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Abstract

The aim of this paper is to study the structure of the fundamental
group of a closed oriented Riemannian manifold with positive scalar
curvature. To be more precise, let M be a closed oriented Riemannian
manifold of dimension n (4 ≤ n ≤ 7) with positive scalar curvature and
non-trivial first Betti number, and let α be a non-trivial codimension
one homology class in Hn−1(M ;R). Then it is known as in [8] that
there exists a closed embedded hypersurface Nα of M representing α
of minimum volume, compared with all other closed hypersurfaces in
the homology class. Our main result is to show that the fundamental
group π1(Nα) is always virtually free. In particular, this gives rise
to a new obstruction to the existence of a metric of positive scalar
curvature.

1 Introduction and statements of results

The aim of this paper is to study the structure of the fundamental group of
a closed oriented Riemannian manifold with positive scalar curvature. Since
the positivity of isotropic curvature always implies that of scalar curvature,
this will also be the study of the fundamental group of a Riemannian man-
ifold with positive isotropic curvature. Indeed, our original motivation of
this study came from a well-known conjecture by Gromov in [4] about the
structure of the fundamental group of a Riemannian manifold with positive
isotropic curvature.

To describe it more precisely, we first need to set up some notions. Most
of what is presented here can be found in [9]. Let M be an n-dimensional
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Riemannian manifold with the tangent bundle TpM at the point p ∈ M .
Then the curvature operator at p is the self-adjoint linear endomorphism

R : Λ2TpM → Λ2TpM

given by
〈R(x ∧ y), u ∧ v〉 = 〈R(x, y)u, v〉

for x, y, u, v ∈ TpM , where the inner product 〈 , 〉 is defined by the Rieman-
nian metric on M and R is the Riemann curvature tensor. Next we extend
the Riemannian metric 〈 , 〉 on TpM to the complexified tangent bundle
TpM ⊗C in two ways:

(1) as a complex bilinear map, denoted by ( , ).

(2) as a Hermitian inner product, denoted by 〈〈 , 〉〉.
Then note that 〈〈z, w〉〉 = (z, w̄) for z, w ∈ TpM⊗C. Similarly, the Rieman-
nian metric 〈 , 〉 on Λ2TpM can be extended in two ways to Λ2TpM ⊗ C.
So we can extend the curvature operator R in a natural way to a complex
linear map

R : Λ2TpM ⊗C → Λ2TpM ⊗C.

With these said, to each 2-plane σ ⊂ TpM⊗C we assign a complex sectional
curvature

K(σ) =
〈〈R(z ∧ w), z ∧ w〉〉

||z ∧ w||2 ,

where {z, w} is a basis over complex numbers for σ. Then we say that M
has a positive sectional curvature if K(σ) > 0 for all real 2-planes σ.

An element z ∈ TpM ⊗ C is said to be isotropic if (z, z) = 0, and a
complex linear subspace V ⊂ TpM ⊗C is totally isotropic if z ∈ V implies
(z, z) = 0, i.e., there is no other element in V except isotropic ones. We
say that the curvature of a Riemannian manifold M is positive on totally
isotropic 2-planes or has positive isotropic curvature (PIC) if K(σ) > 0 for
all totally isotropic 2-planes σ ⊂ TpM ⊗ C. Then the real dimension of a
totally isotropic subspace of TpM is always less than or equal to one half of
the dimension n of M , so that this condition makes sense only for n ≥ 4.
Note also that if σ is a 2-dimensional totally isotropic subspace of TpM ⊗C,
then there is a basis {z, w} of σ such that

z = e1 + ie2, w = e3 + ie4 with 〈ei, ej〉 = δij
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for 1 ≤ i, j ≤ 4. Such a basis {z, w} for σ is called a standard basis. Since

z ∧ w = (e1 ∧ e3 − e2 ∧ e4) + i(e1 ∧ e4 + e2 ∧ e3),

we have

〈〈R(z ∧ w), z ∧ w〉〉 = R1313 + R1414 + R2323 + R2424

−R1324 −R2413 + R1423 + R2314

= R1313 + R1414 + R2323 + R2424 + 2R1342 + 2R1423

= R1313 + R1414 + R2323 + R2424 − 2R1234.

Therefore the condition that a Riemannian manifold M is positive on totally
isotropic 2-planes says that for every orthonormal four-frames {e1, e2, e3, e4}
we have the inequality

R1313 + R1414 + R2323 + R2424 − 2R1234 > 0.

This inequality, in particular, implies the positivity of the scalar curvature
(see Proposition 2.5 in [10]).

By a result of Micallef and Moore in [9], there is only one topological
type of compact simply connected manifold with PIC. That is, any simply
connected compact manifold with positive isotropic curvature is a homotopy
sphere. On the other hand, there is a large class of non-simply connected
manifolds with PIC. For the simplest one, one may take S1 × Sn−1. More-
over, according to the work of Micallef and Wang in [10], the connected sum
of manifolds with PIC also admits a metric of PIC. Thus the first funda-
mental group of a manifold with PIC can be very large. A group is said to
be virtually free if it contains a finite index subgroup that is free.

With this said, the conjecture of Gromov in [4] that is still open can be
stated as follows (see also [2] and [3]).

Conjecture 1.1. The fundamental group of a closed oriented Riemannian
manifold with positive isotropic curvature is virtually free.

In the paper [6], by using the Ricci flow, Hamilton gave a complete
classification of all closed oriented 4-dimensional Riemannian manifolds with
positive isotropic curvature and with no essential incompressible space form.
His classification, in particular, implies that the fundamental group of such
a Riemannian manifold is virtually free.

Motivated by the Conjecture 1.1, we will show the following theorem in
Section 4.
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Theorem 1.2. Let M be a closed oriented Riemannian manifold of di-
mension n with positive scalar curvature and non-trivial first Betti number,
and let α be a non-trivial codimension one homology class in Hn−1(M ;R).
Assume that there exists a closed oriented embedded hypersurface Nα of M
representing α of minimum volume, compared with all other closed hypersur-
faces in the homology class. Then the fundamental group π1(Nα) is always
virtually free.

Recall that the positivity of isotropic curvature implies that of scalar
curvature (e.g., see Proposition 5.2 in [10]). Moreover, it is known (e.g., see
[12] and [8]) that if the dimension n satisfies 4 ≤ n ≤ 7, then for each α ∈
Hn−1(M ;R) there always exists a closed oriented embedded hypersurface
Nα of M representing α of minimum volume, compared with all other closed
hypersurfaces in the homology class. So we have the following corollary.

Corollary 1.3. Let M be a closed oriented Riemannian manifold of di-
mension n (4 ≤ n ≤ 7) with positive isotropic curvature (or positive scalar
curvature) and non-trivial first Betti number, and let α be a non-trivial
codimension one homology class in Hn−1(M ;R). Then there exists a closed
oriented embedded hypersurface Nα of M representing α such that the fun-
damental group π1(Nα) is virtually free.

For example, if there is a closed embedded hypersurface Nα of M as in
the assumption of Theorem 1.2 whose fundamental group is Z⊕Z, then the
metric does not have positive scalar curvature. This can be compared with
a result (Theorem 1.3 of [3]) by Fraser and Wolfson that the fundamental
group of a compact Riemannian manifold of dimension n ≥ 4 with positive
isotropic curvature does not contain a subgroup isomorphic to Z⊕Z. Since
the inclusion map of Nα into M is not necessarily injective on π1, under
certain circumstances Theorem 1.2 can be considered as a much better result
than Theorem 1.3 in [3].

This result can also be viewed as a strong evidence of the conjecture
that any free abelian subgroup of the fundamental group of a compact Rie-
mannian manifold of dimension n ≥ 4 with positive isotropic curvature is
cyclic. Further, let L be a lens space whose fundamental group is Zp. Then
S1×L admits a metric of positive isotropic curvature, and this fits well with
Corollary 1.3. For another concrete example, let N be a closed oriented Rie-
mannian manifold of dimension n−1 (4 ≤ n ≤ 7) whose fundamental group
is not virtually free. If we consider the product manifold M = S1 × N of
dimension n, then M admits no metric of positive isotropic curvature (or
even positive scalar curvature).

4



More generally, we can formulate the following corollary.

Corollary 1.4. Let M be a closed oriented Riemannian manifold of dimen-
sion n (4 ≤ n ≤ 7) with a Riemannian metric g and non-trivial first Betti
number. Suppose that there exists a codimension one class α ∈ Hn−1(M ;R)
as in the assumption of Theorem 1.2 such that the fundamental group π1(Nα)
is not virtually free. Then g cannot have a positive isotropic curvature (or
even positive scalar curvature).

We organize this paper as follows. In Section 2, we define uniformly
elliptic operators on a suitable Sobolev space which play an important role
in the proof of Theorem 1.2. Section 3 is devoted to proving the boundedness
from above of the homotopy fill radius of a closed embedded hypersurface
and its coverings. In Section 4, we give a proof of Theorem 1.2 which will
be based on some arguments of the paper [11].

2 Uniformly elliptic operators

The aim of this section is to give an uniformly elliptic operator on a closed
embedded hypersurface of a Riemannian manifold with positive scalar cur-
vature.

For this purpose, we first begin with the following theorem which is
implicit in Theorem 1 of [12].

Theorem 2.1. Let M be a closed oriented Riemannian manifold of di-
mension n (4 ≤ n ≤ 7) with positive scalar curvature and non-trivial first
Betti number, and let α be a non-trivial codimension one homology class in
Hn−1(M ;R). Then there exists a closed embedded hypersurface Nα of M
representing α such that all the eigenvalues of the uniformly elliptic operator

−∆ +
(n− 3)
4(n− 2)

R̃

defined on the Sobolev space H1(Nα) is self-adjoint and positive-definite with
respect to the induced metric on Nα, where ∆ is the Laplace-Beltrami oper-
ator of Nα and R̃ is the scalar curvature with respect to the induced metric.

As a consequence, the first eigenvalue is strictly positive and its eigen-
function of the operator cannot change its sign.

Proof. By hypothesis, there exists a non-trivial homology class α of degree
n − 1. But, by geometric measure theory in [8], this codimension one ho-
mology class α can be represented by an orientable closed embedded hyper-
surface Nα of minimum volume, compared to all other closed hypersurfaces
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in the homology class. Here we need to use the restriction n ≤ 7 of the
dimension to achieve the regularity of Nα.

For simplicity, we shall use N instead of Nα from now on. Let hij denote
the second fundamental form of N with respect to the induced metric and
en be the unit normal vector to N . Then we compute the second variation
of the volume of N along the direction fen for a smooth function f on N .
Then the second variation is given by

(2.1) −
∫

N


Rnn +

∑

1≤i,j<n

h2
ij


 f2 +

∫

N
|∇f |2,

which is nonnegative for all f by the choice of the embedded hypersurface
N .

Next, we use the Gauss equation between the curvature tensors Rijkl

(resp. R̃ijkl) on M (resp. N) given by

(2.2) R̃ijkl −Rijkl = hiihjj − h2
ij , 1 ≤ i, j < n.

By summing the equation (2.2) over all 1 ≤ i, j < n, we obtain

(2.3)
∑

1≤i,j<n

R̃ijij =
∑

1≤i,j<n

Rijij +


 ∑

1≤i<n

hii




2

−
∑

1≤i,j<n

h2
ij .

Since we have
∑

1≤i<n hii = 0 by the minimality of N , it follows from (2.3)
that

R =
∑

1≤i,j≤n

Rijij = 2
∑

1≤i<n

Rnini +
∑

1≤i,j<n

Rijij

= 2Rnn + R̃ +
∑

1≤i,j<n

h2
ij ,

where R (resp. R̃) denotes the scalar curvature of M (resp. N). Thus we
have

(2.4) Rnn =
1
2
(R− R̃−

∑

1≤i,j<n

h2
ij).

Plugging the equation (2.4) into the inequality (2.1), it is easy to obtain

∫

N
|∇f |2 ≥

∫

N

1
2


R− R̃ +

∑

1≤i,j<n

h2
ij


 f2.
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Since the scalar curvature R of M is positive, it follows from the last in-
equality that we have

(2.5)
∫

N
|∇f |2 > −

∫

N

R̃

2
f2

for all smooth functions f . But this inequality (2.5) implies that for µ ≥ 0
the only solution of the equation given by

(2.6) ∆f =
(n− 3)
4(n− 2)

R̃f + µf

is the zero solution. Indeed, if it is not true, then by using the inequality
(2.5) and the equation (2.6) we have

∫

N
|∇f |2 > −

∫

N

1
2
R̃f2 − 2µ(n− 2)

(n− 3)

∫

N
f2

=
2(n− 2)
(n− 3)

∫

N
|∇f |2,

which is impossible, since n ≥ 4. Therefore, the elliptic operator −∆ +
(n−3)
4(n−2)R̃ on N should be positive-definite. This completes the proof of The-
orem 2.1.

Remark 2.2. Using a similar argument as in the proof of Theorem 2.1, one
can show that the scalar curvature R̃ on N can be made positive only after
a suitable conformal change (see also [13] and [7]).

3 Boundedness of homotopy fill radius

The aim of this section is to show that the closed embedded hypersurface
and all its covering spaces have the property that the homotopy fill radius is
bounded from above by some uniform constant. This observation will play
a crucial role in the present paper.

For the following theorems, we need to set up some definitions and no-
tations. For some more related topics and details, refer to [11] and [13]. We
first begin with the definition of the homotopy fill radius of a simple closed
curve γ in a compact Riemannian manifold Ω which bounds a disk in Ω (see
[13] and [5]). To do so, set

Nε(γ) = {x ∈ Ω | dΩ(x, γ) ≤ ε}.
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We then define the homotopy fill radius of γ by

π1fillrad(Ω, γ)
= sup{ε > 0 | distΩ(γ, ∂Ω) > ε and γ does not bound a disk in Nε(γ)}.

If the boundary of Ω is empty, then the condition of distΩ(γ, ∂Ω) > ε is
vacuous. Then we define π1Rad(Ω), simply called the homotopy fill radius
of Ω, to be the supremum of the homotopy fill radius π1fillrad(Ω, γ) taken
over all simple closed curves γ bounding a disk in Ω.

For example, if Ω is a ball of radius r in Rn, then π1Rad(Ω) = r
2 . On the

other hand, if Ω is the sphere Sn−1(r) of radius r in Rn, then π1Rad(Ω) = πr
2 .

Similarly, if Ω is the cross product of Sn−1(r) with an interval (−T, T ), then
π1Rad(Ω) = min{πr

2 , T}.
With these said, we then have the following theorem about the bound-

edness of the homotopy fill radius.

Theorem 3.1. Let M be a closed oriented Riemannian manifold of di-
mension n (4 ≤ n ≤ 7) with positive scalar curvature and non-trivial first
Betti number, and let α be a non-trivial codimension one homology class in
Hn−1(M ;R). Then there exists a closed oriented embedded hypersurface Nα

of M representing α whose homotopy fill radius π1Rad(Nα) is less than or

equal to
√

3
2Λπ, where Λ is a positive lower bound of the first eigenvalue of

the self-adjoint elliptic operator

−∆ +
(n− 3)
4(n− 2)

R̃

on Nα.

Proof. It follows from Theorem 2.1 that there exists a closed embedded
hypersurface Nα of M representing α such that all the eigenvalues of the
uniformly elliptic operator

L = −∆ +
(n− 3)
4(n− 2)

R̃

defined on the Sobolev space H1(Nα) is self-adjoint and positive-definite
with respect to the induced metric on Nα. Then, applying the proof of
Proposition 1 of [13] (see also Theorem 4.1 of [11]) to the hypersurface Nα

with the self-adjoint and positive-definite elliptic operator L immediately
gives the estimate of the homotopy fill radius of Nα.
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For the sake of reader, we give a sketch of the rest of the proof, as follows.
To do so, set a = (n−3)

4(n−2) and N = Nα for simplicity. Let f > 0 be the first

eigenfunction of L = −∆ + aR̃ with the first eigenvalue λ ≥ Λ. Then we
have

(3.1) ∆f + (λ− aR̃)f = 0.

Let ρ be any positive number less than π1Rad(N), and let γ be a curve such
that π1fillrad(N, γ) > ρ. Then for any disk D spanning γ, define

Af (D) =
∫

D
fdσ, dσ = area form.

If D is a minimizing immersed disk in N with ∂D = γ for Af (D), then the
second variation of Af should be non-negative. Note that such a minimizing
immersed disk exists in N , since if the manifold is closed or a covering of
a closed manifold, then it always admits a smooth solution of the Plateau
problem for a simple closed curve bounding a disk (see page 20 in [11]).
Hence the first eigenvalue of the differential operator L on D given by

(3.2) L(ϕ) = −(∆ϕ + f−1∇ϕ · ∇f + (aR̃− f−1∆Nf − 1
2
K + f−1∆f)ϕ),

where ∆ and ∇ are taken over D, and K is twice the Gaussian curvature
of D is non-negative. Now, if we plug the equation (3.1) into (3.2), then we
have

(3.3) L(ϕ) = −(∆ϕ + f−1∇ϕ · ∇f + (λ− 1
2
K + f−1∆f)ϕ).

Let g be a positive first eigenfunction of L on D. Then it follows from (3.3)
that g satisfies

(3.4) −L(g) = (∆g + f−1∇g · ∇f + g(λ− 1
2
K + f−1∆f) ≤ 0.

Since π1fillrad(N, γ) > ρ, there exists a point x in D ∩ ∂Nρ(γ). Then
consider the set T of all curves τ lying in D which connect x to γ = ∂D,
and define the functional I(τ) by

I(τ) =
∫

τ
fgds,

where ds is the arclength of τ . If τ is a curve minimizing I(τ) over the set
T , then we may assume that the length l of γ is greater than or equal to ρ.
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Furthermore, by the choice of τ , the second variation of I at τ should be
non-negative. It then follows from (3.4) that, as in the proof of the paper
[13], we have a positive function h defined over the interval [0, l] and

h−1h′′ + f−1f ′′ + g−1g′′ + h−1f−1h′f ′ + h−1g−1h′g′ + f−1g−1f ′g′

+ λ ≤ 0
(3.5)

on [0, l], where the differentiation is taken with respect to the arclength
parameter s.

Finally, if φ is any function defined over [0, l] which vanishes at two end
points s = 0 and s = l, then some simple computations starting from (3.5)
give

λ

∫ l

0
φ2ds ≤ 3

2

∫ l

0
(φ′)2ds.

This implies that the operator − d2

ds2 − 2
3λ has non-negative first eigenvalue

on [0, l], and so we have

l ≤
√

3
2λ

π ≤
√

3
2Λ

π.

Since l ≥ ρ and ρ is an arbitrary number less than π1Rad(N), we have

π1Rad(N) ≤
√

3
2Λπ. This completes the proof of Theorem 3.1.

Next, if N̄α is any covering space of Nα in Theorem 3.1 equipped with
the covering metric induced from Nα, then, only after a suitable conformal
change, N̄α will admit a metric of positive scalar curvature, and the elliptic
operator

L̄ = −∆N̄α
+

(n− 3)
4(n− 2)

RN̄α

defined on the Sobolev spaceH1
0(N̄α) is also self-adjoint and positive-definite

with respect to the covering metric. This can be seen by using a suitable
partition of unity of N̄α. More precisely, we have the following lemma.

Lemma 3.2. Let a = (n−3)
4(n−2) and N̄ = N̄α. Then the elliptic operator

L̄ = −∆N̄ + aRN̄

defined on the Sobolev space H1
0(N̄) is positive-definite with respect to the

covering metric.
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Proof. We shall denote by π the covering projection from N̄ to N . Let
U = {Ui} be an open covering of N such that π−1(Ui) is a disjoint union
of open subsets of N̄ each of which is mapped diffeomorphically onto Ui by
π. Let π−1(Ui) = {Ūij} and let Ū = {π−1(Ui)} be the open covering of N̄ .
Then choose a partition of unity {ψ̄ij} subordinate to the open covering Ū .

Next take a compactly supported smooth function f̄ on N̄ whose support
is contained in the union ∪ij∈J̄ Ūij . Here we may assume without loss of
generality that the support of f̄ is connected. We then make an index
subset J̄ ′ of J̄ by the following rule: for each i, if any, we take one and
only one index ij from J̄ for J̄ ′ in such a way that the union ∪ij∈J̄ ′Ūij is
connected. Then we can define a function f on N by

(3.6) f =
∑

ij∈J̄ ′
(π|−1

Ūij

)∗(ψ̄ij ) · (π|−1
Ūij

)∗(f̄).

Since {ψ̄ij} is a partition of unity subordinate to the open covering Ū , f is
well-defined and smooth.

Now suppose further that f̄ does not vanish identically over the union
∪ij∈J̄ ′Ūij and satisfies the elliptic differential equation

(3.7) L̄(f̄) = −∆N̄ f̄ + aRN̄ f̄ = −µf̄ , µ > 0.

Since f̄ =
∑

ij∈J̄ ψ̄ij f̄ , it follows from the pullback via the inverse of the
map π over each Ūij (ij ∈ J̄ ′) as in (3.6) and (3.7) that we have

L(f) = −∆Nf + aRNf = −µf, µ > 0.

Since the elliptic operator L on N is positive-definite, this implies that f
should be the zero solution. But clearly this contradicts the choice of f̄ and
so f . This completes the proof.

As a consequence, if ΛN̄α
> 0 is a positive lower bound of the first

eigenvalue of the operator, then the homotopy radius π1Rad(N̄α) is also
bounded by the constant

√
3

2ΛN̄α
π. In order to obtain the boundedness of

the homotopy fill radius of N̄α, it is important to notice that we do not need
the existence of a metric of positive scalar curvature on N̄α. Namely, we
just need the existence of the uniformly elliptic operator. Hence we have
the following proposition.

Proposition 3.3. Let M be a closed oriented Riemannian manifold of di-
mension n (4 ≤ n ≤ 7) with positive scalar curvature and non-trivial first
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Betti number. Let α be a non-trivial codimension one homology class in
Hn−1(M ;R). M and Nα its associated closed oriented embedded hypersur-
face Nα of M representing α as in Theorem 3.1. Then Nα and its covering
have the property that the homotopy fill radius π1Rad is bounded from above.

4 Proof of Theorem 1.2

The aim of this section is to give a proof of Theorem 1.2. To do so, we make
use of the notion of the number of ends of a group.

Given a group G, the number of ends of G, denoted e(G), can be defined
by the number of geometric ends of a simplicial complex K̃ which is a regular
covering of a finite simplicial complex K and which has G as the group of
covering transformation. In particular, if G is the first fundamental group
of a closed manifold M then the end e(π1(M)) of G = π1(M) is defined to
be the number of of ends of the universal cover M̃ of M . According to [11],
the number of ends, e(G), can have only 0, 1, 2, or ∞.

We next need the notion of the accessibility of a finitely generated group
G. We say that a finitely generated group G is accessible if there is a G-
tree T such that the isotropy group Ge of any edge e of T is finite and the
isotropy group Gv of any vertex v of T has at most one end. According to
a result of Dunwoody in [1], any finitely presented group is accessible. Note
that π1 of a closed oriented Riemannian manifold is finitely presented. Then
we need the following theorem (Theorem 5.21 in [11]).

Theorem 4.1. Let N be a closed Riemannian manifold. Suppose that N
and all its covering spaces of N have the property that the homotopy fill
radius π1Rad is bounded from above. If G is a finitely generated subgroup
of the fundamental group π1(N) of N , then G cannot have exactly one end.

If we combine Theorem 4.1 with Proposition 3.3, then it is immediate
to obtain the following

Corollary 4.2. Let M be a closed oriented Riemannian manifold of di-
mension n (4 ≤ n ≤ 7) with positive scalar curvature and non-trivial first
Betti number. Let α be a non-trivial codimension one homology class in
Hn−1(M ;R), and Nα its associated closed oriented embedded hypersurface
Nα of M representing α as in Theorem 2.1. Then the fundamental group
π1(Nα) does not have any finitely generated subgroups with exactly one end.

1We remark that this theorem is true and easy to prove, although the paper [11] has
been withdrawn due to some flaws elsewhere.
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In particular, π1(Nα) does not have any subgroup isomorphic to π1 of a
Riemann surface.

Finally we are ready to prove a special case of the main theorem (The-
orem 1.2) of this paper. The proof of Theorem 1.2 is similar and so will be
left to the reader.

Theorem 4.3. Let M be a closed oriented Riemannian manifold of di-
mension n (4 ≤ n ≤ 7) with positive scalar curvature and non-trivial first
Betti number. Let α be a non-trivial codimension one homology class in
Hn−1(M ;R), and Nα its associated closed oriented embedded hypersurface
Nα of M representing α of minimum volume, compared with all other closed
hypersurfaces in the homology class. Then the fundamental group π1(Nα) is
virtually free.

Proof. For simplicity, let us denote by N the closed oriented embedded
hypersurface Nα of M representing α of minimum volume, compared with
all other closed hypersurfaces in the homology class. To prove the theorem,
recall first that π1(N) is accessible. Note also that by Theorem 4.1 (or
Theorem 5.2 of [11]) π1(N) has no finitely generated subgroups with exactly
one end. Hence it follows from a result by Dunwoody in [1] that there is a
G-tree T such that the isotropy group Ge of any edge e of T is finite and
the isotropy group Gv of any vertex v of T is finite. But this implies that by
a theorem of Serre (Proposition 11 of Section 2.6 in [14]) π1(N) is virtually
free of finite rank. This completes the proof.
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