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Abstract

In this paper we consider a class of nonlinear viscoelastic equations, in which no dissipa-
tion mechanism is present, except for the convolution term accounting for the past memory
of the variable. We prove the global existence of weak solutions and energy decay. The exis-
tence is proved by means of Faedo-Galerkin approximation method and asymptotic behavior
is obtained by making use of the perturbed energy technique.

1 INTRODUCTION

Let Ω be a bounded open domain in Rn with smooth boundary Γ, ρ is a positive real
number. In this paper, we consider the following nonlinear viscoelastic equation

|ut|ρutt −∆u +
∫ t

0
µ(t− s)∆u(s)ds + g(u) = 0,∀(x, t) ∈ Ω× R+;

u(x, t) = 0, ∀(x, t) ∈ Γ× R+; (1.1)
u(x, 0) = u0(x), ut(x, 0) = u1(x) ∀x ∈ Ω.

Problems related to the equations are interesting not only from the point of view of PDE
general theory, but also due to its applications in Mechanics. Problem (1.1) results from the
mathematical description of small amplitude vibrations of an elastic string [7]. When ρ = 0,
the material density is equal to 1, the equation describes the extensional vibrations of thin rods.
Among the numerous works in this direction, we can cite Cavalcant et al [2, 3]. Cavalcanti et al
[2] studied the equation

utt −∆u +
∫ t

0
µ(t− s)∆u(s)ds + a(x)ut + |u|γu = 0, in Ω× R+.

Under the condition that a(x) ≥ a0 > 0 on ω ⊂ Ω, with ω satisfying some geometry restrictions,
the authors obtained an exponential rate of decay. In the same direction, Cavalcanti et al [3]
have also studied, in a bounded domain, the equation

|ut|ρutt −∆u−∆utt +
∫ t

0
µ(t− s)∆u(s)ds− γ∆ut = 0.
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They obtained the uniform decay rats of the energy assuming a strong damping 4ut acting in
the domain. However, when the damping mechanism is given by the memory term, it is possible
to prove that the exponential decay holds.

The purpose of this paper is to obtain the existence of global solutions and an exponential
decay rate of the solutions for the equation (1.1) motivated by [1]. Our paper is organized as
follows: In Section 2, we give some notations, assumptions and our main result. In Section 3
we obtain a global existence for global solutions and in Section 4 we derive the uniform decay
of the energy.

2 PRELIMINARIES AND MAIN RESULT

Throughout this paper, we will consider the standard spaces Lq(Ω) with norm ‖u‖q, and
we denote by (·, ·) and ‖ · ‖ the inner product and norm on L2(Ω). The symbols ∇ and 4 will
stand for the gradient and the Laplacian respectively. The prime and the subscript t will denote
time differentiation.

We will also consider the Sobolev space H1
0 (Ω), with the inner product (∇u,∇v) and the

norm ‖u‖H1
0 (Ω) = (∇u,∇v), and we will use the embedding H1

0 (Ω) ↪→ Lq(Ω) for 2 ≤ q ≤
2n/(n− 2) if n ≥ 3 or q ≥ 2 if n = 1, 2. Cq denote the embedding constant; i.e.

‖u‖q ≤ Cq‖∇u‖. (2.1)

First, we give the precise assumptions on the memory term µ and the nonlinear term g.

(h1) µ : R+ → R+ is a bounded C1-function such that µ(0) > 0 and 1−
∫∞
0 µ(t− s)ds = l > 0;

(h2) There exists positive constants ξ, ξ1 such that ξµ(t) ≤ −µ′(t) ≤ ξ1µ(t), for t ≥ 0 ;

(g1) Let g : R → R be a non-decreasing C1-function such that g(0) = 0;

(g2) For some γ ≥ 0, there exists a constant c > 0, such that |g′(s)| ≤ c(1 + |s|γ).

Let G(s) =
∫ s
0 g(t)dt, then we infer from (g1), (g2) that, there exists a constant c1 > 0 such

that

|g(s)| ≤ c1(1 + |s|γ+1); (2.2)
0 ≤ G(s) ≤ g(s)s. (2.3)

Next, we introduce the energy

E(t) =
1

ρ + 2
‖ut(t)‖ρ+2

ρ+2 +
1
2
(
1−

∫ t

0
µ(t− s)ds

)
‖∇u(t)‖2 +

∫
Ω

G(u)dx +
1
2
(µ ◦ ∇u)(t),

where

(µ ◦ u)(t) =
∫ t

0
µ(t− s)‖u(t)− u(s)‖2ds.

Finally, we state our main result.

Theorem 2.1. Assume that µ and g satisfy the hypotheses (h1),(h2); (g1),(g2)respectively, and
γ satisfies

0 ≤ γ, ρ when n = 1, 2;
0 ≤ γ, ρ ≤ 4

n−2 , when n ≥ 3 (2.4)
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then for given u0 ∈ H1
0 (Ω), u1 ∈ Lρ+2(Ω), there exists a global solution to equations (1.1) such

that

u ∈ L∞([0,∞);H1
0 (Ω)); ut ∈ L∞([0,∞);Lρ+2(Ω)). (2.5)

Furthermore, there exist positive constants t0, k and K, such that the solution given by
(2.4) satisfies E(t) ≤ Ke−kt, ∀t ≥ t0.

3 EXISTENCE OF SOLUTIONS

In this section we are going to obtain the existence of global weak solutions to the problem
(1.1) using Faedo-Galerkin’s approximation. For this end we represent by {ων |ν = 1, 2, ...} a
orthonormal basis of H1

0 (Ω), by Vm the subspace of H1
0 (Ω) generated by the first m vectors

ω1, ω2, · · · , ωm, and we define

um(t) =
m∑

i=1

ξim(t)ωi,

where um is the solution to the following Cauchy problem:

(|u′m(t)|ρu′′m(t), ω) + (∇um(t),∇ω)−
∫ t

0
µ(t− s)(∇um(s),∇ω)ds

+(g(um), ω) = 0; ∀ω ∈ Vm (3.1)
um(0) = u0m → u0(in H1

0 (Ω)); u′m(0) = u1m → u1(in L2(Ω)).

The approximate system (3.1) is a normal one of differential equations which has a solution
in [0, T ) for some T > 0. The extension to the whole interval [0,∞) is a consequence of the
following estimate which we are going to prove below.

A simple computation gives us∫ t

0
µ(t− s)(∇u′m(t),∇um(s))ds

=
1
2
(µ′ ◦ ∇um)(t)− 1

2
d

dt
(µ ◦ ∇um)(t) +

1
2

d

dt
‖∇um(t)‖2

∫ t

0
µ(s)ds; (3.2)

d

dt

( ∫ t

0
µ(s)ds‖∇um(t)‖2

)
= µ(t)‖∇um(t)‖2 +

∫ t

0
µ(t− s)

d

dt
‖∇um(t)‖2ds. (3.3)

Considering ω = u′m(t) in (3.1), and combining with (3.2) and (3.3), we find

d

dt
Em(t) =

1
2
(µ′ ◦ ∇um)(t)− 1

2
µ(t)‖∇um(t)‖2 ≤ 0. (3.4)

Where

Em(t) =
1

ρ + 2
‖u′m(t)‖ρ+2

ρ+2 +
1
2
(
1−

∫ t

0
µ(t− s)ds

)
‖∇um(t)‖2 +

∫
Ω

G(um)dx +
1
2
(µ ◦ ∇um)(t).

Using (2.2), (2.3) and the two inequalities ‖u′m(0)‖ρ+2 ≤ ‖u1‖ρ+2, ‖ ∇um(0)‖ ≤ ‖ ∇u0‖, we
obtain ∫

Ω
G(um(0))dx ≤ c1 + c2‖u0‖γ+2

γ+2, c1, c2 > 0.

Therefore, from (3.4) for ∀t ∈ [0, T ) we obtain

Em(t) ≤ Em(0) ≤ L1, (3.5)

3



where L1 is a positive constant independent of m. So we obtain

um bounded in L∞([0, T );H1
0 (Ω));

u′m bounded in L∞([0, T );Lρ+2(Ω)).

From the energy estimate and (2.1), we deduce

|u′µ|ρu′µ bounded in L2([0, T );H−1(Ω)). (3.6)

By the compactness of weak topology, there exists a subsequence uµ of um and a function u
such that

uµ → u weak star in L∞([0, T );H1
0 (Ω)); (3.7)

u′µ → u′ weak star in L∞([0, T );Lρ+2(Ω)); (3.8)

|u′µ|u′µ → |u′|u′ weak star in L2([0, T );H−1(Ω)). (3.9)

On the other hand, from Aubin-Lions theorem, we deduce that there exists a subsequence
of uµ, still represented by the same notation, such that

uµ → u a.e. in Ω× [0, T ). (3.10)

Applying (g1), (g2) and (2.3), we deduce that g(u) is bounded. Consequently, by (3.10) we
obtain

g(uµ) → g(u) a.e. in Ω× [0, T ). (3.11)

Multiplying (3.1) by θ ∈ D(0, T )(here D(0,T) means the space of functions in C∞ with
compact support in (0,T)) and integrating the obtained result over (0,T), we infer

− 1
ρ + 1

∫ T

0
(|u′m(t)|ρu′m(t), ω)θ′(t)dt +

∫ T

0
(∇um(t),∇ω)θ(t)dt

−
∫ T

0

∫ t

0
µ(t− s)(∇um(s),∇ω)θ(t)dsdt +

∫ T

0
(g(um)dt, ω)θ(t)dt = 0. (3.12)

Convergences (3.7)-(3.9) and (3.11) are sufficient to pass to the limit in (3.12), in order to obtain

|ut|ρutt −∆u +
∫ t

0
µ(t− s)∆u(s)ds + g(u) = 0 in L2

loc((0,∞);H−1(Ω)).

4 EXPONENTIAL DECAY

In this section we prove the exponential decay for regular solutions um of problem (3.1),
and by using its limit we also can extend the same result to the weak solutions. For convenience
we denote um by u.

We define the modified energy as

F (t) = E(t) + ε1φ(t) + ε2χ(t), (4.1)

where ε1 and ε2 are positive constants to be specified later and

φ(t) =
1

ρ + 1

∫
Ω
|ut(t)|ρut(t)u(t)dx,

χ(t) = −
∫

Ω
|ut(t)|ρut(t)

( ∫ t

0
µ(t− s)(u(t)− u(s))ds

)
dx.
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From (2.1) and (3.5), we deduce

‖u(t)‖ρ+2
ρ+2 ≤ Cρ+2

ρ ‖∇u(t)‖ρ+2 ≤ Cρ+2
ρ

(2
l

) ρ+2
2 E(0)

ρ
2 E(t).

Therefore, using Young’s inequality and
∫ t
0 µ(s)ds ≤

∫∞
0 µ(s)ds = 1− l, we obtain

|φ(t)| ≤ 1
ρ + 2

‖ut(t)‖ρ+2
ρ+2 +

1
(ρ + 1)(ρ + 2)

‖u(t)‖ρ+2
ρ+2 ≤ C1E(t);

|χ(t)| ≤
∫ t

0
µ(t− s)|‖ut(t)‖ρ+1

ρ+2‖u(t)− u(s)‖ρ+2ds

≤ 1− l

2
‖ut(t)‖2ρ+2

ρ+2 +
1
2

∫ t

0
µ(t− s)‖u(t)− u(s)‖2

ρ+2ds

≤ 1− l

2
((ρ + 2)E(0))

ρ
ρ+2 ‖ut(t)‖ρ+2

ρ+2 +
C2

ρ

2

∫ t

0
µ(t− s)‖∇u(t)−∇u(s)‖2

ρ+2ds

≤ C2E(t),

It is straightforward to see that for ε1 and ε2 small enough, the inequality

α1F (t) ≤ E(t) ≤ α2F (t) (4.2)

holds for two positive constants α1 > 0 and α2 > 0. Consequently, the uniformdecay of E(t) is
a consequence of the decay of F (t).

In the following we estimate F ′(t). Using equation (3.1), it is easy to see that

φ′(t) =
1

ρ + 1
‖ut(t)‖ρ+2

ρ+2 − ‖∇u(t)‖2 +
∫

Ω
∇u(t)

∫ t

0
µ(t− s)∇u(s)dsdx− (g(u), u). (4.3)

We now estimate the third term in the right-hand side of (4.3). Using Cauchy-Schwarz and
Young’s inequality, for any η > 0,

∫
Ω
∇u(t)

∫ t

0
µ(t− s)∇u(s)dsdx

≤ 1
2

∫
Ω
|∇u(t)|2dx +

1
2

∫
Ω

( ∫ t

0
µ(t− s)(|∇u(s)−∇u(t)|+ |∇u(t)|)ds

)2
dx

=
1
2

∫
Ω
|∇u(t)|2dx +

∫
Ω

( ∫ t

0
µ(t− s)|∇u(s)−∇u(t)|ds

)2
dx +

∫
Ω

( ∫ t

0
µ(t− s)|∇u(t)|ds

)2
dx

+2
∫

Ω

( ∫ t

0
µ(t− s)|∇u(s)−∇u(t)|ds

)( ∫ t

0
µ(t− s)|∇u(t)|ds

)
dx

≤ 1
2

∫
Ω
|∇u(t)|2dx + (1 + η)

∫
Ω

( ∫ t

0
µ(t− s)|∇u(t)|ds

)2
dx

+(1 +
1
η
)
∫

Ω

( ∫ t

0
µ(t− s)|∇u(s)−∇u(t)|ds

)2
dx

≤ 1
2
(1 +

(
1 + η)(1− l)2)‖∇u(t)‖2

+
1
2
(1 +

1
η
)(1− l)

∫
Ω

∫ t

0
µ(t− s)|∇u(s)−∇u(t)|2dsdx. (4.4)

Using (2.3), we estimate the fourth term of the right-hand side of (4.3) as follows:

− (g(u), u) ≤ −
∫

Ω
G(u)dx. (4.5)
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Combining (4.4), (4.5) with (4.3) and choosing η = l/(1− l) , we have

φ′(t) ≤ 1
ρ + 1

‖ut(t)‖ρ+2
ρ+2 −

l

2
‖∇u(t)‖2 +

1− l

2l
(µ ◦ ∇u)(t)−

∫
Ω

G(u)dx. (4.6)

Now we estimate

χ′(t) = (ρ + 1){
∫

Ω
∇u(t)

∫ t

0
µ(t− s)(∇u(t)−∇u(s))dsdx

−
∫

Ω

( ∫ t

0
µ(t− s)∇u(s)ds

)( ∫ t

0
µ(t− s)(∇u(t)−∇u(s))ds

)
dx

+
∫

Ω
g(u)

∫ t

0
µ(t− s)(u(t)− u(s))dsdx}

−
∫

Ω
|ut(t)|ρut(t)

∫ t

0
µ′(t− s)(u(t)− u(s))dsdx−

∫ t

0
µ(s)ds

∫
Ω
|ut(t)|ρ+2dx.(4.7)

Similar to (4.3), we estimate the right-hand side terms of the inequality above. Using (2.2), for
δ > 0, we have: For the first term,

(ρ + 1)
∫

Ω
∇u(t)

∫ t

0
µ(t− s)(∇u(t)−∇u(s))dsdx

≤ (ρ + 1){δ
∫

Ω
|∇u(t)|2dx +

1− l

4δ
(µ ◦ ∇u)(t)}. (4.8)

For the second term,

−(ρ + 1)
∫

Ω

( ∫ t

0
µ(t− s)∇u(s)ds

)( ∫ t

0
µ(t− s)(∇u(t)−∇u(s))ds

)
dx

≤ (ρ + 1){δ
∫ t

0
µ(t− s)‖∇u(s)‖2ds +

1
4δ

∫ t

0
µ(t− s)‖∇u(t)−∇u(s)‖2ds}

≤ (ρ + 1){(2δ +
1
4δ

)(1− l)(µ ◦ ∇u)(t) + 2δ(1− l)2
∫

Ω
|∇u(t)|2dx}. (4.9)

Similarly, for the third term,

(ρ + 1)
∫

Ω
g(u)

∫ t

0
µ(t− s)(u(t)− u(s))dsdx

≤ (ρ + 1){δ(1− l)
(2E(0)

l

)γ
C2γ+2

γ ‖∇u(t)‖2 +
C2

γ

4δ
(µ ◦ ∇u)(t)}, (4.10)

and for the fourth term,

−
∫

Ω
|ut(t)|ρut(t)

∫ t

0
µ′(t− s)(u(t)− u(s))dsdx

≤ ξ1{δ(1− l)((ρ + 2)E(0))
ρ

ρ+2 ‖ut(t)‖ρ+2
ρ+2 +

C2
ρ

4δ
(µ ◦ ∇u)(t)}. (4.11)

Combining (4.8)-(4.11) yields

χ′(t) ≤ δ(ρ + 1){1 + 2(1− l)2 + (1− l)(
2E(0)

l

)γ
C2γ+2

γ }‖∇u(t)‖2

+{
(
(ρ + 1)

(1− l)
4δ

+ (ρ + 1)(2δ +
1
4δ

)(1− l) +
C2

γ

4δ
(ρ + 1) +

ξ1C
2
ρ

4δ
}(µ ◦ ∇u)(t)

+{ξ1δ(1− l)((ρ + 2)E(0))
ρ

ρ+2 −
∫ t

0
µ(s)ds}‖ut(t)‖ρ+2

ρ+2. (4.12)
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Since µ(0) > 0, then there exists t0 > 0 such that∫ t

0
µ(s)ds ≥

∫ t0

0
µ(s)ds = µ0, ∀t ≥ t0. (4.13)

Using (4.1), (4.6), (4.12) and (4.13), we obtain

F ′(t) ≤ −{ε2(µ0 − ξ1δ(1− l)((ρ + 2)E(0))
ρ

ρ+2 )− ε1

ρ + 1
}‖ut(t)‖ρ+2

ρ+2

−{1
2
µ(t) +

ε1l

2
− ε2δ(ρ + 1)

(
1 + 2(1− l)2 + (1− l)(

2E(0)
l

)γ
C2γ+2

γ

)
}‖∇u(t)‖2

−ε1

∫
Ω

G(u)dx

−{ξ

2
− ε1(1− l)

2l
− ε2

(
(ρ + 1)

(1− l)
4δ

+ (ρ + 1)(2δ +
1
4δ

(1− l)

+
C2

γ

4δ
(ρ + 1) +

ξ1C
2
ρ

4δ

)
}(µ ◦ ∇u)(t). (4.14)

Now, we choose δ so small that

µ0−δξ1(1−l)((ρ+2)E(0))
ρ

ρ+2 >
µ0

2(ρ + 1)
; δ(ρ+1){(1+2(1−l)2+(1−l)(

2E(0)
l

)γ
C2γ+2

γ } <
lµ0

16
.

When δ is fixed, the choice of any two positive constants ε1 and ε2 satisfying

µ0

4
ε2 = ε1 (4.15)

will make
k1 = ε2(µ0 − ξ1δ(1− l)((ρ + 2)E(0))

ρ
ρ+2 )− ε1

ρ + 1
> 0;

k2 =
ε1l

2
− ε2δ(ρ + 1)

(
1 + 2(1− l)2 + (1− l)(

2E(0)
l

)γ)
> 0.

We then pick ε1 and ε2 so small that (4.2) and (4.15) remain valid and

ξ

2
− ε1(1− l)

2l
− ε2

(
(ρ + 1)

(1− l)
4δ

+ (ρ + 1)(2δ +
1
4δ

(1− l) +
C2

γ

4δ
(ρ + 1) +

ξ1C
2
ρ

4δ

)
> 0.

Let β > 0 be the minimum of the right-hand side terms’ coefficients of equality (4.14). Then we
arrive at F ′(t) ≤ −βE(t) for all t ≥ t0. This inequality and (4.2) yield

F ′(t) ≤ −βα1F (t),∀t ≥ t0.

A simple integration leads to F (t) ≤ F (t0)eβα1(t0−t),∀t ≥ t0. This inequality and (4.3) lead to

E(t) ≤ α2F (t0)eβα1(t0−t),∀t ≥ t0.

This concludes the proof of Theorem 2.1.
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