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Abstract

We make progress towards proving the strong Eshelby’s conjecture in three
dimensions. We prove that if for a single nonzero uniform loading the strain in-
side inclusion is constant and further the eigenvalues of this strain are either all
the same or all distinct, then the inclusion must be of ellipsoidal shape. As a con-
sequence, we show that for two linearly independent loadings the strains inside
the inclusions are uniform, then the inclusion must be of ellipsoidal shape. We
then use this result to address a problem of determining the shape of an inclu-
sion when the elastic moment tensor (elastic polarizability tensor) is extremal.
We show that the shape of inclusions, for which the lower Hashin-Shtrikman
bound either on the bulk part or on the shear part of the elastic moment tensor
is attained, is an ellipse in two dimensions and an ellipsoid in three dimensions.

1 Introduction and statements of results

In theory of composites or micro-structures, it is important to find inclusion shapes
which produce the minimal energy. In relation to such shapes Eshelby [13] showed
that if the inclusion is of ellipsoidal shape, then for any uniform loading the strain
inside Ω is uniform. We call this remarkable property Eshelby’s uniformity property.
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Eshelby then conjectured in [14] that ellipsoids are the only shape (structure) with
such a uniformity property.

Eshelby’s conjecture may be interpreted in two different ways:

Weak Eshelby’s conjecture. If the strain is constant inside Ω for all loadings,
then Ω is an ellipse (2D) or an ellipsoid (3D).

Strong Eshelby’s conjecture. If the strain is constant inside Ω for a single
loading, then Ω is an ellipse (2D) or an ellipsoid (3D).

The strong Eshelby conjecture of course implies the weak one.
The strong Eshelby’s conjecture has been proved to be true in two dimensions by

Sendeckyj [28] (see also [19, 22] for alternative proofs). However it is only recently
that the weak Eshelby conjecture was proved to be true in three dimensions: by
Kang-Milton [19] and Liu [22]. We refer to above mentioned papers (and [15]) for
comprehensive account of developments on the Eshelby conjecture.

Regarding the strong Eshelby’s conjecture in three dimensions, important progress
has been made by Liu: He showed in [22] that the conductivity version of the strong
Eshelby conjecture fails to be true completely. (See [22] for a precise statements.)
However, the strong Eshelby’s conjecture (for elasticity) has not been proved or dis-
proved. In this paper we consider the strong Eshelby conjecture. Even though we
are not able to resolve the conjecture completely, we obtain results which is stronger
than the weak version of Eshelby’s conjecture (and weaker than the strong version).
We show that if the strain inside inclusion is constant and in addition the eigenvalues
of the constant strain are either all the same or all distinct, then the inclusion is of
ellipsoidal shape. We then use this result to show that for two linearly independent
loadings the strains inside the inclusions are uniform, then the inclusion must be
of ellipsoidal shape. It is worth emphasizing that the weak Eshelby’s conjecture
requires 6 linearly independent loadings while the strong Eshelby’s conjecture does
a single loadings.

In order to present results in more precise way let us introduce some notation.
Let Ω be a bounded domain with a Lipschitz boundary in Rd, d = 2, 3. The domain
Ω is occupied by a homogeneous isotropic elastic material whose Lamé parameters
are λ̃ and µ̃. We assume that the background (the matrix) is also homogeneous and
isotropic, and its Lamé parameters are λ and µ. Then the elasticity tensors for the
matrix and the inclusion can be written respectively as

C0 := λI⊗ I + 2µI and C1 := λ̃I⊗ I + 2µ̃I, (1.1)

where I is the d × d identity matrix (2-tensor) and I is the identity 4-tensor. The
the elasticity tensor for Rd in the presence of the inclusion Ω is then given by

CΩ := (1− 1Ω)C0 + 1ΩC1, (1.2)

where 1Ω is the indicator function of Ω.
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Let κ and κ̃ be bulk moduli of Rd \ Ω and Ω, respectively, namely,

κ = dλ + 2µ and κ̃ = dλ̃ + 2µ̃, d = 2, 3.

It is always assumed that the strong convexity condition holds, i.e.,

µ > 0, κ > 0, µ̃ > 0 and κ̃ > 0 . (1.3)

We also assume that
(λ− λ̃)(µ− µ̃) > 0 ,

which implies that C1 − C0 is either positive or negative definite as an operator on
the space M s

d of all d× d symmetric matrices.
We consider the following problem of the Lamé system of linear elasticity: For

a given non-zero symmetric d× d matrix A
{ ∇ · CΩE(u) = 0 in Rd

u(x)−Ax = O(|x|1−d) as |x| → ∞,
(1.4)

where E(u) is the strain tensor, i.e.,

E(u) :=
1
2
(∇u +∇uT ) (T for transpose).

The matrix A represents a uniform loading at infinity.
In this paper we prove the following improvements of the weak Eshelby conjecture

for the three dimensional elasticity.

Theorem 1.1 Let Ω be a simply connected bounded domain in R3 with a Lipschitz
boundary. If the strain tensor E(u) of the solution u to (1.4) is constant in Ω for
a nonzero symmetric matrix A and E(u) within Ω has eigenvalues which are either
all distinct or all the same, then Ω is an ellipsoid.

Theorem 1.2 Let Ω be a simply connected bounded domain in R3 with a Lipschitz
boundary. If the strain tensors of solutions to (1.4) for two linearly independent A’s
are constant in Ω, then Ω is an ellipsoid.

The second main result of this paper is on the shape of the inclusion whose
elastic moment tensor (elastic polarizability tensor) has an extremal property. In
order to explain the second result, we take the following definition of the Elastic
Moment Tensor (henceforth denoted as the EMT) [5, Lemma 10.3]: Let A be a
d×d matrix and let uA be the solution to (1.4) corresponding to A. Then the EMT
M associated with the inclusion Ω and the elasticity tensors C0 and C1 is a 4-tensor
defined by

MA =
∫

Ω
(C1 − C0)E(uA) dx. (1.5)
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The EMT may be defined in many different but equivalent ways. It is worth noticing
that if the strain E(uA) = B is constant in Ω, then

MA = |Ω|(C1 − C0)B, (1.6)

where |Ω| denotes the volume of Ω.
The EMT enjoys several important properties. For example, it is symmetric and

positive-definite or negative-definite on the space M s
d of d × d symmetric matrices,

depending on the sign of µ̃ − µ. The notion of EMT is being used in variety of
contexts such as detection of small elastic inclusions for non-destructive evaluation
and medical imaging [1, 2, 3, 7, 5, 16, 17] and effective medium theory [5, 6, 23].

Let us introduce more notation in order to recall the optimal trace bounds (the
Hashin-Shtrikman bounds) for the EMT. Let

Λ1 :=
1
d
I⊗ I, Λ2 := I−Λ1.

Then the elasticity tensor C0 may be written as

C0 = dκΛ1 + 2µΛ2,

and likewise for C1. Since for any d × d symmetric matrix A, I ⊗ I(A) = tr (A)I
and I(A) = A, one can immediately see that

Λ1Λ1 = Λ1, Λ2Λ2 = Λ2, Λ1Λ2 = 0. (1.7)

We are now able to recall the optimal trace bounds for the EMT. For d = 2, 3,
let

K1 :=
1

d(κ̃− κ)
dκ̃ + 2(d− 1)µ
dκ + 2(d− 1)µ

, (1.8)

K2 :=
1

2(µ̃− µ)

[
d2 + d− 2

2
+ 2 (µ̃− µ)

(
d− 1
2µ

+
d− 1

dκ + 2(d− 1)µ

)]
. (1.9)

The following trace bounds were obtained by Lipton [21] (see also [9]): Suppose
|Ω| = 1 and let M be the EMT associated with Ω, then we have

tr
(
Λ1M−1Λ1

) ≤ K1, (1.10)

tr
(
Λ2M−1Λ2

) ≤ K2, (1.11)

provided that κ̃− κ > 0. (If κ̃− κ < 0, the inequalities change the direction.) Since
Λ1M−1Λ1 and Λ2M−1Λ2 are block diagonal components for M−1, one can see that

trM−1 = tr (Λ1M−1Λ1) + tr (Λ2M−1Λ2),
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and hence
trM−1 ≤ K1 + K2. (1.12)

Note that Λ1MΛ1 and Λ2MΛ2 are the bulk and shear parts of M, respectively.
We also note that (1.10) and (1.11) are lower bounds for M since they are upper
bounds for M−1. It is worth emphasizing that upper bounds for M are also derived
in [21]. In [9], it is shown that inclusions Ω whose trace is close to the upper
bound must be infinitely thin. The upper and lower bounds for the EMT may also
be derived as a low volume fraction limit of the Hashin-Shtrikman bounds for the
effective moduli of the two phase composites, which was obtained by Zhikov [29, 30]
and Milton-Kohn [24]. Benveniste [8] obtained the upper and lower bounds of EMTs
when those EMTs happen to be isotropic. (See also [25].)

In this paper we are interested in the shape of the inclusion whose EMT satisfies
the equality in either (1.10) or (1.11). This is an isoperimetric inequality for the
EMT. In this direction we prove the following theorem:

Theorem 1.3 Let Ω be a simply connected bounded domain in R3 with a Lipschitz
boundary. Suppose |Ω| = 1 and let M be the EMT associated with Ω. If the equality
holds in either (1.10) or (1.11), then Ω is an ellipse in two dimensions and an
ellipsoid in three dimensions.

We remark that optimal shapes for a cavity (hole) in two dimension were investigated
by Cherkaev et al [10] and Milton et al [26].

The dimension of the space of symmetric 4-tensors in the three dimensional
space is 21, and hence the equalities (1.10) and (1.11) are satisfied on a 19 (21− 2)
dimensional surface in tensor space. However ellipsoid geometries (with unit volume)
only cover a 5 dimensional manifold within that 19 dimensional space.

It is interesting to notice similarity of Theorem 1.3 to the Pólya-Szegö conjecture,
which asserts that the inclusion whose polarization tensor has the smallest trace is
a disk or a ball. The Pólya-Szegö conjecture was proved to be true by Kang-Milton
[18, 19]. As for the Pólya-Szegö conjecture, Theorem 1.3, which concerns elasticity,
will be proved using Eshelby’s conjecture.

In order to prove Theorem 1.3, we will show that if equality holds in (1.10),
then the strain tensor corresponding to a certain uniform loading A (with a special
structure) is constant in Ω, while if the equality holds in (1.11), then the strain
tensors corresponding to five (two in 2D) linearly independent uniform loadings are
constant in Ω . Thus in two dimensions the strong Eshelby conjecture immediately
implies that the inclusion is an ellipse. However, in three dimension, the weak
Eshelby conjecture does not guarantee that the inclusion is an ellipsoid. In order to
apply the weak Eshelby conjecture, we need to have equalities in both (1.10) and
(1.11), or the equality in the whole lower trace bound (1.12). But we are able to
show additionally that if the equality holds in (1.10) then the eigenvalues of the
strain tensor are all the same, and that if the equality holds in (1.11) then strains
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corresponding to five linearly independent loadings are constant. Thus thanks to
Theorem 1.1 and Theorem 1.2 we are able to conclude that the inclusion is of
ellipsoidal shape.

This paper is organized as follows. In section 2, we show that the displacement
vectors can be decomposed in a way similar to the Helmholtz decomposition. This
is done using the single layer potential for the Lamé system. Theorem 1.1 is proved
in section 3, Theorem 1.2 in section 4, and Theorem 1.3 in section 4. The appendix
is for the proof of Lemma 4.1 which is used to prove Theorem 1.2.

2 Single layer potential

Let us first recall the notion of the single layer potential for the Lamé operator
LCu := ∇ ·CE(u). The Kelvin matrix Γ = (Γij)3i,j=1 of the fundamental solution to
the Lamé operator LC in three dimensions is given by

Γij(x) := −α1

4π

δij

|x| −
α2

4π

xixj

|x|3 , x 6= 0 , (2.1)

where

α1 =
1
2

(
1
µ

+
1

2µ + λ

)
and α2 =

1
2

(
1
µ
− 1

2µ + λ

)
. (2.2)

The single layer potential of the vector valued density function f on ∂Ω associated
with the Lamé parameters (λ, µ) is defined by

SΩ[f ](x) :=
∫

∂Ω
Γ(x− y)f(y) dσ(y) , x ∈ R3 . (2.3)

Using the divergence theorem, we have

SΩ[f ](x) = −α1

4π

∫

∂Ω

f(y)
|x− y|dσ(y)− α2

4π

∫

∂Ω

x− y
|x− y|3 (x− y) · f(y)dσ(y)

= −α1

4π

∫

∂Ω

f(y)
|x− y|dσ(y) +

α2

4π
∇

∫

∂Ω

(x− y) · f(y)
|x− y| dσ(y)

− α2

4π

∫

∂Ω

1
|x− y|∇x ((x− y) · f(y)) dσ(y)

= −α1 + α2

4π

∫

∂Ω

f(y)
|x− y|dσ(y) +

α2

4π
∇

∫

∂Ω

(x− y) · f(y)
|x− y| dσ(y)

= −α1 + α2

4π

∫

∂Ω

f(y)
|x− y|dσ(y) +

α2

4π
∇∇ ·

∫

∂Ω
|x− y|f(y)dσ(y).

Since ∆|x| = 2|x|−1, we have

SΩ[f ](x) = −α1 + α2

8π
∆

∫

∂Ω
|x−y|f(y)dσ(y)+

α2

4π
∇∇·

∫

∂Ω
|x−y|f(y)dσ(y) . (2.4)
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Let
HΩ[f ](x) :=

1
4π

∫

∂Ω
|x− y|f(y)dσ(y) . (2.5)

Then, in summary, we have

SΩ[f ](x) = −α1 + α2

2
∆HΩ[f ](x) + α2∇∇ · HΩ[f ](x) . (2.6)

It is worth emphasizing that ∆2HΩ[f ] = 0, i.e., HΩ[f ] is biharmonic, in Ω and R3\Ω.
Thus (2.6) shows that the solution to the Lamé system in a bounded domain in Ω
or the exterior R3 \ Ω can be decomposed into a part harmonic in Ω or R3 \ Ω and
a gradient part.

Suppose that the solution u to (1.4) inside Ω is given by

u(x) = Bx + v, x ∈ Ω (2.7)

for some constant symmetric matrix B and a constant vector v. Then the solution
is given by

u(x) =

{
Ax + SΩ[f ](x) , x ∈ R3 \ Ω ,

Bx + v , x ∈ Ω ,
(2.8)

where
f = (C1 − C0)E(Bx)n . (2.9)

Here n = (n1, n2, n3) is the unit outward normal vector field to ∂Ω. See [19, Section
4]. Note that

(C1 − C0)E(Bx)n = [(λ̃− λ)tr (B)I + 2(µ̃− µ)B]n. (2.10)

Let us put
B∗ := (λ̃− λ)tr (B)I + 2(µ̃− µ)B, (2.11)

so that f in (2.8) is given by
f = B∗n. (2.12)

According to (2.4), we have

SΩ[B∗n](x) = −α1 + α2

2
∆HΩ[B∗n](x) + α2∇∇ · HΩ[B∗n](x) . (2.13)

One can easily see that

HΩ[B∗n](x) = B∗HΩ[n](x) = −B∗∇pΩ(x), x ∈ Ω, (2.14)

where pΩ is defined by

pΩ(x) :=
1
4π

∫

Ω
|x− y|dy , x ∈ R3 . (2.15)
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Therefore we have

SΩ[B∗n](x) =
α1 + α2

2
B∗∇∆pΩ(x)− α2∇∇ ·B∗∇pΩ(x).

For a 3× 3 symmetric matrix B, let ∆B := ∇ ·B∇. We note that ∆I = ∆, the
usual Laplacian. We then define

wB
Ω (x) := ∆BpΩ(x), x ∈ R3. (2.16)

In particular, we write wΩ = wI
Ω. Then, one can easily see that

wΩ(x) :=
2
4π

∫

Ω

1
|x− y|dσ(y), x ∈ R3, (2.17)

which is (2 times) the Newtonian potential of Ω.
It is appropriate to recall now the proof of the weak Eshelby conjecture by Kang

and Milton. In [19], the matter was reduced to the statement: ‘The Newtonian
potential is quadratic in Ω if and only if Ω is an ellipsoid’, which was proved by
Dive [12] and Nikliborc [27] in relation to the Newtonian potential problem (see also
[11]). This statement can be rephrased as

wΩ is quadratic in Ω if and only if Ω is an ellipsoid, (2.18)

If we further put α := α1+α2
2α2

, then we have

SΩ[B∗n](x) =
1
α2

[
αB∗∇wΩ(x)−∇wB∗

Ω (x)
]
. (2.19)

We emphasize that α > 1.

3 Proof of Theorem 1.1

Suppose that the solution u to (1.4) is linear in Ω and given by (2.8). Then by (2.12)
we have

SΩ[B∗n](x) = (B−A)x + v, x ∈ Ω.

It then follows from (2.19) that

αB∗∇wΩ(x)−∇wB∗
Ω (x) = α2(B−A)x + α2v, x ∈ Ω. (3.1)

Note that if eigenvalues of B are either all the same or all distinct, so are those
of B∗. After rotation if necessary, we may assume that B∗ is diagonal, say

B∗ = diag[b1, b2, b3]. (3.2)
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(i) Suppose first that all eigenvalues of B∗ are the same, i.e., b1 = b2 = b3 = b.
In this case, since wB∗

Ω = bwΩ, it follows from (3.1) that

b(α− 1)∇wΩ = linear in Ω.

Since α > 1, wΩ is quadratic in Ω, and hence Ω is an ellipsoid by (2.18).
(ii) Suppose now that all eigenvalues of B∗ are distinct, i.e., bi 6= bj if i 6= j. In

this case, (3.1) yields that

∂

∂xj

(
αbjwΩ − wB∗

Ω

)
= linear in Ω, j = 1, 2, 3,

and hence
αbjwΩ − wB∗

Ω ≈ fj(x) in Ω, j = 1, 2, 3,

for some function fj which is independent of xj . Here and afterwards ≈ denotes the
equality up to a quadratic function. It then follows that

αwΩ ≈ f1 − f2

b1 − b2
, wB∗

Ω ≈ b2f1 − b1f2

b1 − b2
, (3.3)

and
(b3 − b2)f1 + (b1 − b3)f2 + (b2 − b1)f3 ≈ 0. (3.4)

Since fj is independent of xj for j = 1, 2, 3, one can easily see that (3.4) holds
only when f1, f2 and f3 take the form

f1(x) ≈ m(x3)− n(x2)
b3 − b2

,

f2(x) ≈ r(x1)−m(x3)
b1 − b3

,

f3(x) ≈ n(x2)− r(x1)
b2 − b1

,

for some functions m, n and r. It then follows from (3.3) that

αwΩ ≈ m(x3)
(b3 − b2)(b1 − b3)

+
n(x2)

(b2 − b1)(b3 − b2)
+

r(x1)
(b1 − b3)(b2 − b1)

. (3.5)

Since ∆wΩ = 2 in Ω, we have

m′′(x3)
(b3 − b2)(b1 − b3)

+
n′′(x2)

(b2 − b1)(b3 − b2)
+

r′′(x1)
(b1 − b3)(b2 − b1)

= constant.

Thus r, n, and m are quadratic functions of x1, x2, and x3, respectively, and hence
wΩ is quadratic in Ω. Thus Ω is an ellipsoid.

This completes the proof. ¤
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4 Proof of Theorem 1.2

In order to prove Theorem 1.2, we use the following lemma whose proof will be given
in the appendix.

Lemma 4.1 Let B1 and B2 be two symmetric 3 × 3-matrices. If B1 + tB2 has a
multiple eigenvalue for all real numbers t, then B1 and B2 can be diagonalized by
the same orthogonal matrix.

Let A1 and A2 be two linearly independent symmetric 3×3 matrices and suppose
that solutions u1 and u2 to (1.4) with A = A1 and A = A2 are linear in Ω.
Put Bj := E(uj), j = 1, 2. Since the EMT is positive or negative definite on
M s

d (Theorem 10.6 of [5]), (1.6) shows that B1 and B2 are linearly independent.
According to (2.12) we have

SΩ[B∗
1n](x) = (B1 −A1)x + v1, x ∈ Ω,

SΩ[B∗
2n](x) = (B2 −A2)x + v2, x ∈ Ω.

It then follows from (2.19) that
{

αB∗
1∇wΩ(x)−∇w

B∗1
Ω (x) = α2(B1 −A1)x + α2v1,

αB∗
2∇wΩ(x)−∇w

B∗2
Ω (x) = α2(B2 −A2)x + α2v2,

(4.1)

for x ∈ Ω.
Let us suppose that all of B1, B2, and B1 + tB2 (t ∈ R) have an eigenvalue of

multiplicity 2 (otherwise we apply Theorem 1.1 to conclude that Ω is an ellipsoid).
By Lemma 4.1, B1 and B2 can be diagonalized by a single orthogonal matrix. Thus
we may assume that B1 and B2 are diagonal. Then from (2.11) B∗

1 and B∗
2 are also

diagonal and we may let

B∗
1 = diag[b1, b1, c1], B∗

2 = diag[b2, b2, c2],

where b1 6= c1 and b2 6= c2. Since B∗
1 and B∗

2 are linearly independent, we have

b1c2 6= c1b2.

By (4.1), we have

αb1wΩ − w
B∗1
Ω ≈ f(x3), (4.2)

αc1wΩ − w
B∗1
Ω ≈ g(x1, x2), (4.3)

αb2wΩ − w
B∗2
Ω ≈ h(x3), (4.4)

αc2wΩ − w
B∗2
Ω ≈ l(x1, x2), (4.5)
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for some functions f , g, h, and l. Here again ≈ denotes the equality up to a quadratic
function. By (2.16), we have from (4.2) and (4.4)

(α− 1)b2f(x3)− (α− 1)b1h(x3) ≈ (α− 1)(b1c2 − b2c1)
∂2pΩ

∂x2
3

, (4.6)

and from (4.3) and (4.5)

(b2 − αc2)g(x1, x2)− (b1 − αc1)l(x1, x2) ≈ (1− α)(b1c2 − b2c1)
∂2pΩ

∂x2
3

. (4.7)

It then follows that
∂2pΩ

∂x2
3

≈ 0. (4.8)

We then obtain from (4.2)-(4.5) that

(α− 1)b1wΩ ≈ f(x3), (α− 1)b2wΩ ≈ h(x3),

and
(αc1 − b1)wΩ ≈ g(x1, x2), (αc2 − b2)wΩ ≈ l(x1, x2).

Thus we conclude that wΩ ≈ 0, and hence Ω is an ellipsoid.
This completes the proof. ¤

5 Proof of Theorem 1.3

The space M s
d is equipped with the inner product A : B, where A : B denotes the

contraction of two matrices A and B, i.e., A : B =
∑

i,j aijbij = tr(ATB) where

tr(A) denotes the trace of A. For d = 2, 3, let d∗ := d(d+1)
2 , which is the dimension

of M s
d . Let B1 = 1√

d
I2 be a basis for Λ1(M s

d) (of a unit length), and {B2, . . . ,Bd∗}
be an orthonormal basis for Λ2(M s

d). Then {B1, . . . ,Bd∗} is an orthonormal basis
for M s

d , i.e.,
Bi : Bj = δij ,

where δij is Kronecker’s delta. Note that for any symmetric 4-tensor T, we have

trT =
d∗∑

k=1

TBk : Bk . (5.1)

We deal with the case when C1−C0 is positive definite so that M is a symmetric
positive-definite linear operator on M s

d . The other case can be treated in the exactly
same way.
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Let us first invoke some facts proved in [9]. Introduce a 4-tensor M̃ by

A : M̃A = min
v∈H1(Rd)

∫

Rd

CΩ (E(v) + 1ΩGA) : (E(v) + 1ΩGA) dx

+ |Ω| (C1 − C0
) (
C1

)−1C0A : A

(5.2)

for A ∈ M s
d , where

G := I− (C1)−1C0. (5.3)

Note that the minimum in (5.2) is attained by v = u−Ax, where u is the solution
of (1.4). It is proved in [9, Corollary 3.2] that

Λ1M̃Λ1 = Λ1MΛ1 and Λ2M̃Λ2 = Λ2MΛ2 . (5.4)

In particular, we have

tr (Λ1M̃−1Λ1) = tr (Λ1M−1Λ1) and tr (Λ2M̃−1Λ2) = tr (Λ2M−1Λ2). (5.5)

Let C be an isotropic 4-tensor, i.e.,

C = λI⊗ I + 2µI = dκΛ1 + 2µΛ2,

for some λ and µ satisfying (1.3). Let L2
(
Rd,M s

d

)
be the space of square in-

tegrable functions on Rd valued in M s
d and H1(Rd,M s

d) the Sobolev space. For
P ∈ L2

(
Rd,M s

d

)
, we define FC(P) by

FC(P) := −EL−1
C (∇ ·P), (5.6)

where LC = ∇ · CE . In other words, if Φ is a unique solution in H1(Rd,M s
d) to

LC (Φ) +∇ ·P = 0, (5.7)

then FC(P) is given by
FC(P) = E (Φ) .

If Φ is the solution to (5.7), then
∫

Rd

C
(E (Φ) + C−1P

)
: E (Ψ) = 0

for all Ψ ∈ H1(Rd,M s
d), and hence by taking Ψ = Φ we have
∫

Rd

P : FC(P) = −
∫

Rd

CFC(P) : FC(P) (5.8)

We prove Theorem 1.3 using the following two propositions whose proofs will be
given at the end of this section.
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Proposition 5.1 Let

EA(C0,P) =
∫

Ω
P : FC0 (1ΩP) +

∫

Ω

(
C0 − C1

)−1 P : P + 2
∫

Ω
P : A . (5.9)

Then the following holds

A : M̃A = sup
P∈L2(Rd:Ms

d )

EA(C0,P). (5.10)

Furthermore, this supremum is attained by P = 1Ω

(
C1 − C0

) E(u), where u is the
solution of (1.4).

We then show that structures reaching the lower trace bounds have a particular
structure, as explained by the proposition below.

Proposition 5.2 If equality in (1.10) holds, then we have

EA(C0, 1ΩB1) = sup
P∈L2(Rd:Ms

d )

EA(C0,P) (5.11)

with A = M−1B1. If equality in (1.11) holds, then we have

EA(C0, 1ΩBk) = sup
P∈L2(Rd:Ms

d )

EA(C0,P) (5.12)

with A = M−1Bk, for k = 2, . . . , d∗.

Proof of Theorem 1.3. Introduce a bilinear form FC0(Q,R) by

FC0(Q,R) =
∫

Ω
Q : FC0 (1ΩR) +

∫

Ω

(
C0 − C1

)−1 Q : R .

It follows from (5.8) that

FC0(1ΩQ, 1ΩQ) = −
∫

Ω
C0FC0 (1ΩQ) : FC0 (1ΩQ)−

∫

Ω

(
C1 − C0

)−1 (1ΩQ) : (1ΩQ)

≤ −
∫

Ω

(
C1 − C0

)−1 (1ΩQ) : (1ΩQ)

≤ −K ‖1ΩQ‖L2(Rd:Ms
d )

for some positive constant K. The last holds due to the positive-definiteness of
C1 − C0. As a consequence, FC0 is negative definite when restricted to H = {P ∈
L2(Ω : M s

d)2, supported in Ω}. Therefore EA(C0,Q) = FC0(Q,Q) + 2
∫
Ω Q : A is

a strictly concave functional on H, and therefore admits at most one maximizer in
H.
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We observe that since C1−C0 is isotropic, if B is diagonal and all the eigenvalues
are the same, so is (C1−C0)−1B. If B is trace-free and all the eigenvalues are distinct,
so is (C1 − C0)−1B.

Suppose that equality holds in (1.10). It then follows from Proposition 5.1, (5.2),
and uniqueness of the maximizer in Ω that

(
C1 − C0

) E(u1) = B1 in Ω,

where u1 is the solution to (1.4) with A =M−1B1. Recall that B1 = 1√
d
I. Therefore,

E(u1) is constant in Ω and all the eigenvalues of E(u1) are the same. Thus Ω is an
ellipse or an ellipsoid due to Theorem 1.1.

Suppose now that equality holds in (1.11). Then for similar reasons we can
deduce that for each k = 2, . . . , d∗,

(
C1 − C0

) E(uk) = Bk in Ω,

where uk is the solution to (1.4) with A = M−1Bk. Thus Ω is an ellipse or an
ellipsoid due to Theorem 1.2.

This completes the proof. ¤
Proof of Proposition 5.1. Following the notation of [9], we define WA(C,P), for
A ∈ M s

d , by

WA(C,P) =
∫

Rd

P : FCP+
∫

Rd

(C− CΩ)−1 P : P+2
∫

Ω
P :

(
C1 − C)−1 (

C1 − C0
)
A .

It is proved in [9, Proposition 4.1], following the variational strategy given in [20]
for the derivation of Hashin-Shtrikman type bounds, that for any isotropic elasticity
tensor C < C0(< C1) we have

A : M̃A = A :
(
C1 − C0

) (
C− C1

)−1 (
C− C0

)
A + sup

P∈L2(Rd:Ms
d)

WA(C,P). (5.13)

Note that the supremum is attained by

P = 1Ω

(
C1 − C0

)
A + (CΩ − C) (E(u)−A) , (5.14)

where u is the solution to (1.4) with A in above identity. Since (C1 − C0)(C −
C1)−1(C−C0) is positive definite, by sending C to C0, and restricting the supremum
to fields P such that 1ΩP = P we obtain

A : M̃A ≥ sup
P∈L2(Rd,Ms

d )

EA(C0,P) . (5.15)

For any P ∈ L2
(
Rd, M s

d

)
, and any positive definite isotropic elasticity tensor

C < C0, we define EA(C,P), for A ∈ M s
d , by

EA(C,P) =
∫

Ω
P : FC (1ΩP)+

∫

Ω

(
C− C1

)−1 P : P+2
∫

Ω
P :

(
C1 − C)−1 (

C1 − C0
)
A .
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Note that this definition is consistent of that of EA(C0,P) given in (5.9) by passing
to the limit in C.

Introducing the decomposition P = PΩ +PU , with PΩ1Ω = PΩ, and PU1Ω ≡ 0,
we have

WA(C,P) = EA(C,PΩ) + WA(C,PU )

+
∫

Rd

PΩ : FCPU +
∫

Rd

PU : FCPΩ.

Let C = C0 − εI, where ε > 0. Then we have

WA(C,P) = EA(C,PΩ)− ε−1‖PU‖2
L2(Rd) + R(PU ,PΩ),

where

R (PU ,PΩ) :=
∫

Rd

PΩ : FCPU +
∫

Rd

PU : FCPΩ +
∫

Rd

PU : FCPU .

By integration by parts, and by the Cauchy-Schwartz inequality, we readily obtain
that for ε small enough R (PU ,PΩ) satisfies

|R (PU ,PΩ)| ≤ K‖PU‖L2(Rd)
(
‖PU‖L2(Rd) + ‖PΩ‖L2(Rd)

)
,

where the constant K is independent of PU , PΩ, and ε. As a consequence, for ε
small enough,

−ε−1‖PU‖2
L2(Rd) + R(PU ,PΩ) ≤ 3Kε‖PΩ‖2

L2(Rd).

Note that from (5.8)
∫
Ω PΩ : FC (PΩ) is negative definite, therefore

EA(C,P) ≤ K̃‖PΩ‖L2(Rd)(−‖PΩ‖L2(Rd) + 1),

where K̃ is another constant independent of PΩ and ε. Thus ‖PΩ‖L2(Rd) must stay
bounded, uniformly with respect to ε, close to the supremum. Taking the limit as ε
tends to zero we obtain (5.10). Replacing C by C0 in (5.14) concludes the proof. ¤
Proof of Proposition 5.2. Given k ∈ {1, . . . , d∗}, choose A = M−1Λl(Bk) and use a
test function P = 1ΩΛl(Bk) in (5.10). This gives

M−1Λl(Bk) : Λl(Bk) ≥ WA(C0, 1ΩΛl(Bk)) (5.16)

=
∫

Ω
Λl(Bk) : FC0 (1ΩΛl(Bk)) +

∫

Ω

(
C0 − C1

)−1 Λl(Bk) : Λl(Bk)

+ 2
∫

Ω
Λl(Bk) : M−1Λl(Bk) .
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Summing these inequalities over k, we obtain

tr (ΛlM−1Λl) ≥
d∗∑

k=1

∫

Ω
Λl(Bk) : FC0 (1ΩΛl(Bk)) (5.17)

+
d∗∑

k=1

∫

Ω

(
C0 − C1

)−1 Λl(Bk) : Λl(Bk) + 2tr (ΛlM−1Λl) .

It is proved in [9, (4.27) & (4.28)] that

d∗∑

k=1

∫

Ω
Λ1(Bk) : FC0 (1ΩΛ1(Bk)) = − 1

d (λ + 2µ)
,

and
d∗∑

k=1

∫

Ω
Λ2(Bk) : FC0 (1ΩΛ2(Bk)) = −

(
d− 1

d (λ + 2µ)
+

d− 1
2µ

)
.

Since (
C0 − C1

)−1 =
1

d(κ− κ̃)
Λ1 +

1
2(µ− µ̃)

Λ2 ,

one can immediately see that

d∗∑

k=1

∫

Ω

(
C0 − C1

)−1 Λ1(Bk) : Λ1(Bk) =
1

d(κ− κ̃)

and
d∗∑

k=1

∫

Ω

(
C0 − C1

)−1 Λ2(Bk) : Λ2(Bk) =
d∗ − 1

2(µ− µ̃)
.

Therefore, we get

d∗∑

k=1

[∫

Ω
Λl(Bk) : FC0 (1ΩΛl(Bk)) +

∫

Ω

(
C0 − C1

)−1 Λl(Bk) : Λl(Bk)
]

= −Kl

for l = 1, 2, where Kl is given in (1.8) and (1.9). It then follows from (5.17) that

tr (ΛlM−1Λl) ≥ −Kl + 2tr (ΛlM−1Λl). (5.18)

Suppose that equality in (1.10) holds. Then, in view of (5.18), the inequality in
(5.17) becomes an equality, and so does the one in (5.16). Since Λ1(B1) = B1 and
Λ1(Bk) = 0 for k = 2, . . . , d∗, we have

EA(C0, 1ΩB1) = sup
P∈L2(Rd:Ms

d )

EA(C0,P) , A =M−1B1. (5.19)
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Likewise, if equality in (1.11) holds, then

EA(C0, 1ΩBk) = sup
P∈L2(Rd:Ms

d )

EA(C0,P) , A =M−1Bk, (5.20)

for k = 2, . . . , d∗, and the proof is complete. ¤

A Proof of Lemma 4.1

Proof. By considering 1
t B1 + B2 and taking the limit t →∞, one can see that B2

also has a multiple eigenvalue. If B2 has an eigenvalue of multiplicity 3, then B2 is
a constant multiple of the identity matrix and hence the conclusion of the lemma
holds trivially.

Let us assume that B2 has an eigenvalue of multiplicity 2. Note that, for any
real number s and orthogonal matrix U,

UB1U−1 + tUB2U−1 − sI = U(B1 + tB2 − sI)U−1

has a multiple eigenvalue regardless of t. Therefore we may assume that B2 takes
the form

B2 =




0 0 0
0 0 0
0 0 1




while B1 is arbitrary, say

B1 =




a d e
d b f
e f c


 .

Let Γ(t) be the discriminant of the characteristic polynomial of B1 + tB2. Since
B1 + tB2 has a multiple eigenvalue for all t, Γ(t) ≡ 0. Then a straightforward
calculation shows that the coefficient of t4 term of Γ(t) is given by a2+b2−2ab+4d2,
and hence we have

a− b = d = 0.

It then follows that the coefficient of t2 term of Γ(t) is given by (e2 +f2)2, and hence

e = f = 0.

Thus B1 takes the form

B1 =




a 0 0
0 a 0
0 0 c


 .

This completes the proof. ¤
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