisfying

/Vﬁ-Vvdx—/ﬁV-vdxz/fw;dx, Yo e X,

2.2) Q Q Q

—/V-ﬁqdw:Qquﬁ.
Q

We will develop a FETI-DP algorithm to look for a fast solution of the discrete problem.
In the FETI-DP algorithm, a symmetric and positive definite system on Lagrange multipliers

will be solved iteratively by employing a quite cheap lumped preconditioner.
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2.2. A FETI-DP formulation. We first decompose ) into a non—overlapping subdo-
main partition {€2;}¥, in such a way that each subdomain aligns to the finite elements

equipped for 2. The subdomain finite element spaces are then obtained by

XD = X|g,, PO =P

Qi

that are the restrictions of X and P to the individual subdomains. Among the subdomain ve-
locity unknowns, we select some unknowns at the subdomain boundary as primal unknowns
and we denote each part of the subdomain velocity unknowns by ugi), uﬁ), and uX), where
1, 11, and A denote unknowns located at the subdomain interior, the primal unknowns, and
the remaining dual unknowns at the subdomain boundary, respectively. In the present work,
the velocity unknowns at the subdomain corners and the averages of the velocity unknowns
over common faces are selected as the primal unknowns.

We introduce the corresponding velocity spaces, X I(i), X 1(-11 ), and X (Ai), to the unknowns
ugi), ug), and uX), respectively. We also introduce a space X ﬁi) with both the interior and

the dual velocity unknowns,
X0 = x % xQ,
and use the notation ug’) for the velocity unknowns in the space X T(i).

Throughout the paper, for given spaces W) equipped for ; we denote by W the
product space of W) and by W the subspace of W, where the strong continuity at the
primal unknowns is enforced. The subspace of W, where continuity at all interface un-
knowns is enforced, will be denoted by W The unknowns at these spaces W, W and W are
then decoupled, partially coupled, and fully coupled across the subdomain interface, respec-
tively. We also allow the same notational convention for the velocity unknowns; w, denotes
(u&l), R ugN)) and u denotes velocity unknowns in the space X. We will use the same
notation u to denote velocity unknowns and the corresponding finite element function.

We now obtain an equivalent mixed form of the Stokes problem (2.2) in the finite element
space ()~( , P) by enforcing the pointwise continuity on the remaining part of the interface
unknowns using Lagrange multipliers A € M:

find ((wr,un,umn), p, A) € X x P x M such that

Kir Kia Km B; 0 us f1

KT, Kaan Kan Pﬁ JX uUA fa
2.3) K% KLy Km By 0 ||@n|=|ful.

Br Ba Bn 0 0 D 0

0 N 0 0 0 A 0

where B;, Ba, and By are from

72/ V- awgqde, VYqeP,
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FI1G. 1. Face-based (left) and edge-based (right) Lagrange multipliers: the white dots are the nodes where
Lagrange multipliers are used to enforce the continuity and the rectangles are the subdomain corners where strong

continuity has been enforced by using primal velocity unknowns.

Ja is a boolean matrix that computes jump of the dual unknowns across the subdomain

interface I';;,

=) ),

Jaua

and the other terms are from

Z/ Va - Vodz.

The common interface I';; can be an edge or a face of subdomains €2; and €2;. We intro-
duce fully redundant Lagrange multipliers in our FETI-DP formulation and denote by M the
space of Lagrange multipliers. For A € M, A|fg,; denotes the Lagrange multipliers which
are related to the continuity constraints ug) - ug) = 0 on the common face F';;. Similarly,
A
on the common edge F;x, which is the only common part of the two subdomains €2; and
Q. We call A

pliers, respectively. In Figure 1, examples of face- and edge-based Lagrange multipliers are

E,, denotes the Lagrange multipliers related to the continuity constraints uX) - uxc) =0

F;,; face-based Lagrange multipliers and A|g,, edge-based Lagrange multi-

presented.

Let M (z) be the set of subdomain indices containing the node = and |[N(z)| denote
the number of elements in the set A'(z). We may assume that [N (x)]| is bounded by some
constant number which does not depend on any mesh parameters. By employing the fully
redundant Lagrange multipliers, for the velocity unknowns wa () at the node x, we have the

identity
1
2.4 wa(@)]og, = Eawa(z)oq, + —7— JAJawa(@)]oq;,
N ()72
where each terms are defined by

1
Eawa(z)]oo, = N o) > w' (x)
0N dx
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and

TXTawa(@lon, = Y- (@) —wl (@),
Qi dx
We call Enwa and JX Jawa average and jump operators, respectively. This identity (2.4)
will be useful in our analysis of a condition number bound.

We recall the pressure finite element space,
P = P L)

where P = vazl P These local pressure spaces P(*) do not satisfy the zero average
condition. In order to eliminate all the pressure unknowns by solving independent local
Stokes problems, we will use the pressure space P instead of P in our FETI-DP formulation.
By adding a constant pressure component, we extend the pressure space P to the space P.

The added constant component will give us an additional condition on w,

(2.5) Z/ V-agdr=0, g=c,

which is equivalent to

(2.6) > / Vtcds=c) / (u —uf)y nds=0.
- Q, — JF,.
2 v 1] )

Here Fj; denotes the common face of two subdomains €2; and €2;. The above equation can

be obtained as a linear combination of the continuity constraints on ua,
(2.7) J. AUA = 0.

Since Jaoua = 0 has been already enforced in (2.3), by adding (2.5) to the algebraic
system (2.3), we obtain an extended algebraic system which is equivalent to (2.3).

REMARK 2.1. The identity (2.6) holds for our choice of primal unknowns, which are
velocity unknowns at subdomain corners and velocity averages over common faces. In the
selection of primal unknowns, it is required that they satisfy the identity (2.6). In other words,
any primal unknowns which are derived from a certain continuity condition across common

faces fulfill the requirement. For example, the primal unknowns related to the constraints,

Ji

iJ

u® nds = / w9 - n,; ds,
F

i

can be used, however, the primal unknowns associated to the averages across a common edge

E)
/u(i) ds:/ ul?) ds,
E E
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are not appropriate in our FETI-DP formulation.
We write the extended algebraic system with the pressure space P as follows:
find ((wr,un,un),p, ) € ()~(, P, M) such that

K Kia Km BT 0 us fr
Kin Kan Kan BL J{||ua fa
(2.8) Kl KL, Kmm BL 0 un | = | fn

B] BA BH 0 0 P
0 Ja 0 0 0 A

Here By, Ba, and By are from

—Z/ V- -uqgdr, VqeP,

and the other terms are the same as those in (2.3).

In the new algebraic form, the unknowns (u;, ua, p) can be eliminated by solving inde-
pendent local problems. The advantage of the extended algebraic system is that no pressure
unknowns are left and only the primal velocity unknowns remain after solving the local prob-
lems. The primal velocity unknowns can be eliminated by solving the global coarse problem,
which is smaller and more practical than those appeared in other domain decomposition al-
gorithms for the Stokes problem [11, 12, 13, 16]. As a result a linear system on A will be
obtained. The introduction of fully redundant Lagrange multipliers and the extension of the
pressure space make the resulting system singular. We will later provide details for a sub-
space of M where the system is symmetric and positive definite. The FETI-DP iteration will
be performed on the subspace.

Let

Kir Kia BT
2.9) S—| K7, Kas BT
By Ba 0

We recall that X, = X; x Xa. We can show that (X, P) satisfies the following condition:

for any nonzero p € P, there exists v, € X, satisfying

N
(2.10) Z/ V- v,pdx #0,
i=17 %

so that S is invertible. This assertion can be proved in a similar way to [8, Lemma 3.1]. We

then eliminate (uy, ua, p) from (2.8),
ug fr Km 0

(2.11) ua | =S| [ fa |l — | Kan |Gn— | JX| A
p 0 B 0
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This is solving the local Stokes problem with a Dirichlet boundary condition given at the
primal unknowns @y and a Neumann boundary condition given at the other part of unknowns
on the subdomain boundary.

Substituting (ur, ua, p) into (2.8) and then solving for 4y,

T
Km fr 0
(2.12) Smntn = fu— | Kan | S| | fa|—-|7X[A],
B 0 0

we obtain the resulting algebraic system on A,

(2.13) FppA = d,
where
(2.14)
T T T
0 0 0 Ko K 0
Fpp = |JL| S JX|+|JX| S| Kan | Son | Kan | S~ JL .
0 0 0 B Bn 0
0 ! fr K Kim fr
d =|(JL| 5! fal—| Kan | Sab | fi— | Kan | S7Y| £a ,
0 0 Bn Br 0
and
T
Km Km
Sin=Kmn — | Kan | S7'| Kan
Bn Bn

Since X, C X, the assertion (2.10) also holds for ()~( , P). This fact gives that Sty is
invertible, in fact, symmetric and positive definite.

We introduce a lumped preconditioner M~ which is given by

T
0 0
M= UL s|Jk
0 0

We recall the matrix S in (2.9) and obtain the resulting form of the preconditioner
(2.15) M~' = JaKanJk.

This preconditioner was introduced for FETI-type algorithms of the elliptic problems to re-

duce the cost for solving a Dirichlet problem which appears in the optimal preconditioner [3].
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FIG. 2. Six Lagrange multipliers are used for an unknown (white dot) on an edge which are the common part

of four subdomains

Later, FETI-DP algorithms with the lumped preconditioner was proved to give a good con-
vergence for the elliptic problems [14].

The resulting system (2.13) for A € M is symmetric and positive semidefinite. We
will now find a subspace of M where Fppp is positive definite. Let Null(JX) be the space
of vectors p € M such that JXp = 0. The introduction of the fully redundant Lagrange
multipliers gives that for A € Null(Jg), FppA = 0, see Figure 2. The extension of the

pressure space causes one more null space component which is given by

(2.16) o

Fi; = Gijij, VE;; and po| g, =0, VE.

Here po|r,; and po|m,, are face-based and edge-based Lagrange multipliers, respectively,

n;; is the unit normal to the face F};, and at each nodal point x; € Fij, Cij () is given by
@.17) Gy = [ (o). 9(9). () ds,
Fij;

where ¢ is the velocity basis function related to the node x;. This can be shown by observing
that (ur,ua,un) = 0, p = ¢, and A = cp are solutions of (2.8) for the zero force terms
(f1,fa, fui) = 0 with ¢ as an arbitrary constant.

Let Range(Ja) be the range space of Ja. We then have
M = Null(JX) ) Range(Jx).

We now introduce a subspace of M, which is orthogonal to the null space components of

Fpp,

(2.18) M, = {p € Range(Ja) : p'py =0}.
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Moreover, M, is in fact the range space of Fpp and d € M_; see the formula for Fipp and d
in (2.14) and the result in [8, Lemma 3.2]. We build the orthogonal projection to the space M,
by finding a basis of Null(J%). By applying the projection throughout the conjugate gradient
iteration, we perform the iteration within the subspace M,.

In a more detail, let {ge1, o, - , i } be a basis of Null(JX). We consider the follow-

ing vector p, of the form,
(2.19) Mo = Qofbo + a1pby + aopra + - A Qi
and we then determine the values of oy, as, - - - , @y, and ag so that
uly=0fori=1,2,---,m and ﬁOTﬁO =1.
We now introduce a projection
Pa, =1 — figfig -

For any A € Range(.Ja ), we can see that Pys X belongs to M. We consider

wl Py X = TN = g ) fori=1,--- m.
By using Range(Ja) LNull(J1) and u' 1, = 0 fori = 1,--- , m, we obtain that
(2.20) ul Py X=0, i=1,---,m, for A € Range(Ja).
We now consider

fig Prr A = fig (A — Fofig A).-
Since fig fip = 1, we have
(2.21) fig Py A = 0.
From (2.19)-(2.21), we obtain for any A € Range(Ja)
uiTPMC)\ =0, fori=0,1,---,m.

This proves that Py, A belongs to M.. We note that all the iterates of the FETI-DP algorithm
with the lumped preconditioner belong to Range(Ja ). Therefore we will use the projection
Py, which can be built easily as in the above, during the FETI-DP iteration.

REMARK 2.2. Compared to the two-dimensional problem, more complicated interface
conditions appear in the three-dimensional case, as it is common to most FETI-DP formula-
tion. Edge- and face-based fully redundant Lagrange multipliers and the additional primal

velocity unknowns other than velocity unknowns at the corners are required.
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3. Preliminary results. In this section, we provide some preliminary results to analyze
a condition number bound of the new FETI-DP algorithm equipped with the lumped precon-
ditioner for the Stokes problem. For those results which can be obtained in a similar way to
the two-dimensional case, we will refer our previous work [8].

For the proof of the lower bound analysis, we need an inf-sup stability of a certain pair
of velocity and pressure finite element spaces. We introduce a pair of velocity and pressure

finite element spaces,
(EI,Hv F)v

where £ o= X7+ EH. Here EH is an enriched primal velocity space that is constructed
as follows. We denote by F' the common face where two subdomains intersect and by E the
common edge where more than two subdomains intersect. For a given subdomain partition,
V, F, and & denote the set of subdomain corners, the set of common faces, and the set of
common edges, respectively. For a common edge F, we denote by F(E) the set of faces that

share the edge E in common. We consider a function v € X such that
v(V) =ay,
/ I"(0pv)(z)dz(s) =ap,
F

/FIh(GEv)(x) ‘npdx(s)=ak%, YF € F(E),

with the given values of ay, ar, and a%:, which are provided for all V' € V, F' € F, and
E € £. Here 0 and 0 are face and edge cut-off functions, which are one at the interior
nodes of the face F', and the edge E, respectively, and zero at the other part of the unknowns.
In addition, I"(v) is the nodal interpolant of v to the velocity finite element space X. We
note that for an edge F, the values of a% are provided for each face F' containing F, i.e., for
all face F' € F(E).

The enriched primal velocity space then consists of such functions v which minimize

discrete H'-seminorm, i.e.,
Eq= {’U € X : v minimizes |v|; o with the given values ay, ap, and ag} .

We introduce the pressure space Py with functions defined in € that are constant in each

subdomain and have their average zero in €. The space P is then decomposed into

P=Fr @ﬁm

where
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We will prove that the pair (E 111, P) is inf-sup stable. Let 3; and S be inf-sup constants of
(X1, P;) and (Ey;, Prp). The inf-sup constant 3 of (E; 11, P) is then bounded below by

i
B +1

5= Cuin { L 2.
see [8, Lemma 3.5]. Since the pair (X, Pr) is inf-sup stable, we only need to prove the
inf-sup stability of (EH, Pr).

For a given function v € X, we define ] &, (v) by an interpolant to the space Ep with

those values ay/, ar, and a% obtained from v. We introduce the notations

N N
ulf =) ulfn,y,  IIplE =D lIplie,)
i=1 i=1

where | - |g1(q,) and || - || 2(q,) are the H'-seminorm and the L*-norm in §;, respectively.
LEMMA 3.1. The pair (En,ﬁn) satisfies that for any q € Pry, there exists vy € En
such that

JoV-vpgde

> 3,
lvglillallo

where [ is the inf-sup constant of the pair ()A(, Pn).
Proof. We note that ()A( ,?H) is inf-sup stable with the constant ﬁ, in other words, for
any q € Pry there exists v € X such that

Jo V- vqdx

(3.1 > .
vl1llqllo
For ¢ € P, which is constant in each subdomain, we let ¢; denote those constant values in

each subdomain ;. For the given v € X, we find I (v) € Eq and let vy = I (v). We

then have
V- vgdx = qi/ V- -vdx
—Zqi/ v-n;ds
; 090,
(3.2) :Zqi/ Ih((9F+9E+9v)v)-nids
a0,

%

:Zqi/ Ih((9F+9E+9v)’UE)~nid$
; 09

= / V- vpqdr.
Q

Here m; is the unit normal to 9€;. In the fourth equality, the following properties for v g are
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used
ve(V) =v(V), YV €V,
/ QF’UE nF:/ Ih(9F0)~nF, VF € F,
F

/ I"0pvz) -np :/ I"(0pv) -np, VF € F(E), VE € &,
F F

where n g is the unit normal to the face F'. By the definition, v satisfies that
lvgl < vl
From the above bound, the identity in (3.2), and the bound in (3.1), we obtain the desired
result for vz,

JoV -vgpqde - JoV - vqdx
lvghllallo  —  [vlillallo

> B.

REMARK 3.2. The inf-sup constant of the pair (EH, Pr1) is bounded below by the value
B\, which is independent of any mesh parameters. In our previous work [8] for the two-
dimensional Stokes problem, a similar result was proved for only rectangular subdomain
partition. In this new approach, we do not need such an assumption on the subdomain parti-
tion.

REMARK 3.3. We note that the quite complicated enriched primal velocity space is
introduced only for the proof of the lower bound analysis. The interpolant T B (v) then

preserves the flux across the subdomain interface, i.e.,

Z/ V- (Ig, pdm—Z/ V.-vpdz, Vpe P,

which plays a major role in the proof of the lower bound. In the actual implementation of
the FETI-DP algorithm, the velocity unknowns at the subdomain corners and the velocity
averages across the common faces are selected as the primal unknowns. In [13], all those
unknowns, ay, ar, and ag, are selected as primal unknowns, which produce quite a large

coarse problem combined with primal pressure unknowns.

4. Condition number analysis. In this section, we will provide a condition number
bound of the FETI-DP operator with the lumped preconditioner by proving the following
inequalities:

— H\ —~
C1B82 (MM, A) < (FppA,A) < Oy <h) (MMAAX), VA€M,
where [ is the inf-sup constant of the pair (E 1,115 P). These inequalities yield the following

condition number bound,

—~_ 1 (H
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4.1. Lower bound analysis. We provide an analysis for the lower bound of the pro-
posed FETI-DP algorithm. The following lemma is proved in [4, Lemma 2.3]:
LEMMA 4.1. Consider the discrete saddle point problem

(5 ) ()= (0)

where A and C are positive definite and, if « = oo, B has full row rank. Let 3 > 0 be the
best inf-sup constant of the pair (A, B) such that

p"BAT'BTp > 3*pTCp, Vp.
Then,

1
ulla < /)| flla-r + ——llgllc-1,
lulla < 1/V[[fllam 52+V/allgllc !

1 v
Ipllc < \/ﬁﬂﬂuﬂ + mllgllc—l-

We introduce a matrix K, which gives the broken H!-seminorm for u = (u;, ua, t) €
X, ie.,

N
Z [ulF (o, = u’ Ku,

i=1

where K is obtained from the block matrices in (2.3),

K Kian Km
K = K?A Kan Kam
Kin Kin Kmn

With the help of the pair (E' 1,11, P), we obtain the following lemma, which is proved similarly
to [8, Lemma 4.2]. We include its proof for the completeness.
LEMMA 4.2. For any p € M., there exists u € X such that
1. Jaua = p,
2. ZifQiV-uqdm =0, VgqeP
3. (Ku,u) < C’é (KanJ X, JX p), where 3 is the inf-sup constant of the pair (ELH, P).
Proof. For any p € M., there exists va € Xa such that

Java = .
We then find vA € X A, the space of fully coupled dual velocity unknowns, which gives that

EA(’UA + @A) =0.
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Let wa = va + VA and then we obtain
“.1) Jawa = p and Eawa =0,

since JAaUA = 0.

For the w, we find w; € X7, g € Eyp, and p € P such that
Z/Q’_V(wf—’_wA—Fﬁ’E)'vvfdx_Z/Q’.V'vlpdw:O, Vo, € X,
“2 Z/in(wIerA +@E)'V5Ed$Z/S2iV-§Epdx =0, Vope€ En,
_Z/Q_v'(’w1+wA+’lTJE)qdm:0, Vq € P.
We let

U =ws+wa+WEg

and will show that u satisfies the three requirements. We represent w g with a vector of

unknowns in the space X s

wg = (21, 2a,W11),
and obtain u as in the form,

u = (w; + 25, WA + 2a, W),
so that we have
UA = WA + ZA.
Since wg € X , Jaza = 0. Combined with (4.1), this gives the first requirement

(4.3) Jaua = Jawa = p

and

N

V- -udr = /u(i)fu(j)~ni-ds
>/ > [l -l

i=1 "% ij Y Fi

” ‘N5 = Z HIF

Fij Cz]nw)

where |, is the part of Lagrange multipliers p corresponding to the face F;; and (;; is

(wy -

defined in (2.17). Here we used that Jawa = u, ie., wg))mj = p|p,;. Since
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p € M. and py|r,, = (ijmij, the above equation is zero so that the second requirement is
proved for u, combined with the third equation in (4.2); see also (2.16) and (2.18).

We write the weak form in (4.2) into the algebraic equations,

K1 Kig BY wy —Kipwa
4.4) Kgr Kgg BE% wg | = | —Kpawa
By Bg 0 D —Bawa

Let

Ky K
N A Bz(B, BE).
Kpi Kpg

We introduce the mass matrix C' which gives the L2-norm of functions in the space P, i.e.,

(Cq,q) = llgll72(y> forq e P.

Since (ELn,f) is inf-sup stable, the pair (A, B) satisfies the condition in Lemma 4.1
with the constant § and the matrix B has full row rank. We apply Lemma 4.1 to the mixed

problem (4.4) with v = 1 and o = oo to obtain

o el
WEg Kpawa

Here |[v||4 = (Av, v).

Similarly to the proof in [8, Lemma 4.2 ], the two terms in (4.5) are bounded by (KAa WA, WA ).

(o)

From the above bound combined with (2.4) and (4.1), we obtain

2 2

<2

A

2 2
+ 7ﬁ2 ||BA’U}A||C,1 .
A*l

We then obtain for u = w; + wa + Wg,

2
1
< 07<KAAU)A,’UJA>.

(Ku,u) < 2(Kapawa, wa) +2 =03
A

C

We introduce

(4.6) X(div):{ve)? ;/ V-vgdr =0, vqep}.
Q’L
We then have the identity,
<JAUA7 A>2
4.7 FppA,A) = max ————
7 < br > veX (div) <K'U,’U>

The following lower bound can be obtained from Lemma 4.2 and (4.7), see [8, Theorem 4.3]:
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THEOREM 4.3. For any X € M., we have
Clﬁ2<]/\4\)‘7 A> < <FDPA7 A)a

where [3 is the inf-sup constant of the pair (Ey 1, P) and C is a positive constant that does
not depend on any mesh parameters.

REMARK 4.4. We note that the condition on the dual velocity unknowns,
JAU/A € Mca

Le.,
S @ = u) s, - pole, = 3 /F () — ul) - np, ds =0,
Fi' Fij ij

is required for the proof of the lower bound in Theorem 4.3. Here g is in (2.16) and np,; is
the unit normal to the common face F;;. The primal velocity unknowns have been chosen so

that the dual velocity unknowns satisfy such a requirement.

4.2. Upper bound analysis. The following result is obtained from a Poincaré inequal-
ity, see [14, Lemma 4]:
LEMMA 4.5. Let §; be a three-dimensional subdomain. For any function v € H*($);),

v — CFH%Z(F) < CH|U|%11(Q71)7

where F'is a face of the subdomain ); and cp is given by

[ I"(0pv)da(s)
cp = ——F—F—7——7.
[ dz(s)
We note that for u = (uV), .- uM) ¢ X, u satisfies the primal constraints so that

| 16 s = [ 1 (0, u) da(s)

where Fj; is the common face of €2; and ;.

LEMMA 4.6. There exists a constant C' such that

H ~
(KaaJX Jaun, JX Jaua) < C%<Ku,u>, foranyu € X.

Proof. Let wa = JgJAuA. We note that

N
<KAAJZJA’U,A, JZJA’U,A> = Z |wX)|§11(Qi).
i=1
From the inverse inequality and

”w(AZ)”%Q(Q,-) < ChHw(Az)HQL?(&Qi)v
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o] M

02

FIG. 3. Subdomains Q; and ) connected through faces F;j. and Fy,; containing the edge E

we obtain
N .
4.8) (KandXJaua, JEJaua) < On 1S |l |22 50,
i=1
We note that for x € 99;
@ ('“'X) (x) — u(AJ)(:z:)) , when z € Fjj,

4.9) wy'(z) = ;
° ZZEN(m) (“(A) (»T) - ’UJ(AZ) (I)) , whenz € FE.

Here Fj; is an open face of €2;, which is the common part of two subdomains €2; and €2,

E is an open edge of §2;, and A/(z) is the set of subdomain indices sharing the node z. We

decompose wx) into

(4.10) wl = Y I"Op,wd)+ Y 1M(0pwl)
F,'j CcoN; ECOQ;
and then compute each part using the formula in (4.9).

For the first term of the above equation, by Lemma 4.5 we obtain
1" (05, w3200, = 11" (O, w32 (s,
< Clul) - U(Aj)||2L2(F,L-j)
4.11) = Cllu® —uD||72p

<C (||u(i) —cr,

2LZ(Fij) + [u) —ep, %2(&]-))
<CH (|U(i)|%11(gi) + ‘u(j)ﬁ'-ll(ﬂj)) ;
where
fFij Ih(HFiju(i)) dx(s) fFij Ih(ﬂpiju(j)) dx(s)
CFiy = fFij dx(s) - fFij dx(s)

The edge term can be bounded by

7 7 l
4.12) 1 (0pw )22 00, < Ch > [[ul (@) — uld (@[22 ()
leEN ()
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For the term related to the edge F, we consider all the subdomain faces sharing the edge F.
Among them we select a path from Q; to Q, {Q;, Qk,, -+, Qg , 2} which are connected
through their common faces, see Figure 3. We note that w has then the same averages across
the common faces F'. We denote them by cr. For a simple presentation, we assume that the
path consists of only three subdomains, i.e., {€2;, Qx, €2 }. The following assertion can be
applied to a more general case without any difficulty.

We then obtain

7 l
hlu — w22z

1 k k l
4.13) <2nful) —ul)|2ap) + 20)ul) — w2 g

i k k l
<C () = Qe py) + 6l = u@ ey, )
<CH (|U(i)|§11(szi) + |u(k)|%{1(szk) + ‘u(l)|12LIl(S21)) .

Here we have used the fact that both Fj; and FJ; contain the edge E and the inequality used
in (4.11). Combining (4.8) with (4.10)—(4.13), and using

N .
Z ‘u(l)ﬁ,ﬂi = (Ku, u),

i=1
the desired bound has been proved. 0

The identity in (4.7) combined with Lemma 4.6 gives the following upper bound, see [8,
Theorem 4.6]:

THEOREM 4.7. For any X € M., we have

H —~
(FppA, A) < Czﬁ<M)\7 )
where Cy is a positive constant that does not depend on any mesh parameters.

5. Numerical results. We consider a model Stokes problem defined in the unit cubic

domain 2 = [0, 1]® with the exact solution

u=0 and p(z,y,z2) = zyz — é
A prism finite element [11, 15] is used for discretization. For a given mesh size h, the domain
is divided uniformly into smaller cubes with its side length i. Each small cube is then divided
into eight prisms as in Figure 4. The velocity basis functions are piecewise linear in each
prism element and the pressure basis functions are piecewise constant in each cube consisting
of the eight prisms.

The domain is then uniformly partitioned into cubical subdomains, which align to the
given triangulation in §2. The notation Nd = 33 means that the domain 2 is divided by
equally spaced three subintervals in each direction and H denotes the length of the subinter-
vals. The notation H/h is used to denote the number of prism elements across each subdo-

main. The conjugate gradient iteration of the FETI-DP algorithm proceeds until the {2-norm
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FIG. 4. Eight prism elements for a cube

With preconditioner Without preconditioner

Nd || Iter K Amin | Amax | Iter K Amin Amax
33 27 | 2213 | 1.417 | 3138 | 96 | 723.9 | 0.3132 | 226.7
43 28 | 23.10 | 1.452 | 33.43 | 100 | 758.6 | 0.4219 | 320.1
53 29 | 2457 | 1.405 | 34.52 | 102 | 775.9 | 0.5321 | 412.9
63 30 | 25.39 | 1.384 | 35.15 | 103 | 786.5 | 0.6415 | 504.5
73 30 | 25.76 | 1.380 | 35.55 | 104 | 790.0 | 0.7535 | 595.3
83 30 | 2598 | 1.378 | 35.81 | 104 | 793.0 | 0.8643 | 685.3

TABLE 1
Performance as increase of the number of subdomains Nd with a fixed local problem size (H/h = 8) in each
subdomain. Iter: the number of iterations, k: the condition number, Ay in: the minimum eigenvalue, and Amaz:

the maximum eigenvalue.

of the relative residual is reduced by a factor of 10°. Performance of the method will be tested
with respect to the increase of the number of subdomains Nd and the increase of the size of
the local problem H/h.

In Table 1, the FETI-DP algorithm is performed by increasing the number of subdo-
mains. Here the size of local problems is fixed with H/h = 8. The number of iterations and
condition numbers are presented for both the case combined with the lumped preconditioner
and the case without employing the preconditioner. The scalability of the method, which
does not depend on the number of subdomains, is observed for the both cases and the lumped
preconditioner results in considerable reduction on the number of iterations.

In Table 2, we present the convergence behavior depending on the increase of the size
of local problems in a given subdomain partition with Nd = 33. For the case without the
preconditioner, both the minimum eigenvalues and the maximum eigenvalues show bad be-
haviors. The preconditioner dramatically reduces the number of iterations. The number of
iterations and condition numbers increase slightly for the case with the lumped preconditioner
as the size of local problems increases, which confirms the scalability result of our analytical

bound.
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With preconditioner Without preconditioner

H/h || Tter K Amin | Amax | Iter K Amin Amax
6 27 | 20.86 | 1.344 | 28.05 | 80 313.3 0.4524 | 141.7
8 27 | 2213 | 1.417 | 31.38 | 96 723.9 0.3123 | 226.7
10 29 | 21.86 | 1.583 | 34.61 | 111 | 1.387E+3 | 0.2360 | 327.4
12 30 | 23.76 | 1.586 | 37.71 | 125 | 2.359E+3 | 0.1892 | 446.4
14 31 | 25.71 | 1.583 | 40.72 | 138 | 3.696E+3 | 0.1577 | 582.8
16 33 | 27.96 | 1.561 | 43.66 | 150 | 5.428E+3 | 0.1356 | 736.1

TABLE 2
Performance as increase of the local problem size H/h in a fixed subdomain partition with Nd = 33, Iter:
the number of iterations, K: the condition number, Apin: the minimum eigenvalue, and Amaq: the maximum

eigenvalue.

In our FETI-DP formulation, we are allowed to select primal unknowns which are based
on common faces and produce the dual velocity unknowns ua satisfying Jaua € M,; see
Remarks 2.1 and 4.4. We selected the primal unknowns that are velocity unknowns at subdo-
main corners and the averages of each velocity component over common faces. Even though
this set of primal constraints reduces a considerable amount of primal unknowns required in
the previous approaches [12, 13], we observed that our coarse problem is a bottleneck of the
computation as the number of subdomains gets larger. We test our algorithm for a smaller
set of primal unknowns by selecting the primal unknowns which are averages of the normal

velocity component over common faces, instead of averages of each velocity component. In

J:

ij

a more detail, we select

v ‘N ds = / o) “ny;ds

Fij
as the primal unknowns, where F;; is the common face of two subdomains €2; and £2;, and
n;; is the unit normal to the face F};.

In Table 3, the performance of the algorithm with the smaller set of primal unknowns
is presented regarding to the number of subdomains. In contrast to the case with the larger
set of primal unknowns, the number of iterations and the condition numbers increase as the
number of subdomains increases. We note that this smaller set of primal unknowns is not
enough to resolve all the rigid body motions of the Stokes problem in three dimensions; see
[13, Section 7]. For this case, we still have stable behavior of the minimum eigenvalues,
since such primal unknowns give ua satisfying the requirement of the lower bound analysis
discussed in Remark 4.4. When Nd gets larger than 83 with the larger set of primal unknowns,
we observed that computational cost is mostly done on solving the coarse problem of which
size is larger than 5000. This fact makes the algorithm with the larger set of primal unknowns

less efficient, even though the larger set of primal unknowns gives less number of iterations.
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Corners and face averages Corners and face normals
Nd || Iter K Amin | Amax | coarse dofs. | Iter K Amin | Amax | coarse dofs.
33 27 | 2213 | 1.417 | 31.38 186 33 | 40.98 | 1.587 | 65.06 78
43 28 | 23.10 | 1.452 | 33.43 513 42 | 7592 | 1463 | 111.0 225
53 29 | 24.57 | 1.405 | 34.52 1,092 54 | 103.8 | 1.475 | 153.2 492
6° 30 | 25.39 | 1.384 | 35.15 1,995 61 | 126.8 | 1.492 | 189.3 915
73 30 | 25.76 | 1.380 | 35.55 3,294 67 | 149.0 | 1.463 | 218.0 1,530
83 30 | 25.98 | 1.378 | 35.81 5,061 73 | 165.5 | 1.455 | 240.9 2,373
93 30 | 26.19 | 1.374 | 35.99 7,368 76 | 176.9 | 1.463 | 258.9 3,480
10% || 30 | 26.32 | 1.372 | 36.13 10,287 79 | 187.1 | 1.461 | 273.3 4,887
TABLE 3

Performance as increase of the number of subdomains N d with a fixed local problem size (H/h = 8). Iter: the
number of iterations, k: the condition number, Ay i the minimum eigenvalue, Ay aq: the maximum eigenvalue,

and coarse dofs.: the number of primal unknowns.

In Table 4, the scalability of the method with the smaller set of primal unknowns is tested
for the size of the local problems H/h. Here the domain is divided uniformly into 3% sub-
domains. The minimum eigenvalues present stable behavior and the maximum eigenvalues
increase depending on the size of local problems. Compared to the case with the larger set
of primal unknowns, we observe a modest increase on the number iterations. In Figure 5, the
maximum eigenvalues versus the size of local problems are plotted for the two cases. The
case with the larger set of primal unknowns fits to the straight line y = 2, which agrees well to
our theoretical bound. In fact, the result shows that our bound is sharp. For the case with the
smaller set of primal unknowns, the maximum eigenvalues fit between y = z and y = 2 and
are much closer to y = z. We can see that the smaller choice of primal unknowns provides
relatively good scalability, of which bound is closer to C'(H/h), depending on the size of
local problems. We note that for the three-dimensional elliptic problems the case with primal
unknowns only at subdomain corners gives the bound of maximum eigenvalues C(H /h)? for

the FETI-DP algorithm with a lumped preconditioner; see [14, 17].

In our last numerical experiment, we select only the velocity unknowns at subdomain
corners as the primal unknowns, which gives the smallest possible set of primal unknowns in
three-dimensional problems. In Table 5, the performance of the method is presented. Stable
behaviors of the number of iterations and condition numbers are observed regarding to the
number of subdomains. However quite a large number of iterations is required than in the
previous two choices of primal unknowns. As the size of local problems gets larger, we
observe substantial increases in the number of iterations and the condition numbers. In a

more detail, both the minimum eigenvalue and the maximum eigenvalue are affected by the



A FETI-DP FORMULATION FOR THE STOKES PROBLEM 23

Corners and face averages Corners and face normals

H/h || Iter K Amin | Amax | Iter K Amin | Amax
6 27 | 20.86 | 1.344 | 28.05 | 31 | 38.62 | 1.361 | 52.58
8 27 | 22.13 | 1.417 | 31.38 | 33 | 40.98 | 1.587 | 65.05
10 29 | 21.86 | 1.583 | 34.61 | 35 | 46.72 | 1.644 | 76.81
12 30 | 23.76 | 1.586 | 37.71 | 37 | 56.88 | 1.552 | 88.31
14 31 | 25.71 | 1.583 | 40.72 | 38 | 61.68 | 1.615 | 99.63
16 33 | 27.96 | 1.561 | 43.66 | 40 | 69.10 | 1.604 | 110.8

TABLE 4
Performance as increase of the local problem size H/h in a fixed subdomain partition with Nd = 33, Iter:
the number of iterations, K: the condition number, Apin: the minimum eigenvalue, and Amaq: the maximum

eigenvalue.
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FIG. 5. Plot of estimated maximum eigenvalues with respect to the size of local problems H / h; dotted line (with
primal unknowns at subdomain corners and the face averages), dashed line (with primal unknowns at subdomain

corners and the face normals), solid line (y = x), and thick solid line (y = x?).

local problem size. We note that such selection of primal unknowns dose not satisfy the
requirement, Jaua € M., for the lower bound analysis. The minimum eigenvalue decreases
as more prism elements are introduced for the local problems. The behavior of the maximum
eigenvalues is presented in Figure 6, which follows the quadratic function of the local problem

size.
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