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ABSTRACT. We study additive higher Chow groups with several modulus con-
ditions. Apart from exhibiting the validity of all known results for the additive
Chow groups with these modulus conditions, we prove the moving lemma for
them: for a smooth projective variety X and a finite collection W of its locally
closed algebraic subsets, every additive higher Chow cycle is congruent to an
admissible cycle intersecting properly all members of W times faces. This is the
additive analogue of the moving lemma for the higher Chow groups studied by
S. Bloch and M. Levine.

As applications, we show that any map from a quasi-projective variety to
a smooth projective variety induces a pull-back map of additive higher Chow
groups. Using the moving lemma, we also establish the structure of graded-
commutative differential graded algebra (CDGA) on the additive higher Chow

groups.
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1. INTRODUCTION

Working with algebraic cycles, formal finite sums of closed subvarieties of a
variety, often requires some forms of moving results, as differential geometry often
requires Sard’s lemma. A classical example is Chow’s moving lemma in [6] that
moves algebraic cycles under rational equivalence. A modern one for higher Chow
groups shows in [2, 16] that, for a smooth quasi-projective variety X and a finite set
of locally closed subvarieties of X, one can move (modulo boundaries) admissible
cycles to other admissible cycles that intersect a given finite set of subvarieties in
the right codimensions. Any such results on moving of cycles is generally referred
to as moving lemmas. Such moving results have played a very crucial role in the
development and applications of the theory of higher Chow groups. The primary
goal of this paper is to prove this latter kind of moving lemma for the additive
higher Chow groups of a smooth and projective variety and to study some very
important applications on the structural properties of additive higher Chow groups.

The additive Chow groups of zero cycles on a field were first introduced by Bloch
and Esnault in [4] in an attempt to describe the K-theory and motivic cohomology
of the ring of dual numbers via algebraic cycles. Bloch and Esnault [5] later defined
these groups by putting a modulus condition on the additive Chow cycles in the
hope of describing the K-groups of any given truncated polynomial ring over a
field. The additive higher Chow groups of any given variety were defined in the
most general form by Park in [18] and were later studied in more detail in [14],
where many of the expected properties of these groups were also established.

The most crucial part of the existing definition(s) of the additive higher Chow
groups which makes them distinct from the higher Chow groups, is the modulus
condition on the admissible additive cycles. This condition also brings the extra
subtlety which does not persist with the higher Chow groups. As conjectured
in [14, 18], the additive higher Chow groups are expected to complement higher
Chow groups for non-reduced schemes so as to obtain the right motivic cohomology
groups. In particular, for a smooth projective variety X, one expects a Atiyah-
Hirzebruch spectral sequence
(1.1) TCH (X, —p — ¢;m) = K™ _ (X),
where K™! is the homotopy fiber of the restriction map K (X x Spec(k[t])) —
K (X x Spec(k[t]/t™+1)).
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Since these beliefs are still conjectural, it is not clear if the modulus conditions
used to study the additive higher Chow groups of varieties in the literature are
the right ones which would give the correct motivic cohomology, e.g., the one
which would satisfy (1.1). One aspect of this paper is to exhibit that the modulus
condition (which we call Mj,, in this paper) used in [14] may not be the best
possible one, if one expects the theory of additive higher Chow groups to yield the
correct motivic cohomology and the motives of non-reduced schemes.

We study the theory of additive Chow groups based on two other modulus
conditions in this paper: M = M,,,, is based on the modulus condition used
by Bloch-Esnault-Riilling in [5, 21|, and M = M,s,, is a new modulus condition
introduced in this paper. Although this new modulus condition Mg, may appear
mildly stronger than that used in [14, 18], it turns out that the resulting additive
Chow groups have all the properties known for the additive Chow groups of [5],
[14], and [18]. In addition, we prove many other crucial structural properties of the
additive higher Chow groups based on the modulus conditions My, and Mg,
Although it may seem surprising, the techniques used in proving the results of this
paper make one believe that such results may not be possible for the additive higher
Chow groups based on the modulus condition Mj,, of [14, 18], if Conjecture 2.9
turns out to be false.

We now outline the structure of this paper and elaborate on our main results.
We define our basic objects, the additive higher Chow groups with various modulus
conditions, in Section 2. We also prove some preliminary results which are used
repeatedly in the paper. In Section 3, we prove the basic properties of these
additive Chow groups. In particular, we demonstrate all those results for the
additive higher Chow groups based on the modulus condition Mjg,,, which are
known for the additive higher Chow groups of [5], [14] and [18]. Section 4 gives
the proofs of further preliminary results needed to prove our moving lemma for
the additive higher Chow groups.

The subsequent Sections 5 and 6 are devoted to our first main result, the moving
lemma for additive higher Chow groups. As in the case of higher Chow groups,
any theory of additive motivic cohomology which would compute the K-theory as
in (1.1) is expected to have a form of moving lemma to make them more amenable
to deeper study. This was one of the primary motivation for working on this
paper. We show in Theorem 4.1 that for a smooth projective variety X and a
finite collection W of its locally closed algebraic subsets, every additive higher
Chow cycle is congruent to an admissible cycle intersecting properly all members
of W times faces. This is the additive analogue of the moving lemma for the higher
Chow groups studied by S. Bloch and M. Levine.

While lack of this result for general quasi-projective varieties may seem dis-
appointing, one would rather not expect this to be the case. For instance, Al-
homotopy invariance and localization sequences fail for additive higher Chow groups,
but these are indirectly implied if the moving lemma is assumed for all quasi-
projective varieties such as X x Al. A concrete quasi-projective example, where
the standard arguments fail, is given in Example 12.2.

Our proof of the above result is broadly speaking based on the techniques of [1]
and [16] that prove the analogous result for the higher Chow groups. The main
difficulty with the techniques of higher Chow groups which does not immediately
allow them to be adapted into the additive world is that these arguments are
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mostly intersection theoretic and are not equipped to handle the most delicate
modulus condition of additive Chow cycles. We show one such phenomenon in
the last section of this paper. However, in the case of projective varieties, we
carefully modify the arguments at every step so that we can keep track of the
modulus condition whenever we encounter new cycles in the process, especially in
the construction of the chain homotopy variety. This is achieved using our new
containment sort of argument and some results of [14]. This essentially proves the
above theorem. On the log-additive higher Chow groups, one can prove the moving
lemma for any general smooth quasi-projective varieties using our main theorem:.

In Section 7, we give our first application of the moving lemma. We establish
the contravariant functoriality property of the additive higher Chow groups in the
most general form by showing in Theorem 7.1 that for a morphism f: X — Y of
quasi-projective varieties over a field k£, where Y is smooth and projective, there
is a pull-back map f* : TCHY(Y,n;m) — TCH?(X,n;m), and this satisfies the
expected composition law.

If X is also smooth and projective, the pull-back map on the additive Chow
groups was constructed in [14] using the action of higher Chow groups on the
additive ones. However, the contravariance functoriality in this general form as
above (even if Y is smooth) is new and is based on a crucial use of Theorem 4.1 as
is the case of general pull-back maps of higher Chow groups (cf. [1, Theorem 4.1]),
and another use of our containment argument. Even in the special case of X being
smooth and projective, our proof is different and more direct than the one in [14].

Our final set of main results of this paper are motivated by the question of what
are the important and necessary properties one would expect the additive higher
Chow groups to satisfy, if they are the right motivic cohomology to compute the
nil K-theory of the infinitesimal deformations of smooth schemes. In particular,
one could ask what are the necessary implications on the structural properties of
the additive higher Chow groups if there is indeed a spectral sequence as in (1.1).
The reader would recall in this context that the K-theory of the infinitesimal
deformations of the base field k is expressed in terms of the modules of absolute
Kahler differentials and the absolute de Rham-Witt complex of Hesselholt-Madsen,
as shown for example in [12]. For general smooth projective varieties over k, one
expects these K-groups to be given by the cohomology of the absolute de Rham-
Witt complex. It is well known that these de Rham-Witt complexes have the
structure of a graded-commutative differential graded algebra (CDGA) and they
are initial objects in the category of so called Witt complexes over a base scheme
(cf. [13, 21]). This makes it imperative that the additive higher Chow groups
posses such structures. Our next set of results together implies that this is indeed

the case.
In Section 8, we show in Theorem 8.16 that the additive higher Chow groups

indeed have a wedge product which makes the direct sum of all additive higher
Chow groups a graded-commutative algebra. This product structure has all the
functoriality properties and satisfies the projection formula. Furthermore, this is
compatible with the module structure on the additive higher Chow groups over
the Chow ring of the variety. We show in Theorem 9.7 that these are equipped
with a differential operator, too.

For the modulus condition M,,,,, we further show in Theorem 11.13 that these
differential operators and the wedge product turn the resulting additive higher
Chow groups into a CDGA. As a very important ingredient needed to achieve this,
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we introduce the normalized version of additive cycle complex and additive higher
Chow groups in Section 11. We show that this normalized additive cycle complex
is in fact quasi-isomorphic to the additive cycle complex if one uses the modulus
condition Mg,,,. This is an additive analog of a similar result of S. Bloch [3] for
higher Chow groups. This is the last result we need to complete the program of
CDGA structure on additive higher Chow groups.

Although we do not go into this in order not to further increase the length of
this seemingly long paper, the reader can easily see using our techniques that the
push-forward and pull-back maps given by the power map a — a” on G,, (which
is finite and flat) induce on the additive higher Chow groups of smooth projective
varieties two operators, so called the Frobenius and the Verschiebung operators.
Together with the above CDGA structure, this turns them into a Witt complex.

One hopes that this very general abstract structure of a Witt complex will help
us in making a significant progress towards the eventual goal of showing that the
additive higher Chow groups are the right motivic cohomology of the infinitesimal
deformations of smooth schemes. This goal was in some sense the starting point
of the theory of additive higher groups.

In the last section, we append some calculations of the additive higher Chow
groups the authors found in the process of working on the problem. This suggests
some kind of “pseudo”-A'-homotopy properties of additive higher Chow groups.

We finally remark that the only reason for not including the modulus condition
Msyp in our Theorem 11.13 is the lack of an affirmative answer of Question 11.8
in this case. We strongly believe the answer to be indeed positive and hope that a
proof will be available soon.

Throughout this paper, a k-scheme, or a scheme over k, is always a separated
scheme of finite type over a perfect field k. A k-variety is an integral k-scheme.
The ground field k£ will be fixed throughout this paper.

2. ADDITIVE HIGHER CHOW GROUPS

In this section, we define additive higher Chow groups from a unifying perspec-
tive than those in the literature by Bloch-Esnault, Riilling, Krishna-Levine, and
Park, treating the modulus conditions as “variables”. We also prove some elemen-
tary results that are needed to study and compare the additive Chow groups based

on various modulus conditions. ‘ ‘ ‘
We begin by fixing some notations which will be used throughout this paper.

We write Sch/k, Sm/k and SmProj/k for the categories of k-schemes, smooth
quasi-projective varieties, and smooth projective varieties, respectively. D~ (Ab)
is the derived category of bounded above complexes of abelian groups. Recall
from [14, 18] that for a normal variety X over k, and a finite set of Weil divisors

{Y1, -+, Y} on X, the supremum of these divisors, denoted by sup; <<, Y, is the
Weil divisor defined to be
(2.1) sup Yi= ) (max ordy (Y)Y

== Y €Pdiv(X)

where Pdiv(X) is the set of all prime Weil divisors of X. One observes that the

set of all Cartier divisors on a normal scheme X is contained in the set of all Weil
divisors, and the supremum of a collection of Cartier divisors may not remain a
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Cartier divisor in general, unless X is factorial. We shall need some elementary
results about Cartier and Weil divisors on normal varieties.

Here are some basic facts about divisors on normal varieties:
Lemma 2.1. Let X be a normal variety and let D1 and Dy be effective Cartier
divisors on X such that D1 > Dy as Weil divisors. Let Y C X be a closed subset
which intersects Dy and Dy properly. Let f : YN — X be the composite of the
inclusion and the normalization of Yieq. Then f*(Dq) > f*(Ds).

Proof. For any effective Cartier divisor D on X, let Zp denote the sheaf of ideals
defining D as a locally principal closed subscheme of X. We first claim that
Dy > D, if and only if Zp, C Zp,. We only need to show the only if part as the
other implication is obvious. Now, D; > Dy implies that D = Dy — D, is effective
as a Cartier divisor since the group of Cartier divisors forms a subgroup of Weil
divisors on a normal scheme. Since Zp, C Zp, is a local question, we can assume
that X = Spec(A) is local normal integral scheme and Zp, = (a;). Put a = ay/az

as an element of the function field of X. We need to show that a € A. Since A
is normal, it suffices to show that a € A, for every height one prime ideal p of A.

But this is precisely the meaning of D; > D,. This proves the claim.
Since D; intersect Y properly, we see that f*(D;) is a locally principal closed

subscheme of Y for i = 1,2. The lemma now follows directly from the above
claim. ([l

The following is a refinement of [14, Lemma 3.2]:

Lemma 2.2. Let f : Y — X be a surjective map of normal integral k-schemes.
Let D be a Cartier divisor on X such that f*(D) >0 onY. Then D >0 on X.

Proof. As is implicit in the proof of the Lemma 2.1, we can localize at the generic
points of Supp(D) and assume that X = Spec(A), where A is a dvr which is
essentially of finite type over k. The divisor D is then given by a rational function
a € K, where K is the field of fractions of A. Choosing a uniformizing parameter
m of A, we can write a uniquely as a = un™, where u € A* and n € Z.

Since f is surjective, there is a closed point y € Y such that f(y) is the closed
point of X. Since Y is integral, the surjectivity of f also implies that the generic
point of Y (which is also the generic point of Spec(Oy,)) must go to the generic
point of X under f. Hence the map Spec(Oy,,) — X is surjective. This implies in
particular that the image of 7 in Oy, is a non-zero element of the maximal ideal
m of the local ring Oy,,. On the other hand, f*(D) > 0 implies that as a rational
function on Y, a actually lies in Oy,,. Since u € O;y and m € m, this can happen
only when n > 0. That is, D is effective. U

We assume a k-scheme X is equi-dimensional in this paper to define the addi-
tive Chow groups although one can easily remove this condition by writing the
additive Chow cycles in terms of their dimensions rather than their codimensions.
Throughout this paper, for any such scheme X, we shall denote the normalization
of X;ea by XV. Thus XV is the disjoint union of the normalizations of all the
irreducible components of X,.q.

Set A! := Speck[t], G,, := Speckl[t,t™!], P! := Proj k[Yp, V1] and let y := Y1 /Y}
be the standard coordinate function on P'. We set (J" := (P! \ {1})". For n > 1,
let B, = G,, xO"', B, = Al xO"', B, = A' x (P")"' D B, and B, =



MOVING LEMMA FOR ADDITIVE CHOW GROUPS AND APPLICATIONS 7

P! x (P)"~! 5 B,. We use the coordinate system (¢, 41, ,Yp_1) on By, with
y; ==y o q;, where ¢; : B, — P! is the projection onto the i-th P!
Let F,;, for i = 1,...,n — 1, be the Cartier divisor on B, defined by {y; = 1}
and F, o C B,, the Cartier divisor defined by {t = 0}. Notice that the divisor F, o
is in fact contained in B,, C B,. Let F! denote the Cartier divisor Z?:_ll F,; on
B,

A face of B,, is a subscheme F' defined by equations of the form

Yiy = €15, Yiy = €55 €5 € {Oa OO}
For e =0,00,and 1 =1,--- ;n—1, let
Ln,i,e : anl - Bn

be the inclusion
(22) Ln,i,e<t) Yiye e 7yn—2> - (t7 Y, Yi-1,6 Yy - - - 7y71—2)'

We now define the modulus conditions that we shall consider for defining our
additive higher Chow groups.

2.1. Modulus conditions.
Definition 2.3. Let X be a k-scheme as above and let V' be an integral closed

subsc}ieme of X x B,,. Let V denote the closure of V in X x _En and let v : VN —
X x B, denote the induced map from the normalization of V. We fix an integer
m > 1.

(1) We say that V satisfies the modulus m condition Mg, (or the sum-modulus

condition) on X x B, if as Weil divisors on VN,

(m+ D" (Fao)] < [ (F,)]-

n

This condition was used by Bloch-Esnault and Riilling in [1, 21] to study
additive Chow groups of zero cycles on fields.
(2) We say that V satisfies the modulus m condition Mj,, (or the sup-modulus

condition) on X x B, if as Weil divisors on VN,

(m+ [ (Foo)] < sup [V7(F,))].

1<i<n—1

This condition was used by Park and Krishna-Levine in [14, 18] to define
their additive higher Chow groups.

(3) We say that V' satisfies the modulus m condition Mjg,, (or the strong sup-
modulus condition) on X X B, if there exists an integer 1 < i < n— 1 such
that

(m + D[ (Fuo)] < [V'(F )]

o e —N
as Welil divisors on V' .
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Since the modulus conditions are defined for a given fixed integer m, we shall
often simply say that V satisfies a modulus condition M without mentioning the

integer m. Notice that since V is contained in X x B,,, its closure V intersects all
the Cartier divisors £}, o and F1 ; (1 <i<n-—1)properlyin X x B,,. In particular,

their pull-backs of £}, and Féz are all effective Cartier divisors on V. Notice
also that

(2.3) Misup = Mgup = Mgy,

The following restriction property of the modulus conditions My, and Mg,
will be used repeatedly in this paper.

Proposition 2.4 (Containment lemma). Let X be a k-scheme and letY C X x B,
be a closed subvariety such that its closure Y C X x Bn intersects the Cartier
divisors X x Fy,o and X x E} properly. Let V be an irreducible closed subvariety
of X x B, such that V' satisﬁes the modulus condition Mgy, or Mg, on X X B,,.
Let V be its closure in X X B Let Vy be an irreducible component of VNY and

let V;V denote the normalization of the closure of Vy inY . Let vy : VY — X x B,
denote the natural map.
(1) IfV satisﬁes the modulus condition Mgy, then there is an'1 <1i <n —1 such

that (m + 1)[v5 (Fro)] < [5(Fy,)]. that is, Vi also satisfies Mgy
(2) If V satisfies the modulus condition My, then (m + 1)[V3(Fno)] < [v5(FL)],
that is, Vy also satisfies Mgy, .

Proof. If V.NY = (), then there is nothing to prove. Hence, we assume that VNY
is nonempty, so there is at least one nonempty irreducible component Vy. We
consider the following commutative diagram:

(2.4) VN zN Lz N
fYJ fNJ f \

VNC ZN g A P 1/ 1 v
Y . ’[
Y

Here Z and Z; are defined so that both the upper and the lower squares on the
right are Cartesian. It is then easy to check that ZNY =V NY and hence VNY
is a union of irreducible components of Z. In particular, ‘75}\’ is one of the disjoint
components of ZV. Since fY is finite and surjective, there is a component Vi of Z¥

lying over ‘A/;V , and the restriction fy of fV also is a finite and surjective map. Since
VNE,o=0and Vy # 0, we see that F,, o and F&Z all intersect Z properly. Now if
we use Mggyp, then the modulus condition for V' and Lemma 2.1 imply that there is
an integer 1 < i < n—1 such that g*op*[V*(F,, ;—(m+1)F, )] > 0on Z{' and hence
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on Vi¥. In particular, by commutativity, we get fw*(Fy; — (m+1)F,0)] >0
on V¥, Since fy is finite and surjective map of normal varieties, the proposition
now follows from Lemma 2.2 for the modulus condition Mgg,,. The case of Mgy,
follows exactly the same way using F,, instead of F, ;, and the fact that F), is also

an effective Cartier divisor. O

As one can see from the above proposition, although the modulus condition
My, lies between the other two modulus conditions My, and Mgy, it turns out
that the additive higher Chow groups based on the latter modulus conditions have
better structural properties.

In this paper, we study the additive higher Chow groups based on the modulus
conditions Mgy, and Mg,,,. We shall show in the next section that the additive
Chow groups based on our new modulus condition Mjg,, satisfy all the properties
known to be satisfied by the additive higher Chow groups of Krishna-Levine, Park,
Bloch-Esnault and Riilling.

The following lemma is not used in the paper, but we decided to keep it for it
might be useful for some follow-up works.

Lemma 2.5. Let X be a normal variety and let Dy and Do be effective Cartier
divisors on X such that Dy > Dy as Weil divisors. Let X' denote the normalization
of the blow-up Blx(Z) of X along a closed subscheme Z C X of codimension at
least two. Let f: X' — X be the natural map. Then f*(Dy) > f*(Ds).

Proof. Let D; = ) n;;V;; for i = 1,2, where Vj; are prime divisors on X. Since Z
is of codimension at least two, we see that for each 4, f*(D;) = > n;; V] + > ni B,

where Ej are the components of the exceptional divisor, V}; is the proper transform
of V;; and n; > 0. The lemma now immediately follows. O

2.2. Additive cycle complex. We define the additive cycle complex based on
the above modulus conditions.

Definition 2.6. Let M be the modulus condition Mg,,, or Mg,. Let X be a
k-scheme, and let 7, m be integers with m > 1.

(0) Tz,(X,1;m)y is the free abelian group on integral closed subschemes Z of
X x G,, of dimension r.

For n > 1, Tz,(X,n;m)y, is the free abelian group on integral closed subschemes
Z of X x B,, of dimension r +n — 1 such that:

(1) (Good position) For each face F' of B,, Z intersects X x F' properly:
dim(ZN (X x F)) <r+dim(F) — 1,and
(2) (Modulus condition) Z satisfies the modulus m condition M on X X B,,.
As our scheme X is equi-dimensional of dimension d over k, we write for ¢ > 0
T2 X, nym)ar = Tz4,q0_ (X, nsm)

We now observe that the good position condition on Z implies that the cycle
(idx X tnic)*(Z) is well-defined and each component satisfies the good position
condition. Moreover, letting Y = X x F for F' = 1,,; .(B,_1) in Proposition 2.4, we
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first of all see that Y intersects X x F, o and X x F! properly in X x En, and each
component of (idx X t,:.)*(Z) satisfies the modulus condition M on X x B,_;.
We thus conclude that if Z C X x B, satisfies the above conditions (1) and (2),
then every component of ¢,,; . *(Z) also satisfies these conditions on X x B,,_y. In
particular, we have the cubical abelian group n +— Tz!(X, n;m),y;.

Definition 2.7. The additive cycle complex Tz4(X, e;m)y of X in codimension
g and with modulus m condition M is the non-degenerate complex associated to
the cubical abelian group n — Tz/(X,n;m)y, i.e.,

Tz X, n;m)py

TZq(X n; m)M degn

Tz9 (X, n;m)y =

The boundary map of this complex at level n is given by d = 327" (—1)(9° — aY),
which satisfies % = 0. The homology

TCHYX,n;m)y := Hy(T21( X, 0;m)p); n > 1
is the additive higher Chow group of X with modulus m condition M.

From now on, we shall drop the subscript M from the notations and it will be
understood that the additive cycle complex or the additive higher Chow group in
question is based on the modulus condition M, where M could be either M,,,, or
Msup. The reader should however always bear in mind that these two are different
objects.

There are a few comments in order. We could also_have defined our additive
cycle complex by taking Tz (X,n;m) to be the free abelian group generated by
integral closed subschemes of X x B, which have good intersection property with

respect to the faces of En, and which satisfy the modulus condition on X x B,
(cf. [14, 18]). However, the following easy consequence of the modulus condition
shows that this does not change the cycle complex.

Lemma 2.8. Let M be a modulus condition in Definition 2.3. Then, there is a
canonical bijective correspondence between the set of irreducible closed subvarieties
V' C X X B, satisfying the modulus m condition M and the set of irreducible closed

subvarieties W C X x B, whose Zariski closure in X x B, satisfies the modulus
m condition M. Here, the correspondence is actually given by the identity map.

Proof. First of all, since for any integral closed subscheme V' of X x En, the pull-
back v*(F,,0) on V¥ is contained in the open subset v~*(X x B,,), we can replace
B, by B, in the definition of the modulus conditions.

Now, if ¥ and 3 are the two sets in the statement, then the modulus condition

forces that if V' € X, then V is same as its closure in X x B,. Conversely, if V' € Z
then the modulus condition again forces V' to be contained in X x B,. 0]

Let Tz(X, o;m),,, be the additive cycle complex as defined in [14, 18]. This

complex is based on the modulus condition Mj,, above. It follows from (2.3) that
there are natural inclusions of cycle complexes

(2.5) Tz(X, &;m)ssup — T2(X, 05m),, — T2(X, 0;m),
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and hence there are natural maps
(26) TCHq(X7 .; m)ssup - TCHq(X7 .; m)sup - TCHq(X7 .; m)

One drawback of the cycle complex based on Mj,, is that the underlying mod-
ulus condition for a cycle is not necessarily preserved when it is restricted to a
face of B,,. This forces one to put an extra induction condition in the definition of
Tz(X, e; m)sup that requires for cycles to be admissible, not only the cycles them-
selves to satisfy M,,, on X x B,,, but also all their intersections with various faces
to satisfy Ms,,. In particular, as n gets large, this condition gets more serious,
and it might be a very tedious job to find admissible cycles. On the other hand,
the definition of our cycle complexes shows that this extra induction condition is
superfluous for the cycle complexes based on Mg, or Msg,,. Based on this dis-
cussion and all the results of this paper, one is led to believe that even though the
modulus condition Mjg,,, may appear mildly stronger and Mj,,, weaker than the
modulus condition Mg,,, the following conjecture should be true.

sum*

Conjecture 2.9. For a smooth projective variety X owver k, the natural inclu-
sions of cycle complexes Tz4(X, 8;m)s5p — Tz1(X,0;m), — Tz/(X, ®;m)5um
are quasi-isomorphisms.

sup

3. BAsic PROPERTIES OF TCH?(X, e;m)

In this section, our aim is to demonstrate that the additive higher Chow groups
defined above for Mj,,;,, and M,,,, have all the properties (except Theorem 3.7
which we do not know for Mg,,,) which are known to be true for the additive
Chow groups for M,,, of [14, 18]. Since most of the arguments in the proofs
can be given either by quoting these references verbatim or by straight-forward
modifications of the same, we only give the sketches of the proofs with minimal
explanations whenever deemed necessary. We begin with the following structural
properties of our additive Chow groups.

Theorem 3.1. Let f : Y — X be a morphism of k-schemes.
(1) If f is projective, there is a natural map of cycle complexes f : Tz, (Y, ®;m) —

Tz.(X, ®;m) which induces the analogous push-forward map on the homol-
0gy

(2) Iff is flat, there is a natural map of cycle complexes f* : Tz, (X, e;m) —
Tz.(Y, ®;m) which induces the analogous pull-back map on the homology.

These pull-back and push-forward maps satisfy the obvious functorial prop-
erties.
(3) If X is smooth and projective, there is a product

Nx : CCH"(X, p) ® TCH,(X, ¢;m) — TCH,_,(X,p + ¢;m),
that is natural with respect to flat pull-back, and that satisfies the projection

formula
fi(f*(a) Nx b) = a Ny fi(b)

for f: X — Y a morphism of smooth projective varieties. If f is flat in
addition, we have an additional projection formula

felanx f7(b)) = fula) Ny b,
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(4) If X is smooth and quasi-projective, there is a product
Nx : CCH"(X) ® TCH(X, ¢;m) — TCH,_,.(X, ¢; m),
that is natural with respect to flat pull-back, and that satisfies the projection

formula
fi(f*(a) Nx b) = a Ny f.(b)

for f: X — Y a projective morphism of smooth quasi-projective varieties.
If f is flat in addition, we have an additional projection formula

felanx f7(b)) = fila) Ny b,

Furthermore, all products are associative.

Proof. (cf. [14]) Granting the flat pull-back and the projective push-forward, the
theorem is a direct consequence of [14, Lemmas 4.7, 4.9] whose proofs are inde-
pendent of the choice of the modulus conditions of Definition 2.3, as the interested
reader may verify. The proofs of the flat pull-back and projective push-forward
maps on the level of cycle complexes also follow in the same way as in loc. cit.
using our Lemma 2.2. ([l

Theorem 3.2 (Projective Bundle and Blow-up formulae). Let X be a smooth
quasi-projective variety and let E be a vector bundle on X of rank r + 1. Let
p:P(E) — X be the associated projective bundle over X. Let n € CH'(P(E)) be
the class of the tautological line bundle O(1). Then for any q¢,n > 1 and m > 2,
the map

g : @TCHq*i(X,n;m) — TCHY(P(E), n;m)
i=0
given by

(a07 e 7a'r"> HZ 771 m]P‘(E) p*(az)
i=0
18 an isomorphism.

Ifi: Z — X is a closed immersion of smooth projective varieties and j : Xz —
X is the blow-up of X along Z with ip : E — Xy the exceptional divisor with
morphism q : E — Z. Then the sequence

(i*,p")

0 — TCH*(X,n;m) —— TCH?*(Z,n;m) & TCH*(Xz,n;m)

* ;%
q g

— TCH*(E,n;m) — 0
15 split exact.

Proof. (cf. [14]) The proof of both the formulae is a consequence of the correspond-
ing decomposition of motives in the triangulated category of Chow motives Moty
together with the fact that the additive Chow groups can be defined as a functor
of graded abelian groups on Mot,. But this functoriality is a direct consequence
of Theorem 3.1.
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Theorem 3.3. Assume that k admits resolution of singularities. Then the functor
Tz.(—;m) : SmProj/k — D~ (Ab) extends to a functor

T7°8(—;m) : Sch/k — D~ (Ab)

log

together with a natural transformation of functors Tz%(—;m) — Tz,.(—;m) satis-

fying:

(1) Let pu: Y — X be a proper morphism in Sch/k, i : Z — X a closed immersion.
Suppose that p: p~ Y (X \ Z) — X \ Z is an isomorphism. Set E = p~ (X \ Z)
with maps ig : E—Y, q: E— Z. There is a canonical extension of the sequence
in D~ (Ab)

T2 (E;m) g ma), T2 (Y;m) © TZ%(Z;m) LESaiN T2 (X ;m)
to a distinguished triangle in D~ (Ab).
(2) Leti: Z — X be a closed immersion in Sch/k, j : U — X the open comple-
ment. Then there is a canonical distinguished triangle in D~ (Ab):

T7,2%(Z3m) £ TA(X;m) 2 To(Usm) — T2 (Zim)[1],

which is natural with respect to proper morphisms of pairs (X,U) — (X', U’).
(3) For any X € Sch/k, the natural map TCH%(X,n;m) — TCHITOEP(X X
AP n;m) is an isomorphism.

Proof. (cf. [14]) This follows directly from Theorem 3.1 and Theorem 3.2 above
together with the main results of Guillén and Navarro Aznar [10]. We refer [14,
Section 6] for details. The natural transformation of functors is an immediate
consequence of the constructions of Guillén and Navarro Aznar using the proper
hyper cubical resolutions, and the proper push-forward property of additive cycle
complex. 0

Next we study the question of the existence of the regulator maps from our
additive higher Chow groups to the modules of absolute Kahler differentials. First
we prove the following result of Bloch-Esnault [5] and Riilling [21] on 0-cycles for
the modulus condition Mggy,.

Theorem 3.4. Assume that char(k) # 2 and let W,,,Q25 denote the generalized
de Rham-Witt complezx of Hesselholt-Madsen (cf. [21]). Then there is a natural
1somorphism

Ry, : TCH"(k,n;m) — W, Q5.

Proof. This is already known for Mj,,,. For the modulus condition Mjg,,, we first
note that the map R{,, is the composite map

TCH" (k, ;M) gsup — TCH™(k,nzm) 5 W01,

where 6 is constructed in [21] and this coincides with the regulator map of Bloch-
Esnault for m = 1. Furthermore for m = 1, Bloch-Esnault define the inverse
map QZ‘I — TCH"(k,n;1) using a presentation of QZ‘I. The reader can

sum

sum
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easily check from the proof of [5, Proposition 6.3] that the inverse map is actually
defined from Q' to TCH"(k,n;1)ssup- This completes the proof when m = 1.

For m > 2, the proof of K. Riilling for TCH"(k, n;1),,,, has three main steps,

namely:

(1) The existence of map Rf,,,,

(2) The isomorphism of Rj,,, and

(3) The existence of transfer maps on the additive higher Chow groups for finite
extensions of fields.

(4) Showing that pro-group {TCH"(k,n;m)}, .-, is an example of a restricted
Witt complex (see loc. cit., Remark 4.22).

We have already shown (1) for our TCH"(k,n;m)ssup. The proof of (3) is a
simple consequence of Theorem 3.1. The surjectivity part of (2) follows from
the result of Riilling and the isomorphism Tz"(k, n;m)sep = T2"(k,n;m),,,,. To
prove injectivity, we follow the proof of Corollary 4.6.1 of loc. cit. and observe that
if there is a cycle ¢ € Tz'(k, 1;m) such that Réﬁm(C) = 0, then ( is the boundary
of a curve C' which is an admissible cycle with the modulus condition My,,,. But
then C is admissible cycle also with the modulus condition Mg, since one has
Msup = Msyp = Mgy when n = 2 by definition. This proves (2). Note that this
does not need any assumption on the characteristic of the ground field.

We now sketch the proof of (4) to complete the proof of the theorem. We

have seen in Remark 11.15 that ({TCH"(k,n;m)}

commutative differential graded algebra. It is also easy to see that the push-forward
and pull-back maps for the finite and flat map a — a” on G,,, induces the Frobenius
and Verschiebung operators F). and V, on these additive higher Chow groups, and
they satisfy 0, F, = 7F.0q; and rd,;:V, = V,04:. Moreover, the same proof as in
21, Lemma 4.17] shows that if char(k) # 2, then F.d4:V; = dae. This proves (3).

As shown in loc. cit., the above four ingredients and the universality of the

sm
de Rham-Witt complex imply that there is a map W,,, Q! LN TCH"(k,n;m)
which is surjective. On the other hand, one checks from the construction of the
map R{,, in loc. cit. that Rf,, o S(,, is identity. O

S TTAY 5alt) forms a graded-

Remark 3.5. One would like to have the assumption char(k) # 2 removed from the
statement of Theorem 3.4. In this context, we remark that the only place we used
this assumption was to show the identity F,.0,;V, = 04¢. This is an imrovement
over the result of Riilling who needs this assumption even to get a CDGA structure
on the additive Chow groups. It is possible that the identity F}.d4;V, = d4; holds
in the additive higher Chow groups for our choice of derivation even if char(k) = 2.
But we have not checked this.

The following is an immediate consequence of the results of Riilling and Theo-
rem 3.4. This gives an evidence of Conjecture 2.9.

Corollary 3.6. For every n,m > 1, the natural maps

TCH"(k, n;m)ssup — TCH"(k,n;m),,,, — TCH"(k,n;m)

sum

are isomorphisms.
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We finally turn to the regulator maps for 1-cycles as considered in [18].

Theorem 3.7. Suppose that k is of characteristic zero and assume the modulus
condition to be Mgg,,. Then there is a natural non-trivial requlator map

(3.1) Ry, : TCH" ' (k,n;m) seup — Q7
This map is surjective if k is moreover algebraically closed.

Proof. The map RY,, is the composite map

6 n—3
sup - Qk ’

TCH"(k,n;m)ssup — TCH" (k,n;m)

where ¢ is constructed in [18]. For the non-triviality of Ry,,, J. Park constructs

a l-cycle I' (see [19, Proposition 1.9], [14, 7.11]) and shows (see [19, Lemmas 1.7,
1.9]) that each component of I in fact satisfies the modulus condition Mg,,. Hence

T m 18 non-trivial. If k = k, then the proof of the surjectivity in [14, Section 7]
follows from the following:

(1) An action of £ on TCH"(k,n;m),

(2) Suitable k*-equivariance of R} up to a scalar,

(3) The surjectivity of R},

(4) The cap product CH™(k,n)®;TCH?(k,3;m) — TCH""(k,n + 3;m).

The action of £* on our additive higher Chow groups is given exactly as in [14] by

(3.2) ax (T,t1, te1) = (x)ats, - tay).

This action extends to an action of k& on B,. The proof of (2) now follows from

the k*-equivariance of the natural map Tz, (k, n;m)ssup — Tz.(k,n;m),,, and the

results of [14]. The proof of (3) is a direct consequence of (1), (2) and the fact that
k is algebraically closed field of characteristic zero. Finally, (4) is already shown
in Theorem 3.1.

4. PRELIMINARIES FOR MOVING LEMMA

The underlying additive cycle complexes and additive higher Chow groups in all
the results in the rest of this paper will be based on the modulus condition Mg,,,
or Mjsyp, unless one of these is specifically mentioned. Our next three sections will
be devoted to proving our first main result of this paper:

Theorem 4.1. Let X be a smooth projective variety over a perfect field k. Let VW
be a finite collection of locally closed subsets of X. Then, the inclusion of additive
higher Chow cycle complezxes (see below for definitions)

T2 (X, 8;m) — T27(X, o;m)

s a quasi-isomorphism. In other words, every admissible additive higher Chow
cycle is congruent to another admissible cycle intersecting properly all given finitely
many locally closed subsets of X times faces.

In this section, we set up our notations and machinery that are needed to prove
this theorem, and prove some preliminary steps. Let X be a smooth projective
variety over k and we fix an integer m > 1. Let W be a finite collection of locally
closed algebraic subsets of X. If a member of W is not irreducible, we always
replace it by all of its irreducible components so that we assume all members of
W are irreducible. For a locally closed subset Y C X, recall that the codimension

codimyY is defined to be the minimum of codimx Z for all irreducible components
ZofY.
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Definition 4.2. We define Tz,,(X, n; m) to be the subgroup of Tz?(X, n;m) gen-
erated by integral closed subschemes Z C X x B,, such that

(1) Z is in T2?(X,n;m) and

(2) codimy«p(Z N (W x F)) > q for all W € W and all faces F of B,

It is easy to see that Tz, (X, e;m) forms a cubical subgroup of Tz!(X,e;m),
giving us the subcomplex

Tzyy (X, o;m)

Tz2 (X e: —
ZW( 7.7m) ﬂ?/\;(X;.;m)

C Tz%(X, e;m).

degn

Let TCHY,,(X, o;m) denote the homology of the complex Tz,,(X, e;m). Then the
above inclusion induces a natural map of homology

(4.1) TCHJ, (X, e;m) — TCHY(X, o;m).

More generally, if e : W — Zs( is a set-theoretic function, then one can define
subcomplexes Tz, (X, ®;m) replacing the condition (2) above by

(2e) codimpyxp(Z N (W x F)) > q—e(W).

In this generality, the subcomplex Tzj, (X, e;m) is same as Tzy, ,(X, o;m).
Remark 4.3. Let ® be the set of all set-theoretic functions e : W — Zs(. Give
a partial ordering on ® by declaring ¢’ > e if /(W) > e(W) for all W € W. If

two functions e, e’ € ® satisfy ¢/ > e, then for any irreducible admissible variety
Z € Tz}, (X,n;m), we have

(4.2) codimy xr(ZN (W X F)) > q—e(W) >q— (W)
for all W € W and all faces F' C B,,. Thus, we have
(4.3) Tzyy (X, n;m) C Ty, (X, n;m)  fore <é.

Note that if e € ® satisfies e > ¢ where ¢ is considered as a constant function in
®, then automatically

(4.4) Tz (X, n;m) = Tz, (X, n;m) = Tz(X, n;m).
Since 0 < e for all e € ®, for each triple e, €/, ¢” such that e < e’ < ¢ < €”, we have
Tzyy (X, n;m) C Tz, (X, n;m) C T2y, (X, n;m)
C Tz (X, n;m) = Tz, .0 (X,n;m) = Tz2(X, n;m).
All these (in)equalities are equivariant with respect to the boundary maps.

Remark 4.4. The main theorem is equivalent to that the inclusion induces an
isomorphism TCHY,,(X, n;m) o~ TCHY(X,n;m) for the given modulus conditions
M. This is equivalent to that for each pair e,e¢’ € ® with e < ¢’ the inclusion
induces an isomorphism

(4.5) TCHyy (X, n;m) ~ TCHY,, (X, n;m).

Our remaining objective in this section is to prove the following additive analogue
of the spreading argument of Bloch-Levine. We begin with the following results.
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Lemma 4.5. Let f : X — Y be a projective and dominant map of integral normal
varieties and let ) denote the generic point of Y. Consider the fiber diagram

(4.6) X, s X

| ]

{n} —vY.

Let D be a Weil divisor on X such that j; (D) is effective. Then there is a non-

empty open subset U CY such that if j: f~(U) — X is the open inclusion, then
J*(D) is also effective.

Proof. Let D = ) n;D;. Then j;(D) is effective if and only if for every i with
n; < 0, one has D; N X, = (. Since D is a finite sum, it suffices to show that if
D is a prime divisor on X such that D N X, = (), then there is a nonempty open
subset U C Y such that DN f~1(U) = 0.

Since f is projective map, it is in particular closed. Hence f(D) is closed in Y.

Moreover, our hypothesis implies that f(D) is a proper closed subset of Y. Thus
U =Y\f(D) is the desired open subset of Y. O

Lemma 4.6. Let X be a quasi-projective k-variety and let W be a finite collection
of locally closed subsets of X. Let K be a finite field extension of k. Let Xk be
the base extension X = X Xgpeo(r) Spec(K), and let Wi be the set of the base
extensions of sets in VW. Then there are natural maps
, Tz1(X,e;m) TzY( Xk, e;m)
: —
P Tz (X, 0m) Tz, (Xk,e;m)

Tz29( Xk, o;m) Tz4(X, e;m)
* - -

P TZ?/VK(XK, o;m) Tz3,,(X, e;m)
such that p, op* = [K : k] - id.
Proof. By Theorem 3.1, one as well has the flat pull-back and finite push-forward
maps Tz),, (X, e;m) — Tz}, (Xk,e;m) and Tz),, (X, e;m) — Tz, (X, e;m)
for any W'. Taking for W, the collection {X} and also W, and then taking the
quotients of the two, we get the desired maps. The last property of the composite

map is obvious from the construction of the pull-back and the push-forward maps
on the additive cycle complexes (cf. [14]). O

Proposition 4.7 (Spreading lemma). Let k C K be a purely transcendental ez-
tenston. For a smooth projective variety X over k and any finite collection VW of
locally closed algebraic subsets of X, let Xg and Wy be the base extensions as
before. Let px : Xk — Xy be the natural map. Then, the pull-back map

. Tz(X,e;m) Tz ( Xk, ®;m)
K Tz}, (X, @;m) TZ;]/VK(XK,O;m)

15 injective on homology.
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Proof. If k is a finite field, then for each prime [ different from the characteris-
tic of k, there are infinite pro-I algebraic extensions of k. Combining this with
Lemma 4.6, we can assume that k is infinite. Furthermore, since the additive
Chow groups of Xk is a projective limit of the additive Chow groups of X, where
L(C K) is a purely transcendental extension of k of finite transcendence degree
over k, we can assume that the transcendence degree of K over k is finite.

Now let Z € Tz?(X,n;m) be a cycle such that 0Z € Tz],,(X,n; m) where there
are admissible cycles Bx € T2?(Xg,n+1;m) and Vi € Tzj,, (X, n;m) satisfying
Zx = 0(Bg) + Vk.

We first consider the natural inclusion of complexes Tz (X, e;m) — 29(X X
A} e —1). Since K is the function field of some affine space A}, we can use the
specialization argument for Bloch’s cycle complexes (cf. [1, Lemma 2.3]) to find
an open subset Y C Aj and cycles

By € /(X XY x Apn), W €25 1 (X XY x Apn— 1)
such that Bi and Vi are the restrictions of By and V4 respectively to the generic
point of Y and Z x Y = 9(By) + V. In particular, all components of By and Vy
intersect all faces of X XY x B,,.; and X x Y x B, properly. To make By and
Vy admissible additive cycles, we modify them using our Lemma 4.5.

To check the modulus condition for our cycles, let 17 denote the generic point
Spec(K) of Y. Let BY and V¥ denote the normalizations of the closures of By

and Vy in X XY x B,;; and X XY x B, respectively.

We first prove the admissibility under the modulus condition My, which is a
priori more difficult than M,,,,,. The admissibility of Bx and Vi implies that there
are integers 1 < ¢ < n and 1 < i < n — 1 such that in the Diagram (4.6), the

Weil divisors j5(Fp ;= (m 4 1)Fy10) and ji(F, , — (m + 1) F, o) are effective on

E{/V , and ‘739[,] respectively. Since X and B, are projective, the maps BY, V.Y — Y
are projective. These maps are dominant since Bx and Vi are non-zero cycles.
Thus we can apply Lemma 4.5 to find an open subset U C Y such that j{}(FéH’i —

(m +1)Foy10) and j5(F,  — (m + 1)F, ) are also effective. The same argument
applies for the modulus condition My,,, as well. We just have to replace the Cartier
divisors F,,,; and F, , by F,,, and F) respectively. Lemma 4.5 applies in this
case, t00.

Replacing Y by U, we see that

(4.7) By € Tz/(X xU,n+1;m), Viy € Tz}, (X xU,n;m), ZxU = 9(By)+Vy.

Next, (4.7) implies that for a k-rational point u € U(k) such that the restrictions

of By and Vi to X x {u} give well-defined cycles in 29(X x A',n) and 2, ,, (X x
k

A},n—1), one has Z = 9 (i (By)) + i*(Viy), where i, : X x {u} — X x U is the
closed immersion. We can assume that i} (By) and i (V) are not zero. We now
only need to show that i} (By) and i (Vi) satisfy the modulus condition on X x {u}.
But this follows directly from (4.7) and the containment lemma, Proposition 2.4.
This completes the proof of the proposition. O
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5. MOVING LEMMA FOR PROJECTIVE SPACES

We follow the strategy of S. Bloch to prove the moving lemma for the additive
higher Chow groups. This involves proving the moving lemma first for the pro-
jective spaces and then deducing the same for general smooth projective varieties
using the techniques of linear projections. This section is devoted to the proof
of the moving lemma for the projective spaces. We use the following technique
a few times to prove the proper-intersection properties of moved cycles with the
prescribed algebraic sets.

Lemma 5.1 (c¢f. [1, Lemma 1.1]). Let X be an algebraic k-scheme, and G a
connected algebraic k-group acting on X. Let A,B C X be closed subsets, and
assume that the fibers of the map

GxA—-X (g,a)—g-a

all have the same dimension, and that this map is dominant. Then, there exists a
non-empty open subset U C G such that for all g € U, the intersection g(A) N B
1 proper in X.

Proof. Consider the fiber square
A

HG

< X

)

C

|

B
and take

U = {g € G|the fiber of C' — G x A — G over g has the smallest dimension.}.

For such g € U, we have the desired property. 0
Proposition 5.2 (Admissibility of projective image). Let f : X — Y be a projec-
tive morphism of quasi-projective varieties over a field k. Let Z € Tz"(X,n;m) be

an irreducible admissible cycle and let V = f(Z). Then V € Tz*(Y,n;m), where s
s the codimension of V in'Y X B,.

Proof. We prove it in several steps.
Claim (1): V intersects all codimension one faces F' of B,, properly in B,,.

Consider F' = Fy; = tp(Bn-1) for some i € {1,2,--- ,n — 1}, ¢ € {0,00}, and
consider the diagram
X X B,y % X x B,

= |

ln ie
Y xB,1 — Y xB,.

Since F'is a divisor in B,,, that V intersects Y x F' properly is equivalent to that
Y x F' 2 V. Towards contradiction, suppose that V C Y x F. Then,

ZC i ([ 2) =1 (V) C MY X F) =t (f i (Y X Byoy) = X X F
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By assumption, Z intersects X x F' properly so that we must have Z ¢ X x F.
This is a contradiction. This proves Claim (1).
Claim (2): V intersects all lower dimensional faces of B, properly.

By the admissibility assumption, all cycles 95(Z) = ZN(X x Fy; ;) are admissible.
Moreover, it is easy to see that 95(V) = f,-1(95(Z)). Thus we can replace Z by
05(Z) and apply the same argument as above; inductively we see that V' has good
intersection property.

Claim (3): For each face F of B, including the case F' = By, the cycle VN(Y X F')
has the modulus condition.

For any face F' = «(B;) C B,, where ¢ : B; — B, is a face map, and for the
projections f; : X x B; = Y X B;, note that VN (Y x F) = f,(ZN (X x F)) =
fi(Z|xxr). But the admissibility of Z implies that Z|x«r is also admissible (cf.
Proposition 2.4). Hence, replacing Z|xxr by Z, we only need to prove it for
F = B, that is, we just need to show that V' satisfies the modulus condition.
Consider the diagram

XxB, — X xB,

lh:f lﬂ=f
Y xB, — Y x B,

Subclaim: Let V be the closure of V in Y x én and let Z be the closure of Z in
X x B,. Then V = f(2).
Since Z C f~YV) c f~4(V) and V is closed, we have Z C ?_1(7). Hence,
f(Z) c V. For the other inclusion, note that W = f(Z) C f(Z) and f(Z) is
closed because f is projective. Hence W C f(Z). This proves this subclaim.

To prove the modulus condition for V', we take the normalizations v : AR/

and vy : VY LV of Z and V, and consider the following diagram

Z*>Z*> X B

b e

VN—%V—HYXB

where (1, 15 are the inclusions, and [} is given by the universal property of the nor-
malization vy for dominant morphisms. Note that f5 is automatically projective
and surjective because f7 is so. Let ¢ := t; o v; and ¢y = 12 0 1.

Suppose Z satisfies the modulus condition My, and consider on En the Cartier
divisors D; := F,ii—(m—l—l)Fn,O for 1 <1i < n—1. That the cycle Z has the modulus
condition means that [¢5 o f*(D;)] > 0 for an index i. By the commutativity of
the above diagram, this means that the Cartier divisor [} *[Q%(Dz)] > 0. By
Lemma 2.2, this implies that [qf,(D;)] > 0, which is the modulus condition for V.
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If Z satisfies the modulus condition M,,,,, we use the same argument by replacing
F, ; with F,,. This finishes the proof of the proposition. O

Remark 5.3. In Proposition 5.2, if X is projective, Y = Spec(k) and n = 1, then
V is always a single point. To see this, let Z C X x B; = X x G,, be an admissible
irreducible closed subvariety. Let V' = p(Z), where p : X x G,,, — G,, is the
projection.

Since X is complete, p is a closed map. Hence, V' = p(Z) is an irreducible closed
subvariety of G,,. But the only closed subvarieties of G,, are finite subsets or all
of G,,. On the other hand, if Z is the closure of Z in X x A!, then the modulus
condition implies that Z N (X x {t = 0}) = (. This implies that V' must be a
proper subset and hence a finite subset. Since V' is irreducible, consequently V'
must be a non-zero single point.

Hence Z = W x {x} for a closed subvariety W C X, and a closed point {x} € G,,.
Conversely, any such variety is admissible. This classifies all admissible cycles Z
when X is projective and n = 1.

For n > 1, all we can say is that Z is contained in X x V| where V' is admissible
in Tzs(k,n;m) for a suitable s.

5.1. Homotopy variety. Now we want to construct the “homotopy variety”.
First, we need the following simple result:

Lemma 5.4. Let SL, 1y be the (r +1) x (r+ 1) special linear group over k, and
let n be the generic point of the k-variety SL,.1 . Let K be its function field (this
is a purely transcendental extension of k). Let SL,i1x := SLyy1 ®p K be the
base change. Then, there is a morphism of K -varieties ¢ : Oj — SL.y1x such
that ¢(0) is the identity element, and ¢(c0) is the generic point n considered as a
K -rational point.

Proof. By a general result on the special linear groups, every element of SL, 1 x
is generated by the transvections Ej;(a), ¢ # j, a € K, that are (r +1) x (r + 1)

matrices whose diagonal entries are 1, the (7, j)-entry is a, and all other entries are
zZero.
For each pair (7, 7), the collection {E;;(a)la € K} forms a one-parameter sub-

group of SL,.; g isomorphic to G, . Thus, for each fixed b € K, define gzﬁfj :
Ak — SLy1x by ¢?j(y) = Eij (by).
Express the K-rational point n of SL, 1 i as the (ordered) product

p
n= HEizjz(al)a for some 4,5, € {1,2,--- ,r+ 1}, @y € K,
1=1

and define ¢ : Af — SL, 11k by ¢' = []_, ¢;";,. By definition, we have ¢'(0) = Id
and ¢'(1) = n. Composing with the automorphism o : PL. — PL given by y —
y/(y — 1), that isomorphically maps (0} to AL, we obtain ¢ = ¢/ oo| : Ok —
SL,41, k. This ¢ satisfies the desired properties. O

Recall that one consequence of Lemma 2.8 is that the additive cycle complex with
modulus m can also be defined as a complex whose level n term is the free abelian
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group of integral closed subschemes Z C X x B, which have good intersection
property with all faces, and which satisfy the appropriate modulus condition on

X x B,,. The following lemma uses this particular definition of the additive cycle
complex.

Lemma 5.5. Let K be the function field of SLyi1x, and ¢ : Oj — SL,.41x be as
in the previous lemma. Let SL,11 i act on Py naturally. Consider the composition
H,, = pg/i © prig © jie of morphisms

e prg’ 1 PE/k _
Prx Al x 0% — =P x Al x 0% —— P x Al x O —= P x Al x 77!

where

[1,¢(l’,t, Y1, 7yn) = (¢<y1)$, t7y17 e 7yn)7
pI'/K(,I’, tvyla T 7yn—1) = (l‘,t, Yo, 7yn—1)a
Pr/k - the base change.

Then for any Z € Tz'(Py,n;m), the cycle HY(Z) = uj o pt'”(Zk) is admis-
sible, hence it is in Tz (Py,n + 1;m). Similarly, H; carries Tz,(P},n;m) to
Tz, (Pi.n + 1m).

Proof. 1t is enough to prove the second assertion that for any irreducible admis-
sible Z in Tz],,(P", n;m), the variety Z' := H}(Z), that we informally call the
“homotopy variety” of Z, satisfies the admissibility conditions of Definition 2.6.

Claim (1): The variety Z' intersects W x Fy properly for all W € W and for
each face F of Byy1.

This follows from the arguments of S. Bloch and M. Levine in [1, 16] without
modification. We provide its proof for sake of completeness. We use Lemma 5.1
for this purpose. We may assume that ¥V contains only one non-empty algebraic
set W. There are cases to consider.

Case 1. Suppose F is of the form F = A x {0} x F} for some face Fj C O .
In this case, Z' N (W x Fk) is nothing but Zx N (W x Al x F}) because ¢(0) =
Id € SL,+1 k. So, proper-intersection is obvious in this case.

Case 2. Suppose Fk is any other form. It comes from some F' C B,,;;. We apply
Lemma 5.1 with G = SL,j1 4, X =P"x F, A=W x F, B=pr,/"(Z)N(P" x F),
where G acts on X by acting trivially on F' and acting naturally on P". By
Lemma 5.1, there is a non-empty open subset U C SL,y; such that for all
g € U, the intersection g(A) N B is proper. By shrinking U if necessary, we
may assume that U is invariant under taking the multiplicative inverses. Take
g =n~! € U, the inverse of the generic point. Thus, after base extension to K, the
intersection of ™1 (Wy x Fx) with pr'*(Zk) N (P" x Fk) is proper, which means
n(pr"*(Zk) N (P" x Fk)) intersects properly with Wy x Fx. But the intersection
pr’*(Zx) N (P" x Fi) is proper, as Z was admissible. Hence, n(pr’*(Zx)) intersects
with Wy x Fy properly and consequently Z’ intersects with Wy x Fy properly.
This proves the claim and hence Z’ has good intersection property. Thus we only
need to show the modulus condition for Z’ to complete the proof of the lemma.
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Claim (2): Z’ satisfies the modulus condition on P" x §n+1,K-

We prove this using our containment lemma. In the following, we casually drop
the automorphism 7 : P" x Al x 0" — P" x A! x (" that maps (z,t,y1, ", Yn)
to (x,t, Y2, -+, Yn, 1) from our notations for simplicity.

Take V' = p(Z), where p : P" x B, — B, is the projection. Because Z C
p~ Y p(Z)) =P x V, we have

(5.1) 7' = py(Z x Ok) C p(P" x V x O ) =P" x V x Op =: Zy,say.

Now, Proposition 5.2 implies that V' is an irreducible admissible closed subvariety
of B,. The flat pull-back property in turn implies that p*([V]) = P" x V is an
irreducible admissible closed subvariety of P" x B,,. In particular, the modulus

condition holds for P" x V. If V is the closure of V in En, then commutativity of
the diagram

Zl =P'xV x ]P)}( » P X BTH—LK >Bn+1,K

| | |

Prx V' ————P xB,———B,

now implies that Z; satisfies the modulus condition on P" x B, 41 x even though
it is a degenerate additive cycle. Furthermore, the admissibility of Z and the fact
that j14 is an automorphism, imply that 7 intersects the Cartier divisors F! 41 and
F,.+1,0 properly. Thus we can use (5.1) and apply Proposition 2.4 (with “X” = P},
“Y7 = Z"and “V” = Z)) to conclude that Z’ satisfies the modulus condition. This
completes the proof of the lemma. O

Lemma 5.6. The collection Hf : Tz(P}, e;m) — Tz (P, e + 1;m) is a chain
homotopy satisfying OH* + H*0 = p*K/k(Z) —n(Zk). The same is true for Tzj,,.
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Proof. 1t is enough to prove the second assertion. This is straightforward: let
Z € Tz3,,(P},n;m). Then

i=1

H*9(Z) = H* (Z(—l)"((??—@?)(z)>

= ) (=) (uspr" pic ) (07° = 09)(2)
=1
= Y (=133 — %) (e Py (2))
=1
n+1

S Z(_ni(a;" — )(H"(2)),

n+1

OH"(Z) = Z(—l)i(é??—@?)ﬂ*(Z)
n+1

- Z<_1y‘(a§°—a?)(ﬂ*<2))

= (—1)(93"’—3?)(H*(Z))+Z(—1)i(3?°—(9?)(H*(Z))‘

Hence,
(OH" + H*0)(Z) = (0] — O7°)(H*(2)) = picju(Z) — 1(Zk)-
This proves the lemma. O]

5.2. Proof of the moving lemma for projective spaces. We are now ready
to finish the proof of Theorem 4.1 for P".
By the Lemma 5.6, the base extension

* . TZq(PZ7.;m) Tzq(]P’}"(,o;m)
PR g8 (P eim) T, (P, em)

is homotopic to the map npj /.. Note for each admissible cycle Z € Tz4(P}, n;m),

the cycle n(Zk) lies in Tzj, (P, n;m). We can prove it as before.

We may assume that ¥V has only one nonempty algebraic set, say W. In the
Lemma 5.1, take G = SL,1, X =P" x B,, where G acts on P naturally and B,
trivially. Let F be a face B,,. Let A=W x F, B=ZN(P" x F). Since SL,; acts
transitively on P", the map G x A — X is surjective. Hence, by the Lemma 5.1,
there is a non-empty open subset U C G such that for all g € U, the intersection
g(A)N B is proper in X. By shrinking U further, we may assume that U is closed
under taking multiplicative inverse of n. Taking ¢ = n~!, the inverse of the generic
point, we see that after base extension to K, the intersection of (W x F) with
Zk N (P" x Fk) is proper, which means n(Zx N (P x Fk)) intersects Wy x Fi
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properly. Since Zk intersects with P" x Fix properly by the assumption, we conclude
that 7(Zk) intersects Wy x Fi properly. Thus, n(Zx) € Tz, (Py,n;m). Hence,
the induced map on the quotient

Tz(P}, e;m) Tz4(P}, ®;m)

Tzyy(Pr, esm) Tz, (P, e;m)

NPk :

is zero. Hence the base extension pj. n induces a zero map on homology since it is
homotopic to the zero map.

On the other hand, by the spreading lemma, Proposition 4.7, the chain map pj, Ik
is injective on homology. Hence the quotient complex Tz(IP},, o;m)/ Tz}, (P}, ®;m)
must be acyclic. This proves Theorem 4.1 for the projective spaces.

6. GENERIC PROJECTIONS AND MOVING LEMMA FOR PROJECTIVE VARIETIES

6.1. Generic projections. This section begins with a review of some facts about
linear projections. In combination with the moving lemma for P", that we saw in
the previous section, we prove the moving lemma for general smooth projective
varieties.

Lemma 6.1. Consider two integers N > r > 0. Then for each linear subvariety

L C PN of dimension N —r—1, there exists a canonical linear projection morphism
np : PN\L — P,

Proof. Fix the coordinates z = (zo;--- ;xx) of PV. A linear subvariety L is given
by (r+1) homogeneous linear equations in & whose corresponding (N +1) x (r+1)

matrix A has the full rank r + 1. Take the reduced row echelon form of A whose
rows are the linear homogeneous functions Py(z),--- , P.(z) in .

For x € PY\L, define 7z (z) := (Py(x);--- ; P.(x)). Since z ¢ L, we have some
P;(x) # 0 so that the map 7, is well-defined. By elementary facts about reduced
row echelon forms and row equivalences, the subvariety L uniquely decides this
map 77, in this process. 0

Let X be a smooth projective k-variety. Let » = dimX. Suppose that we have
an embedding X — PV for some N > r. Consider 7, : PN\L — P". Whenever
LN X =, we have a finite morphism 7 x := 7|x : X — P". Such L’s form a
non-empty open subset Gr(N —r —1, N)x of the Grassmannian Gr(N —r —1, N).
Note that such a map 7, is automatically flat since X is smooth (cf. [11, Ex.
I11-10.9, p. 276]). In particular, the pull-back 77 y and push-forward 7, x. are
defined by Theorem 3.1.

For any closed integral admissible cycle Z on X x B,,, define E(Z ) to be

L(Z) := mp x(m.x,([Z]) = [Z].
Extending this map linearly, this defines a morphism of complexes

L:Tz(X, e;m) — Tz4(X, e;m).
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6.2. Chow’s moving lemma. Recall that for two locally closed subsets A, B of
pure codimension a and b, the excess of A, B is defined to be

e(A, B) :== max{a + b — codimx (A N B),0}.

That the intersection A N B is proper means e(A, B) = 0. If A, B are cycles,
then we define e(A, B) := e(Supp(A), Supp(B)). The excess measures how far an
intersection is from being proper.

Lemma 6.2 (cf. [14, Lemma 1.12]). Let X C PY be a smooth closed projective
k-subvariety of dimension r. Let Z, W be cycles on X. Then there is a non-empty
open subscheme Uzw C Gr(N —r — 1,N)x such that for each field extension
K Dk and each K-point L of Uzw, we have

e(L(Z), W) < max{e(Z, W) — 1,0}.

For its proof, see J. Roberts [20, Main Lemma, p. 93|, or [16, Lemma 3.5.4,
p. 96| for a slightly different but equivalent version. The point of the projection
business is the following lemma:

Lemma 6.3. Let X be a smooth projective k-variety, and let VW be a finite set
of locally closed algebraic subsets of X. Let m,n > 1, ¢ > 0 be integers. Let
e: W — Zsq be a set-theoretic function. Define e —1: W — Z>q by

(e — 1)(W) := max{e(W) — 1,0}.

Let K be the function field of Gr(N—r—1,N), and let L,e, € Gr(N—r—1, N)x(K)
be the generic point. Then, the map

den :T29(X,0;m) — T2 Xk, e;m)
maps TZ;]/V,e(X7 b) m) to TZ%VK,671<XK7 o m)

Proof. The arguments of [14, Lemma 1.13, p. 84] or [16, §3.5.6, p. 97] work in this
additive context without change. The central idea is to use a variation of Chow’s
moving lemma as in Lemma 6.2. 0

6.3. Proof of the moving lemma.

Proof of Theorem 4.1. Let Ly, be the generic point of the Grassmannian Gr(N —
r—1,N) as in Lemma 6.3. Then, for each function e : W — Z, the morphism

T . Tzyy (X, o;m) Tz, (XK, 9;m)
gen — 7TLgm O M Lgen 4 _pK/k : TZ%V 1(X o m)
,e— ? Y

TZ;]/VK,Bfl(XK7 .; m)

. * . : 3 *
is zero. Hence 7" Lge, 0 Tr,,, . 18 equal to the base extension morphism pj. /), On the

quotient complex.
On the other hand, 7* Ly, o 7r,,,, factors as

Tzyy (X, ®;m) TLgen, TZ%,’E,(P}}, o:m) wz_gm; Tz, (XK, 9;,m)
TZ;]/V,G—1<X7 ) m) TZ;J/V’,e’fl(]P);O s m) TZ%VK,e—l(XK’ s m) 7
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where W' and €’ are defined as follows: for each W € W, the constructible subset
TLyen (W) can be written as

WLgen(W) = W{ U e U mlw

for some iy, € N and locally closed irreducible sets W} in Pg.. Let d; = codimps (W})—
codimy(C). Let W = {Wj|W € W}. Define ¢ : W' — Zs, by the rule
e' (W) == e(W)+d;. We have already shown in Section 5.2 that the moving lemma

is true for all projective spaces. In particular, for all functions e’ : W' — Z, the
complex in the middle

TZ%V}{ (P}, ®m)

/
N&

TZ;]/V}(,e’—l(P;O o m)
is acyclic (see Remark 4.4). Hence, the base extension map
o TZ%V’G(X, o;m) . TZ;Z/VK,e(XK’ o;m)
K/k - Tz‘{/vveil(X,o;m) Tz%Kveil(XK,o;m)

is zero on homology. Consequently, by induction, the base extension map
. Tz4(X, e;m) Tz29( Xk, o;m)
PK/k - T2 (X . e - Tz (X .
ZW( 7.7m> ZWK( K7.am)

is zero on homology. On the other hand, this map is also injective on homology
by Proposition 4.7. This happens only when

Tz1(X, e;m)
Tz3,(X, e;m)
is acyclic, that is, the inclusion
Tafy (X, 05m) — (X, o)

is a quasi-isomorphism. This finishes the proof of Theorem 4.1. O

7. APPLICATION TO CONTRAVARIANT FUNCTORIALITY

In this section, we prove the following general contravariance property of the
additive higher Chow groups as an application of the moving lemma.

Theorem 7.1. Let f : X — Y be a morphism of quasi-projective varieties over k,
where Y 1s smooth and projective. Then there is a pull-back map

f*: TCHY(Y,n;m) — TCHY(X,n;m)

such that for a composition X Ly 9 7 withY and 7 smooth and projective, we
have
(go f)" = f*og*: TCHYZ,n;m) — TCHY(X,n;m).

Before proving this functoriality, we mention one more consequence of our con-
tainment lemma (Proposition 2.4).
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Corollary 7.2. Let X 5Y bea reqular closed embedding of quasi-projective
but not necessarily smooth varieties over k. Then there is a Gysin chain map of
additive cycle complexes

i 2 Tzl (Y, 0;m) — Tz(X, &;m).

Proof. Let + : Z C Y x B, be a closed irreducible admissible subvariety in
TZ?X}(Y, n;m). By assumption, Z intersects all faces X x F properly. Hence the

abstract intersection product of cycles (X x B,,)-Z = [/*(X X B,)] € 24(X x B,,) is
well defined, and the intersection formula for the regular embedding implies that
this intersection product commutes with the boundary maps ([8, §2.3, §6.3]). We
want this cycle to be i*(Z). Thus we only need to show that each component
of Z N (X x B,) satisfies the modulus condition in order for i* to be a map of
additive cycle complexes. Since X x B, clearly intersects F! and F, o properly on
Y x B,, this modulus condition follows directly from Proposition 2.4, for Z has
the modulus condition. 0
Proof of Theorem 7.1. We do this by imitating the proof of [1, Theorem 4.1]. So,
let f: X — Y be amap as in Theorem 7.1. Such a morphism can be factored
as the composition X U xxy™ Y, where gry is the graph of f and prs is
the projection. Notice that pry is a flat map and moreover, the smoothness of Y
implies that gry is a regular closed embedding. Let I'y C X x Y denote the image
of gry which is necessarily closed.

For 0 < i < dimY, let Y; be the Zariski closure of the collection of all points

y € Y such that dimf~*(y) > i. We use the convention that dim@) = —1. Let W be
the collection of the irreducible components of all Y;. Then W is a finite collection.

Claim : Let Z € Tz{,,(Y,n;m) be an irreducible admissible closed subvariety
of Y X B,. Then (pro x Idg, )™ (Z) = X x Z in X x Y x B, is an admissible
closed subset that intersects I'y x F' properly in X XY x B,, for all faces F' C B,.
This gives a chain map

pro” Tz, (Y, &;m) — Tzf{lrf}(X XY e m).

That (pro x Idg, )} (Z) = X x Z is admissible is obvious by [14, §3.4]. Since Z
intersects W x F' properly for all W € W and faces F C B,,, we have

dimZ; < dimY; + dimF — ¢, where Z; := Z N (Y; x F).
Now, (X x Z)N(I'y x F) =U; X X Z;, and for each i we have
dim(X x Z;) = dimX + dimZ,
< dimX + dimF — ¢ = dim(I'y x F) —q.

Hence codimr, (X x Z) N (I'y x F') > q and we have the desired map pry* :
Tz],(Y,n;m) — Tzf{frf}(X x Y,n;m) for each n > 1. That this gives a chain map

is obvious since f* clearly commutes with the boundary maps. This proves the
Claim.
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The pull-back map f* is now given by composing pr; with the Gysin map gr* of
Corollary 7.2 and then using the moving lemma, Theorem 4.1. The composition

law can be checked directly from the construction of f*. This completes the proof
of Theorem 7.1. 0

8. ALGEBRA STRUCTURE ON ADDITIVE HIGHER CHOW GROUPS

In this section, we consider an algebra structure on the additive higher Chow
groups of smooth projective varieties. This algebra structure corresponds to the
exterior product on the cohomology of the sheaves of absolute Kéahler differentials
on the smooth projective varieties. We show that this algebra structure on the ad-
ditive higher Chow groups is compatible with the module structure on these groups
for the ordinary Chow ring of the variety. We draw some important consequences
of this towards the end of this section. We shall deduce our algebra structure on
the additive higher Chow groups as a consequence of the following general result
whose proof will occupy most of this section.

Proposition 8.1. Let X and Y be smooth projective varieties over a field k. Then
there exists an external wedge product on the additive higher Chow groups

(8.1) A TCH®(X,ny;m) @z TCH?(Y, ng;m) — TCHY(X x Y, n;m),

where qg=q1 +q — 1, n=ny+ns— 1, and ¢;,n;,m > 1 fort=1,2. In the case
of X =Y, one has

(82) A = (=1)m DA
for all classes & € TCH™ (X, ny;m) and n € TCH®?(X, ng;m).

8.1. External wedge product. The external wedge product is based on the
product map pu : G, X G,, — G,, which clearly extends to the product map

(8.3) w: G, x P! — P

Note that this product defines a G,,-action on P! and hence is a smooth map.

We define the external product at the level of cycle complexes in the following
way.

(84) X XGpxO"1xY xG,xO2!1—"5XxY xG,, xG,, x O

Ix1Ixpx1
x J g

X xY xG,, x "1,

where 7 is the transposition map (z,t,y,2',t',y') — (x,2',t,t',y,y"). We denote
the composite map also by pu.

Let Vi € Tz (X, ny;m) and Vy € Tz2(Y, ny;m) be two irreducible admissible
cycles. Define p, (V3 x V3) to be the Zariski closure of p(V; x V3) in X xY x B,,. We
first claim that codimy xyx g, (1«(V1 X V3)) = ¢, or, equivalently, dim(u (V) x V3)) =
dim (V) + dim(V43).

This is obvious if one of the V;’s lie in a fiber of the projection map to G,,.
Otherwise, the modulus condition implies that none of these can be of the form
W x G,,. Thus, the set of points of W such that the fiber of V; is G,, must be
nowhere dense. In particular, there is a dense subset of closed points of W such
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that the fiber of V; over this subset must be nowhere dense in G,,. But then this
fiber must be finite. Hence for any ¢ € G,,, in a dense open subset, there are points

(a,ty) € G,, x X x O™~ such that (a',t;) ¢ G,, x X x(O"~! and ad’ # c. Also, we
have then (ca™,t;) € G,, x Y x 0™~ as V; map dominantly onto an open subset
of G,,. But then we see that (a,ca™!,t1,ts) € Vi x Vo but (a/,ca’ 1, ty,ts) & Vi x Va.
On the other hand, we have u(a,ca™, t;,ts) = p(a’,ca’ ', t1,ts). This implies that
Vi x Vo # = H(u(Vi x V3)). Since p is flat of relative dimension one, this implies
that dim(u(Vy x V3)) = dim(V;) + dim(V5), proving the claim.

Thus we have shown that if V; € Tz (X, ny;m) and Vo € Tz (Y, ny; m) are two
irreducible admissible additive cycles, then p,(V; x V3) is a closed subvariety of
X xY x B, of codimension ¢. Our aim is to show the admissibility of p. (V1 x V2)
as an additive cycle which we do in several steps. Let us denote (V3 x V5) by Z.

Lemma 8.2. The cycle Z has the proper intersection property with all faces of
B,.

Proof. To show the good intersection property, it is enough to intersect the Zariski-
dense open subset pu(Z; x Z) with X x Y x F for any face F of B,. Write
F =G,, x Fy x F, for some faces F; c 0"~ ! and F, c O~ 1.

Since the multiplication p is equivariant with respect to all face maps 0f given
by the intersection with a codimension 1-face of (J%~! and since the faces F;
are obtained by intersecting a multiple number of those codimension 1-faces, we
immediately see that p(V; x V3) intersects X x Y x F properly if V; intersects
X x G,, x F; properly and V5 intersects Y x G,, x F, properly. But this is indeed
the case. 0J

Proposition 8.3. The cycle Z satisfies the modulus condition in X XY X B,.

Proof. For the structure morphisms p : X — Spec(k) and p’ : Y — Spec(k),
consider Wy = (p x Idp, )(Vi) and Wy = (p' x Idp,_)(V2). By the admissibility of
the projective images, Proposition 5.2, W; and W, are admissible in B, and B,

respectively. In particular, X x W; and Y x W5 are admissible cycles by the flat
pull-back (c¢f. Theorem 3.1). Now, we have

ViCXXWl, ‘/QCYXWQ,
which implies that
(8.5) Z =p.(Vi x Vo) C X XY x p(Wy x Wy).
Since Z intersects F' and F, o properly in X XY x En, we can use Proposition 2.4
to conclude that Z has the modulus condition if p,(W; x W3) has. That is, we

reduce to the case when X =Y = Spec(k).
We first dispose of the case of the modulus condition My, as it is relatively

straightforward. Let Vi C EWE - Fm, and Z C B,, be the Zariski closures of
Vi, Va, and Z respectively. Take their normalizations vy : lev — V), vy, V;V —

Zy, and vy : A By [14, Lemma 3.1}, the product of two reduced normal
finite type k-schemes is again normal over perfect fields. Thus, the morphism

vi=vy, X,V XV, = Vi x V=V x 1,
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is a normalization, under the identification A% x ("7t = Al x O™ 1 x Al x Om2— 1,

Thus, we can regard Viv X V;V as Vi X VQN. This gives the following diagram:

Viv X V;V T, x Ty 2 A2 PH!

Pk

z" 7 —— Al x (BY)"',

N

where 7z is the restriction ply 3, and 7YY is given by the universal property of
the normalization vz. Note that the restriction i : V; x Vy — Z is a surjective
morphism. Hence, iV is also surjective.

Let (t1, 82,91, Yn1) € A2 x (P and (w,y1, -+, Y1) € Al x (P1)"" be
the coordinates.

Consider the Cartier divisor D := 7" '"{t; = 1} — (m + 1){w = 0} on A x
(P1)"~". Then, as a Cartier divisor on A2 x (P1)""", we have

D = Yy =1}~ (m+ Dt =0} — (m+1){r =0
- <i{yi:1}—<m+1>{t1:0})+

(i{yi =1} = (m+ ity = 0}>

i=n1
= D'+ D?

where we note that n — 1 = (ny — 1) + (ng — 1). Note that by pulling back along
v = vy, X Iy, we see that

(8.6) ((t1 X tg) ov)* (WD) >0
since we have
(1 % 1) o (v, x 1))*D" =0,
(1 12) 0 (1% 1)) D? > 0,

by the modulus condition My, of V; x B, and B,, x V3, regarding V; x B,, as
a cycle in Tz, 4, (By,,n1;m), and similarly for B,,, x V.

This inequality (8.6) is equivalent to (7™)* ((¢ o vz)*D) > 0 by the commutativ-
ity of the diagram. Then, by Lemma 2.2 applied to the surjective morphism 7',
we get (tovy)*D > 0. This is the modulus m condition Mg, for Z = u. (Vi x V3).

Now we prove the Mjg,,, condition for Z if V;’s satisfy this modulus condition.
This is a much more delicate case and we prove it in several steps. First suppose
that Vi or V5 is contained in the locus of {t = a} for a closed point a € G,,.
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By symmetry, we may then assume that V; = {a} x W) for a closed irreducible
subvariety W; C 0 ~! intersecting all faces of (0™~ properly. Then,

p(Vi x Vo) = a™ " x (1(W x Va)),
where 7 is the transposition
O x G, x 027t = G, x OM 1 x O™
and * is the action of G, as in (3.2). This is already closed in B,,_1, so we have

f(Vi X Vo) = (Vi x Vo) = a™ " s (T(Wy x Va)).

1

Furthermore, the modulus condition for V5 implies the modulus condition for a™ *

(1(Wy x V3)). Hence, p.(V7 x V3) has the modulus condition Mgg,,.

Hence, for the rest of the proof, we assume that neither V; nor V4 lies in the loci
of {t = a} for some a € G,,. In particular, the images of V; and V3 are open dense
subsets of G,,,.

Let V! = Gy x O™~Y and let Z = p(V] x V4), the closure of u(V{ x V3) in
Gy, x B,. Note that V/ is just a closed subvariety and not an admissible cycle.
Note further that Z is a closed subvariety of Z and moreover 7 intersects the

divisors F! and F, o properly in P! X B, since our V; and V5 have this property.
Hence by Proposition 2.4, to prove the modulus condition for Z, it suffices to

prove the modulus condition for the closed subvariety Z. So, from now on, we

shall replace V; by V/ and Z by Z , while we call the new ones as still 1} and Z,
respectively.

We set B := (Pl)nfl, and let V; and V5 be the closures of V5 and V5 in G,,, X
(PYY" =1 and B,,, respectively.

Let p: P! x (PY)"' — (P1)" " and ¢ : P! x (P!)"~" — P! be the projections. Let
W = (Vi x Vo) and W' = i(V x V), where i = uxIdp : G,, xP! x B — P' x B
is the extension of y as defined in (8.3). Then we get a commutative diagram

(87) %X%—>V1XV2*>GmXP1XB

=

G,, x 01 P! x B,

where Z' is the closure of W' in P! x (P})"", and ¢, ¢’ are the inclusions. Note
that all the arrows except p and 7 are injective, and p and @ are surjective.
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Notice that by the given assumptions, the composition under the first projection

V,C §n2 — P! is surjective since this map is projective and hence a closed map,
while V5 is not in the locus of {t = a} for some a € G, so that the map is dominant.
First note that W is open in W’. This is because W = W'N(B,,) and B, is open

in B,. Likewise, W’ is open in Z’. This is because W’ = Z' N Image(fz), where
Image(fz) is open because 1 is flat. Hence, the Zariski closure of W in B\n is equal
to the closure of W', which is Z " by deﬁmtlon Since Z is the Zariski closure of W
in B, which is open in Bn, the Zariski closure Z of Z in Bn is consequently Z’.
In other words, the Zariski closures of W, Z, W' in Bn are all equal to Z'.

Let 7/2 g ((Ipﬂ)m—l x 72) C §n for the transposition
. (Pl)nl_l « P! x (Pl)ng L~ pl o pu—l y pre—t

Notice that W’ is the orbit G,, V; in B,, where the action of G,, on Yy
by the identity. In particular, Z’ is the orbit closure of V. Let W, == p(W’).
Claim (1): W, =p(W’) =p(Vy) and it is closed in B = PH

Consider the following diagram.

G, xP'x B Pl xB

| lp

GmXBT.—>B

Note that the lower horizontal arrow and the two vertical arrows are the projection
maps. Since p is projective, p(V;) is closed in B. Next we have,
— T 7/ = —
pPW') =pofi(Gn x Vy) =10p (Gp x Vy) =1(Gm x p(V3)) = p(V3)

since p' is identity on G,, and r is the projection. This proves Claim (1).
Claim (2): There is a non-empty open subset U C W, such that G,, x U C W'
as an open subset.

From Claim (1), we have a surjection V; — W,. Since V; is irreducible, so is
W,. Now recall the following well-known generic flatness theorem. For its proof,
see [7, Theorem 5.12, p.123]:

Theorem 8.4. Let f : X — Y be morphism of noetherian schemes of finite type
over k, where Y 1is integral. Then there exists a non-empty open subset U' C 'Y
such that f~1(U") — U’ is flat.

Using this theorem and the openness of a flat map, we see that the image of the
open set VN g Y (Gy,) Np~Y(U') — U’ is open in U’ and hence in W,. Notice that
since the map Vs — P! is surjective, V5 N ¢~ '(G,,) in not empty. Let U be this
image in W),

Now, by the choice of U, we see that for each v € U, the fibre p~!(u) meets
VN ¢ (G,,) non-trivially. This implies that the orbit of VN p~!(U) contains at
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least G,,, x U (it might also contain some points of {0,000} x U). In particular, we
conclude that G,, x U C W’. Since G,,, x U is open in p~1(U) = P! x U, it must
be open in W', too. This proves Claim (2).

Claim (1) implies that Z' C P! x W, and Claim (2) implies that there is a non-
empty open subset G, x U C Z' C P! x W'. Since Z’ is closed in P* x W, and
irreducible, and since G,, x U is open dense in P* x W, which is also irreducible,
we conclude that Z' = Pt x W),

Claim (3): Let S := Z'\W'. Then Z'Ng*({t = 0}) is irreducible and codimz (SN
q¢*{t =0}) > 2, where t is the coordinate of P'.

Since we have just seen that Z' = P! x W, the closed subscheme Z; = Z' N
¢*({t = 0}) is in fact W, x {0} and hence irreducible as W), is so. This also implies
that dim(Z}) = dim(W,) = dim(Z’) — 1. Now we recall that the map V, — P! is
surjective as a consequence of our assumption. Hence, 7/2 — P! is also surjective.
This implies in particular that W’ — P! is surjective too. This in turn shows
that W' Ng*({t =0}) = W' N (Z'Nng*({t =0})) = W' N Z] is a non-empty open
subset of Z|. Since we have just shown that Z; is irreducible, this implies that
dimg (S N Z}) = dimg(Z)\(W' N Z{)) < dimy(Z])) — 1. Thus we get

This proves Claim (3).
Claim (4): For the composition
1247 W’N — W/ g En—l,

where the first arrow is the normalization, there exists an indexi € {1,--- ,ng—1}
for which we have on W'Y

vy {yi =1} — (m+1){t =0}] > 0.
Consider the following normalization diagram:
(8.8)
—N —N = = 1 1\n—1 pr 1 1\n2—1
V, xVy, —=VixVy—G, xP' x (P")" " —G,, x P! x (P')

| k | |

pr no—1

W W PPk () T P x (P

Here the horizontal arrows in the last square are the obvious projection maps. We

also note that Viv X Vév is the normalization of V; x V5 by [14, Lemma 3.1]. We
have seen that 1 is a surjective map of irreducible varieties and hence dominant.
This gives the map of the corresponding normalizations, which must also be sur-
jective. Since the modulus condition Mg, holds for Vs, thereisan 1 <7 <mny—1

such that the Cartier divisor v3[{y; = 1} — (m + 1){t = 0}] > 0 on Vév This
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implies that in the diagram

VY xVy — 3G x P x (P

N

VY —— Pl x (P

we have
(8.9) Vigos =1} —(m+1){t=0}] >0 on V; xV,,

where v, s are the obvious projections, and v 5 is the composition of the first two
arrows of the upper part of the Diagram (8.8).

Next we observe that as G,, acts trivially on (P!)""", one has 7*({y; = 1}) =
G X P x (PN x ({y; = 1}) = s*({y; = 1}). We also observe that z*({t = 0}) =

Gy x ({t = 0}) x (PY)"" = s*({t = 0}). In particular, we have for 1 < i < ny—1,
s"{yi =1} = (m + D{t = 0} =" opr*[{ys = 1} — (m + 1){t = 0}]

= [{yi =1} — (m+ 1){t = 0}].

Combining this with (8.9), we conclude that v} yofi*[{y; = 1} —(m+1){t =0}] > 0
and hence 7" o v, [{ys = 1} — (m + 1){t = 0}] > 0. We now apply Lemma 2.2
to the surjective morphism " of normal integral k-varieties to conclude that
vi[{yi = 1} — (m + 1){t = 0}] > 0 on W'". This proves Claim (4).

Now, we have the final statement of this lengthy proposition:
Claim (5): The modulus condition Ms,, holds for Z.

Since we have shown that the Zariski closure of Z in B,, is Z’, we need to show

that the modulus condition holds on Z'". Consider the following commutative
diagram

(8.10) W = L (W) Z!N f1(S)
| ]
W’ VA S,

where f is a normalization, and we recall that S = Z’\W’. Since W' is as open

subset of Z’ as shown above, we have f~}(W’') = W' Let vy 2N ERGN En
be the composite. We need to show that for some 1 <7 < n — 1, we have

(8.11) vz ({yi = 1})] = (m + D[z ({t = 0})]

as Weil divisors on Z'V. Since Z'" is an irreducible normal variety and the rela-
tion (8.11) holds on W™ by Claim (4), the same relation will hold on Z'" if and
only if no component of v}, ({t = 0}) is contained in f~*(S). However, we have
shown in Claim (3) that dim(SN¢*({t = 0})) < dim(Z’) — 2. On the other hand,
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since f is a finite map, if a component D of v}, ({t = 0}) is contained in f~1(S),
then f(D) C SN¢*({t =0}) and we get

dim(Z"™) =1 = dim(D) = dim(f(D)) < dim(S N ¢ ({t = 0}))

< dim(Z') — 2 = dim(Z'") — 2,

where the second and the last equalities hold by the finiteness and surjectivity of
f. This gives a contradiction. This proves the modulus condition M, for Z,

thus, Claim (5). This completes the proof of the proposition. O

Corollary 8.5. Let X and Y be smooth projective varieties. Let V, € Tz" (X, ny;m)
and Va € Tz (Y, ng;m) be two irreducible admissible cycles. Then Z = (Vi x V3)
is an admissible additive cycle in Tz4(X X Y,n;m).

Proof. This follows immediately from Lemma 8.2 and Proposition 8.3. O

8.2. Shuffle products. For an integer » > 1, let Perm, be the group of permuta-
tions on the set {1,--- ,r}. For integers s,p1,pa, -+ ,ps > 1, a (p1,- -, ps)-shuffle
is a permutation o € Perm,, ..., satisfying the following properties:

(o) < <a(p)

o(pr+ -t P+ 1) << olprt e+ pion ),

( olp+1+-Hpoa+ 1)< <o(pi+- 1 +ps)

Note that since ¢ is an automorphism, each of the above inequalities is in fact strict
unless some p; = 1 in which case one has o(p1+- - -+p;_1+1) = o(p1+- - -+pi_1+pi)-
The set of all (py,--- ,ps)-shuffles is denoted by Perm, ... ;). Here, Perm, =

Permy ... 1), and [Permg, .. p,)| = %. A permutation o € Perm,,_; acts

T

compatibly on the spaces 0" and (P!)"" via
(O (tlv te 7tn—1) = (t0*1(1)7 T 7t0*1(n—1))-

This generalizes to spaces of the form Y x 0" and Y x (P1)"~' via the trivial
action of o on Y. We obtain induced actions on the groups of algebraic cycles such
as TzY(X,n;m), or 24(X,n — 1), etc.

For a permutation o, the sign sgn(o) is +1 if o is even, and sgn(c) is —1 if odd.

8.2.1. Permutation identities. The following basic identities on permutations play
important roles in proving the associativity of the wedge product, and in proving
that the differential operator defined in Section 10, is a graded derivation for the
wedge product.
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Proposition 8.6. Letr,s,t > 1 be integers. Then in the group ring Z[Perm, s 4],
we have two equations

Z sgn(v)y = Z Z sgn(7)sgn(o)7 - (o x Ids),

vePerm,. ; 1) TE€Perm (.4 4y c€Permy,. )
E sgn(v)v = g g sgn(7')sgn(a’)7 - (Idy x o),
vePerm,. ; 1) T'EPermy,. o4 4) o/ EPerm, )

where 1dy is the identity function of the set {1,--- ,r}, and Ids is the identity
function of the set {r +s+1,--- r+s+t}.

We need the following two simple lemmas.
Lemma 8.7. Let r,s,t > 1 be integers. For T € Perm(,4,) and o € Permy, ), the
permutation T - (o x 1d3) is in Permy,. ;4. Furthermore, the set-theoretic function

¢ : Permy, 4y X Permy,. o) — Perm, s

(1,0) — 7 (0 x 1d3)
15 a bijection.
Proof. The first part is obvious. For the second part, consider the following:
Claim. If ¢(m1,01) = ¢(12,09), then 71 = 11 and o1 = o5. That is, ¢ is injective.

We are given 11 - (07 x Id3) = m(09 x Id3). Since o7 x Ids, 09 X Id3 do not touch
the set S3 = {r+s+1,---,r+ s+ t}, we get 7i|s;, = To|s,. However, 7; are
(r + s, t)-shuffles so that they are strictly increasing on {1,--- 7+ s}. This forces
7'1]{17...7,43} = 7'2|{1,...7,,+s}. Hence, 7 = 7. This implies o1 = 03. Thus the Claim is
proved.

Notice that for the function ¢, the domain and the target have equal cardinalities:

(r+s+t) (r+s)! (r+s+t)
(r+s)it! rls! plslt!

|Perm 54| X [Permg, q| = = [Perm, 4 4)|.

Since ¢ is an injective function, this shows that it is automatically bijective. [

Lemma 8.8. Let r,s,t > 1 be integers. For 7' € Perm, 514y, 0’ € Perm,y, the
permutation 7' - (Idy x 0') is in Permy, s ). Furthermore, the set-theoretic function

Y Permy, 414y X Permy, ) — Permy,.
(7',0") — 7" - (Idy x o)
15 a bijection.
Proof. Tts proof is essentially identical to that of Lemma 8.7. O

Proof of Proposition 8.6. This obviously follows from Lemmas 8.7 and 8.8 by ob-
serving that sgn(7-(ox1Ids)) = sgn(7)sgn(o), and sgn(7"-(Id; x o)) = sgn(7')sgn(o’).
This proves the proposition. O

For the Leibniz rule later, we need the following as well as the above results:
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Definition 8.9. For permutations o € Perm,, and 7 € Perm; ,y with 7(1) =i €

{1,--- ,n}, define the permutation o, = oli] € Perm,; by sending
o(j) if j <,
jel{l,- - nt1yemd g if 5 =i,

o(j—1) ifj>i.
Lemma 8.10. Let 0 € Perm, ) and 7 € Perm ;4. Then the product o, - T
in Perm, o1 is a (1,7,5)-shuffle, ie., or -7 € Permy, 5. Furthermore, the set-
theoretic map
o1 : Permy, o) X Permyy y45) — Perm ;.

(o,7)—o0r-T
1S a bijection.
Proof. The first statement is obvious. For the second statement, the surjectivity

part is obvious by keeping track of where 1 is sent. But since both sides have the

cardinality (sl (st Db st 4h o map ¢, must be bijective. O

rlsl (r+s)! rls!

Lemma 8.11. In the group ring Z|[Perm, 41|, we have

> (seu(o) Y. Geamo-T = Y (ssu())r.

o€Perm,. ) TeEPerm 44 vePermy . o)

Proof. Note that sgn(o,-7) = sgn(o)sgn(7). Thus, together with the Lemma 8.10,
we get the desired result. ([l

8.3. Pre-wedge product via shuffles. Let X and Y be smooth projective vari-
eties. Consider the groups Tz (X, ny;m) and Tz (Y, ng;m). Let n =n; +ny — 1
and ¢ = q; + g2 — 1. Consider the group of cubical higher Chow cycles, 241 (X x
Y x G,, X G,,,,n—1), i.e. cycles of codimension ¢+1in X xY x G,, x G, x (J"*
that intersect all faces of (0"~! properly, modulo the degenerate cycles.

Definition 8.12. For two irreducible admissible cycles Vi € Tz% (X, ny;m), and
Vy € Tz% (Y, ny; m), the shuffle product Vy x g, Vs is defined as a cycle in 2471 (X x
Y x G, x G, m — 1), given by the equation

(8.12) Vi X Vo i= > sgn(o) o - (Vi x V3).
oEPerm(,, 1., 1)
We can extend this definition Z-bilinearly to get a homomorphism
X g 1 Tz (X, n;m) @z Tz2(Y, ng;m) — 29 (X x Y x G, X Gypyn — 1).
The image of this map is the group of (n; — 1, ns — 1)-shuffles.

Lemma 8.13. For the cycles Vi,V above and for o € Perm,, 1,1y, one has
that p. (c(Vi x V3)) € Tz29(X x Y, n;m).
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Proof. We first observe that ¢ induces an automorphism of (]P’l)nf1 which preserves
0"~ and acts trivially on X x Y x G,, x G,,. In particular, the actions of x4 and
o commute. Hence we have u (o(V1 X V2)) = o (u(Vi x V3)), which in turn implies
that . (0(Vi x V3)) = o (u(V4 x V3)). The lemma now follows from Corollary 8.5.

O

This lemma allows one to define the pre-wedge product V1AV, of Vi and V5 in
Tz(X x Y,n;m) by the equation

ViRV = p(Vixa V)= > sga(o)u(o- (Vi x 1)

o€Perm(pn) 1,55 -1)

— Z sgn(o)o - (u«(V1 x )

UEIP’erm(nl,lﬁnQ,l)
As before, extend it Z-bilinearly to get a homomorphism
(8.13) ATz (X, ny;m) @z Tz (Y, ng;m) — Tz4(X x Y, n;m).

The image of this map is the group of (n; — 1, ny — 1)-pre-wedges of codimension
q and modulus m. The group of pre-wedges is simply the image under u, of the
group of shuffles.

Corollary 8.14. For V; € Tz%(X;,n;;m), we have (Vi xg, Vo) X V3 = V] Xgp,
(Vo xgn V3) in Tz%( Xy X Xo x X3,n;m) for appropriate ¢ and n. The same is true

for A.
Proof. This follows from the associativity of p and Proposition 8.6. 0

Lemma 8.15. For two cycles & € Tz (X, ny;m) and n € Tz (X, ne; m), we have
equations

(8.14) A(EAn) = (&) An + (—1)™HEA(On),
(8.15) EAn = (=1)m=DeemlyAg,
where O is the boundary map in the definition of additive higher Chow groups.

Proof. For both of the equations, it is enough to prove it for x,, where we use
the fact that 9 and p, commute for the first. But, actually both are just purely
combinatorial statements. 0

Proof of Proposition 8.1. The external product structure in (8.1) follows directly
from the pre-wedge product of cycles in (8.13) and from the first identity of
Lemma 8.15. If X = Y, the anti-commutativity follows directly from the sec-
ond identity of Lemma 8.15. 0

We now prove the following main result of this section and its consequences.

Theorem 8.16. Let X be a smooth projective variety over a field k. Then there
exists an internal wedge product on the additive higher Chow groups of X.

(8.16) Ax : TCH" (X, ny;m) @z TCH® (X, ny;m) — TCHY(X, n;m),
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where ¢ = 1+ q — 1, n =ny +ny — 1, and g;,n;,m > 1 for v = 1,2, which is
associative and satisfies the equation

(8.17) Enxn = (—=1)mDm=pa g

for all classes & € TCH? (X, ny;m) and n € TCH?(X, ng;m).
This wedge product is natural with respect to the pull-back maps of additive higher
Chow groups and satisfies the projection formula

(8.18) fi (anx f7(b)) = fi(a)AyD
for a morphism f: X — Y of smooth projective varieties.

Proof. Consider the diagonal map Ay : X — X x X. Since X is smooth projective,
so is X x X. Hence, by applying Theorem 7.1 to Ax, we get the pull-back map

A% : TCHY(X x X,n;m) — TCHY(X,n;m),
for all integer ¢ > 0. Composing with the pre-wedge product A, we have

TCqu (X, ny; m) X r]:‘CI‘Iq2 (X7 No; m) L TCH‘](X % X, n; m)

\\\7;\\\$ =

TCHY(X,n;m),

where the induced map A is well-defined by Proposition 8.1. Now we define
Nx = A% o A. This gives the desired wedge product by the second equation
of Lemma 8.15. The associativity follows from Corollary 8.14.

We now show the naturality of the wedge product and the projection formula.

We first observe that if X 5V % Z are morphisms of smooth projective varieties,
then it follows from the contravariance property of the additive higher Chow groups
(cf. Theorem 7.1) that the naturality of the wedge product with f* and ¢* implies
the same with (g o f)*. Similarly, the projection formula for f and g implies that

(go f)lanx(ge f) ()] = (g.0 f)lanx(f" o g (b))
= g:lfila)Ayg (b))
= (g0 fi)(a)Azb
= (90 f).(a)Azb
Hence by factoring a map f : X — Y as a composite of the closed embedding
X — X x Y and the projection X x Y — Y it suffices to prove the naturality
and projection formula when f is one of these two types of morphisms.

To prove the naturality, we can use the contravariance property of the additive
higher Chow groups and the construction of the wedge product above to reduce to
proving the naturality for the pre-wedge product in Proposition 8.1. In this case,
we only need to show that for the flat map f: X — Y, the diagram

(8.19) (Y XY X Gy X Grpyn— 1) B 29(Y XY X Gppyn — 1)

’MJ Jf*

(X XX X Gy X Gpyn = 1) 2 29(X X X X Gpy,n — 1)
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commutes, which is immediate from the definition of f* and ..

If f is a closed embedding, we can use Theorem 4.1 to replace Tz(Y, e;m) by
TZ? X}(Y, o;m). Then, the pull-back map is induced by the Gysin map f* of Corol-
lary 7.2. In this case, we have for the irreducible admissible V; € TZ?X}(Y, ng;m)

that Vi x Vs € To{{ (Y x Y,n;m) and f*(Vi x Vo) = f*(Vi) x f*(V3). Thus
we only need to show that the Diagram (8.19) commutes where z4(Y x Y x G, x
Gn,n —1) (resp. 29(Y XY X Gy, n — 1)) is replaced by 2{x, v, e, (Y XY ¥
G X Gyn — 1) (resp. 2y, xyq, (Y XY X Gy, —1)). But this follows easily

once we know that the diagram

(8.20) XxXxG,xG,, —Y xY xG,, xG,,

/{ f‘
XxXxG, ———Y xYxG,,

is in fact a Cartesian square. This proves the naturality with pull-backs.

To prove the projection formula for the closed embedding X EN Y, we can again
assume that the cycles under consideration intersect X or X x X properly. Then

we have for V; € 22(X x G,,,n; — 1) and V5 € z&xGm}(Y X Gpyne — 1),

(f X ) A F (Vi x [XT- Vo))
po A < f).(Vi x [X] - Vo)
py (V) x (X - V2)}]

= Ay [ L) x )},

where the first equality follows from the fact that the the left square in the diagrams

LAYV < [X]- W)} = Ay
= Ay
Ay

(8.21) XX xXx X xYESLw
fl fof fJ lf’
AY AY
Y —Y xY Y —Y xY

is Cartesian and the last equality holds since A* commutes with g, as follows from
Theorem 4.1. This proves the projection formula for the closed embedding.
Finally, we prove the projection formula for the projectionmap f: Z = X xY —

Y. Let W = X xY xY and let 'V : W xG,, xG,, — W xG,, be the product map.
Let p : Z x Z — W be the projection map. Then for any irreducible admissible
cycles Vi € 29 (Z X Gypy,ny — 1) and Vi € 22(Y x G, me — 1), we have

LA 2?2 (Vix f* (o))} = flAR{pd*7 (Vi x (X x V4))}]
= fulA{p* (1l (Vi x V2))}]
= fl(idx x Ay)" (uV (Vi x V4))]
= AY[f (1 (Vi x W) (+)

AY [l { (Vi x Vi) }]

= AV {f.(Va) x V1)}],
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where the equality (x) follows from the right Cartesian square in (8.21). This
proves the projection formula for the projection map. This completes the proof of
the theorem.

For a smooth projective variety X over k, let TCH,,(X) = @, TCH!(X, n+1;m)
and let TCH(X) = D,,5, TCH,(X). Let A(X) = P, CHI(X) be the ordinary

Chow ring of X. As an immediate consequence of Theorem 8.16, we have :

Corollary 8.17. For X as above, there is a wedge product structure on TCH(X)
TCH(X)®x)TCH(X) & TCH(X),
that makes TCH(X) a graded-commutative algebra.

Proof. This follows immediately from Theorem 8.16 once we know that the pre-
wedge product in (8.13) is bilinear over the ring A(X), where the A(X)-module
structure on TCH(X) is given by Theorem 3.1. But this can be easily checked
from the construction of the shuffie product in (8.13). O

As another consequence of Theorem 8.16, we get the following result which was
widely expected in view of the belief that the additive higher Chow groups compute
the relative K-theory of the infinitesimal thickenings of smooth varieties.

Corollary 8.18. Let X be a smooth projective variety over a field k such that
char(k) # 2. Then for any q,n,m > 1, the group TCHY(X,n;m) is a W,,(k)-
module, where W, (k) is the ring of generalized Witt-vectors of length m over k.
In particular, TCHY(X,n;m) is naturally a k-vector space if char(k) = 0.

Proof. The follows immediately from Theorem 8.16 by considering the composite
map

TCH! (k, 1; m) ©z TCHY(X, n; m) ©o% TCHY(X, 1;m) ®z TCHI(X, n; m)

T

TCHY(X,n;m),
where p : X — Spec(k) is the structure map, and using the isomorphism W,, (k) —
TCH'(k,1;m) (cf. [21]). That this gives a module structure, also follows from
Theorem 8.16. In characteristic zero, W, (k) is itself a k-module. O

9. DIFFERENTIAL OPERATOR ON ADDITIVE HIGHER CHOW GROUPS

We have shown in Section 8 that the additive higher Chow groups of a smooth
projective variety have a structure of naturally defined commutative graded alge-
bra. Our main goal in the remaining part of this paper is to show that these are
also equipped with differential operators, one of which turns this algebra into a
differential graded algebra. We construct one of these differential operators in this
section.

Let X be a smooth projective variety. Let G denote the variety G,,\{1}. We

have natural inclusions of open sets G — [J < P'. For n,m > 1, define the map
(9.1) Gn: X xGX xO" ' = X xG,,, xO"
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(‘xat?yh T 7yn—1) — (SL’,t, t717 Y1, 7yn—1)'
Note that ¢, is not a closed immersion. Rather, it is the composite of the closed
immersion X x G xO" 1 — X xGX x G, x "~ followed by the open immersion
X xGY x Gl xO" ! — X x G, x O" For once and all, we fix the coordinates
(t,y1, - ,yn) of G, x O™ C P! x (P)". For any irreducible cycle Z C X x G,, x
071 let Z* denote its restriction to the open set X x G2 x (O""!. Our first
observation is the following.

Lemma 9.1. For any irreducible admissible cycle Z € Tz(X,n;m), ¢,(Z*) is
closed in X x G, x O".

Proof. We look at the Zariski closure W := ¢,,(Z*) of ¢,(Z*) in the bigger space
X x G,, x (P)", and see what happens. The image of Z* is clearly closed in
X xGY x Gy <Ot

Hence W\¢,(Z*) must be contained in {t = 1} U{y; = 1}. By the definition of
¢n, if a point in W\¢,(Z*) intersects {t = 1}, then it must also intersect {y; = 1}
in X x G, x (P")". Hence W\¢,(Z*) is in fact contained in {t = 1} N {y; = 1}
in X x G,, x (PY)". In particular, W\¢,(Z*) cannot intersect with X x G,, x OJ".
Hence if W’ is the Zariski closure of ¢,(Z*) in X x G,, x 0" then W'\¢,(Z*),
which is a subset of W\, (Z*), does not intersect X x G,, x 0", either. This
shows that W’ = ¢,,(Z*). Hence, ¢,,(Z*) is closed. O

We shall often write the morphisms such as ¢, in the sequel simply as rational
maps on the ambient space and also write ¢, (Z*) as ¢,(Z).

Lemma 9.2. For Z as in Lemma 9.1, the closed subvariety V := ¢, (Z*) satisfies
the modulus condition.

Proof. Consider the following commutative diagram.

(92) 77
/| 1

! \ Z 1% ;9
\ /

X x P! x (P)" ' — X x P! x (P1)"

Here ¢p (2, t,y1, -+ Yn—1) = (x, 6,75, 41, ,Yn_1) is the natural extension of ¢,.
Note also that a; is induced by the dominant map Z* — V, which in turn gives
the map Z — V as ¢, is closed. In particular, ¢, is projective and surjective.

Next, it is easy to check from the description of ¢, that @*(Fnﬂ,o) = F,o and
@*(Fﬁﬂ,i) = F,; , for i > 2. In particular, the modulus condition Mg, for Z
implies that

Gn © G [Fppyim — (m+1)Foio) = f*o bn [Foyriin — (m+ 1) Fop ]
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= f'[F;i = (m+1)Fo0] 20

for some 1 < ¢ < n — 1. We conclude from the surjectivity of ¢, and from an
casy variant of Proposition 5.2 that ¢*[F,, ;,; — (m 4+ 1)Fu10] > 0 for some
1 <4 <n—1, which is the Mj,,, condition for V.

If Z satisfies the modulus condition M,,,,, then following the same argument as
above, we get

—~ %

¢n o g*[Fi-i-l - (m + 1)Fn+1,0]

- <Z &5;* © 9*[Fi+1,z‘]> B %* o g*[(m + 1) Fui1,]
i=1

- (Z I Oa*[szl-i—l,i]) - f 0@*[(7” + 1) Foq10)
=2
= [[Fy = (m+1)F,0] > 0.

We again conclude from the surjectivity of ¢?; and from an easy variant of Propo-
sition 5.2 that g*[F,L,; — (m 4+ 1)F,410] > 0. This shows the modulus condition

My for V. ! 0
Proposition 9.3. For any irreducible admissible cycle Z € Tz (X, n;m), ¢n(Z*)

defines an admissible irreducible cycle in Tz7™ (X, n + 1;m), that we denote by
d(Z). Furthermore, § and O satisfy the relation 00 + 00 = 0.

Proof. We first prove the following.
Claim : (1) 0,00, =0 fore=0,00.
(2) Opp1i00n=¢n1005, 1 fori>2 and e=0, 0.

Here Oy, ; is the i-th face Jf on B,,;. It is easy to see from the definition of
On that ¢,,(Z) intersects {y; = 1} if and only if it intersects {¢ = 1}. This clearly
implies (1).

For (2), we can again observe from the definition of ¢, that it just shifts the
coordinates of (J"! by one. In particular, for i > 2 and € = 0, co, the diagram

(9.3) GX x O 2~ GX x O

ou| o

G,, x Or-t ?Gm x O™

is Cartesian. Hence we have for ¢ > 2,

aret—i-l,i 0 pn(Z7) = a:w—l,i (¢;1(F7§+1,i> : ZX) = On_1 (F’ri,i—l ) ZX)

= Pn-1 ((F’;,i—l ) Z)X> = Q1 ((a:z,i—1<Z))X> .
This proves the Claim.
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Using the Claim and the proper intersection property of Z, we see immediately
that 0(Z) has proper intersections with faces. We also conclude from Lemma 9.2
that §(Z) satisfies the modulus condition. Since ¢ does not change the dimension,
we have shown that §(Z) is in Tz?™ (X, n + 1;m).

Finally, if we denote the operator § at the level n of Tz(X, e;m) by 4, then we
have

006,(2) = 3 (10321, 00u(2) — 8sr 0 64(2)]
i=1
= D (D100 4(2) = bu1 005, 1(2)]

1=2

- _ ( . (—1)i[(5n_1 005(Z) = dp10 8271»(2)})

i=1

_ s (Z (—1)[(2) - aﬁ,xzn)

=1
= _671,—1 © a(Z)v

where the second equality follows from the above Claim. This proves the proposi-
tion.

Corollary 9.4. For every q > 1, § defines a chain map
§: Tz9(X, e;m) — Tz (X, e;m)[1].

Proof. For an irreducible admissible cycle Z € Tz!(X,n;m), we define §(Z) as in
Proposition 9.3 and then extend linearly to Tz?(X, n;m). It is clear from (9.1) that

0 preserves the degenerate cycles. Now the corollary follows from Proposition 9.3.
O

9.1. Computation of §2. Our next goal is show that 42 is zero to make it into
a differential operator on the additive higher Chow groups. We achieve this by
explicitly constructing certain admissible cycles which bound §%(Z) for any irre-
ducible admissible cycle Z. We first define certain 2-cycles in 2%(G,,, 3) which are
all two dimensional analogues of variants of B. Totaro’s 1-cycles in [22]. For any

general point t € G,,, the parameter u will always denote t~! in this part of the

section.
For 1 < j <4, let Tj C Gy, x [ be the the 2-cycles defined by the rational

maps @Z)]l : Gy, x O — G,,, x (13 given as follows:

. _ (1—w)e—(1-w)/(1-1)

dilt2) = (twe, = gy )
(94) ¢%<t7$) = t,u,:z:, (1—;1_)13—1

Yi(tz) = (to, =1 —u)

Yyt x) = (Lo, 1 —x, ¥=E)
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for t € G, \{1} and x € O\{0}. We similarly define the 2-cycles I'} C G,,, x [°
given by the rational maps

Vit r) = (tu?w, (1_5?(?:212_)7(21)13272))
2(t,x) = (t,u o, %)
Vi(t,z) = (¢, “if—ll, 1— u2>
(9.5) VAt x) = (ta1-—u, 1;2:5)
L ,_u2>
Vi(t,r) = (tu,, fjug )

for t € G,,\{1, -1} and = € O\{0}.

For an irreducible 1-cycle o C G,, x [J? which is admissible and defined by a
rational map

(9.6) ¢: G, — G, x O

o(t) = (6(£)(0), ¢(£)(1), 6(t)(2)),
we shall often write a by the parametrization (¢(¢)(0), ¢(¢)(1), ¢(£)(2)) to simplify

the notations.
It is now easy to check from the definitions that all Fé- are closed in G,, x [1®

and they in fact define admissible cycles in 2?(G,,, 3) (cf. Lemma 9.1). Moreover,
one can also check in a straightforward way (or using the computations in [22,
Section 2]) that these cycles have the following boundaries:

) - - - (o )
oy = (tul1—t) = (L, )
(9.7) ory = (tul, 1—#) = (1,1 #)
8F£1 = (ta ul7 1- ul)
01% 2 (tv u, —U2) - (t7 U2, —U,2)
orz = (t,u,—u?) — (t,u,u) — (t,u, —u)

Since u = ¢!, note that
1—u!  1—tt -1

— — = =
1—d  1-# 1-4 “

9.8)

Hence, we have
(t,u, =) = (L, (1 =u))/(1=11)).
Using (9.7) together with this, we see at once that for [ = 1,2,
(9.9) (t,u',—u') = Ort —or, —ory +2r.
We also obtain from (9.7) that
(9.10) (t,u?, —u?) = 2(t,u,u) — OT% + 22 + 2(¢, u, —u).
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Combining (9.9) and (9.10) together, we obtain that as an element of 2%(G,,, 2),

2(t,u,u) = OI2? —OT3 — 92 + 2002 + OT'2 — 2012
(9.11) —2(9r'; — 9Ty — O’y + 201}
=: OI.

Let X be a smooth projective variety. For any admissible additive cycle Z €
T2z?(X,n;m), we can naturally consider it as a higher Chow cycle in z4(X x G,,,, n—
1). For any I'; € 2*(Gy,, 3), we get the exterior product Z x T, € 272(X x Gy, X
Gy, n+2). Moreover, it also follows from the definition of these cycles that Z x Fé‘
intersects X x G,, properly under the diagonal embedding Ag,, : X x G, —
X x G, x Gy, given by (z,t) — (z,t,t). Since X is smooth, we get the pull-back
cycle ZxTh = Ay (Z xTh) € 297(X x Gpp,n 4 2).

Lemma 9.5. The cycle Z*Fg lies in Tz (X, n+3; m) under the natural inclusion
Tz72(X,n+ 3;m) — 2772(X x Gyp,n + 2).

Proof. We only need to show that 7 *Fé- satisfies the modulus condition. For this,

we observe that Z % Fé- is the closure of image of Z/ = [ x Z under the rational
map

(9.12) UL X x Gy x 0" = X x Gy, x O™

\Ilé'(x7t7y7y17 e 7yn*1) = (37, w;(o)u w;<1>7w§(2)7w§(3)7y17 T 7yn*1)
in the notation of (9.6). We now follow the proof of Lemma 9.2 to prove the

modulus condition for Z’. Let V' = Z « ', = W' (Z’). We consider the following
commutative diagram.

-
v;

(913) 7N % P! VIN

| ’

X xP'x P! x (P = X x P! x (P!)""”
v

Here f' = f x Id, where f : 7Y X x P! x (PY)"" is the normalization map for

Z as in the Diagram (9.2). Note that the map W, is defined since all the rational
maps ¥} naturally extend to morphisms ¢} : P! x P' — P' x (PY)*.

If Z satisfies the modulus condition Mjg,,, then there is some 1 <7 < n —1
such that [f*(y; = 1) — (m + 1)f*(t = 0)] > 0 on Z". Since f’ is identity on
P!, this implies that [f*(y; = 1) — (m + 1) (t = 0)] > 0 on Z" for some
2 < ¢ < n. Since \If_é is identity on the last (n — 1) copies of P!, we conclude
that f"* o \Ii_é*[Fgwl — (m+ 1)F,4+30] > 0 for some 4 < i < n+ 2, which in turn

gives W o ¢ [F 1,5, — (m+1)F,430] > 0 on Z" x PL. Since Wl is projective and
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surjective, we conclude from Proposition 5.2 that ¢*[F, 3, — (m + 1)Fui30] > 0
for some 4 < i < n+ 2. This prove the modulus condition Mg, for Z % Fé.

If Z satisfies the modulus condition My,,,, then we use the same argument as
above plus the proof of the M,,,, part of Lemma 9.2 to complete the proof of the
lemma. O]

Our main interest about §2 is the following.

Proposition 9.6. Assume that char(k) # 2 and let a« € Tz?(X,n;m) be a cycle

such that O(a) = 0. Then §*(a) = 0 as a homology class in TCHI (X, n 4 2;m).
In particular, § descends to a natural map of additive higher Chow groups ¢ :
TCHY(X, e;m) — TCHI (X, @;m)[1] such that §* = 0.

Proof. The last part of the proposition follows from Corollary 9.4 once we prove
the first part. Since ¢? is equal to a boundary in Tz?(X, e;m) if and only if it is a
boundary of an admissible additive cycle in z4(X x G,,,® — 1), we can work with
the latter complexes. We begin with the following.

Claim : For any a € Tz'(X,n;m) and I" as in (9.11), one has

JdlaxT)=axdl'—0a xT
in 272X x G, X Gypyn + 2).
This is an elementary computation. Since I is a Z-linear combination of Fé-’s, it

suffices to prove the claim for each " z We can further assume that « is represented
by an irreducible cycle Z. Then we note that for e € {0,000}, | € {1, 2},

7 x OTL if1<¢<3
€ Iy () - .=
3i(Z><Fj)—{a;3(z)xr§. if4<i<n+2.

This in turn gives

oz xTh) = i (=1)'107°(Z x T5) = 8)(Z x )]
= Zx {i(—l)i[aﬂrw - 8?<F3>J}
+ {Z (=1)'[07%5(2) ~ a?_3<Z>]} x T

= Zxor)+ {Z (—1)'[0:24(2) — a?_3<Z>1} x I

1=4

— ZxoI)+ {nz (~1)"™[0(2) — 5?(2)]} xT;

= ZxO})—0ZxT

This proves the claim.
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Next, we see from the definition of ¢,, in (9.1) that for any irreducible admissible
cycle Z € TzY(X,n;m), §%(Z) is just the image of Z under the rational map

(9.14) X xG,, xO"!' - X xG, x O

(CE’,t, Yi, - 7yn—1) = (ZL’, t7t_1a t_la Y1, 7yn—1)
= (ZL', t7 U, Uy Y1, 7yn—1)'
In particular, we see from (9.12) that 6%(Z) is the cycle Zx(t, u,u) = Ay, (Z x (t,u,u)).
Hence for any o € Tz?(X,n;m), we have 6*(a) = a % (t,u,u) as an element of
2972(X x G,,,n + 1). Since the diagram

1 2
G,, x G, x O™ TNGM><(Gm><D”Jr

is Cartesian, we see in 277%(X X G,,,n + 1) that for any o € Tz?(X,n;m) with
Jd(a) = 0, we have

26%(a) = 2a* (t,u,u)

a*x 2(t, u,u)

a* ol (by (9.11))

= Af (ax0r)

= Ag,, (axdl'=9da xT)

= Ag, (0(axT)) (by the Claim)
~ 9 (& (ax 1)

= J(axT).

Since axI' € Tz?™(X,n + 3;m) by Lemma 9.5, we conclude that 26?(a) = 0 as a
class in TCHY*?(X,n +2,m). Since char(k) # 2, we conclude from Corollary 8.18
that the homology class of 6%(a) is zero in TCH?™(X,n + 2, m). O

The following is the main result of this section.

Theorem 9.7. Let X be a smooth projective variety over a field k such that
char(k) # 2. Then the additive higher Chow groups (TCH(X),A) is a graded-
commutative algebra which is equipped with a differential operator 6 of degree one
satisfying 62 = 0. Moreover, this differential operator commutes with the pull-back
and push-forward maps of additive higher Chow groups.

Proof. Tt follows directly from Corollary 8.17 and Proposition 9.6. The commuta-
tivity of 0 with the pull-back and push-forward maps can be directly checked from
its definition. ([l

Remark 9.8. It seems that the assumption char(k) # 2 in Corollary 8.18 and
Theorem 9.7 is not serious and can be removed using the infinite pro-/ extension
of the field for [ # 2. We do not go into this here.
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10. DIFFERENTIAL OPERATOR AND LEIBNIZ RULE

In this section we introduce another differential operator on the additive cycle
complexes. This differential is an analogue of the Connes’ boundary operator in
the theory of Hochschild and cyclic homology (cf. [17, Chapter 2]). We shall
show that this satisfies the Leibniz rule for the wedge product on the admissible
cycle classes. We shall comment about the relation between the two differential
operators towards the end of this section.

For 1 <17 <n, let o; be the permutation

i ifj=1
oi(j)=4 j—1if2<j<i
i ifj >

Let ; : X X B, — X x B, ;1 be the rational map ¢!, = ;0 ¢,,, where ¢, is defined
in (9.1). In particular, we have ¢! = ¢,. Since o; defines an automorphism of

X x B,, which preserves the modulus condition and proper intersection, it follows
from Proposition 9.3 that for any admissible cycle Z € Tz?(X,n;m), V = ¢!, (Z*)

defines an admissible cycle 6;(Z) =V € Tz (X,n + 1;m). Thus §; = o} 0 5. We
put

(10.1) Oait :Z (=1)%6; : Tz4(X,n;m) — Tz (X, n + 1;m).
i=1

These 9,’s satisfy the following identities.

Lemma 10.1. Fori,j € {1,--- ,n}, we have
0;0; = 04105, if i < 7,
(102) { 61(5] = 5]'51',1, ZfZ > ]

Proof. This is obvious from the definition of 9;’s. O
Lemma 10.2. We have §2, = 0.
Proof. Indeed 42, is,

(Z(—n%&) (Z(—le) =S 1)s + Y (-1,

i=1 j=1 i<j i>j+1
=D (=18 + Y (—1)6;6, .
1<j i>j+1
For the right hand side, use the substitution i — 1 = j' and 7 = ¢/ so that we have

6C2th = Z(_1)1+]525J -+ Z(_l)i/+j,+15i’5j’ = 0

i<j i <j’



MOVING LEMMA FOR ADDITIVE CHOW GROUPS AND APPLICATIONS 51

One major drawback of d,; is that unlike 6 = ¢y, it does not have good com-
mutativity (or anti-commutativity) relations with the boundary operator 0 of the
additive cycle complex. We shall show in the next section that ., still defines an
operator on the homology groups. At this stage, we note that d,; and 0 satisfy
the following properties.

Lemma 10.3. The following identities hold, where € € {0, 00} :

8;(& = 5/§_185, Zf’L < k,
(10.3) 06, = 0, ifi=k,
00y, = 0,05y, ifi > k.

Equivalently,

5k@f = i€+15k7 ka S 7:7
(10.4) { Ok = Ofdprn, if k> i,

In particular, 0§, ,0; = 050;41.

Proof. This is straightforward, while it takes some patience to keep track of the
indices correctly. 0

We will come back to this issue about the interaction of d,;; with 0 in the next
section. See Lemma 11.7 and Question 11.8.

10.0.1. Leibniz rule. We now show that the differential d,; is in fact a derivation
for the wedge product on the additive cycle complex. We first define a new operator
on a pair of additive cycles which is the cycle theoretic analog of the cyclic shuffle
product in the Hochschild complex in [17, Section 4.3.2]. Recall that this cyclic
shuffle product is used to show that the Conne’s boundary operator is a derivation
for the wedge product on the Hochschild homology. We prove here the analogous
statement for the additive higher Chow groups.
Consider the rational map

(10.5) Wi XXX XGpxGpxO12x0—- X x X xG,, x Outm
tly —1
titoy — 1
For two irreducible admissible cycles Z; € Tz%(X,n;,m) for i = 1,2, let Z;x'Z,
be the closure of u/' ((Z1 x Z3) x O) in X x X x G, x O"*2 where we omit a
suitable transposition from our notations. As before, we put n = n; +ny — 1 and

¢=¢+q¢—1
Proposition 10.4. Z;x'Z5 is an admissible cycle in Tz(X x X,n+ 2;m).

M/ (x7t17t27 Yi, - 7Z/n1+n2727y) = (5’777517527% yYi, 7yn1+n22) .

Proof. We first prove the modulus condition for Z = Z;x’Z,. We consider the
commutative diagram

(10.6) X X X x Gy, X G,y x 0422 5 [ X x X x G, x [0+72

J |

X X X X Gm X Gm X Dn1+n2—2 ﬁ X x X X Gm X |:|n1+n2—2’
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where the vertical arrows are the natural projections. In particular, we get the
map Z — u(Z; X Z3) under the projection map. Let Z and p,(Z, x Z,) denote

the closures of Z and p.(Z; X Z3) in X x Bn+2 and X x B respectively. Thus we
get a commutative diagram

(10.7) Z7—— X X X X Bpis

J Jp

(1:(Zy X Zo) — X x X x B,,.

We have shown in Corollary 8.5 that p.(Z; x Zs) satisfies the modulus condition.
Since p*(F, ;) = F,,5; and p*(Fno) = Fpy20, we see that the modulus condition
for p.(Zy x Zy) implies the same for p*(u«(Z; X Z3)). The modulus condition for
Z now follows from Proposition 2.4.

Now we compute the various boundaries of Z. It is easy to see from (10.5) that

0/(Z) =0, 0°(Z) = 0n, - (11 (Z1 % 0(22))) .

05(Z) = pa (8(Z1) X Z2), 05°(Z) = 6 (11:(Z1 % Za)).
For 3 <7 <n+ 1, we have

OE(Z):{ Ol 21X 2 if3<i<n +1

(2

Zl X/af_nl_l(Z1> if ny + 2 < ) <n+ 1.

Since Z;’s are admissible cycles, the above automatically imply the proper inter-
section property of Z.

Using Proposition 10.4, we can define the our cyclic shuffle product as

(10.8) ZyN Zy = > sgn(v)v - (Zy x' Zy) € T2"(X x X, n + 2;m),
Veperm(l,nl—l,nQ—l)

where the permutations v € Perm ,,_1n,—1) act on the given set of n objects

{(1,2),3,--- ,n + 1} in the obvious way, treating the element (1,2) as a single

object. This induces the action v - (§ x'n). We extend this bilinearly to get the
cyclic shuffle product

(10.9) Tz (X, n1;m) @ Tz2(X, ngo;m) z, Tz (X x X,n +2;m).

Proposition 10.5 (Leibniz rule). Let & € Tz"(X,ni;m),n € Tz%(X,ny;m).
Then, in the group Tz (X x X,n + 1;m), we have

(10.10) Sate (EA1) — (Bae&) A — (=1)™ 7 EA(daui)

= J(EA') — (D&)A — (=1)"~1EN (),
wheren =ny+no—1, ¢q=q +q — 1.
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Proof. Tt follows from Proposition 10.4 that

n+1

dEx"n) = X (=10 —a)(Ex"n)

i=1

= S (p(E X)) = [on, - (1 (€ X 1)) + s (66 X 1))

1011) 5 (0, - )b
b U0 )

= 0 (€ X n)) = [on, - (s (€ X 7)) + 1. (6€ X 1)]
+0Ex"n + (—1)mtexon.

In particular, we have

(10.12) O (s (€ X)) = pe (06 X M) — 0y~ (1 (€ X 07))

=0 (& x'n) — 09Xy — (=) Texon.

Since the desired identity (10.10) of the proposition and (10.12) differ only by
the action of various permutations, it is now enough to show that the identity
holds on the coordinates of X x B, .».

One ingredient in the proof is the application of Proposition 8.6 and Lemma 8.11
to the triple shuffles Perm; ,.5). Observe that the map d,;; can be written as a sum

over the set Perm ,,y of double shuffles. Indeed, for the coordinate (¢, 41, ,yn),
we have

n+1

A 1
5alt(tay17"' 7yn) - Z(_l)z(tayla y Yi—1, % yYiy oot 7yn)
=1 A

_ Z (sgn(7))7 - (t,%,yh'-' ,yn>.

TEPerm(y )

We first compute the term on the left hand side of the identity (10.10) of the
proposition on the level the coordinates of B,,,, B,,. Since the variety X doesn’t
play a role in the calculation, we shrink points of X from our notations. Let

E=(t, Y1, yYn-1),1 = (t2,Yn,, "+ ,Yn_1). We then have

f Xn= (t17t27y17' o 7yn71)
f x/n = Ctl,tg X (3/17"' J/n—l)-

Here Cy, 4, := {t1} x'{t2} C G,, x (0% is the parameterized curve

toy — 1
C(t17152 = {(tlt27ya tlii/y—_l) |y € k}
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for any given points t1,t5 € G,,. As shown before, this is an admissible 1-cycle
and its boundary is given by (cf. [19, Lemma 2.5])

1 1 1
(10.13) 0C, 1, = | tita, — ) + | tate, — | — | tata, — | .
t to tits

This property will play an important role in the calculation.

To simplify the notations, we introduce new indices r, s, u by letting r :=n; —
1,s:=no— 1, and u —n—l—r—l—s

Then, by a direct calculation we have for the first term of (10.10),

5alt (6 A 77)

— S Z (sgn(o))o - (. (€ xm))

o€Perm,. )

= S Z (sgn(o))o - (tita, Y, -+ Yu)

o€Perm,. )

= Z (sgn(0))dau(t1ts, Yo-1(1), " 7y0—1(u)))

o€Perm,. )

= — > (semn(0) > (sen(r)7- (ay, Ly W Yo tw)

t1to
o€Perm,. ;) TEPerm(y )
1
= — > (en(0) DY (sen(r)(or-T) - (trte, 1Y)
tito
o€Perm,. ) TEPerm(q )

1
= - Z (Sgn(y))l/ ’ (tlt?, yYt, 7yu)?
t1ta

vEPerm(y . o)

where o, and the last equality are from Lemma 8.11.
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The second term of (10.10) is,

(5alt£) N n

= ©u Z (sgn(o))o - ((0a&) x m)

o€Perm, 41 )

= Y Gmn(o)o

o€Perm, 41 o)

1
Z (Sgn(T))T' (thaaylu'” 7yT> X (t27y7"+17"' 7yu>

Tl

= - Y. (sen(0))o

o€Perm, 1 4

S (sen(n)(r x 14,) | - (tata, tly )

TEPermy

1
- - Z (sgn(y))y : (t1t27 E?yla U 7yu)>

vePerm(y . o)

where the last equality follows from Proposition 8.6.
Before we compute the third term of (10.10), first note that

u+1

- 1
Oatt(to, Yri1, -+ 1 Yn) = Z (=) (t2, Yrs1s s Yitr—1s g s Yikry "

i=r+1 N——~

i+rth

1

+Yn)

= —(=1) Z (sgn(7T))7 - (t2, = Yri1s " s Yu)-

to

TEPermy i)

55
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Hence, for the third term of (10.10), we have
(=1)"E A (0ann)

= - Y. (seu(o))o

o€Perm, 41y

S (sga(r)(1d, x 7) | - (teta, 1 v g)

t

TEPermy i)

- _ Z (sgn(v))v -(751152,1,3/17"‘,%)7

vePerm(y o)

where the last equality follows from Proposition 8.6.
Thus, the left hand side of the equation (10.10) is compactified into

(10.14) Satt(§ A1) = (Bare€) A — (=1)"E A (Garen)
== Y (sea(v))v- ((t@,%w (tltg,%) - (m,i)) X (Y1, ).

vePermy ;. o)

On the other hand, for the coordinate points, we have for the first term of the
right hand side of (10.10),

(10.15) A = o Y (sgn@)w | Crp X (U1, ,9)-

vePerm(y o)

Since we have by (10.13) the equation

1 1 1
tity, — tite, — | — [ tity, — | = OC, 4.,
<12 t1)+(12 tg) (12 t1t2> t1,to

for each v € Permy(, ,5), the four faces of v- (£ x’n) in the sum (10.15) that interact
with Cy, 4,, i.e., Of with i € v(1,2), cancel out the corresponding terms of (10.14).
This process cancels all terms in (10.14), thus all the terms of the left hand side of
(10.10). Hence, we need to see what happens for the remaining faces of (10.15).
But we have already seen in (10.11) that for any general admissible cycles £ and
UL

n+1 ni+1
D (DO = R)E X ) = (Z(—Ui(@g - 8?_2)6) x"1

1=3 1=3

n+1
+¢{ %! ( Y DO - 0?_n1_1)77>

i=ni+2

= (08) x'n+ (=1)" 7 X/ (m).
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We apply this argument for the faces 9f with i € v(1,2) to each v - (£ X' 1),
where v € Perm(, ), and take the signed sum. This gives the remaining terms
(O&A'n + (—=1)m~1EA (On) of the right hand side of (10.10). This completes the
proof of Proposition 10.5. O

11. NORMALIZED ADDITIVE CYCLE COMPLEX

We have seen in the previous section that the differential operator d,; on the
additive cycle complex has all the nice properties except that it does not commute
(or anti-commute) with the boundary map 0. In this section, we rectify this
anomaly by introducing the normalized version of the additive cycle complex. This
is analogous to the similar construction of S. Bloch in [3, Theorem 4.4.2]. It turns
out that ¢, indeed has good behaviors with respect to the boundary operator
of the normalized complex. Our final goal is then achieved by showing that the
homology of the normalized additive cycle complex does not change our additive
higher Chow groups. We begin with the following construction of M. Levine which
appeared in [15] to study Bloch’s higher Chow groups. This is essentially equivalent
to the method of S. Bloch in [3]. We suitably adapt this Levine’s construction to
the additive world in what follows next.

11.1. Homotopy variety. In the following construction, we shall make an iden-
tification between OJ and A! via the map

(11.1) O— ALy 1/(1—y).

This gives the isomorphism (P!, {0, 1,00}) 2 (P!, {1, 00,0}). The boundary map of
the corresponding cycle complex under this identification is given by »_.(—1)*(d) —

d}). Let X be a smooth projective variety and let 4, : WX — X x G,,, x 0" x P!
be the closed subvariety defined by the equation

(11.2) to(1 = Yn)(1 = Yny1) = to — 1,

where (y1,---,yn) are the coordinates of (0" and (¢, : t;) are the homogeneous
coordinates of PL. Let 1, : WX — X x G,, x (0" be the map defined by

(113) 7"-n(xa t>y17 oy Yna, (tO : tl)) = (l’,t, Yi,° 5 Yn-1,Yn T Yn+1 — ynyn+1>-

Let ((ud :ul),---, (upt' : u™h)) denote the homogeneous coordinate of (P*)" .

n+1

We identify 0" to the open subset of (P1)"*" given by [] {u} # 0}, and we
i=1
set y; = ul /ul,y = t1/ty. In terms of these homogeneous coordinates, the projec-
tivization WX of WX in X x O x (]P’l)nJrl x P! is given by the equation
(11.4) to(upy — ) (ud™ — u) = ufud T (g — t).
Let B, : X x Ox (PY)"™ x P! — X x O x (P)"" x P! be the natural projection
map given by

(11.5) O, (z,t, (ugsuy), -+, (ug ™ s uf ™), (to : 41)) =

(ZL‘,t, (U’é’ U%), Tty (Ug_l : u?_l)v (tO : tl))
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and let 6, be its restriction to the open set X x G,, x 0" x (. Here we identify

Gy, as O\{1}. Let 7, : WX — X x O x (P)""" x P! be the restriction of 8, to
Let p, : X x G,, x 0" x P! — X x G,, x 0" be the natural projection.

Lemma 11.1. WX N {t, = 0} = 0 and hence W;X is in fact contained in the

open subset X x G,, x 0"t x 0. The variety WX (and hence WX ) is smooth.
Moreover, m, and T, are flat and surjective morphisms of relative dimension one.

Proof. The first assertion is immediate from the defining equation of WX. Using
this assertion, we can write the restriction of p, on WX as

WX = X xG, xO""!' x0O— X x G, x O™,

where the first inclusion is given by the equation y = v, + Y1 — YnYnr1. Since X
is smooth, it is now easy to see using the Jacobian criterion that WX is smooth
and the above composite map is an isomorphism. Furthermore, under this isomor-
phisma the map Ty Is juSt the projection (ZIZ’, Ly, Yn, y) = (QZ', Ly, Yn-1, y)a
as can be checked from the equation of WX. This also shows that m, is in fact
smooth and surjective map of relative dimension one. To prove the smooth-

ness of WX, we can check it locally on an open set of points with coordinates

n

(zt, (ud s ud), -, (ug™ s u™), (to : t1)) where either of uf,u}*',#; is non-zero

for i = 0,1. In any such open set, WX has the equation of the form that defines
WX and hence is smooth. It is also easy to check using these local coordinates that

T, is of relative dimension one. Moreover, as 6,, is projective and m, is surjective,
we see that 7, is projective and surjective. In particular, it is flat (cf. [11, Exercise
I11-10.9]). This proves the lemma. O

Lemma 11.2. The diagram

(11.6) WX 5 X % G x O x 025 X % 0O x (P x P!

T, J»

X x G, xO"—— X xOx (PY)"
In

commautes.

Proof. By Lemma 11.1, WX is contained in the open subset X x G,, x 0" x
[, where it is given by the equation y = v, + Yni1 — YnYnr1. 1t is clear from
the definition of 6,, in (11.5) that the triangle on the left commutes. The right

square commutes by the definitions of 6,, and 6,,. Hence the outer trapezium also
commutes. 0

Lemma 11.3. Let Z7 C X x G, x " be a closed subvariety which satisfies the
modulus condition Mgyy. Let Z' = (i,), (m,"(Z)). Then Z' also satisfies the

modulus condition My, .
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Proof. Let Z and Z denote the closures of Z and Z’ in X x O x (PH" and X x [ x

n . - 4 N . . > d o &
(PY) 1% P! respectively. Let Z Yand Z'" denote the normalizations of Z and 7
respectively. Using Lemmas 11.1, 11.2 and the projectivity of the map 6,,, we see

that 6,(Z') = Z in the Diagram (11.6). Since WX smooth, we get the following
commutative diagram:

Vy
e T
—IN n+1
(11.7) 7" = WX — X xDOx (PH" x P!
—N 1\
7 > X xOx (PYHY",

where f is the map of normal k-schemes induced by the surjective map Z -7
As before, let F29, ; denote the Cartier divisor on (P')" defined by {y; = oo} for

1 <4 < n and we have similar Cartier divisors F?{,; on (IP’I)"Jrl forl <i<n+1.

It is then easy to see from the defining equation of WX in (11.4) that

To(F%a,) = Gy =00)
= 1i,(tp =0)
(11.8) < 4, [(uf = 0) + (ug™ = 0)]
= iyl(yn = 00) + (yusa = o0)]
= Zn[ ni2;n T Y n+2, n+1]

— /N _— —
Since Z = — WX is a map of normal k-schemes, and since HZ(FSSFM) = I, for
1 <i<n-—1, we have

VZ’OG ( n—i—l) = ZVZ’OG ( n—i—lz)
n—1

= VZ'[Z Foil + g omn(FS,)

11.9
( ) < VZ/[Z F+22]+9 ol [F+2n+F+2n+1]

n+1

= I/Z’[Z n+21]
= VZ’(FTC;?&Q)

Now the modulus condition for Z implies that v} [(m +1)F,110] < v3[F59,] which

implies that f* o v}[(m + 1)Fn+1 o] < ffo VZ[ng’rl] This in turn implies that

vy 0 5;[(771 + 1)Fhq10) < vjo g Wl n+1] Since 0. n(Frt10) = Fhyo0, we conclude
from (11.9) that v, [(m+ 1)Fn+270] < v [F?3,) which proves the modulus condition
for Z'. O
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For any closed subvariety Z C X x G,, x 1", let
(11.10) WX(Z) = (). o (in), o m(2).
Note that W= (Z) is a closed subvariety of X x G,, x (J"! since p, is projective.

Lemma 11.4 (cf. [15]). For Z as above, one has
(1) WH(Z) - {yn =0} = Z = W(Z) - {Yns1 = 0}
(2) Z€29(X X Gyn) = WX(Z) € 29(X X Gy + 1).

Proof. Let Z' = (i), o 7(Z). Let O; denote the ith factor of 0" in X x G, x
0" x O in Diagram (11.6). Then we see from Diagram (11.6) that

(11.11) Z' = (Zx 0y x Opya) - Wy = (Z X 00 X Onit) {Y = Yo+ Ynt1 = Ynlns1 }-
Combining this with the equation of WX in (11.2), we see that
Z' Ayp=¢€} =(Z x 0, x Upi1) {y = Yny1} for e=0,1.
Thus we get
Wi (Z) Ayn = 0} = pu(Z') {yn = 0} = (pu).[(Z x {0} x Tp1) - {y =y} = Z.
Using the same steps, we also see that
Wi (Z) Ayn =1} = (Z-{y=1}) x 0.

Since Z" - {yps1 = €} = (Z x O, x Opy1) - {y = yn}, the same calculation as before
shows that WX (Z) {yn11 =0} = Z and W;(Z) {yns1 = 1} = (Z-{y = 1}) x O.
This proves (1). This in particular shows that the intersection W= (Z) - {y; = €}
is proper for t =n,n+ 1 and ¢ =0, 1.

Now we calculate the other boundaries of WX (Z). Tt follows directly from (11.11)
that for 1 <7 < n —1, one has WX(Z) - {y; = ¢} = WX (Z - {y; = €}). Since
T, 18 flat of relative dimension one as shown in Lemma 11.1, we see that this
intersection is proper. This proves (2), thus the lemma. 0

Proposition 11.5. For the modulus condition Mgy, let Z € Tz(X,n + 1;m) be
an irreducible admissible cycle. Then WX(Z) € Tz(X,n + 2;m).

Proof. This follows by combining Lemmas 11.3 and 11.4. O
Using Proposition 11.5, we can define for every n > 0, a group homomorphism
(11.12) WX T2 X, n 4 1,m) sum — T29(X, 7+ 2;m) sum

by extending WX linearly. This homomorphism has the property that 92oWX = Id
for i = n,n + 1 as shown in Lemma 11.4.
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11.2. Normalized additive cycle complex. We now define the normalized ver-
sion of our additive cycle complexes and study their properties. These complexes
are the additive analogues of the similar constructions of S. Bloch and M. Levine
[3, 15] for higher Chow groups. It turns out that the normalized additive cy-
cle complex has better properties. One expects that the resulting additive Chow
groups also form a kind of Witt complex so that all the expected maps from the
relative K-groups of the infinitesimal deformations of smooth schemes to the addi-
tive higher Chow groups actually factors through these normalized additive higher
Chow groups. Another outcome of using the normalized additive cycle complex is
the invention of the motivic version of the cycile homology of A. Connes [17]. We
shall deal with this aspect in the end of this section.

Definition 11.6. Let X be a smooth projective variety and let M be any of the
modulus conditions Mym, Msup, Mssup. For n,m > 1, let Tz%,(X,n;m) be the
subgroup of Tz?(X, n;m) of cycles a such that 9(a) = 0 for 1 <i < n —1 and
0X(a) = 0 for 2 < i < n — 1. Using the simplicial structure of the additive cycle
complex, it easy to see that for a € Tz% (X, n;m), one has 07°00° () = 0. Writing
9% as OV, we thus get a subcomplex (Tz% (X, e;m),0V) of (Tz?(X, e;m),d). We
shall call Tz% (X, e;m) the “normalized additive cycle complex” for any given
modulus condition.

We define the normalized additive higher Chow groups of X by TCH% (X, n;m) =
H, (Tz%,(X, e;m)).

The point of using this normalized complex is the following lemma regarding its
interaction with d,; in the previous section.

Lemma 11.7. (1) Foralli € {1,--- ,n}, we have 6;(Tz% (X, n;m)) C Tz‘]l\;rl(X7 n+
1;m).
(2) For ON = 0%°, we have 6,;0" + ON6u: = 0 on Tz (X, e;m).

Proof. (1) follows immediately from (10.3). To prove (2), we have for any in
T2y (X, nym),
5altaN = é‘alta(fo

n+1

= 5 aysor
il

= > (=100

=1

= o (5 -1yae)

=1

n+2 )
= —0°0 — OF° <Z (—1)1(51-)
n+2 2%2
— o (£ v
- alts
where the third equality holds from (10.4) and the fifth one follows from (10.3).
This finishes the proof of (2). O
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It was shown in [3, Theorem 4.4.2] that the normalized cycle complex for the
usual higher Chow groups is quasi-isomorphic to the original cycle complex. This
prompts one to ask the following.

Question 11.8. s the natural inclusion (Tz% (X, e;m),0V) — (Tz/(X, &;m), )
of complexes a quasi-isomorphism?

Our next goal is to show that the answer to this Question 11.8 is indeed affir-
mative for the modulus condition M,,,,. We also derive some crucial consequences
of this for the additive higher Chow groups. Although we can not prove this for
the other two modulus conditions at this moment for certain technical reasons, we
definitely expect this to be the case for all modulus conditions.

Forn > 1, let C(n — 1) = &,T2(X,n;m). Let D(n — 1) C C(n — 1) be the
subgroup of degenerate cycles. Let C'(n—1)° = (2] ker(d?) € C(n—1). Note that
@D,... C(n —1)° is a subcomplex of @, ., C(n — 1) with respect to the boundary

n—1
map 0 :; (—1)'92°. We shall write this subcomplex as (C(x), ).

Proposition 11.9. C(n—1) = D(n—1) & C(n —1)°. Thus, we can identify
D 124X, nim) = @ T2 (X, n;m) /T2 (X, 13 M) degn
q

q
with, its subgroup C(n — 1)° = (7=, ker(8Y).
Proof. We first prove that C(n—1) = D(n—1)+C(n—1)° Let z € C(n—1), and

suppose that 8% ,(z) = -+ = 8%_,(z) = 0, to use a backward induction argument
on the subscripts. Let 2/ := 2z — 7, 0 8°(2), where 7, is the pull-back via the
projection (z,t, 41, ,Yn—1) — (T, 6, Y1, , Ui, -+ ,Yn_1). One easily checks that

0} om, = 1. Hence, 9)(2') = 9,(2) — 97 (w0 9)(2)) = 9}(2) — 07(2) = 0. For s > r,
one first easily sees that 0% _,00) = 0700} and Wyoﬁfhl = 0jom, for v <  from the
standard cubical identities. Hence, using these two and the induction hypothesis
that 9%(z) = 0, we obtain 9°(2') = 9%(z) — (7, 0°(2)) =0 — 7, 00% 0 9%(2) =
—7,0%0%(z) = 0. Hence, by induction we may write z as a sum of elements in
D(n—1) and C(n —1)°.

To prove that the sum is direct, let » be the minimum such that there is a non-
zero z € C'(n —1)° with z = Y7, mw;, for some w;. Since 9 =0 and & o7, =1,
by applying 9° to z, we obtain

r—1 r—1
_ 0 _ 0
Wy = — E 8r oOTW; = — E Y ((9747111)@-) R
i=1 i=1

where for the second equation we used the cubical identity 7, o %_1 = 8& o, for
v < . Hence, by plugging this back into the expression of z, we have

r—1 r—1

0
z = E TW; + MWy, = § i (wi — Tp—10 ar—lwi) )

i=1 =1
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where for the second equation we used the cubical identity m, o w,_; = 7, o7, for
v < p. This contradicts the minimality of . Hence the sum is direct. This proves
the proposition. 0

Theorem 11.10. Let X be a smooth projective variety. Then for the modulus
condition Mgym, the natural inclusion Tz (X, e;m) — Tz(X, e;m) of complezes
1S a quasi-isomorphism.

Proof. In this proof, we again temporarily identify [J with A! via the isomorphism
of (11.1). Recall that this gives the isomorphism (P!, {0,1,00}) = (P!, {1, 00,0}).
Thus we need to show that the inclusion (Tz% (X, e;m),0") — (Tz/(X,e;m),0)
is a quasi-isomorphism, where 9 = 32" (=1)1(8? — d}). We make the appropriate
identification for C'(x)? as well.

Using Proposition 11.9, we only need to show that the inclusion Tz% (X, &;m) —
C(%)? is a quasi-isomorphism. In particular, we can assume that for all cycles
a € Tz4(X,n + 1;m), one has 9} (o) =0 for 1 <i < n. For i > 0, let

C(x)y = {a € C(%)°10)(a) = 0 for j > i+ 2}.

Let 7; € Perm,, be the permutation such that

i iti <y
(1) =49 i—1ifi>j
n ifi=j.

For any 0 < i < n and admissible cycle a € Tz/(X,n + 1;m), let
Hi(e) = (1) ' g1 Wit (a).

By Proposition 11.5, WX (a) € Tz(X,n + 2;m). Since 7 clearly preserves the
admissibility, we get a homomorphism H : Tz(X,n + 1;m) — Tz9(X,n+ 2;m).
Now we use the computations of the boundaries of W («) in Lemma 11.4 to see
that H restricts to a map

(11.13) HP : C(x)y — C(x)0 .

K3 n

Define 1y : C(x)? — C(*)% by ¢y = Id — (0 o Hy + Hy o 9) and we inductively

n

define ¢; 11 = (Id — (0 o H,, + H,, 0 9)) o ¢;. In particular, we have
Y=, =(Id= (0o H,+ H,00))o---0o(ld— (0o Hy+ Hyo0)),

where d =Y (—1)'0?. Thus ¢ defines an endomorphism of C(x)° which is ho-

motopic to identity. Furthermore, Lemma 11.4 implies that the restriction of
on C(¥)§ = Tz4,(X,n + 1;m) is identity. The proof of the theorem will now be
complete from the following.

Claim :  ¢; (C(%)%_; ) C C(x)" for0<i<n-—2.

n—i—1 n—i—2
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We prove it for 1)y and other cases are exactly similar and can be proved induc-
tively. We have

H() 00 = Hg_l X0,
= (~1)'WE, 00
n—1
= (1" Y (U)W 0 0] + (1) WL 0 8],
i=1

On the other hand, we have

aOHo = 80H0”
= (=1)""9o WX
n+1 )
= (=" X (=10 o WY
i=1
n—1

= ()" 2 (=007 e W
i=1
H(=1)2O0 0 WX 4 (—1)20200 0 WX

n—1

= (=" ; (1) WL, 007
+(_1)2n+Tld_|_ (_1)2n+21d
= (=) ; (1) Wil 007,

where the fifth equality follows from Lemma 11.4 and (11.12). Thus we get HyoO+

Do Hy = WX, 00% However, we see from Lemma 11.4 again that 0o WX 09° =

&%, This shows that g (C(%)%_;) C C(*)2_,. This proves the claim and the

n—1
theorem. O

Although we are unable to prove Theorem 11.10 for the modulus conditions Mj,,
and My, in this paper, the following result gives a partial answer to Question 11.8
in these cases.

Theorem 11.11. Let X be a smooth projective variety over k. Then for any
modulus condition and for any n,m > 1, the natural map TCH (X, n;m) —
TCHY(X, n;m) is injective. In particular, the map TCHY, (k,n;m) — TCH"(k,n;m)
s an isomorphism.

Proof. Let X° = X x G,,. We have seen before that forgetting the modulus
condition, one has a natural inclusion of cubical objects

(o= (T2'(X, n;m), 05)) — (n = (2°(X°,n), 55)) |

where the right side is the cubical object for the higher Chow group. This induces
a natural inclusion of chain complexes ix : Tz/(X, e;m) — 27(X° o) such that
a cycle z € Tz!(X,e;m) is degenerate if and only if ix(z) € 29(X° e) is so.
Considering the normalized version of these complexes, we get a commutative
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diagram

(11.14) Tz4 (X, nym) — 24(X%n — 1)

| J

TzY(X,n;m) —— 29(X%n — 1)
which is clearly Cartesian and all arrows are injective. Let
Tz (X,n;m) = Image (24 (X% n—1)® Tz(X,n;m) — 2%(X% n—1)).
Then we get the exact sequence of complexes
0 — Tz4 (X, e;m) — 2% (X%, o) & T2(X, &;m) —— Tz (X, e;m) — 0.
The theorem would follow if we show that the map
Hy (24(X?,9)) = H, (TZ'(X, ;m))
is injective for all n > 1. For this, we consider the inclusions
21 (X0 @) = Tz (X, 0;m) — 29(X°, o).

By [3, Theorem 4.4.2], the composite map is a quasi-isomorphism. Hence the map
H, (24(X° ) — H, (Tz'(X,e;m)) is in fact split injective. This finishes the
proof of the theorem.

To prove the isomorphism of the additive higher Chow groups of zero cycles,
we simply note that the inclusion map Tzy (k,n;m) — Tz"(k,n;m) is in fact an
isomorphism and hence the map TCHY (k,n;m) — TCH"(k,n;m) is surjective
too.

For our purposes, the following is the main application of Theorems 11.10
and 11.11.

Corollary 11.12. For the modulus condition Mg, the map 04, defines a homo-
morphism

Saie : TCHY( X, n;m) — TCH (X, n + 1;m)

satisfying 6%, = 0.
For the modulus condition Mssyy, 0a defines a homomorphism

Sare - TCH"(k,n;m) — TCH" ! (k,n + 1;m)
satisfying 62, = 0.

Proof. This follows immediately by combining Lemmas 10.2, 10.3, Lemma 11.7,
and Theorem 11.10. The second statement about the additive zero cycles follows
in the same way, where we now use Theorem 11.11 in place of Theorem 11.10. [

We complete our study of CDGA structures on the additive higher Chow groups
with the following main result of this section.
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Theorem 11.13. Let X be a smooth projective variety over a field k. Then for
the modulus condition Mgy, the additive higher Chow groups (TCH(X), A, da)
form a graded-commutative differential graded algebra, where 64 1s the graded
derivation for the wedge product N\. This derivation commutes with the pull-back
and push-forward maps of additive higher Chow groups.

Proof. This follows directly from Corollary 8.17, Proposition 10.5 and Corollary 11.12.
The commutativity property of d,; with the pull-back and push-forward maps fol-
lows from the similar property of ¢ in Theorem 9.7. U

Remark 11.14. Tt follows from the above results that for the modulus condition
M gym, TCH(X) has two differentials, namely, § of Theorem 9.7 and §,;; of Theorem

11.13. But one can in fact show that the latter is just a finitely many copies
of the former. To see this, one needs to know that each ¢ € Perm, acts on
TCHY(X,n + 1,m) as sgn(o) - Id. Using this, one can also see that while § is
analogous to the exterior derivation of Kahler differentials, d,; corresponds to the
exterior derivation of the Hochschild homology. These differential operators are
related by a kind of anti-symmetrizer maps defined via permutations (cf. [17]).

Remark 11.15. We see from Corollary 8.17 and Proposition 10.5 that (TCH(X), A, d11)
is a differential graded algebra also for the modulus condition Mjg,, if the answer
to Question 11.8 is affirmative. As we have already remarked before, this is very
much expected and a proof of this should be available in a near future. For now,

it does follow from Corollary 11.12 that the groups ({TCH"(k,n; m)},sqs A, 5alt)
form a CDGA. -

11.3. Motivic cyclic homology. We end this section by showing how one can
use the normalized additive Chow groups and Theorem 11.10 to define a motivic
version of the cyclic homology of A. Connes. We see from Lemmas 10.2 and 11.7
that there is a bicomplex

(11.15)

oN N oN
Tz?\;rz(n +2) e Tz?\fl(n +1) Lo Tz%(n) alt
N N N
T (0 4 1) 2 Tt () 2 Tl (n — 1) 2

oN oN oN

where Tz%(n) := Tz% (X, n;m). This allows us to propose a cyclic analogue of ad-
ditive cycle complex, regarding the additive cycle complex as the motivic analogue
of the Hochschild complex. Let Tz(n) := @? Tz (n). Note that 9V decreases only
n by 1, while é,; increases both ¢ and n by +1. The above bicomplex then reads,
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(11.16)

oN oN oN oN
Ta(4) 24 Ty(3) <2 Ty(2) L2 (1)
N N N

Ta(3) <22 Tz(2) 22 Ty(1)

8]\7
Tz(1).

Let BZ be this bicomplex. This is a mixed complex in the sense of A. Connes
(cf. [17, p. 79]). We apply the usual formalism of mixed complexes to BZ. By
definition, its homology H,(BZ) is the homology of the first column and this is
just the additive higher Chow groups TCHy(X,n — 1;m). Its cyclic homology
HC,(BZ) is the homology H,(Tot(BZ)) of the total complex. Notice that the
bicomplex (11.15) itself is not a mixed complex, but since BZ is the direct sum of
these, the groups H,(BZ) and HC,(BZ) have natural decompositions.

We define the motivic cyclic homology CCH*(X,n;m) as the cyclic homology
HC,(BZ) of the bicomplex BZ. In this analogy, we could as well call our additive
higher Chow groups as motivic Hochschild homology. The group CCHY(X, n;m)
is the direct summand of CCH"(X,n;m) that comes from the diagonal of (11.15)
that contains Tz} (n) in the first column. Note that, despite the double index
(g,n), the group CCH?(X,n;m) contains cycles not just from Tz% (n), but also

from
winfa 2]}
@ Tz% " (n — 2i).
>0
Following the formalism of mixed complexes (cf. [17, 2.5.3]), we have the long
exact sequence of complexes

0 — (Tz(x),0V) L Tot(BZ) S Tot (BZ[1,1]) — 0.

Notice that Tot (BZ[1,1]) = (Tot(BZ))[2]. Thus, we obtain its long exact se-
quence, which is the Connes’ periodicity exact sequence, that decomposes as fol-
lows:

Corollary 11.16. Suppose the modulus condition 1s Mgy,,. Then there is a Connes
periodicity exact sequence involving TCH and CCH:

Y

B

A TCHY(X,n;m) EN CCHY(X,n;m) 5, CCH Y (X,n —2;m) =
TCHY(X,n — 1;m) AU ,
where the maps 1,5, B have bidegrees (0,0),(—1,—2),(4+1,+1) in (q,n) respec-
tively.
As a consequence, we have the following motivic interpretation of the top Hodge
piece HC™ (k) of the cyclic homology HC,,_(k) of the ground field.
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Corollary 11.17. Assume that char(k) # 2. Then, for any modulus condition
and for n,m > 1, there is an isomorphism

CCH" (k, nym) = W, Q! /dW,,, Q2.

Proof. By definition,

CCH" (k, n;m) = Ley(k,n)
C T ONTZ (ko4 1) + 60 T2 (kyn — 1)

By Theorems 3.4 and 11.11, we have Tz (k,n)/0N Tz} (k,n + 1) ~ WmQZ/’Zl
On the other hand, combining these two theorems with Theorem 11.11 and Re-

mark 11.15, we see that the elements of the group 6alth§L\,—1(kz, n — 1) are exact de
Rham-Witt forms. This finishes the proof. 0

Further study of the above motivic cyclic homology using algebraic cycles and
its applications to additive higher Chow groups will be taken up in a sequel.

12. REMARKS AND COMPUTATIONS

12.1. Moving modulus conditions. We saw that M,,,, and M, apparently
have much better structural behavior than the modulus condition My, studied in
[14, 18], and this makes the former better suited for being a motivic cohomology.
On the other hand, in the main theorem of [18], the regulators on 1-cycles were
defined with the modulus condition Mg,,. Although we have seen that this regula-
tor map does exist and has good properties with the modulus condition Mg, its
construction doesn’t automatically generalize to the groups with M,,,. So, one
may ask the following :

Question 12.1. Given an M,gy,,-admissible cycle & with 0§ = 0, can one find
Myp-admissible cycles n and I' such that £ =n+ 0I'?

A positive answer to this question will immediately solve one part of Conjec-
ture 2.9. This is a kind of deeper moving lemma than we have proved in this paper.
This moving lemma allows one to move the modulus as well as the proper inter-
section property when we move a cycle. On the other hand, the moving lemma of
this paper does not allow changing the modulus conditions. We expect the answer
to the above question to be much harder.

12.2. Examples.

Example 12.2. We give an example where the homotopy used in [1, 16] doesn’t
preserve the modulus conditions for additive Chow groups of quasi-projective va-
rieties, even for the simplest possible cases. _

Take X = A} and n = 1, so, we are interested in admissible cycles in X x By =
X x Aj. Admissible closed subvarieties Z C X x Aj are given by the condition
ZN(X x{0})=0. Let G, = A}, act on X by translation, and take its function
field K = k(s), s transcendental over k. Take the line ¢ : O} — G, x defined by
y — sy/(y — 1) that sends 0 to 0 and oo to the k-generic point s of G, which is
K-rational in G, k.
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Take Z given by the ideal (2t +1) C k[z,t], which is in Tz'(A', 1;m). Then, Zx
is given by (zt + 1) C K[z, t] and pr'* Zg is given by (xt + 1) C K[z, t,y/(y — 1)].
Pulling back through pgs, we get (v + sy/(y — 1))t +1 = 0. This is the equation
for our homotopy variety Z’. Rewriting it as 1 —y = ¢((y — 1)z + sy), we see
that it doesn’t satisfy any of the given modulus conditions My, Mgyp, Mssyp. For
instance, for a given m > 1, we need 1 — y to be divisible by at least t'*™ where
m > 1, which is obviously false in this case. Hence Z’ & Tz'(Ak,2;m).

Example 12.3. Recall from Remark 5.3 that if X is projective, then admissible

cycles in X x B; = X x Al have a very simple description : an admissible irreducible
closed subvariety Z should be of the form Y x {x} C X x A! for some closed
subvariety Y C X, and a closed point {*} # {0} of Al. This variety obviously

satisfies all of the modulus conditions.
Note that the admissible variety Z in Example 12.2 is not of the form Y x {x}:

this happens because X = A} is not complete.

These two examples show that the additive higher Chow groups of quasi-projective
varieties may have a bit more complicated structures than those of projective vari-
eties. The authors don’t know yet what extra-structures one can expect in general
for this quasi-projective case.

12.3. A computation. We finish the paper with a calculation of some additive
higher Chow groups, which the authors had worked out while working on this
paper. The following extends [5, Theorem 6.4, p. 153] to affine spaces.

Theorem 12.4. Let M be the modulus condition Mgy, Msyp, o1 Mgsy,. Let
X = A}, andletm = 1. Then, the additive higher Chow groups of zero-dimensional
cycles of X are the absolute Kahler differentials of k:

TCH™ ™ (X, n;1) ~ Q).

Remark 12.5. Note that, although it looks similar, this theorem does not imply
that additive higher Chow groups have A'-homotopy invariance. For the structure
morphism A}, — Spec(k), the pull-backs of 0-cycles on Spec(k) x B, to X x B,
are r-cycles, not 0-cycles.

Proof. The proof is very similar to that of [5, Theorem 6.4, p. 153]. For a closed

point p € X X B, that does not intersect the faces and the divisor {t = 0}, we
define a homomorphism by setting

L 1 dyl dyn—l n—1
b(p) = Trrgp)/ (;I A ns ) (P) € Qe
In other words, we ignore the coordinate of X. This defines a homomorphism

Y T2 (X n; 1) — QZ/_ZI

Claim (1): The composition

w o 8 : Tzr+n+1(X’n 4 17 1) ﬁ) TZT+n+l<X7 n; 1) i) QZ;Zl

1S Z€ro.
It just follows from [5, Proposition 6.2, p. 150].
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Claim (2): Any two closed admissible points p,p" € X x B,, for which only the
coordinates of X differ are equivalent as additive higher Chow cycles.
Abusing notations, write p = (a,b,s1,---,S,-1),p" = (¢’,b, 51, ,S,—1), Where
a,a’ are closed points of X, where b # 0, s; # 0, 00. Consider a parametrized line

C = a Y +a/ 1_L 7b7y7817"' y Sn—1 E‘XV><§7L—‘,-1| y€D1 .
y—1 y—1

This 1-cycle satisfies all the modulus conditions My, Msyp, Mseup having b # 0,
and it intersects all faces properly having constant y;-coordinate values s;.

By direct calculations, 9{(C) = p/,97°(C) = p, and 95(C) = 0 for ¢ > 2 and
e € {0,00}. Hence, 0(C) = p/ — p proving Claim (2).

Given Claim (2), by [5, Proposition 6.3] and the rest of the arguments of [5,
Theorem 6.4], this theorem follows. O

We remark that the same arguments work for any variety X as long as we can
prove Claim (2). In particular, for any connected union of affine spaces, irreducible
or not, we can conclude the same results.
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