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Abstract. We study additive higher Chow groups with several modulus con-
ditions. Apart from exhibiting the validity of all known results for the additive
Chow groups with these modulus conditions, we prove the moving lemma for
them: for a smooth projective variety X and a finite collection W of its locally
closed algebraic subsets, every additive higher Chow cycle is congruent to an
admissible cycle intersecting properly all members of W times faces. This is the
additive analogue of the moving lemma for the higher Chow groups studied by
S. Bloch and M. Levine.

As applications, we show that any map from a quasi-projective variety to
a smooth projective variety induces a pull-back map of additive higher Chow
groups. Using the moving lemma, we also establish the structure of graded-
commutative differential graded algebra (CDGA) on the additive higher Chow
groups.
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1. Introduction

Working with algebraic cycles, formal finite sums of closed subvarieties of a
variety, often requires some forms of moving results, as differential geometry often
requires Sard’s lemma. A classical example is Chow’s moving lemma in [6] that
moves algebraic cycles under rational equivalence. A modern one for higher Chow
groups shows in [2, 16] that, for a smooth quasi-projective variety X and a finite set
of locally closed subvarieties of X, one can move (modulo boundaries) admissible
cycles to other admissible cycles that intersect a given finite set of subvarieties in
the right codimensions. Any such results on moving of cycles is generally referred
to as moving lemmas. Such moving results have played a very crucial role in the
development and applications of the theory of higher Chow groups. The primary
goal of this paper is to prove this latter kind of moving lemma for the additive
higher Chow groups of a smooth and projective variety and to study some very
important applications on the structural properties of additive higher Chow groups.

The additive Chow groups of zero cycles on a field were first introduced by Bloch
and Esnault in [4] in an attempt to describe the K-theory and motivic cohomology
of the ring of dual numbers via algebraic cycles. Bloch and Esnault [5] later defined
these groups by putting a modulus condition on the additive Chow cycles in the
hope of describing the K-groups of any given truncated polynomial ring over a
field. The additive higher Chow groups of any given variety were defined in the
most general form by Park in [18] and were later studied in more detail in [14],
where many of the expected properties of these groups were also established.

The most crucial part of the existing definition(s) of the additive higher Chow
groups which makes them distinct from the higher Chow groups, is the modulus
condition on the admissible additive cycles. This condition also brings the extra
subtlety which does not persist with the higher Chow groups. As conjectured
in [14, 18], the additive higher Chow groups are expected to complement higher
Chow groups for non-reduced schemes so as to obtain the right motivic cohomology
groups. In particular, for a smooth projective variety X, one expects a Atiyah-
Hirzebruch spectral sequence

(1.1) TCH−q(X,−p− q;m)⇒ Knil
−p−q(X),

where Knil is the homotopy fiber of the restriction map K(X × Spec(k[t])) →
K(X × Spec(k[t]/tm+1)).
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Since these beliefs are still conjectural, it is not clear if the modulus conditions
used to study the additive higher Chow groups of varieties in the literature are
the right ones which would give the correct motivic cohomology, e.g., the one
which would satisfy (1.1). One aspect of this paper is to exhibit that the modulus
condition (which we call Msup in this paper) used in [14] may not be the best
possible one, if one expects the theory of additive higher Chow groups to yield the
correct motivic cohomology and the motives of non-reduced schemes.

We study the theory of additive Chow groups based on two other modulus
conditions in this paper: M = Msum is based on the modulus condition used
by Bloch-Esnault-Rülling in [5, 21], and M = Mssup is a new modulus condition
introduced in this paper. Although this new modulus condition Mssup may appear
mildly stronger than that used in [14, 18], it turns out that the resulting additive
Chow groups have all the properties known for the additive Chow groups of [5],
[14], and [18]. In addition, we prove many other crucial structural properties of the
additive higher Chow groups based on the modulus conditions Msum and Mssup.
Although it may seem surprising, the techniques used in proving the results of this
paper make one believe that such results may not be possible for the additive higher
Chow groups based on the modulus condition Msup of [14, 18], if Conjecture 2.9
turns out to be false.

We now outline the structure of this paper and elaborate on our main results.
We define our basic objects, the additive higher Chow groups with various modulus
conditions, in Section 2. We also prove some preliminary results which are used
repeatedly in the paper. In Section 3, we prove the basic properties of these
additive Chow groups. In particular, we demonstrate all those results for the
additive higher Chow groups based on the modulus condition Mssup, which are
known for the additive higher Chow groups of [5], [14] and [18]. Section 4 gives
the proofs of further preliminary results needed to prove our moving lemma for
the additive higher Chow groups.

The subsequent Sections 5 and 6 are devoted to our first main result, the moving
lemma for additive higher Chow groups. As in the case of higher Chow groups,
any theory of additive motivic cohomology which would compute the K-theory as
in (1.1) is expected to have a form of moving lemma to make them more amenable
to deeper study. This was one of the primary motivation for working on this
paper. We show in Theorem 4.1 that for a smooth projective variety X and a
finite collection W of its locally closed algebraic subsets, every additive higher
Chow cycle is congruent to an admissible cycle intersecting properly all members
ofW times faces. This is the additive analogue of the moving lemma for the higher
Chow groups studied by S. Bloch and M. Levine.

While lack of this result for general quasi-projective varieties may seem dis-
appointing, one would rather not expect this to be the case. For instance, A1-
homotopy invariance and localization sequences fail for additive higher Chow groups,
but these are indirectly implied if the moving lemma is assumed for all quasi-
projective varieties such as X × A1. A concrete quasi-projective example, where
the standard arguments fail, is given in Example 12.2.

Our proof of the above result is broadly speaking based on the techniques of [1]
and [16] that prove the analogous result for the higher Chow groups. The main
difficulty with the techniques of higher Chow groups which does not immediately
allow them to be adapted into the additive world is that these arguments are
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mostly intersection theoretic and are not equipped to handle the most delicate
modulus condition of additive Chow cycles. We show one such phenomenon in
the last section of this paper. However, in the case of projective varieties, we
carefully modify the arguments at every step so that we can keep track of the
modulus condition whenever we encounter new cycles in the process, especially in
the construction of the chain homotopy variety. This is achieved using our new
containment sort of argument and some results of [14]. This essentially proves the
above theorem. On the log-additive higher Chow groups, one can prove the moving
lemma for any general smooth quasi-projective varieties using our main theorem.

In Section 7, we give our first application of the moving lemma. We establish
the contravariant functoriality property of the additive higher Chow groups in the
most general form by showing in Theorem 7.1 that for a morphism f : X → Y of
quasi-projective varieties over a field k, where Y is smooth and projective, there
is a pull-back map f ∗ : TCHq(Y, n;m) → TCHq(X,n;m), and this satisfies the
expected composition law.

If X is also smooth and projective, the pull-back map on the additive Chow
groups was constructed in [14] using the action of higher Chow groups on the
additive ones. However, the contravariance functoriality in this general form as
above (even if Y is smooth) is new and is based on a crucial use of Theorem 4.1 as
is the case of general pull-back maps of higher Chow groups (cf. [1, Theorem 4.1]),
and another use of our containment argument. Even in the special case of X being
smooth and projective, our proof is different and more direct than the one in [14].

Our final set of main results of this paper are motivated by the question of what
are the important and necessary properties one would expect the additive higher
Chow groups to satisfy, if they are the right motivic cohomology to compute the
nil K-theory of the infinitesimal deformations of smooth schemes. In particular,
one could ask what are the necessary implications on the structural properties of
the additive higher Chow groups if there is indeed a spectral sequence as in (1.1).
The reader would recall in this context that the K-theory of the infinitesimal
deformations of the base field k is expressed in terms of the modules of absolute
Kähler differentials and the absolute de Rham-Witt complex of Hesselholt-Madsen,
as shown for example in [12]. For general smooth projective varieties over k, one
expects these K-groups to be given by the cohomology of the absolute de Rham-
Witt complex. It is well known that these de Rham-Witt complexes have the
structure of a graded-commutative differential graded algebra (CDGA) and they
are initial objects in the category of so called Witt complexes over a base scheme
(cf. [13, 21]). This makes it imperative that the additive higher Chow groups
posses such structures. Our next set of results together implies that this is indeed
the case.

In Section 8, we show in Theorem 8.16 that the additive higher Chow groups
indeed have a wedge product which makes the direct sum of all additive higher
Chow groups a graded-commutative algebra. This product structure has all the
functoriality properties and satisfies the projection formula. Furthermore, this is
compatible with the module structure on the additive higher Chow groups over
the Chow ring of the variety. We show in Theorem 9.7 that these are equipped
with a differential operator, too.

For the modulus condition Msum, we further show in Theorem 11.13 that these
differential operators and the wedge product turn the resulting additive higher
Chow groups into a CDGA. As a very important ingredient needed to achieve this,
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we introduce the normalized version of additive cycle complex and additive higher
Chow groups in Section 11. We show that this normalized additive cycle complex
is in fact quasi-isomorphic to the additive cycle complex if one uses the modulus
condition Msum. This is an additive analog of a similar result of S. Bloch [3] for
higher Chow groups. This is the last result we need to complete the program of
CDGA structure on additive higher Chow groups.

Although we do not go into this in order not to further increase the length of
this seemingly long paper, the reader can easily see using our techniques that the
push-forward and pull-back maps given by the power map a 7→ ar on Gm (which
is finite and flat) induce on the additive higher Chow groups of smooth projective
varieties two operators, so called the Frobenius and the Verschiebung operators.
Together with the above CDGA structure, this turns them into a Witt complex.

One hopes that this very general abstract structure of a Witt complex will help
us in making a significant progress towards the eventual goal of showing that the
additive higher Chow groups are the right motivic cohomology of the infinitesimal
deformations of smooth schemes. This goal was in some sense the starting point
of the theory of additive higher groups.

In the last section, we append some calculations of the additive higher Chow
groups the authors found in the process of working on the problem. This suggests
some kind of “pseudo”-A1-homotopy properties of additive higher Chow groups.

We finally remark that the only reason for not including the modulus condition
Mssup in our Theorem 11.13 is the lack of an affirmative answer of Question 11.8
in this case. We strongly believe the answer to be indeed positive and hope that a
proof will be available soon.

Throughout this paper, a k-scheme, or a scheme over k, is always a separated
scheme of finite type over a perfect field k. A k-variety is an integral k-scheme.
The ground field k will be fixed throughout this paper.

2. Additive higher Chow groups

In this section, we define additive higher Chow groups from a unifying perspec-
tive than those in the literature by Bloch-Esnault, Rülling, Krishna-Levine, and
Park, treating the modulus conditions as “variables”. We also prove some elemen-
tary results that are needed to study and compare the additive Chow groups based
on various modulus conditions.

We begin by fixing some notations which will be used throughout this paper.
We write Sch/k, Sm/k and SmProj/k for the categories of k-schemes, smooth
quasi-projective varieties, and smooth projective varieties, respectively. D−(Ab)
is the derived category of bounded above complexes of abelian groups. Recall
from [14, 18] that for a normal variety X over k, and a finite set of Weil divisors
{Y1, · · · , Ys} on X, the supremum of these divisors, denoted by sup1≤i≤s Yi, is the
Weil divisor defined to be

(2.1) sup
1≤i≤s

Yi =
∑

Y ∈Pdiv(X)

(max
1≤i≤s

ordY (Yi))[Y ],

where Pdiv(X) is the set of all prime Weil divisors of X. One observes that the
set of all Cartier divisors on a normal scheme X is contained in the set of all Weil
divisors, and the supremum of a collection of Cartier divisors may not remain a
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Cartier divisor in general, unless X is factorial. We shall need some elementary
results about Cartier and Weil divisors on normal varieties.

Here are some basic facts about divisors on normal varieties:

Lemma 2.1. Let X be a normal variety and let D1 and D2 be effective Cartier
divisors on X such that D1 ≥ D2 as Weil divisors. Let Y ⊂ X be a closed subset
which intersects D1 and D2 properly. Let f : Y N → X be the composite of the
inclusion and the normalization of Yred. Then f ∗(D1) ≥ f ∗(D2).

Proof. For any effective Cartier divisor D on X, let ID denote the sheaf of ideals
defining D as a locally principal closed subscheme of X. We first claim that
D1 ≥ D2 if and only if ID1 ⊂ ID2 . We only need to show the only if part as the
other implication is obvious. Now, D1 ≥ D2 implies that D = D1−D2 is effective
as a Cartier divisor since the group of Cartier divisors forms a subgroup of Weil
divisors on a normal scheme. Since ID1 ⊂ ID2 is a local question, we can assume
that X = Spec(A) is local normal integral scheme and IDi = (ai). Put a = a1/a2

as an element of the function field of X. We need to show that a ∈ A. Since A
is normal, it suffices to show that a ∈ Ap for every height one prime ideal p of A.
But this is precisely the meaning of D1 ≥ D2. This proves the claim.

Since Di intersect Y properly, we see that f ∗(Di) is a locally principal closed
subscheme of Y N for i = 1, 2. The lemma now follows directly from the above
claim. �

The following is a refinement of [14, Lemma 3.2]:

Lemma 2.2. Let f : Y → X be a surjective map of normal integral k-schemes.
Let D be a Cartier divisor on X such that f ∗(D) ≥ 0 on Y . Then D ≥ 0 on X.

Proof. As is implicit in the proof of the Lemma 2.1, we can localize at the generic
points of Supp(D) and assume that X = Spec(A), where A is a dvr which is
essentially of finite type over k. The divisor D is then given by a rational function
a ∈ K, where K is the field of fractions of A. Choosing a uniformizing parameter
π of A, we can write a uniquely as a = uπn, where u ∈ A× and n ∈ Z.

Since f is surjective, there is a closed point y ∈ Y such that f(y) is the closed
point of X. Since Y is integral, the surjectivity of f also implies that the generic
point of Y (which is also the generic point of Spec(OY,y)) must go to the generic
point of X under f . Hence the map Spec(OY,y)→ X is surjective. This implies in
particular that the image of π in OY,y is a non-zero element of the maximal ideal
m of the local ring OY,y. On the other hand, f ∗(D) ≥ 0 implies that as a rational
function on Y , a actually lies in OY,y. Since u ∈ O×Y,y and π ∈ m, this can happen
only when n ≥ 0. That is, D is effective. �

We assume a k-scheme X is equi-dimensional in this paper to define the addi-
tive Chow groups although one can easily remove this condition by writing the
additive Chow cycles in terms of their dimensions rather than their codimensions.
Throughout this paper, for any such scheme X, we shall denote the normalization
of Xred by XN . Thus XN is the disjoint union of the normalizations of all the
irreducible components of Xred.

Set A1 := Spec k[t], Gm := Spec k[t, t−1], P1 := Proj k[Y0, Y1] and let y := Y1/Y0

be the standard coordinate function on P1. We set �n := (P1 \ {1})n. For n ≥ 1,

let Bn = Gm × �n−1, B̃n = A1 × �n−1, Bn = A1 × (P1)n−1 ⊃ B̃n and B̂n =
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P1 × (P1)n−1 ⊃ Bn. We use the coordinate system (t, y1, · · · , yn−1) on B̂n, with

yi := y ◦ qi, where qi : B̂n → P1 is the projection onto the i-th P1.

Let F 1
n,i, for i = 1, . . . , n − 1, be the Cartier divisor on B̂n defined by {yi = 1}

and Fn,0 ⊂ B̂n the Cartier divisor defined by {t = 0}. Notice that the divisor Fn,0
is in fact contained in Bn ⊂ B̂n. Let F 1

n denote the Cartier divisor
∑n−1

i=1 F
1
n,i on

B̂n.
A face of Bn is a subscheme F defined by equations of the form

yi1 = ε1, . . . , yis = εs; εj ∈ {0,∞}.

For ε = 0,∞, and i = 1, · · · , n− 1, let

ιn,i,ε : Bn−1 → Bn

be the inclusion

(2.2) ιn,i,ε(t, y1, . . . , yn−2) = (t, y1, . . . , yi−1, ε, yi, . . . , yn−2).

We now define the modulus conditions that we shall consider for defining our
additive higher Chow groups.

2.1. Modulus conditions.

Definition 2.3. Let X be a k-scheme as above and let V be an integral closed

subscheme of X ×Bn. Let V denote the closure of V in X × B̂n and let ν : V
N →

X × B̂n denote the induced map from the normalization of V . We fix an integer
m ≥ 1.

(1) We say that V satisfies the modulusm conditionMsum (or the sum-modulus

condition) on X ×Bn if as Weil divisors on V
N

,

(m+ 1)[ν∗(Fn,0)] ≤ [ν∗(F 1
n)].

This condition was used by Bloch-Esnault and Rülling in [1, 21] to study
additive Chow groups of zero cycles on fields.

(2) We say that V satisfies the modulus m condition Msup (or the sup-modulus

condition) on X ×Bn if as Weil divisors on V
N

,

(m+ 1)[ν∗(Fn,0)] ≤ sup
1≤i≤n−1

[ν∗(F 1
n,i)].

This condition was used by Park and Krishna-Levine in [14, 18] to define
their additive higher Chow groups.

(3) We say that V satisfies the modulus m condition Mssup (or the strong sup-
modulus condition) on X ×Bn if there exists an integer 1 ≤ i ≤ n− 1 such
that

(m+ 1)[ν∗(Fn,0)] ≤ [ν∗(F 1
n,i)]

as Weil divisors on V
N

.
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Since the modulus conditions are defined for a given fixed integer m, we shall
often simply say that V satisfies a modulus condition M without mentioning the
integer m. Notice that since V is contained in X ×Bn, its closure V intersects all

the Cartier divisors Fn,0 and F 1
n,i (1 ≤ i ≤ n−1) properly in X×B̂n. In particular,

their pull-backs of Fn,0 and F 1
n,i are all effective Cartier divisors on V

N
. Notice

also that

(2.3) Mssup ⇒Msup ⇒Msum.

The following restriction property of the modulus conditions Msum and Mssup

will be used repeatedly in this paper.

Proposition 2.4 (Containment lemma). Let X be a k-scheme and let Y ⊂ X×Bn

be a closed subvariety such that its closure Y ⊂ X × B̂n intersects the Cartier
divisors X × Fn,0 and X × F 1

n properly. Let V be an irreducible closed subvariety
of X ×Bn such that V satisfies the modulus condition Msum or Mssup on X ×Bn.

Let V be its closure in X × B̂n. Let VY be an irreducible component of V ∩ Y and

let V̂ N
Y denote the normalization of the closure of VY in Y . Let νY : V̂ N

Y → X× B̂n

denote the natural map.
(1) If V satisfies the modulus condition Mssup, then there is an 1 ≤ i ≤ n− 1 such
that (m+ 1)[ν∗Y (Fn,0)] ≤ [ν∗Y (F 1

n,i)], that is, VY also satisfies Mssup.

(2) If V satisfies the modulus condition Msum, then (m+ 1)[ν∗Y (Fn,0)] ≤ [ν∗Y (F 1
n)],

that is, VY also satisfies Msum.

Proof. If V ∩ Y = ∅, then there is nothing to prove. Hence, we assume that V ∩ Y
is nonempty, so there is at least one nonempty irreducible component VY . We
consider the following commutative diagram:

(2.4) Ṽ N
Y

� � //

fY
��

ZN
1

fN

��

g
// Z1

f

��

p
//
V
N

��

ν

��

V̂ N
Y

� � //

νY

''PPPPPPPPPPPPPPPPP ZN
g
//

h

��
@@

@@
@@

@@
@ Z

p
//

��

V � _

��

Y
� �

j
// X × B̂n.

Here Z and Z1 are defined so that both the upper and the lower squares on the
right are Cartesian. It is then easy to check that Z ∩Y = V ∩Y and hence V ∩ Y
is a union of irreducible components of Z. In particular, V̂ N

Y is one of the disjoint

components of ZN . Since fN is finite and surjective, there is a component Ṽ N
Y of ZN

1

lying over V̂ N
Y , and the restriction fY of fN also is a finite and surjective map. Since

V ∩Fn,0 = ∅ and VY 6= ∅, we see that Fn,0 and F 1
n,i all intersect Z properly. Now if

we use Mssup, then the modulus condition for V and Lemma 2.1 imply that there is
an integer 1 ≤ i ≤ n−1 such that g∗◦p∗[ν∗(F 1

n,i−(m+1)Fn,0)] ≥ 0 on ZN
1 and hence
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on Ṽ N
Y . In particular, by commutativity, we get fY

∗[νY
∗(F 1

n,i − (m + 1)Fn,0)] ≥ 0

on Ṽ N
Y . Since fY is finite and surjective map of normal varieties, the proposition

now follows from Lemma 2.2 for the modulus condition Mssup. The case of Msum

follows exactly the same way using F 1
n instead of F 1

n,i, and the fact that F 1
n is also

an effective Cartier divisor. �

As one can see from the above proposition, although the modulus condition
Msup lies between the other two modulus conditions Msum and Mssup, it turns out
that the additive higher Chow groups based on the latter modulus conditions have
better structural properties.

In this paper, we study the additive higher Chow groups based on the modulus
conditions Msum and Mssup. We shall show in the next section that the additive
Chow groups based on our new modulus condition Mssup satisfy all the properties
known to be satisfied by the additive higher Chow groups of Krishna-Levine, Park,
Bloch-Esnault and Rülling.

The following lemma is not used in the paper, but we decided to keep it for it
might be useful for some follow-up works.

Lemma 2.5. Let X be a normal variety and let D1 and D2 be effective Cartier
divisors on X such that D1 ≥ D2 as Weil divisors. Let X ′ denote the normalization
of the blow-up BlX(Z) of X along a closed subscheme Z ⊂ X of codimension at
least two. Let f : X ′ → X be the natural map. Then f ∗(D1) ≥ f ∗(D2).

Proof. Let Di =
∑
nijVij for i = 1, 2, where Vij are prime divisors on X. Since Z

is of codimension at least two, we see that for each i, f ∗(Di) =
∑
nijV

′
ij +

∑
nlEl,

where El are the components of the exceptional divisor, V ′ij is the proper transform
of Vij and nl ≥ 0. The lemma now immediately follows. �

2.2. Additive cycle complex. We define the additive cycle complex based on
the above modulus conditions.

Definition 2.6. Let M be the modulus condition Msum or Mssup. Let X be a
k-scheme, and let r,m be integers with m ≥ 1.

(0) Tzr(X, 1;m)M is the free abelian group on integral closed subschemes Z of
X ×Gm of dimension r.

For n > 1, Tzr(X,n;m)M is the free abelian group on integral closed subschemes
Z of X ×Bn of dimension r + n− 1 such that:

(1) (Good position) For each face F of Bn, Z intersects X × F properly:

dim(Z ∩ (X × F )) ≤ r + dim(F )− 1, and

(2) (Modulus condition) Z satisfies the modulus m condition M on X ×Bn.

As our scheme X is equi-dimensional of dimension d over k, we write for q ≥ 0

Tzq(X,n;m)M = Tzd+1−q(X,n;m)M .

We now observe that the good position condition on Z implies that the cycle
(idX × ιn,i,ε)

∗(Z) is well-defined and each component satisfies the good position
condition. Moreover, letting Y = X×F for F = ιn,i,ε(Bn−1) in Proposition 2.4, we



10 AMALENDU KRISHNA, JINHYUN PARK

first of all see that Y intersects X×Fn,0 and X×F 1
n properly in X× B̂n, and each

component of (idX × ιn,i,ε)∗(Z) satisfies the modulus condition M on X × Bn−1.
We thus conclude that if Z ⊂ X × Bn satisfies the above conditions (1) and (2),
then every component of ιn,i,ε

∗(Z) also satisfies these conditions on X × Bn−1. In
particular, we have the cubical abelian group n 7→ Tzq(X,n;m)M .

Definition 2.7. The additive cycle complex Tzq(X, •;m)M of X in codimension
q and with modulus m condition M is the non-degenerate complex associated to
the cubical abelian group n 7→ Tzq(X,n;m)M , i.e.,

Tzq(X,n;m)M :=
Tzq(X,n;m)M

Tzq(X,n;m)M,degn

.

The boundary map of this complex at level n is given by ∂ =
∑n−1

i=1 (−1)i(∂∞i −∂0
i ),

which satisfies ∂2 = 0. The homology

TCHq(X,n;m)M := Hn(Tzq(X, •;m)M); n ≥ 1

is the additive higher Chow group of X with modulus m condition M .

From now on, we shall drop the subscript M from the notations and it will be
understood that the additive cycle complex or the additive higher Chow group in
question is based on the modulus condition M , where M could be either Msum or
Mssup. The reader should however always bear in mind that these two are different
objects.

There are a few comments in order. We could also have defined our additive
cycle complex by taking Tzr(X,n;m) to be the free abelian group generated by

integral closed subschemes of X × B̃n which have good intersection property with

respect to the faces of B̃n, and which satisfy the modulus condition on X × Bn

(cf. [14, 18]). However, the following easy consequence of the modulus condition
shows that this does not change the cycle complex.

Lemma 2.8. Let M be a modulus condition in Definition 2.3. Then, there is a
canonical bijective correspondence between the set of irreducible closed subvarieties
V ⊂ X×Bn satisfying the modulus m condition M and the set of irreducible closed

subvarieties W ⊂ X × B̃n, whose Zariski closure in X × Bn satisfies the modulus
m condition M . Here, the correspondence is actually given by the identity map.

Proof. First of all, since for any integral closed subscheme V of X × B̂n, the pull-
back ν∗(Fn,0) on V N is contained in the open subset ν−1(X ×Bn), we can replace

B̂n by Bn in the definition of the modulus conditions.

Now, if Σ and Σ̃ are the two sets in the statement, then the modulus condition

forces that if V ∈ Σ, then V is same as its closure in X×B̃n. Conversely, if V ∈ Σ̃,
then the modulus condition again forces V to be contained in X ×Bn. �

Let Tzq(X, •;m)sup be the additive cycle complex as defined in [14, 18]. This

complex is based on the modulus condition Msup above. It follows from (2.3) that
there are natural inclusions of cycle complexes

(2.5) Tzq(X, •;m)ssup ↪→ Tzq(X, •;m)sup ↪→ Tzq(X, •;m)sum
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and hence there are natural maps

(2.6) TCHq(X, •;m)ssup → TCHq(X, •;m)sup → TCHq(X, •;m)sum.

One drawback of the cycle complex based on Msup is that the underlying mod-
ulus condition for a cycle is not necessarily preserved when it is restricted to a
face of Bn. This forces one to put an extra induction condition in the definition of
Tzq(X, •;m)sup that requires for cycles to be admissible, not only the cycles them-
selves to satisfy Msup on X ×Bn, but also all their intersections with various faces
to satisfy Msup. In particular, as n gets large, this condition gets more serious,
and it might be a very tedious job to find admissible cycles. On the other hand,
the definition of our cycle complexes shows that this extra induction condition is
superfluous for the cycle complexes based on Msum or Mssup. Based on this dis-
cussion and all the results of this paper, one is led to believe that even though the
modulus condition Mssup may appear mildly stronger and Msum weaker than the
modulus condition Msup, the following conjecture should be true.

Conjecture 2.9. For a smooth projective variety X over k, the natural inclu-
sions of cycle complexes Tzq(X, •;m)ssup ↪→ Tzq(X, •;m)sup ↪→ Tzq(X, •;m)sum
are quasi-isomorphisms.

3. Basic properties of TCHq(X, •;m)

In this section, our aim is to demonstrate that the additive higher Chow groups
defined above for Msum and Mssup have all the properties (except Theorem 3.7
which we do not know for Msum) which are known to be true for the additive
Chow groups for Msup of [14, 18]. Since most of the arguments in the proofs
can be given either by quoting these references verbatim or by straight-forward
modifications of the same, we only give the sketches of the proofs with minimal
explanations whenever deemed necessary. We begin with the following structural
properties of our additive Chow groups.

Theorem 3.1. Let f : Y → X be a morphism of k-schemes.

(1) If f is projective, there is a natural map of cycle complexes f∗ : Tzr(Y, •;m)→
Tzr(X, •;m) which induces the analogous push-forward map on the homol-
ogy.

(2) If f is flat, there is a natural map of cycle complexes f ∗ : Tzr(X, •;m) →
Tzr(Y, •;m) which induces the analogous pull-back map on the homology.
These pull-back and push-forward maps satisfy the obvious functorial prop-
erties.

(3) If X is smooth and projective, there is a product

∩X : CCHr(X, p)⊗ TCHs(X, q;m)→ TCHs−r(X, p+ q;m),

that is natural with respect to flat pull-back, and that satisfies the projection
formula

f∗(f
∗(a) ∩X b) = a ∩Y f∗(b)

for f : X → Y a morphism of smooth projective varieties. If f is flat in
addition, we have an additional projection formula

f∗(a ∩X f ∗(b)) = f∗(a) ∩Y b.
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(4) If X is smooth and quasi-projective, there is a product

∩X : CCHr(X)⊗ TCHs(X, q;m)→ TCHs−r(X, q;m),

that is natural with respect to flat pull-back, and that satisfies the projection
formula

f∗(f
∗(a) ∩X b) = a ∩Y f∗(b)

for f : X → Y a projective morphism of smooth quasi-projective varieties.
If f is flat in addition, we have an additional projection formula

f∗(a ∩X f ∗(b)) = f∗(a) ∩Y b.

Furthermore, all products are associative.

Proof. (cf. [14]) Granting the flat pull-back and the projective push-forward, the
theorem is a direct consequence of [14, Lemmas 4.7, 4.9] whose proofs are inde-
pendent of the choice of the modulus conditions of Definition 2.3, as the interested
reader may verify. The proofs of the flat pull-back and projective push-forward
maps on the level of cycle complexes also follow in the same way as in loc. cit.
using our Lemma 2.2. �

Theorem 3.2 (Projective Bundle and Blow-up formulae). Let X be a smooth
quasi-projective variety and let E be a vector bundle on X of rank r + 1. Let
p : P(E) → X be the associated projective bundle over X. Let η ∈ CH1(P(E)) be
the class of the tautological line bundle O(1). Then for any q, n ≥ 1 and m ≥ 2,
the map

θ :
r⊕
i=0

TCHq−i(X,n;m)→ TCHq(P(E), n;m)

given by

(a0, · · · , ar) 7→
r∑
i=0

ηi ∩P(E) p
∗(ai)

is an isomorphism.
If i : Z → X is a closed immersion of smooth projective varieties and µ : XZ →

X is the blow-up of X along Z with iE : E → XZ the exceptional divisor with
morphism q : E → Z. Then the sequence

0→ TCHs(X,n;m)
(i∗,µ∗)−−−−→ TCHs(Z, n;m)⊕ TCHs(XZ , n;m)

q∗−i∗E−−−→ TCHs(E, n;m)→ 0

is split exact.

Proof. (cf. [14]) The proof of both the formulae is a consequence of the correspond-
ing decomposition of motives in the triangulated category of Chow motives Motk
together with the fact that the additive Chow groups can be defined as a functor
of graded abelian groups on Motk. But this functoriality is a direct consequence
of Theorem 3.1. �
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Theorem 3.3. Assume that k admits resolution of singularities. Then the functor
Tzr(−;m) : SmProj/k → D−(Ab) extends to a functor

Tzlog
r (−;m) : Sch/k → D−(Ab)

together with a natural transformation of functors Tzlog
r (−;m)→ Tzr(−;m) satis-

fying:

(1) Let µ : Y → X be a proper morphism in Sch/k, i : Z → X a closed immersion.
Suppose that µ : µ−1(X \ Z) → X \ Z is an isomorphism. Set E := µ−1(X \ Z)
with maps iE : E → Y , q : E → Z. There is a canonical extension of the sequence
in D−(Ab)

Tzlog
r (E;m)

(iE∗,−q∗)−−−−−→ Tzlog
r (Y ;m)⊕ Tzlog

r (Z;m)
µ∗+i∗−−−→ Tzlog

r (X;m)

to a distinguished triangle in D−(Ab).

(2) Let i : Z → X be a closed immersion in Sch/k, j : U → X the open comple-
ment. Then there is a canonical distinguished triangle in D−(Ab):

Tzlog
r (Z;m)

i∗−→ Tzlog
r (X;m)

j∗−→ Tzlog
r (U ;m)→ Tzlog

r (Z;m)[1],

which is natural with respect to proper morphisms of pairs (X,U)→ (X ′, U ′).

(3) For any X ∈ Sch/k, the natural map TCHlog
r (X,n;m) → TCHlog

r+p(X ×
Ap, n;m) is an isomorphism.

Proof. (cf. [14]) This follows directly from Theorem 3.1 and Theorem 3.2 above
together with the main results of Guillén and Navarro Aznar [10]. We refer [14,
Section 6] for details. The natural transformation of functors is an immediate
consequence of the constructions of Guillén and Navarro Aznar using the proper
hyper cubical resolutions, and the proper push-forward property of additive cycle
complex. �

Next we study the question of the existence of the regulator maps from our
additive higher Chow groups to the modules of absolute Kähler differentials. First
we prove the following result of Bloch-Esnault [5] and Rülling [21] on 0-cycles for
the modulus condition Mssup.

Theorem 3.4. Assume that char(k) 6= 2 and let WmΩ•k denote the generalized
de Rham-Witt complex of Hesselholt-Madsen (cf. [21]). Then there is a natural
isomorphism

Rn
0,m : TCHn(k, n;m)→WmΩn−1

k .

Proof. This is already known for Msum. For the modulus condition Mssup, we first
note that the map Rn

0,m is the composite map

TCHn(k, n;m)ssup → TCHn(k, n;m)sum
θ−→WmΩn−1

k ,

where θ is constructed in [21] and this coincides with the regulator map of Bloch-
Esnault for m = 1. Furthermore for m = 1, Bloch-Esnault define the inverse
map Ωn−1

k → TCHn(k, n; 1)sum using a presentation of Ωn−1
k . The reader can
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easily check from the proof of [5, Proposition 6.3] that the inverse map is actually
defined from Ωn−1

k to TCHn(k, n; 1)ssup. This completes the proof when m = 1.
For m ≥ 2, the proof of K. Rülling for TCHn(k, n; 1)sum has three main steps,

namely:
(1) The existence of map Rn

0,m,

(2) The isomorphism of R1
0,m, and

(3) The existence of transfer maps on the additive higher Chow groups for finite
extensions of fields.
(4) Showing that pro-group {TCHn(k, n;m)}n,m≥1 is an example of a restricted

Witt complex (see loc. cit., Remark 4.22).
We have already shown (1) for our TCHn(k, n;m)ssup. The proof of (3) is a

simple consequence of Theorem 3.1. The surjectivity part of (2) follows from
the result of Rülling and the isomorphism Tzn(k, n;m)ssup = Tzn(k, n;m)sum. To
prove injectivity, we follow the proof of Corollary 4.6.1 of loc. cit. and observe that
if there is a cycle ζ ∈ Tz1(k, 1;m) such that R1

0,m(ζ) = 0, then ζ is the boundary
of a curve C which is an admissible cycle with the modulus condition Msum. But
then C is admissible cycle also with the modulus condition Mssup since one has
Mssup = Msup = Msum when n = 2 by definition. This proves (2). Note that this
does not need any assumption on the characteristic of the ground field.

We now sketch the proof of (4) to complete the proof of the theorem. We

have seen in Remark 11.15 that
(
{TCHn(k, n;m)}n,m≥1,∧, δalt

)
forms a graded-

commutative differential graded algebra. It is also easy to see that the push-forward
and pull-back maps for the finite and flat map a 7→ ar on Gm induces the Frobenius
and Verschiebung operators Fr and Vr on these additive higher Chow groups, and
they satisfy δaltFr = rFrδalt and rδaltVr = Vrδalt. Moreover, the same proof as in
[21, Lemma 4.17] shows that if char(k) 6= 2, then FrδaltVr = δalt. This proves (3).

As shown in loc. cit., the above four ingredients and the universality of the

de Rham-Witt complex imply that there is a map WmΩn−1
k

Sn0,m−−→ TCHn(k, n;m)
which is surjective. On the other hand, one checks from the construction of the
map Rn

0.m in loc. cit. that Rn
0.m ◦ Sn0.m is identity. �

Remark 3.5. One would like to have the assumption char(k) 6= 2 removed from the
statement of Theorem 3.4. In this context, we remark that the only place we used
this assumption was to show the identity FrδaltVr = δalt. This is an imrovement
over the result of Rülling who needs this assumption even to get a CDGA structure
on the additive Chow groups. It is possible that the identity FrδaltVr = δalt holds
in the additive higher Chow groups for our choice of derivation even if char(k) = 2.
But we have not checked this.

The following is an immediate consequence of the results of Rülling and Theo-
rem 3.4. This gives an evidence of Conjecture 2.9.

Corollary 3.6. For every n,m ≥ 1, the natural maps

TCHn(k, n;m)ssup → TCHn(k, n;m)sup → TCHn(k, n;m)sum

are isomorphisms.
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�
We finally turn to the regulator maps for 1-cycles as considered in [18].

Theorem 3.7. Suppose that k is of characteristic zero and assume the modulus
condition to be Mssup. Then there is a natural non-trivial regulator map

(3.1) Rn
1,m : TCHn−1(k, n;m)ssup → Ωn−3

k .

This map is surjective if k is moreover algebraically closed.

Proof. The map Rn
1,m is the composite map

TCHn(k, n;m)ssup → TCHn(k, n;m)sup
θ−→ Ωn−3

k ,

where θ is constructed in [18]. For the non-triviality of Rn
1,m, J. Park constructs

a 1-cycle Γ (see [19, Proposition 1.9], [14, 7.11]) and shows (see [19, Lemmas 1.7,
1.9]) that each component of Γ in fact satisfies the modulus condition Mssup. Hence

Rn
1,m is non-trivial. If k = k, then the proof of the surjectivity in [14, Section 7]

follows from the following:
(1) An action of k× on TCHn(k, n;m),
(2) Suitable k×-equivariance of R3

1,m up to a scalar,

(3) The surjectivity of R3
1,m,

(4) The cap product CHn(k, n)⊗ZTCH2(k, 3;m)→ TCHn+2(k, n+ 3;m).
The action of k× on our additive higher Chow groups is given exactly as in [14] by

(3.2) a ∗ (x, t1, · · · , tn−1) = (x/a, t1, · · · , tn−1).

This action extends to an action of k× on B̂n. The proof of (2) now follows from
the k×-equivariance of the natural map Tzr(k, n;m)ssup → Tzr(k, n;m)sup and the

results of [14]. The proof of (3) is a direct consequence of (1), (2) and the fact that
k is algebraically closed field of characteristic zero. Finally, (4) is already shown
in Theorem 3.1. �

4. Preliminaries for Moving lemma

The underlying additive cycle complexes and additive higher Chow groups in all
the results in the rest of this paper will be based on the modulus condition Msum
or Mssup, unless one of these is specifically mentioned. Our next three sections will
be devoted to proving our first main result of this paper:
Theorem 4.1. Let X be a smooth projective variety over a perfect field k. Let W
be a finite collection of locally closed subsets of X. Then, the inclusion of additive
higher Chow cycle complexes (see below for definitions)

TzqW(X, •;m) ↪→ Tzq(X, •;m)

is a quasi-isomorphism. In other words, every admissible additive higher Chow
cycle is congruent to another admissible cycle intersecting properly all given finitely
many locally closed subsets of X times faces.

In this section, we set up our notations and machinery that are needed to prove
this theorem, and prove some preliminary steps. Let X be a smooth projective
variety over k and we fix an integer m ≥ 1. Let W be a finite collection of locally
closed algebraic subsets of X. If a member of W is not irreducible, we always
replace it by all of its irreducible components so that we assume all members of
W are irreducible. For a locally closed subset Y ⊂ X, recall that the codimension
codimXY is defined to be the minimum of codimXZ for all irreducible components
Z of Y .
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Definition 4.2. We define TzqW(X,n;m) to be the subgroup of Tzq(X,n;m) gen-
erated by integral closed subschemes Z ⊂ X ×Bn such that
(1) Z is in Tzq(X,n;m) and
(2) codimW×F (Z ∩ (W × F )) ≥ q for all W ∈ W and all faces F of Bn.

It is easy to see that TzqW(X, •;m) forms a cubical subgroup of Tzq(X, •;m),
giving us the subcomplex

TzqW(X, •;m) =
TzqW(X, •;m)

TzqW(X, •;m)degn

⊂ Tzq(X, •;m).

Let TCHq
W(X, •;m) denote the homology of the complex TzqW(X, •;m). Then the

above inclusion induces a natural map of homology

(4.1) TCHq
W(X, •;m)→ TCHq(X, •;m).

More generally, if e : W → Z≥0 is a set-theoretic function, then one can define
subcomplexes TzqW,e(X, •;m) replacing the condition (2) above by
(2e) codimW×F (Z ∩ (W × F )) ≥ q − e(W ).
In this generality, the subcomplex TzqW(X, •;m) is same as TzqW,0(X, •;m).

Remark 4.3. Let Φ be the set of all set-theoretic functions e : W → Z≥0. Give
a partial ordering on Φ by declaring e′ ≥ e if e′(W ) ≥ e(W ) for all W ∈ W . If
two functions e, e′ ∈ Φ satisfy e′ ≥ e, then for any irreducible admissible variety
Z ∈ TzqW,e(X,n;m), we have

(4.2) codimW×F (Z ∩ (W × F )) ≥ q − e(W ) ≥ q − e′(W )

for all W ∈ W and all faces F ⊂ Bn. Thus, we have

(4.3) TzqW,e(X,n;m) ⊂ TzqW,e′(X,n;m) for e ≤ e′.

Note that if e ∈ Φ satisfies e ≥ q where q is considered as a constant function in
Φ, then automatically

(4.4) TzqW,q(X,n;m) = TzqW,e(X,n;m) = Tzq(X,n;m).

Since 0 ≤ e for all e ∈ Φ, for each triple e, e′, e′′ such that e ≤ e′ ≤ q ≤ e′′, we have

TzqW(X,n;m) ⊂ TzqW,e(X,n;m) ⊂ TzqW,e′(X,n;m)

⊂ TzqW,q(X,n;m) = TzqW,e′′(X,n;m) = Tzq(X,n;m).

All these (in)equalities are equivariant with respect to the boundary maps.

Remark 4.4. The main theorem is equivalent to that the inclusion induces an
isomorphism TCHq

W(X,n;m) ' TCHq(X,n;m) for the given modulus conditions
M . This is equivalent to that for each pair e, e′ ∈ Φ with e ≤ e′ the inclusion
induces an isomorphism

(4.5) TCHq
W,e(X,n;m) ' TCHq

W,e′(X,n;m).

Our remaining objective in this section is to prove the following additive analogue
of the spreading argument of Bloch-Levine. We begin with the following results.
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Lemma 4.5. Let f : X → Y be a projective and dominant map of integral normal
varieties and let η denote the generic point of Y . Consider the fiber diagram

(4.6) Xη
jη
//

��

X

f

��

{η} // Y.

Let D be a Weil divisor on X such that j∗η(D) is effective. Then there is a non-

empty open subset U ⊂ Y such that if j : f−1(U)→ X is the open inclusion, then
j∗(D) is also effective.

Proof. Let D =
∑
niDi. Then j∗η(D) is effective if and only if for every i with

ni < 0, one has Di ∩ Xη = ∅. Since D is a finite sum, it suffices to show that if
D is a prime divisor on X such that D ∩Xη = ∅, then there is a nonempty open
subset U ⊂ Y such that D ∩ f−1(U) = ∅.

Since f is projective map, it is in particular closed. Hence f(D) is closed in Y .
Moreover, our hypothesis implies that f(D) is a proper closed subset of Y . Thus
U = Y \f(D) is the desired open subset of Y . �

Lemma 4.6. Let X be a quasi-projective k-variety and let W be a finite collection
of locally closed subsets of X. Let K be a finite field extension of k. Let XK be
the base extension XK = X ×Spec(k) Spec(K), and let WK be the set of the base
extensions of sets in W. Then there are natural maps

p∗ :
Tzq(X, •;m)

TzqW(X, •;m)
→ Tzq(XK , •;m)

TzqWK
(XK , •;m)

p∗ :
Tzq(XK , •;m)

TzqWK
(XK , •;m)

→ Tzq(X, •;m)

TzqW(X, •;m)

such that p∗ ◦ p∗ = [K : k] · id.

Proof. By Theorem 3.1, one as well has the flat pull-back and finite push-forward
maps TzqW ′(X, •;m) → TzqW ′K (XK , •;m) and TzqW ′K (XK , •;m) → TzqW ′(X, •;m)
for any W ′. Taking for W ′, the collection {X} and also W , and then taking the
quotients of the two, we get the desired maps. The last property of the composite
map is obvious from the construction of the pull-back and the push-forward maps
on the additive cycle complexes (cf. [14]). �

Proposition 4.7 (Spreading lemma). Let k ⊂ K be a purely transcendental ex-
tension. For a smooth projective variety X over k and any finite collection W of
locally closed algebraic subsets of X, let XK and WK be the base extensions as
before. Let pK : XK → Xk be the natural map. Then, the pull-back map

p∗K :
Tzq(X, •;m)

TzqW(X, •;m)
→ Tzq(XK , •;m)

TzqWK
(XK , •;m)

is injective on homology.
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Proof. If k is a finite field, then for each prime l different from the characteris-
tic of k, there are infinite pro-l algebraic extensions of k. Combining this with
Lemma 4.6, we can assume that k is infinite. Furthermore, since the additive
Chow groups of XK is a projective limit of the additive Chow groups of XL, where
L(⊂ K) is a purely transcendental extension of k of finite transcendence degree
over k, we can assume that the transcendence degree of K over k is finite.

Now let Z ∈ Tzq(X,n;m) be a cycle such that ∂Z ∈ TzqW(X,n;m) where there
are admissible cycles BK ∈ Tzq(XK , n+1;m) and VK ∈ TzqWK

(XK , n;m) satisfying
ZK = ∂(BK) + VK .

We first consider the natural inclusion of complexes Tzq(X, •;m) ↪→ zq(X ×
A1
k, • − 1). Since K is the function field of some affine space Ar

k, we can use the
specialization argument for Bloch’s cycle complexes (cf. [1, Lemma 2.3]) to find
an open subset Y ⊂ Ar

k and cycles

BY ∈ zq(X × Y × A1
k, n), VY ∈ zqW×Y×A1

k
(X × Y × A1

k, n− 1)

such that BK and VK are the restrictions of BY and VY respectively to the generic
point of Y and Z × Y = ∂(BY ) + VY . In particular, all components of BY and VY
intersect all faces of X × Y × Bn+1 and X × Y × Bn properly. To make BY and
VY admissible additive cycles, we modify them using our Lemma 4.5.

To check the modulus condition for our cycles, let η denote the generic point

Spec(K) of Y . Let B̂N
Y and V̂ N

Y denote the normalizations of the closures of BY

and VY in X × Y × B̂n+1 and X × Y × B̂n respectively.
We first prove the admissibility under the modulus condition Mssup which is a

priori more difficult than Msum. The admissibility of BK and VK implies that there
are integers 1 ≤ i ≤ n and 1 ≤ i′ ≤ n − 1 such that in the Diagram (4.6), the
Weil divisors j∗η(F

1
n+1,i− (m+ 1)Fn+1,0) and j∗η(F

1
n,i′− (m+ 1)Fn,0) are effective on

B̂N
Y,η and V̂ N

Y,η respectively. Since X and B̂n are projective, the maps B̂N
Y , V̂

N
Y → Y

are projective. These maps are dominant since BK and VK are non-zero cycles.
Thus we can apply Lemma 4.5 to find an open subset U ⊂ Y such that j∗U(F 1

n+1,i−
(m+ 1)Fn+1,0) and j∗U(F 1

n,i′ − (m+ 1)Fn,0) are also effective. The same argument
applies for the modulus condition Msum as well. We just have to replace the Cartier
divisors F 1

n+1,i and F 1
n,i′ by F 1

n+1 and F 1
n respectively. Lemma 4.5 applies in this

case, too.
Replacing Y by U , we see that

(4.7) BU ∈ Tzq(X×U, n+1;m), VU ∈ TzqW×U(X×U, n;m), Z×U = ∂(BU)+VU .

Next, (4.7) implies that for a k-rational point u ∈ U(k) such that the restrictions
of BU and VU to X×{u} give well-defined cycles in zq(X×A1, n) and zqW×A1

k
(X×

A1
k, n− 1), one has Z = ∂ (i∗u(BU)) + i∗u(VU), where iu : X × {u} → X × U is the

closed immersion. We can assume that i∗u(BU) and i∗u(VU) are not zero. We now
only need to show that i∗u(BU) and i∗u(VU) satisfy the modulus condition on X×{u}.
But this follows directly from (4.7) and the containment lemma, Proposition 2.4.
This completes the proof of the proposition. �
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5. Moving lemma for projective spaces

We follow the strategy of S. Bloch to prove the moving lemma for the additive
higher Chow groups. This involves proving the moving lemma first for the pro-
jective spaces and then deducing the same for general smooth projective varieties
using the techniques of linear projections. This section is devoted to the proof
of the moving lemma for the projective spaces. We use the following technique
a few times to prove the proper-intersection properties of moved cycles with the
prescribed algebraic sets.

Lemma 5.1 (cf. [1, Lemma 1.1]). Let X be an algebraic k-scheme, and G a
connected algebraic k-group acting on X. Let A,B ⊂ X be closed subsets, and
assume that the fibers of the map

G× A→ X (g, a) 7→ g · a
all have the same dimension, and that this map is dominant. Then, there exists a
non-empty open subset U ⊂ G such that for all g ∈ U , the intersection g(A) ∩ B
is proper in X.

Proof. Consider the fiber square

C //

��

G× A

��

B // X,

and take

U = {g ∈ G|the fiber of C → G× A→ G over g has the smallest dimension.}.
For such g ∈ U , we have the desired property. �

Proposition 5.2 (Admissibility of projective image). Let f : X → Y be a projec-
tive morphism of quasi-projective varieties over a field k. Let Z ∈ Tzr(X,n;m) be
an irreducible admissible cycle and let V = f(Z). Then V ∈ Tzs(Y, n;m), where s
is the codimension of V in Y ×Bn.

Proof. We prove it in several steps.
Claim (1): V intersects all codimension one faces F of Bn properly in Bn.

Consider F = F ε
n,i = ιn,i,ε(Bn−1) for some i ∈ {1, 2, · · · , n− 1}, ε ∈ {0,∞}, and

consider the diagram

X ×Bn−1
ιn,i,ε−−−→ X ×Bnyfn−1

yfn
Y ×Bn−1

ιn,i,ε−−−→ Y ×Bn.

Since F is a divisor in Bn, that V intersects Y × F properly is equivalent to that
Y × F 6⊃ V . Towards contradiction, suppose that V ⊂ Y × F . Then,

Z ⊂ f−1
n (fn(Z)) = f−1

n (V ) ⊂ f−1
n (Y × F ) = ιn,i,ε(f

−1
n−1(Y ×Bn−1) = X × F.
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By assumption, Z intersects X × F properly so that we must have Z 6⊂ X × F .
This is a contradiction. This proves Claim (1).
Claim (2): V intersects all lower dimensional faces of Bn properly.

By the admissibility assumption, all cycles ∂εi (Z) = Z∩(X×F ε
n,i) are admissible.

Moreover, it is easy to see that ∂εi (V ) = fn−1(∂εi (Z)). Thus we can replace Z by
∂εi (Z) and apply the same argument as above; inductively we see that V has good
intersection property.
Claim (3): For each face F of Bn, including the case F = Bn, the cycle V ∩(Y×F )
has the modulus condition.

For any face F = ι(Bi) ⊂ Bn, where ι : Bi ↪→ Bn is a face map, and for the
projections fi : X × Bi → Y × Bi, note that V ∩ (Y × F ) = fn(Z ∩ (X × F )) =
fi(Z|X×F ). But the admissibility of Z implies that Z|X×F is also admissible (cf.
Proposition 2.4). Hence, replacing Z|X×F by Z, we only need to prove it for
F = Bn, that is, we just need to show that V satisfies the modulus condition.
Consider the diagram

X ×Bn −−−→ X × B̂nyfn=f

yf̄n=f̄

Y ×Bn −−−→ Y × B̂n

Subclaim: Let V be the closure of V in Y × B̂n and let Z be the closure of Z in
X × B̂n. Then V = f̄(Z).

Since Z ⊂ f−1(V ) ⊂ f̄−1(V ) and V is closed, we have Z ⊂ f
−1

(V ). Hence,
f̄(Z) ⊂ V . For the other inclusion, note that W = f(Z) ⊂ f̄(Z) and f̄(Z) is
closed because f̄ is projective. Hence W ⊂ f̄(Z). This proves this subclaim.

To prove the modulus condition for V , we take the normalizations νZ : Z
N → Z

and νV : V
N → V of Z and V , and consider the following diagram

Z
N

fNZ
��

νZ
// Z

ι1
//

fZ=f̄ |Z
��

X × B̂n

f̄
��

V
N

νV
// V

ι2
// Y × B̂n,

where ι1, ι2 are the inclusions, and fNZ is given by the universal property of the nor-
malization νV for dominant morphisms. Note that fNZ is automatically projective
and surjective because fZ is so. Let qZ := ι1 ◦ νZ and qV = ι2 ◦ νV .

Suppose Z satisfies the modulus condition Mssup and consider on B̂n the Cartier
divisors Di := F 1

n,i−(m+1)Fn,0 for 1 ≤ i ≤ n−1. That the cycle Z has the modulus

condition means that [q∗
Z
◦ f̄ ∗(Di)] ≥ 0 for an index i. By the commutativity of

the above diagram, this means that the Cartier divisor fNZ
∗
[q∗
V

(Di)] ≥ 0. By
Lemma 2.2, this implies that [q∗

V̄
(Di)] ≥ 0, which is the modulus condition for V .



MOVING LEMMA FOR ADDITIVE CHOW GROUPS AND APPLICATIONS 21

If Z satisfies the modulus condition Msum, we use the same argument by replacing
F 1
n,i with F 1

n . This finishes the proof of the proposition. �

Remark 5.3. In Proposition 5.2, if X is projective, Y = Spec(k) and n = 1, then
V is always a single point. To see this, let Z ⊂ X×B1 = X×Gm be an admissible
irreducible closed subvariety. Let V = p(Z), where p : X × Gm → Gm is the
projection.

Since X is complete, p is a closed map. Hence, V = p(Z) is an irreducible closed
subvariety of Gm. But the only closed subvarieties of Gm are finite subsets or all
of Gm. On the other hand, if Z is the closure of Z in X × A1, then the modulus
condition implies that Z ∩ (X × {t = 0}) = ∅. This implies that V must be a
proper subset and hence a finite subset. Since V is irreducible, consequently V
must be a non-zero single point.

Hence Z = W×{∗} for a closed subvarietyW ⊂ X, and a closed point {∗} ∈ Gm.
Conversely, any such variety is admissible. This classifies all admissible cycles Z
when X is projective and n = 1.

For n > 1, all we can say is that Z is contained in X×V , where V is admissible
in Tzs(k, n;m) for a suitable s.

5.1. Homotopy variety. Now we want to construct the “homotopy variety”.
First, we need the following simple result:

Lemma 5.4. Let SLr+1,k be the (r + 1)× (r + 1) special linear group over k, and
let η be the generic point of the k-variety SLr+1,k. Let K be its function field (this
is a purely transcendental extension of k). Let SLr+1,K := SLr+1,k ⊗k K be the
base change. Then, there is a morphism of K-varieties φ : �1

K → SLr+1,K such
that φ(0) is the identity element, and φ(∞) is the generic point η considered as a
K-rational point.

Proof. By a general result on the special linear groups, every element of SLr+1,K

is generated by the transvections Eij(a), i 6= j, a ∈ K, that are (r + 1) × (r + 1)
matrices whose diagonal entries are 1, the (i, j)-entry is a, and all other entries are
zero.

For each pair (i, j), the collection {Eij(a)|a ∈ K} forms a one-parameter sub-
group of SLr+1,K isomorphic to Ga,K . Thus, for each fixed b ∈ K, define φbij :

A1
K → SLr+1,K by φbij(y) := Eij(by).
Express the K-rational point η of SLr+1,K as the (ordered) product

η =

p∏
l=1

Eiljl(al), for some il, jl ∈ {1, 2, · · · , r + 1}, al ∈ K,

and define φ′ : A1
K → SLr+1,K by φ′ =

∏p
l=1 φ

al
iljl

. By definition, we have φ′(0) = Id

and φ′(1) = η. Composing with the automorphism σ : P1
K → P1

K given by y 7→
y/(y − 1), that isomorphically maps �1

K to A1
K , we obtain φ = φ′ ◦ σ| : �1

K →
SLr+1,K . This φ satisfies the desired properties. �

Recall that one consequence of Lemma 2.8 is that the additive cycle complex with
modulus m can also be defined as a complex whose level n term is the free abelian
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group of integral closed subschemes Z ⊂ X × B̃n which have good intersection
property with all faces, and which satisfy the appropriate modulus condition on

X × B̂n. The following lemma uses this particular definition of the additive cycle
complex.

Lemma 5.5. Let K be the function field of SLr+1,k, and φ : �1
K → SLr+1,K be as

in the previous lemma. Let SLr+1,K act on PrK naturally. Consider the composition
Hn = pK/k ◦ pr′K ◦ µφ of morphisms

Pr × A1 ×�n
K

µφ
// Pr × A1 ×�n

K

prK
′
// Pr × A1 ×�n−1

K

pK/k
// Pr × A1 ×�n−1

k

where  µφ(x, t, y1, · · · , yn) := (φ(y1)x, t, y1, · · · , yn),
pr′K(x, t, y1, · · · , yn−1) := (x, t, y2, · · · , yn−1),
pK/k : the base change.

Then for any Z ∈ Tzq(Prk, n;m), the cycle H∗n(Z) = µ∗φ ◦ pr′∗(ZK) is admis-
sible, hence it is in Tzq(PrK , n + 1;m). Similarly, H∗n carries TzqW(Prk, n;m) to
TzqWK

(PrK , n+ 1;m).

Proof. It is enough to prove the second assertion that for any irreducible admis-
sible Z in TzqW(Pr, n;m), the variety Z ′ := H∗n(Z), that we informally call the
“homotopy variety” of Z, satisfies the admissibility conditions of Definition 2.6.

Claim (1): The variety Z ′ intersects W × FK properly for all W ∈ W and for
each face F of Bn+1.

This follows from the arguments of S. Bloch and M. Levine in [1, 16] without
modification. We provide its proof for sake of completeness. We use Lemma 5.1
for this purpose. We may assume that W contains only one non-empty algebraic
set W . There are cases to consider.
Case 1. Suppose FK is of the form F = A1 × {0} × F ′K for some face F ′K ⊂ �n−1

K .
In this case, Z ′ ∩ (W × FK) is nothing but ZK ∩ (W × A1 × F ′K) because φ(0) =
Id ∈ SLr+1,K . So, proper-intersection is obvious in this case.
Case 2. Suppose FK is any other form. It comes from some F ⊂ Bn+1. We apply
Lemma 5.1 with G = SLr+1,k, X = Pr ×F , A = W ×F , B = prk

′∗(Z)∩ (Pr ×F ),
where G acts on X by acting trivially on F and acting naturally on Pr. By
Lemma 5.1, there is a non-empty open subset U ⊂ SLr+1 such that for all
g ∈ U , the intersection g(A) ∩ B is proper. By shrinking U if necessary, we
may assume that U is invariant under taking the multiplicative inverses. Take
g = η−1 ∈ U , the inverse of the generic point. Thus, after base extension to K, the
intersection of η−1(WK × FK) with pr′∗(ZK) ∩ (Pr × FK) is proper, which means
η(pr′∗(ZK) ∩ (Pr × FK)) intersects properly with WK × FK . But the intersection
pr′∗(ZK)∩ (Pr×FK) is proper, as Z was admissible. Hence, η(pr′∗(ZK)) intersects
with WK × FK properly and consequently Z ′ intersects with WK × FK properly.
This proves the claim and hence Z ′ has good intersection property. Thus we only
need to show the modulus condition for Z ′ to complete the proof of the lemma.
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Claim (2): Z ′ satisfies the modulus condition on Pr × B̃n+1,K.

We prove this using our containment lemma. In the following, we casually drop
the automorphism τ : Pr × A1 × �n → Pr × A1 × �n that maps (x, t, y1, · · · , yn)
to (x, t, y2, · · · , yn, y1) from our notations for simplicity.

Take V = p(Z), where p : Pr × B̃n → B̃n is the projection. Because Z ⊂
p−1(p(Z)) = Pr × V , we have

(5.1) Z ′ = µ∗φ(Z ×�1
K) ⊂ µ∗φ(Pr × V ×�1

K) = Pr × V ×�1
K =: Z1, say.

Now, Proposition 5.2 implies that V is an irreducible admissible closed subvariety

of B̃n. The flat pull-back property in turn implies that p∗([V ]) = Pr × V is an

irreducible admissible closed subvariety of Pr × B̃n. In particular, the modulus

condition holds for Pr × V . If V is the closure of V in B̂n, then commutativity of
the diagram

Z
N

1 = Pr × V N × P1
K

//

��

Pr × B̂n+1,K
//

��

B̂n+1,K

��

Pr × V N // Pr × B̂n
// B̂n

now implies that Z1 satisfies the modulus condition on Pr × B̃n+1,K even though
it is a degenerate additive cycle. Furthermore, the admissibility of Z and the fact

that µφ is an automorphism, imply that Z
′
intersects the Cartier divisors F 1

n+1 and
Fn+1,0 properly. Thus we can use (5.1) and apply Proposition 2.4 (with “X” = PrK ,
“Y ” = Z ′ and “V ” = Z1) to conclude that Z ′ satisfies the modulus condition. This
completes the proof of the lemma. �

Lemma 5.6. The collection H∗• : Tzq(Prk, •;m) → Tzq(PrK , • + 1;m) is a chain
homotopy satisfying ∂H∗ +H∗∂ = p∗K/k(Z)− η(ZK). The same is true for TzqW .
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Proof. It is enough to prove the second assertion. This is straightforward: let
Z ∈ TzqW(Prk, n;m). Then

H∗∂(Z) = H∗

(
n∑
i=1

(−1)i(∂∞i − ∂0
i )(Z)

)

=
n∑
i=1

(−1)i(µ∗φpr′
∗
p∗K/k)(∂

∞
i − ∂0

i )(Z)

=
n∑
i=1

(−1)i(∂∞i+1 − ∂0
i+1)(µ∗φpr′

∗
p∗K/k(Z))

= −
n+1∑
i=2

(−1)i(∂∞i − ∂0
i )(H

∗(Z)),

∂H∗(Z) =
n+1∑
i=1

(−1)i(∂∞i − ∂0
i )H

∗(Z)

=
n+1∑
i=1

(−1)i(∂∞i − ∂0
i )(H

∗(Z))

= (−1)(∂∞1 − ∂0
1)(H∗(Z)) +

n+1∑
i=2

(−1)i(∂∞i − ∂0
i )(H

∗(Z)).

Hence,
(∂H∗ +H∗∂)(Z) = (∂0

1 − ∂∞1 )(H∗(Z)) = p∗K/k(Z)− η(ZK).

This proves the lemma. �

5.2. Proof of the moving lemma for projective spaces. We are now ready
to finish the proof of Theorem 4.1 for Pr.

By the Lemma 5.6, the base extension

p∗K/k :
Tzq(Prk, •;m)

TzqW(Prk, •;m)
→ Tzq(PrK , •;m)

TzqWK
(PrK , •;m)

is homotopic to the map ηp∗K/k. Note for each admissible cycle Z ∈ Tzq(Prk, n;m),

the cycle η(ZK) lies in TzqW(PrK , n;m). We can prove it as before.
We may assume that W has only one nonempty algebraic set, say W . In the

Lemma 5.1, take G = SLr+1, X = Pr ×Bn where G acts on PrK naturally and Bn

trivially. Let F be a face Bn. Let A = W ×F , B = Z∩ (Pr×F ). Since SLr+1 acts
transitively on Pr, the map G × A → X is surjective. Hence, by the Lemma 5.1,
there is a non-empty open subset U ⊂ G such that for all g ∈ U , the intersection
g(A)∩B is proper in X. By shrinking U further, we may assume that U is closed
under taking multiplicative inverse of η. Taking g = η−1, the inverse of the generic
point, we see that after base extension to K, the intersection of η−1(W × F ) with
ZK ∩ (Pr × FK) is proper, which means η(ZK ∩ (Pr × FK)) intersects WK × FK
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properly. Since ZK intersects with Pr×FK properly by the assumption, we conclude
that η(ZK) intersects WK × FK properly. Thus, η(ZK) ∈ TzqW(PrK , n;m). Hence,
the induced map on the quotient

ηp∗K/k :
Tzq(Prk, •;m)

TzqW(Prk, •;m)
→ Tzq(PrK , •;m)

TzqWK
(PrK , •;m)

is zero. Hence the base extension p∗K/k induces a zero map on homology since it is
homotopic to the zero map.

On the other hand, by the spreading lemma, Proposition 4.7, the chain map p∗K/k
is injective on homology. Hence the quotient complex Tzq(Prk, •;m)/TzqW(Prk, •;m)
must be acyclic. This proves Theorem 4.1 for the projective spaces. �

6. Generic projections and moving lemma for projective varieties

6.1. Generic projections. This section begins with a review of some facts about
linear projections. In combination with the moving lemma for Pr, that we saw in
the previous section, we prove the moving lemma for general smooth projective
varieties.

Lemma 6.1. Consider two integers N > r > 0. Then for each linear subvariety
L ⊂ PN of dimension N−r−1, there exists a canonical linear projection morphism
πL : PN\L→ Pr.

Proof. Fix the coordinates x = (x0; · · · ;xN) of PN . A linear subvariety L is given
by (r+1) homogeneous linear equations in x whose corresponding (N+1)×(r+1)
matrix A has the full rank r + 1. Take the reduced row echelon form of A whose
rows are the linear homogeneous functions P0(x), · · · , Pr(x) in x.

For x ∈ PN\L, define πL(x) := (P0(x); · · · ;Pr(x)). Since x 6∈ L, we have some
Pi(x) 6= 0 so that the map πL is well-defined. By elementary facts about reduced
row echelon forms and row equivalences, the subvariety L uniquely decides this
map πL in this process. �

Let X be a smooth projective k-variety. Let r = dimX. Suppose that we have
an embedding X ↪→ PN for some N > r. Consider πL : PN\L → Pr. Whenever
L ∩ X = ∅, we have a finite morphism πL,X := πL|X : X → Pr. Such L’s form a
non-empty open subset Gr(N−r−1, N)X of the Grassmannian Gr(N−r−1, N).
Note that such a map πL is automatically flat since X is smooth (cf. [11, Ex.
III-10.9, p. 276]). In particular, the pull-back π∗L,X and push-forward πL,X∗ are
defined by Theorem 3.1.

For any closed integral admissible cycle Z on X ×Bn, define L̃(Z) to be

L̃(Z) := π∗L,X(πL,X∗([Z]))− [Z].

Extending this map linearly, this defines a morphism of complexes

L̃ : Tzq(X, •;m)→ Tzq(X, •;m).
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6.2. Chow’s moving lemma. Recall that for two locally closed subsets A,B of
pure codimension a and b, the excess of A,B is defined to be

e(A,B) := max{a+ b− codimX(A ∩B), 0}.
That the intersection A ∩ B is proper means e(A,B) = 0. If A,B are cycles,
then we define e(A,B) := e(Supp(A), Supp(B)). The excess measures how far an
intersection is from being proper.

Lemma 6.2 (cf. [14, Lemma 1.12]). Let X ⊂ PN be a smooth closed projective
k-subvariety of dimension r. Let Z,W be cycles on X. Then there is a non-empty
open subscheme UZ,W ⊂ Gr(N − r − 1, N)X such that for each field extension
K ⊃ k and each K-point L of UZ,W , we have

e(L̃(Z),W ) ≤ max{e(Z,W )− 1, 0}.
For its proof, see J. Roberts [20, Main Lemma, p. 93], or [16, Lemma 3.5.4,

p. 96] for a slightly different but equivalent version. The point of the projection
business is the following lemma:

Lemma 6.3. Let X be a smooth projective k-variety, and let W be a finite set
of locally closed algebraic subsets of X. Let m,n ≥ 1, q ≥ 0 be integers. Let
e :W → Z≥0 be a set-theoretic function. Define e− 1 :W → Z≥0 by

(e− 1)(W ) := max{e(W )− 1, 0}.
Let K be the function field of Gr(N−r−1, N), and let Lgen ∈ Gr(N−r−1, N)X(K)
be the generic point. Then, the map

L̃gen : Tzq(X, •;m)→ Tzq(XK , •;m)

maps TzqW,e(X, •;m) to TzqWK ,e−1(XK , •;m).

Proof. The arguments of [14, Lemma 1.13, p. 84] or [16, §3.5.6, p. 97] work in this
additive context without change. The central idea is to use a variation of Chow’s
moving lemma as in Lemma 6.2. �

6.3. Proof of the moving lemma.

Proof of Theorem 4.1. Let Lgen be the generic point of the Grassmannian Gr(N −
r − 1, N) as in Lemma 6.3. Then, for each function e :W → Z≥0, the morphism

L̃gen = π∗Lgen ◦ πLgen∗ − p
∗
K/k :

TzqW,e(X, •;m)

TzqW,e−1(X, •;m)
→

TzqWK ,e
(XK , •;m)

TzqWK ,e−1(XK , •;m)

is zero. Hence π∗Lgen ◦πLgen∗ is equal to the base extension morphism p∗K/k on the
quotient complex.

On the other hand, π∗Lgen ◦ πLgen∗ factors as

TzqW,e(X, •;m)

TzqW,e−1(X, •;m)

πLgen∗−→
TzqW ′,e′(PrK , •;m)

TzqW ′,e′−1(PrK , •;m)

π∗Lgen−→
TzqWK ,e

(XK , •;m)

TzqWK ,e−1(XK , •;m)
,
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where W ′ and e′ are defined as follows: for each W ∈ W , the constructible subset
πLgen(W ) can be written as

πLgen(W ) = W ′
1 ∪ · · · ∪W ′

iW

for some iW ∈ N and locally closed irreducible setsW ′
j in PrK . Let dj = codimPnK (W ′

j)−
codimX(C). Let W ′ = {W ′

j|W ∈ W}. Define e′ : W ′ → Z≥0 by the rule
e′(W ′

j) := e(W )+dj. We have already shown in Section 5.2 that the moving lemma
is true for all projective spaces. In particular, for all functions e′ :W ′ → Z≥0, the
complex in the middle

TzqW ′K ,e′
(PrK , •;m)

TzqW ′K ,e′−1(PrK , •;m)

is acyclic (see Remark 4.4). Hence, the base extension map

p∗K/k :
TzqW,e(X, •;m)

TzqW,e−1(X, •;m)
→

TzqWK ,e
(XK , •;m)

TzqWK ,e−1(XK , •;m)

is zero on homology. Consequently, by induction, the base extension map

p∗K/k :
Tzq(X, •;m)

TzqW(X, •;m)
→ Tzq(XK , •;m)

TzqWK
(XK , •;m)

is zero on homology. On the other hand, this map is also injective on homology
by Proposition 4.7. This happens only when

Tzq(X, •;m)

TzqW(X, •;m)

is acyclic, that is, the inclusion

TzqW(X, •;m)→ Tzq(X, •;m)

is a quasi-isomorphism. This finishes the proof of Theorem 4.1. �

7. Application to contravariant functoriality

In this section, we prove the following general contravariance property of the
additive higher Chow groups as an application of the moving lemma.

Theorem 7.1. Let f : X → Y be a morphism of quasi-projective varieties over k,
where Y is smooth and projective. Then there is a pull-back map

f ∗ : TCHq(Y, n;m)→ TCHq(X,n;m)

such that for a composition X
f−→ Y

g−→ Z with Y and Z smooth and projective, we
have

(g ◦ f)∗ = f ∗ ◦ g∗ : TCHq(Z, n;m)→ TCHq(X,n;m).

Before proving this functoriality, we mention one more consequence of our con-
tainment lemma (Proposition 2.4).
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Corollary 7.2. Let X
i−→ Y be a regular closed embedding of quasi-projective

but not necessarily smooth varieties over k. Then there is a Gysin chain map of
additive cycle complexes

i∗ : Tzq{X}(Y, •;m)→ Tzq(X, •;m).

Proof. Let ι : Z ⊂ Y × Bn be a closed irreducible admissible subvariety in
Tzq{X}(Y, n;m). By assumption, Z intersects all faces X × F properly. Hence the

abstract intersection product of cycles (X×Bn) ·Z = [ι∗(X×Bn)] ∈ zq(X×Bn) is
well defined, and the intersection formula for the regular embedding implies that
this intersection product commutes with the boundary maps ([8, §2.3, §6.3]). We
want this cycle to be i∗(Z). Thus we only need to show that each component
of Z ∩ (X × Bn) satisfies the modulus condition in order for i∗ to be a map of

additive cycle complexes. Since X × B̂n clearly intersects F 1
n and Fn,0 properly on

Y × B̂n, this modulus condition follows directly from Proposition 2.4, for Z has
the modulus condition. �

Proof of Theorem 7.1. We do this by imitating the proof of [1, Theorem 4.1]. So,
let f : X → Y be a map as in Theorem 7.1. Such a morphism can be factored

as the composition X
grf→ X × Y

pr2→ Y , where grf is the graph of f and pr2 is
the projection. Notice that pr2 is a flat map and moreover, the smoothness of Y
implies that grf is a regular closed embedding. Let Γf ⊂ X × Y denote the image
of grf which is necessarily closed.

For 0 ≤ i ≤ dimY , let Yi be the Zariski closure of the collection of all points
y ∈ Y such that dimf−1(y) ≥ i. We use the convention that dim∅ = −1. LetW be
the collection of the irreducible components of all Yi. ThenW is a finite collection.

Claim : Let Z ∈ TzqW(Y, n;m) be an irreducible admissible closed subvariety
of Y × Bn. Then (pr2 × IdBn)−1(Z) = X × Z in X × Y × Bn is an admissible
closed subset that intersects Γf × F properly in X × Y ×Bn for all faces F ⊂ Bn.
This gives a chain map

pr2
∗ : TzqW(Y, •;m)→ Tzq{Γf}(X × Y, •,m).

That (pr2 × IdBn)−1(Z) = X × Z is admissible is obvious by [14, §3.4]. Since Z
intersects W × F properly for all W ∈ W and faces F ⊂ Bn, we have

dimZ̃i ≤ dimYi + dimF − q, where Z̃i := Z ∩ (Yi × F ).

Now, (X × Z) ∩ (Γf × F ) = ∪iX × Z̃i, and for each i we have

dim(X × Z̃i) = dimX + dimZ̃i
≤ dimX + dimF − q = dim(Γf × F )− q.

Hence codimΓf×F (X × Z) ∩ (Γf × F ) ≥ q and we have the desired map pr2
∗ :

TzqW(Y, n;m)→ Tzq{Γf}(X × Y, n;m) for each n ≥ 1. That this gives a chain map

is obvious since f ∗ clearly commutes with the boundary maps. This proves the
Claim.
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The pull-back map f ∗ is now given by composing pr∗2 with the Gysin map gr∗ of
Corollary 7.2 and then using the moving lemma, Theorem 4.1. The composition
law can be checked directly from the construction of f ∗. This completes the proof
of Theorem 7.1. �

8. Algebra structure on additive higher Chow groups

In this section, we consider an algebra structure on the additive higher Chow
groups of smooth projective varieties. This algebra structure corresponds to the
exterior product on the cohomology of the sheaves of absolute Kähler differentials
on the smooth projective varieties. We show that this algebra structure on the ad-
ditive higher Chow groups is compatible with the module structure on these groups
for the ordinary Chow ring of the variety. We draw some important consequences
of this towards the end of this section. We shall deduce our algebra structure on
the additive higher Chow groups as a consequence of the following general result
whose proof will occupy most of this section.

Proposition 8.1. Let X and Y be smooth projective varieties over a field k. Then
there exists an external wedge product on the additive higher Chow groups

(8.1) ∧ : TCHq1(X,n1;m)⊗Z TCHq2(Y, n2;m)→ TCHq(X × Y, n;m),

where q = q1 + q2 − 1, n = n1 + n2 − 1, and qi, ni,m ≥ 1 for i = 1, 2. In the case
of X = Y , one has

(8.2) ξ∧η = (−1)(n1−1)(n2−1)η∧ξ
for all classes ξ ∈ TCHq1(X,n1;m) and η ∈ TCHq2(X,n2;m).

8.1. External wedge product. The external wedge product is based on the
product map µ : Gm ×Gm → Gm which clearly extends to the product map

(8.3) µ : Gm × P1 → P1.

Note that this product defines a Gm-action on P1 and hence is a smooth map.
We define the external product at the level of cycle complexes in the following

way.

(8.4) X ×Gm ×�n1−1 × Y ×Gm ×�n2−1 τ
//

µ
,,XXXXXXXXXXXXXXXXXXXXXXX

X × Y ×Gm ×Gm ×�n−1

1×1×µ×1

��

X × Y ×Gm ×�n−1,

where τ is the transposition map (x, t, y, x′, t′, y′) 7→ (x, x′, t, t′, y, y′). We denote
the composite map also by µ.

Let V1 ∈ Tzq1(X,n1;m) and V2 ∈ Tzq2(Y, n2;m) be two irreducible admissible
cycles. Define µ∗(V1×V2) to be the Zariski closure of µ(V1×V2) in X×Y ×Bn. We
first claim that codimX×Y×Bn(µ∗(V1×V2)) = q, or, equivalently, dim(µ(V1×V2)) =
dim(V1) + dim(V2).

This is obvious if one of the Vi’s lie in a fiber of the projection map to Gm.
Otherwise, the modulus condition implies that none of these can be of the form
W × Gm. Thus, the set of points of W such that the fiber of Vi is Gm must be
nowhere dense. In particular, there is a dense subset of closed points of W such
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that the fiber of Vi over this subset must be nowhere dense in Gm. But then this
fiber must be finite. Hence for any c ∈ Gm in a dense open subset, there are points
(a, t1) ∈ Gm×X×�n1−1 such that (a′, t1) /∈ Gm×X×�n1−1 and aa′ 6= c. Also, we
have then (ca−1, t2) ∈ Gm× Y ×�n1−1 as Vi map dominantly onto an open subset
of Gm. But then we see that (a, ca−1, t1, t2) ∈ V1×V2 but (a′, ca′−1, t1, t2) /∈ V1×V2.
On the other hand, we have µ(a, ca−1, t1, t2) = µ(a′, ca′−1, t1, t2). This implies that
V1 × V2 6= µ−1(µ(V1 × V2)). Since µ is flat of relative dimension one, this implies
that dim(µ(V1 × V2)) = dim(V1) + dim(V2), proving the claim.

Thus we have shown that if V1 ∈ Tzq1(X,n1;m) and V2 ∈ Tzq1(Y, n2;m) are two
irreducible admissible additive cycles, then µ∗(V1 × V2) is a closed subvariety of
X × Y ×Bn of codimension q. Our aim is to show the admissibility of µ∗(V1× V2)
as an additive cycle which we do in several steps. Let us denote µ∗(V1× V2) by Z.

Lemma 8.2. The cycle Z has the proper intersection property with all faces of
Bn.

Proof. To show the good intersection property, it is enough to intersect the Zariski-
dense open subset µ(Z1 × Z2) with X × Y × F for any face F of Bn. Write
F = Gm × F1 × F2 for some faces F1 ⊂ �n1−1 and F2 ⊂ �n2−1.

Since the multiplication µ is equivariant with respect to all face maps ∂εi given
by the intersection with a codimension 1-face of �ni−1, and since the faces Fi
are obtained by intersecting a multiple number of those codimension 1-faces, we
immediately see that µ(V1 × V2) intersects X × Y × F properly if V1 intersects
X ×Gm×F1 properly and V2 intersects Y ×Gm×F2 properly. But this is indeed
the case. �

Proposition 8.3. The cycle Z satisfies the modulus condition in X × Y ×Bn.

Proof. For the structure morphisms p : X → Spec(k) and p′ : Y → Spec(k),
consider W1 = (p× IdBn1

)(V1) and W2 = (p′ × IdBn2
)(V2). By the admissibility of

the projective images, Proposition 5.2, W1 and W2 are admissible in Bn1 and Bn2

respectively. In particular, X ×W1 and Y ×W2 are admissible cycles by the flat
pull-back (cf. Theorem 3.1). Now, we have

V1 ⊂ X ×W1, V2 ⊂ Y ×W2,

which implies that

(8.5) Z = µ∗(V1 × V2) ⊂ X × Y × µ∗(W1 ×W2).

Since Z intersects F 1
n and Fn,0 properly in X×Y × B̂n, we can use Proposition 2.4

to conclude that Z has the modulus condition if µ∗(W1 ×W2) has. That is, we
reduce to the case when X = Y = Spec(k).

We first dispose of the case of the modulus condition Msum as it is relatively
straightforward. Let V1 ⊂ Bn1 , V2 ⊂ Bn2 , and Z ⊂ Bn be the Zariski closures of

V1, V2, and Z respectively. Take their normalizations νV 1
: V

N

1 → V 1, νV 2
: V

N

2 →
Z2, and νZ : Z

N → Z. By [14, Lemma 3.1], the product of two reduced normal
finite type k-schemes is again normal over perfect fields. Thus, the morphism

ν := νV 1
× νV 2

: V
N

1 × V
N

2 → V 1 × V 2 = V1 × V2
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is a normalization, under the identification A2×�n−1 = A1×�n1−1×A1×�n2−1.

Thus, we can regard V
N

1 × V
N

2 as V1 × V2
N

. This gives the following diagram:

V
N

1 × V
N

2

ν
//

µN

��

V 1 × V 2

ι1×ι2
//

µ

��

A2 × (P1)
n−1

µ

��

Z
N

νZ
// Z

ι
// A1 × (P1)

n−1
,

where µ is the restriction µ|V 1×V 2
, and µN is given by the universal property of

the normalization νZ . Note that the restriction µ : V 1 × V 2 → Z is a surjective
morphism. Hence, µN is also surjective.

Let (t1, t2, y1, · · · , yn−1) ∈ A2 × (P1)
n−1

and (w, y1, · · · , yn−1) ∈ A1 × (P1)
n−1

be
the coordinates.

Consider the Cartier divisor D :=
∑n−1

i=1 {ti = 1} − (m + 1){w = 0} on A1 ×
(P1)

n−1
. Then, as a Cartier divisor on A2 × (P1)

n−1
, we have

µ∗D =
n−1∑
i=1

{yi = 1} − (m+ 1){t1 = 0} − (m+ 1){t2 = 0}

=

(
n1−1∑
i=1

{yi = 1} − (m+ 1){t1 = 0}

)
+(

n−1∑
i=n1

{yi = 1} − (m+ 1){t2 = 0}

)
=: D1 +D2,

where we note that n− 1 = (n1 − 1) + (n2 − 1). Note that by pulling back along
ν = νV 1

× νV 2
, we see that

(8.6) ((ι1 × ι2) ◦ ν)∗(µ∗D) ≥ 0

since we have

((ι1 × 1) ◦ (νV 1
× 1))∗D1 ≥ 0,

((1× ι2) ◦ (1× νV 2
))∗D2 ≥ 0,

by the modulus condition Msum of V1 × Bn2 and Bn1 × V2, regarding V1 × Bn2 as
a cycle in Tzp1+n2(Bn2 , n1;m), and similarly for Bn1 × V2.

This inequality (8.6) is equivalent to (µN)∗ ((ι ◦ νZ)∗D) ≥ 0 by the commutativ-
ity of the diagram. Then, by Lemma 2.2 applied to the surjective morphism µN ,
we get (ι ◦ νZ)∗D ≥ 0. This is the modulus m condition Msum for Z = µ∗(V1×V2).

Now we prove the Mssup condition for Z if Vi’s satisfy this modulus condition.
This is a much more delicate case and we prove it in several steps. First suppose
that V1 or V2 is contained in the locus of {t = a} for a closed point a ∈ Gm.
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By symmetry, we may then assume that V1 = {a} ×W1 for a closed irreducible
subvariety W1 ⊂ �n1−1 intersecting all faces of �n1−1 properly. Then,

µ(V1 × V2) = a−1 ∗ (τ(W1 × V2)),

where τ is the transposition

�n1−1 ×Gm ×�n2−1 → Gm ×�n1−1 ×�n2−1,

and ∗ is the action of Gm as in (3.2). This is already closed in Bn−1, so we have

µ∗(V1 × V2) = µ(V1 × V2) = a−1 ∗ (τ(W1 × V2)).

Furthermore, the modulus condition for V2 implies the modulus condition for a−1 ∗
(τ(W1 × V2)). Hence, µ∗(V1 × V2) has the modulus condition Mssup.

Hence, for the rest of the proof, we assume that neither V1 nor V2 lies in the loci
of {t = a} for some a ∈ Gm. In particular, the images of V1 and V2 are open dense
subsets of Gm.

Let V ′1 = Gm × �n1−1 and let Z̃ = µ(V ′1 × V2), the closure of µ(V ′1 × V2) in
Gm × Bn. Note that V ′1 is just a closed subvariety and not an admissible cycle.

Note further that Z is a closed subvariety of Z̃ and moreover Z intersects the

divisors F 1
n and Fn,0 properly in P1 × B̂n since our V1 and V2 have this property.

Hence by Proposition 2.4, to prove the modulus condition for Z, it suffices to

prove the modulus condition for the closed subvariety Z̃. So, from now on, we

shall replace V1 by V ′1 and Z by Z̃, while we call the new ones as still V1 and Z,
respectively.

We set B := (P1)
n−1

, and let V 1 and V 2 be the closures of V1 and V2 in Gm ×
(P1)n1−1 and B̂n2 , respectively.

Let p : P1×(P1)
n−1 → (P1)

n−1
and q : P1×(P1)

n−1 → P1 be the projections. Let
W = µ(V1×V2) and W ′ = µ(V 1×V 2), where µ = µ× IdB : Gm×P1×B → P1×B
is the extension of µ as defined in (8.3). Then we get a commutative diagram

(8.7) V1 × V2

µ

��

// V 1 × V 2
//

µ

��

Gm × P1 ×B

µ

��

W

��

// W ′

φ

  
AA

AA
AA

AA
AA

AA
AA

AA
AA

A

��

Z //

��

Z ′

φ′ ''PPPPPPPPPPPPP

Gm ×�n−1 // P1 ×B,

where Z ′ is the closure of W ′ in P1 × (P1)
n−1

, and φ, φ′ are the inclusions. Note
that all the arrows except µ and µ are injective, and µ and µ are surjective.
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Notice that by the given assumptions, the composition under the first projection

V 2 ⊂ B̂n2 → P1 is surjective since this map is projective and hence a closed map,
while V2 is not in the locus of {t = a} for some a ∈ Gm so that the map is dominant.

First note that W is open in W ′. This is because W = W ′∩(Bn) and Bn is open

in B̂n. Likewise, W ′ is open in Z ′. This is because W ′ = Z ′ ∩ Image(µ), where

Image(µ) is open because µ is flat. Hence, the Zariski closure of W in B̂n is equal
to the closure of W ′, which is Z ′ by definition. Since Z is the Zariski closure of W

in Bn, which is open in B̂n, the Zariski closure Z of Z in B̂n is consequently Z ′.

In other words, the Zariski closures of W,Z,W ′ in B̂n are all equal to Z ′.

Let V
′
2 = τ

(
(P1)

n1−1 × V 2

)
⊂ B̂n for the transposition

τ : (P1)n1−1 × P1 × (P1)n2−1 ∼→ P1 × Pn1−1 × Pn2−1.

Notice that W ′ is the orbit Gm · V
′
2 in B̂n, where the action of Gm on (P1)

n−1
is

by the identity. In particular, Z ′ is the orbit closure of V
′
2. Let Wp := p(W ′).

Claim (1): Wp = p(W ′) = p(V ′2) and it is closed in B = (P1)
n−1

.
Consider the following diagram.

Gm × P1 ×B
µ

//

p′

��

P1 ×B
p

��

Gm ×B r
// B

Note that the lower horizontal arrow and the two vertical arrows are the projection

maps. Since p is projective, p(V
′
2) is closed in B. Next we have,

p(W ′) = p ◦ µ(Gm × V
′
2) = r ◦ p′(Gm × V

′
2) = r(Gm × p(V

′
2)) = p(V

′
2)

since p′ is identity on Gm and r is the projection. This proves Claim (1).
Claim (2): There is a non-empty open subset U ⊂ Wp such that Gm × U ⊂ W ′

as an open subset.

From Claim (1), we have a surjection V
′
2 → Wp. Since V

′
2 is irreducible, so is

Wp. Now recall the following well-known generic flatness theorem. For its proof,
see [7, Theorem 5.12, p.123]:

Theorem 8.4. Let f : X → Y be morphism of noetherian schemes of finite type
over k, where Y is integral. Then there exists a non-empty open subset U ′ ⊂ Y
such that f−1(U ′)→ U ′ is flat.

Using this theorem and the openness of a flat map, we see that the image of the

open set V
′
2 ∩ q−1(Gm)∩ p−1(U ′)→ U ′ is open in U ′ and hence in Wp. Notice that

since the map V 2 → P1 is surjective, V
′
2 ∩ q−1(Gm) in not empty. Let U be this

image in Wp.
Now, by the choice of U , we see that for each u ∈ U , the fibre p−1(u) meets

V
′
2 ∩ q−1(Gm) non-trivially. This implies that the orbit of V

′
2 ∩ p−1(U) contains at



34 AMALENDU KRISHNA, JINHYUN PARK

least Gm×U (it might also contain some points of {0,∞}×U). In particular, we
conclude that Gm × U ⊂ W ′. Since Gm × U is open in p−1(U) = P1 × U , it must
be open in W ′, too. This proves Claim (2).

Claim (1) implies that Z ′ ⊂ P1 ×Wp and Claim (2) implies that there is a non-
empty open subset Gm × U ⊂ Z ′ ⊂ P1 ×W ′. Since Z ′ is closed in P1 ×Wp and
irreducible, and since Gm × U is open dense in P1 ×Wp which is also irreducible,
we conclude that Z ′ = P1 ×Wp.
Claim (3): Let S := Z ′\W ′. Then Z ′∩q∗({t = 0}) is irreducible and codimZ′(S∩
q∗{t = 0}) ≥ 2, where t is the coordinate of P1.

Since we have just seen that Z ′ = P1 ×Wp, the closed subscheme Z ′0 = Z ′ ∩
q∗({t = 0}) is in fact Wp×{0} and hence irreducible as Wp is so. This also implies
that dim(Z ′0) = dim(Wp) = dim(Z ′)− 1. Now we recall that the map V 2 → P1 is

surjective as a consequence of our assumption. Hence, V
′
2 → P1 is also surjective.

This implies in particular that W ′ → P1 is surjective too. This in turn shows
that W ′ ∩ q∗({t = 0}) = W ′ ∩ (Z ′ ∩ q∗({t = 0})) = W ′ ∩ Z ′0 is a non-empty open
subset of Z ′0. Since we have just shown that Z ′0 is irreducible, this implies that
dimk(S ∩ Z ′0) = dimk(Z

′
0\(W ′ ∩ Z ′0)) ≤ dimk(Z

′
0)− 1. Thus we get

dimk(S ∩ Z ′0) ≤ dimk(Z
′
0)− 1 = dimk(Z

′)− 2.

This proves Claim (3).
Claim (4): For the composition

νW ′ : W ′N → W ′ φ→ B̂n−1,

where the first arrow is the normalization, there exists an index i ∈ {1, · · · , n2−1}
for which we have on W ′N

ν∗W ′ [{yi = 1} − (m+ 1){t = 0}] ≥ 0.

Consider the following normalization diagram:
(8.8)

V
N

1 × V
N

2

µN

��

// V 1 × V 2

µ

��

// Gm × P1 × (P1)
n−1

µ

��

pr
// Gm × P1 × (P1)

n2−1

µ

��

W ′N // W ′ φ
// P1 × (P1)

n−1 pr
// P1 × (P1)

n2−1
.

Here the horizontal arrows in the last square are the obvious projection maps. We

also note that V
N

1 × V
N

2 is the normalization of V 1 × V 2 by [14, Lemma 3.1]. We
have seen that µ is a surjective map of irreducible varieties and hence dominant.
This gives the map of the corresponding normalizations, which must also be sur-
jective. Since the modulus condition Mssup holds for V2, there is an 1 ≤ i ≤ n2− 1

such that the Cartier divisor ν∗2 [{yi = 1} − (m + 1){t = 0}] ≥ 0 on V
N

2 . This
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implies that in the diagram

V
N

1 × V
N

2

v

��

ν1,2
// Gm × P1 × (P1)

n−1

s

��

V
N

2

ν2
// P1 × (P1)

n2−1
,

we have

(8.9) ν∗1,2 ◦ s∗[{yi = 1} − (m+ 1){t = 0}] ≥ 0 on V
N

1 × V
N

2 ,

where v, s are the obvious projections, and ν1,2 is the composition of the first two
arrows of the upper part of the Diagram (8.8).

Next we observe that as Gm acts trivially on (P1)
n−1

, one has µ∗({yi = 1}) =

Gm×P1×(P1)
n−2×({yi = 1}) = s∗({yi = 1}). We also observe that µ∗({t = 0}) =

Gm× ({t = 0})× (P1)
n−1

= s∗({t = 0}). In particular, we have for 1 ≤ i ≤ n2− 1,

s∗[{yi = 1} − (m+ 1){t = 0}] = µ∗ ◦ pr∗[{yi = 1} − (m+ 1){t = 0}]

= µ∗[{yi = 1} − (m+ 1){t = 0}].
Combining this with (8.9), we conclude that ν∗1,2◦µ∗[{yi = 1}−(m+1){t = 0}] ≥ 0

and hence µN
∗ ◦ ν∗W ′ [{yi = 1} − (m + 1){t = 0}] ≥ 0. We now apply Lemma 2.2

to the surjective morphism µ̄N of normal integral k-varieties to conclude that
ν∗W ′ [{yi = 1} − (m+ 1){t = 0}] ≥ 0 on W ′N . This proves Claim (4).

Now, we have the final statement of this lengthy proposition:
Claim (5): The modulus condition Mssup holds for Z.

Since we have shown that the Zariski closure of Z in B̂n is Z ′, we need to show
that the modulus condition holds on Z ′N . Consider the following commutative
diagram

(8.10) W ′N = f−1(W ′) //

��

Z ′N

f

��

f−1(S)

��

oo

W ′ // Z ′ S,oo

where f is a normalization, and we recall that S = Z ′\W ′. Since W ′ is as open

subset of Z ′ as shown above, we have f−1(W ′) = W ′N . Let νZ′ : Z ′N
f→ Z ′

φ′→ B̂n

be the composite. We need to show that for some 1 ≤ i ≤ n− 1, we have

(8.11) [ν∗Z′({yi − 1})] ≥ (m+ 1)[ν∗Z′({t = 0})]

as Weil divisors on Z ′N . Since Z ′N is an irreducible normal variety and the rela-
tion (8.11) holds on W ′N by Claim (4), the same relation will hold on Z ′N if and
only if no component of ν∗Z′({t = 0}) is contained in f−1(S). However, we have
shown in Claim (3) that dim(S ∩φ′∗({t = 0})) ≤ dim(Z ′)− 2. On the other hand,
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since f is a finite map, if a component D of ν∗Z′({t = 0}) is contained in f−1(S),
then f(D) ⊂ S ∩ φ∗({t = 0}) and we get

dim(Z ′
N

)− 1 = dim(D) = dim(f(D)) ≤ dim(S ∩ φ′∗({t = 0}))

≤ dim(Z ′)− 2 = dim(Z ′
N

)− 2,

where the second and the last equalities hold by the finiteness and surjectivity of
f . This gives a contradiction. This proves the modulus condition Mssup for Z,
thus, Claim (5). This completes the proof of the proposition. �

Corollary 8.5. Let X and Y be smooth projective varieties. Let V1 ∈ Tzq1(X,n1;m)
and V2 ∈ Tzq2(Y, n2;m) be two irreducible admissible cycles. Then Z = µ∗(V1×V2)
is an admissible additive cycle in Tzq(X × Y, n;m).

Proof. This follows immediately from Lemma 8.2 and Proposition 8.3. �

8.2. Shuffle products. For an integer r ≥ 1, let Permr be the group of permuta-
tions on the set {1, · · · , r}. For integers s, p1, p2, · · · , ps ≥ 1, a (p1, · · · , ps)-shuffle
is a permutation σ ∈ Permp1+···+ps satisfying the following properties:

σ(1) ≤ · · · ≤ σ(p1)
...

σ(p1 + · · ·+ pi−1 + 1) ≤ · · · ≤ σ(p1 + · · ·+ pi−1 + pi),
...

σ(p+ 1 + · · ·+ ps−1 + 1) ≤ · · · ≤ σ(p1 + · · ·+ ps−1 + ps)

Note that since σ is an automorphism, each of the above inequalities is in fact strict
unless some pi = 1 in which case one has σ(p1+· · ·+pi−1+1) = σ(p1+· · ·+pi−1+pi).

The set of all (p1, · · · , ps)-shuffles is denoted by Perm(p1,··· ,ps). Here, Permr =

Perm(1, · · · , 1︸ ︷︷ ︸)

r

, and |Perm(p1,··· ,ps)| = (p1+···+ps)!
p1!···ps! . A permutation σ ∈ Permn−1 acts

compatibly on the spaces �n−1 and (P1)
n−1

via

σ · (t1, · · · , tn−1) = (tσ−1(1), · · · , tσ−1(n−1)).

This generalizes to spaces of the form Y × �n−1 and Y × (P1)
n−1

via the trivial
action of σ on Y . We obtain induced actions on the groups of algebraic cycles such
as Tzq(X,n;m), or zq(X,n− 1), etc.

For a permutation σ, the sign sgn(σ) is +1 if σ is even, and sgn(σ) is −1 if odd.

8.2.1. Permutation identities. The following basic identities on permutations play
important roles in proving the associativity of the wedge product, and in proving
that the differential operator defined in Section 10, is a graded derivation for the
wedge product.
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Proposition 8.6. Let r, s, t ≥ 1 be integers. Then in the group ring Z[Permr+s+t],
we have two equations∑

ν∈Perm(r,s,t)

sgn(ν)ν =
∑

τ∈Perm(r+s,t)

∑
σ∈Perm(r,s)

sgn(τ)sgn(σ)τ · (σ × Id3),

∑
ν∈Perm(r,s,t)

sgn(ν)ν =
∑

τ ′∈Perm(r,s+t)

∑
σ′∈Perm(s,t)

sgn(τ ′)sgn(σ′)τ ′ · (Id1 × σ′),

where Id1 is the identity function of the set {1, · · · , r}, and Id3 is the identity
function of the set {r + s+ 1, · · · , r + s+ t}.

We need the following two simple lemmas.

Lemma 8.7. Let r, s, t ≥ 1 be integers. For τ ∈ Perm(r+s,t) and σ ∈ Perm(r,s), the
permutation τ · (σ × Id3) is in Perm(r,s,t). Furthermore, the set-theoretic function

φ : Perm(r+s,t) × Perm(r,s) → Perm(r,s,t)

(τ, σ) 7→ τ · (σ × Id3)

is a bijection.

Proof. The first part is obvious. For the second part, consider the following:

Claim. If φ(τ1, σ1) = φ(τ2, σ2), then τ1 = τ1 and σ1 = σ2. That is, φ is injective.

We are given τ1 · (σ1× Id3) = τ2(σ2× Id3). Since σ1× Id3, σ2× Id3 do not touch
the set S3 := {r + s + 1, · · · , r + s + t}, we get τ1|S3 = τ2|S3 . However, τi are
(r+ s, t)-shuffles so that they are strictly increasing on {1, · · · , r+ s}. This forces
τ1|{1,··· ,r+s} = τ2|{1,··· ,r+s}. Hence, τ1 = τ2. This implies σ1 = σ2. Thus the Claim is
proved.

Notice that for the function φ, the domain and the target have equal cardinalities:

|Perm(r+s,t)| × |Perm(r,s)| =
(r + s+ t)!

(r + s)!t!
· (r + s)!

r!s!
=

(r + s+ t)!

r!s!t!
= |Perm(r,s,t)|.

Since φ is an injective function, this shows that it is automatically bijective. �

Lemma 8.8. Let r, s, t ≥ 1 be integers. For τ ′ ∈ Perm(r,s+t), σ
′ ∈ Perm(s,t), the

permutation τ ′ · (Id1 × σ′) is in Perm(r,s,t). Furthermore, the set-theoretic function

ψ : Perm(r,s+t) × Perm(s,t) → Perm(r,s,t)

(τ ′, σ′) 7→ τ ′ · (Id1 × σ′)
is a bijection.

Proof. Its proof is essentially identical to that of Lemma 8.7. �

Proof of Proposition 8.6. This obviously follows from Lemmas 8.7 and 8.8 by ob-
serving that sgn(τ ·(σ×Id3)) = sgn(τ)sgn(σ), and sgn(τ ′·(Id1×σ)) = sgn(τ ′)sgn(σ′).
This proves the proposition. �

For the Leibniz rule later, we need the following as well as the above results:
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Definition 8.9. For permutations σ ∈ Permn and τ ∈ Perm(1,n) with τ(1) = i ∈
{1, · · · , n}, define the permutation στ = σ[i] ∈ Permn+1 by sending

j ∈ {1, · · · , n+ 1} 7→

 σ(j) if j < i,
j if j = i,
σ(j − 1) if j > i.

Lemma 8.10. Let σ ∈ Perm(r,s) and τ ∈ Perm(1,r+s). Then the product στ · τ
in Permr+s+1 is a (1, r, s)-shuffle, i.e., στ · τ ∈ Perm(1,r,s). Furthermore, the set-
theoretic map

φ1 : Perm(r,s) × Perm(1,r+s) → Perm(1,r,s)

(σ, τ) 7→ στ · τ
is a bijection.

Proof. The first statement is obvious. For the second statement, the surjectivity
part is obvious by keeping track of where 1 is sent. But since both sides have the

cardinality (r+s)!
r!s!

(r+s+1)!
(r+s)!

= (r+s+1)!
r!s!

, the map φ1 must be bijective. �

Lemma 8.11. In the group ring Z[Permr+s+1], we have

∑
σ∈Perm(r,s)

(sgn(σ))

 ∑
τ∈Perm(1,r+s)

(sgn(τ))στ · τ

 =
∑

ν∈Perm(1,r,s)

(sgn(ν))ν.

Proof. Note that sgn(στ ·τ) = sgn(σ)sgn(τ). Thus, together with the Lemma 8.10,
we get the desired result. �

8.3. Pre-wedge product via shuffles. Let X and Y be smooth projective vari-
eties. Consider the groups Tzq1(X,n1;m) and Tzq2(Y, n2;m). Let n = n1 + n2 − 1
and q = q1 + q2 − 1. Consider the group of cubical higher Chow cycles, zq+1(X ×
Y ×Gm×Gm, n− 1), i.e. cycles of codimension q+ 1 in X×Y ×Gm×Gm×�n−1

that intersect all faces of �n−1 properly, modulo the degenerate cycles.

Definition 8.12. For two irreducible admissible cycles V1 ∈ Tzq1(X,n1;m), and
V2 ∈ Tzq2(Y, n2;m), the shuffle product V1×sh V2 is defined as a cycle in zq+1(X ×
Y ×Gm ×Gm, n− 1), given by the equation

(8.12) V1 ×sh V2 :=
∑

σ∈Perm(n1−1,n2−1)

sgn(σ) σ · (V1 × V2).

We can extend this definition Z-bilinearly to get a homomorphism

×sh : Tzq1(X,n1;m)⊗Z Tzq2(Y, n2;m)→ zq+1(X × Y ×Gm ×Gm, n− 1).

The image of this map is the group of (n1 − 1, n2 − 1)-shuffles.

Lemma 8.13. For the cycles V1, V2 above and for σ ∈ Perm(n1−1,n2−1), one has
that µ∗ (σ(V1 × V2)) ∈ Tzq(X × Y, n;m).
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Proof. We first observe that σ induces an automorphism of (P1)
n−1

which preserves
�n−1 and acts trivially on X × Y ×Gm ×Gm. In particular, the actions of µ and
σ commute. Hence we have µ (σ(V1 × V2)) = σ (µ(V1 × V2)), which in turn implies
that µ∗ (σ(V1 × V2)) = σ (µ∗(V1 × V2)). The lemma now follows from Corollary 8.5.

�

This lemma allows one to define the pre-wedge product V1∧V2 of V1 and V2 in
Tzq(X × Y, n;m) by the equation

V1∧V2 := µ∗(V1 ×sh V2) =
∑

σ∈Perm(n1−1,n2−1)

sgn(σ)µ∗(σ · (V1 × V2))

=
∑

σ∈Perm(n1−1,n2−1)

sgn(σ)σ · (µ∗(V1 × V2))

As before, extend it Z-bilinearly to get a homomorphism

(8.13) ∧ : Tzq1(X,n1;m)⊗Z Tzq2(Y, n2;m)→ Tzq(X × Y, n;m).

The image of this map is the group of (n1 − 1, n2 − 1)-pre-wedges of codimension
q and modulus m. The group of pre-wedges is simply the image under µ∗ of the
group of shuffles.

Corollary 8.14. For Vi ∈ Tzqi(Xi, ni;m), we have (V1 ×sh V2) ×sh V3 = V1 ×sh
(V2×sh V3) in Tzq(X1×X2×X3, n;m) for appropriate q and n. The same is true
for ∧.

Proof. This follows from the associativity of µ and Proposition 8.6. �

Lemma 8.15. For two cycles ξ ∈ Tzq1(X,n1;m) and η ∈ Tzq2(X,n2;m), we have
equations

∂(ξ∧̄η) = (∂ξ)∧̄η + (−1)n1−1ξ∧̄(∂η),(8.14)

ξ∧̄η = (−1)(n1−1)(n2−1)η∧̄ξ,(8.15)

where ∂ is the boundary map in the definition of additive higher Chow groups.

Proof. For both of the equations, it is enough to prove it for ×sh, where we use
the fact that ∂ and µ∗ commute for the first. But, actually both are just purely
combinatorial statements. �

Proof of Proposition 8.1. The external product structure in (8.1) follows directly
from the pre-wedge product of cycles in (8.13) and from the first identity of
Lemma 8.15. If X = Y , the anti-commutativity follows directly from the sec-
ond identity of Lemma 8.15. �

We now prove the following main result of this section and its consequences.

Theorem 8.16. Let X be a smooth projective variety over a field k. Then there
exists an internal wedge product on the additive higher Chow groups of X.

(8.16) ∧X : TCHq1(X,n1;m)⊗Z TCHq2(X,n2;m)→ TCHq(X,n;m),
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where q = q1 + q2 − 1, n = n1 + n2 − 1, and qi, ni,m ≥ 1 for i = 1, 2, which is
associative and satisfies the equation

(8.17) ξ∧Xη = (−1)(n1−1)(n2−1)η∧Xξ.
for all classes ξ ∈ TCHq1(X,n1;m) and η ∈ TCHq2(X,n2;m).

This wedge product is natural with respect to the pull-back maps of additive higher
Chow groups and satisfies the projection formula

(8.18) f∗ (a∧Xf ∗(b)) = f∗(a)∧Y b
for a morphism f : X → Y of smooth projective varieties.

Proof. Consider the diagonal map ∆X : X → X×X. Since X is smooth projective,
so is X ×X. Hence, by applying Theorem 7.1 to ∆X , we get the pull-back map

∆∗X : TCHq(X ×X,n;m)→ TCHq(X,n;m),

for all integer q ≥ 0. Composing with the pre-wedge product ∧, we have

TCHq1(X,n1;m)⊗ TCHq2(X,n2;m)

∧X ++WWWWWWWWWWWWWWWWWWWWW

∧
// TCHq(X ×X,n;m)

∆∗X
��

TCHq(X,n;m),

where the induced map ∧ is well-defined by Proposition 8.1. Now we define
∧X := ∆∗X ◦ ∧. This gives the desired wedge product by the second equation
of Lemma 8.15. The associativity follows from Corollary 8.14.

We now show the naturality of the wedge product and the projection formula.

We first observe that if X
f−→ Y

g−→ Z are morphisms of smooth projective varieties,
then it follows from the contravariance property of the additive higher Chow groups
(cf. Theorem 7.1) that the naturality of the wedge product with f ∗ and g∗ implies
the same with (g ◦ f)∗. Similarly, the projection formula for f and g implies that

(g ◦ f)∗[a∧X(g ◦ f)∗(b)] = (g∗ ◦ f∗)[a∧X(f ∗ ◦ g∗(b))]
= g∗[f∗(a)∧Y g∗(b)]
= (g∗ ◦ f∗)(a)∧Zb
= (g ◦ f)∗(a)∧Zb

Hence by factoring a map f : X → Y as a composite of the closed embedding
X ↪→ X × Y and the projection X × Y → Y , it suffices to prove the naturality
and projection formula when f is one of these two types of morphisms.

To prove the naturality, we can use the contravariance property of the additive
higher Chow groups and the construction of the wedge product above to reduce to
proving the naturality for the pre-wedge product in Proposition 8.1. In this case,
we only need to show that for the flat map f : X → Y , the diagram

(8.19) zq(Y × Y ×Gm ×Gm, n− 1)
µ∗
//

f∗

��

zq(Y × Y ×Gm, n− 1)

f∗

��

zq(X ×X ×Gm ×Gm, n− 1) µ∗
// zq(X ×X ×Gm, n− 1)
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commutes, which is immediate from the definition of f ∗ and µ∗.
If f is a closed embedding, we can use Theorem 4.1 to replace Tzq(Y, •;m) by

Tzq{X}(Y, •;m). Then, the pull-back map is induced by the Gysin map f ∗ of Corol-

lary 7.2. In this case, we have for the irreducible admissible Vi ∈ Tzqi{X}(Y, ni;m)

that V1 × V2 ∈ Tzq+1
{X×X}(Y × Y, n;m) and f ∗(V1 × V2) = f ∗(V1) × f ∗(V2). Thus

we only need to show that the Diagram (8.19) commutes where zq(Y × Y ×Gm×
Gm, n− 1) (resp. zq(Y × Y ×Gm, n− 1)) is replaced by zq{X×X×Gm×Gm}(Y × Y ×
Gm × Gm, n − 1) (resp. zq{X×X×Gm}(Y × Y × Gm, n − 1)). But this follows easily

once we know that the diagram

(8.20) X ×X ×Gm ×Gm
//

µ

��

Y × Y ×Gm ×Gm

µ

��

X ×X ×Gm
// Y × Y ×Gm

is in fact a Cartesian square. This proves the naturality with pull-backs.

To prove the projection formula for the closed embedding X
f−→ Y , we can again

assume that the cycles under consideration intersect X or X ×X properly. Then
we have for V1 ∈ zq1(X ×Gm, n1 − 1) and V2 ∈ zq2{X×Gm}(Y ×Gm, n2 − 1),

f∗[∆
∗
X{µX×X∗ (V1 × [X] · V2)}] = ∆∗Y [(f × f)∗{µX×X∗ (V1 × [X] · V2)}]

= ∆∗Y [µY×Y∗ {(f × f)∗(V1 × [X] · V2)}]
= ∆∗Y [µY×Y∗ {f∗(V1)× ([X] · V2)}]
= ∆∗Y [µY×Y∗ {f∗(V1)× V2)}],

where the first equality follows from the fact that the the left square in the diagrams

(8.21) X
∆X
//

f

��

X ×X
f×f
��

X × Y
IdX×∆Y

//

f

��

W

f ′

��

Y
∆Y
// Y × Y Y

∆Y
// Y × Y

is Cartesian and the last equality holds since ∆∗ commutes with µ∗, as follows from
Theorem 4.1. This proves the projection formula for the closed embedding.

Finally, we prove the projection formula for the projection map f : Z = X×Y →
Y . Let W = X×Y ×Y and let µW : W×Gm×Gm → W×Gm be the product map.
Let p : Z × Z → W be the projection map. Then for any irreducible admissible
cycles V1 ∈ zq1(Z ×Gm, n1 − 1) and V2 ∈ zq2(Y ×Gm, n2 − 1), we have

f∗[∆
∗
Z{µZ×Z∗ (V1 × f ∗(V2))}] = f∗[∆

∗
Z{µZ×Z∗ (V1 × (X × V2))}]

= f∗[∆
∗
Z{p∗

(
µW∗ (V1 × V2)

)
}]

= f∗[(idX ×∆Y )∗
(
µW∗ (V1 × V2)

)
]

= ∆Y
∗ [f ′∗

(
µW∗ (V1 × V2)

)
] (∗)

= ∆Y
∗ [µY×Y∗ {f ′∗(V1 × V2)}]

= ∆Y
∗ [µY×Y∗ {f∗(V2)× V1)}],
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where the equality (∗) follows from the right Cartesian square in (8.21). This
proves the projection formula for the projection map. This completes the proof of
the theorem. �

For a smooth projective variety X over k, let TCHn(X) =
⊕

q TCHq(X,n+1;m)

and let TCH(X) =
⊕

n≥0 TCHn(X). Let A(X) =
⊕

q CH
q(X) be the ordinary

Chow ring of X. As an immediate consequence of Theorem 8.16, we have :

Corollary 8.17. For X as above, there is a wedge product structure on TCH(X)

TCH(X)⊗A(X)TCH(X)
∧−→ TCH(X),

that makes TCH(X) a graded-commutative algebra.

Proof. This follows immediately from Theorem 8.16 once we know that the pre-
wedge product in (8.13) is bilinear over the ring A(X), where the A(X)-module
structure on TCH(X) is given by Theorem 3.1. But this can be easily checked
from the construction of the shuffle product in (8.13). �

As another consequence of Theorem 8.16, we get the following result which was
widely expected in view of the belief that the additive higher Chow groups compute
the relative K-theory of the infinitesimal thickenings of smooth varieties.

Corollary 8.18. Let X be a smooth projective variety over a field k such that
char(k) 6= 2. Then for any q, n,m ≥ 1, the group TCHq(X,n;m) is a Wm(k)-
module, where Wm(k) is the ring of generalized Witt-vectors of length m over k.
In particular, TCHq(X,n;m) is naturally a k-vector space if char(k) = 0.

Proof. The follows immediately from Theorem 8.16 by considering the composite
map

TCH1(k, 1;m)⊗Z TCHq(X,n;m)
p∗⊗Id

//

,,XXXXXXXXXXXXXXXXXXXXXXXX
TCH1(X, 1;m)⊗Z TCHq(X,n;m)

∧
��

TCHq(X,n;m),

where p : X → Spec(k) is the structure map, and using the isomorphism Wm(k)
∼=−→

TCH1(k, 1;m) (cf. [21]). That this gives a module structure, also follows from
Theorem 8.16. In characteristic zero, Wm(k) is itself a k-module. �

9. Differential operator on additive higher Chow groups

We have shown in Section 8 that the additive higher Chow groups of a smooth
projective variety have a structure of naturally defined commutative graded alge-
bra. Our main goal in the remaining part of this paper is to show that these are
also equipped with differential operators, one of which turns this algebra into a
differential graded algebra. We construct one of these differential operators in this
section.

Let X be a smooth projective variety. Let G×m denote the variety Gm\{1}. We
have natural inclusions of open sets G×m ↪→ � ↪→ P1. For n,m ≥ 1, define the map

(9.1) φn : X ×G×m ×�n−1 → X ×Gm ×�n
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(x, t, y1, · · · , yn−1) 7→ (x, t, t−1, y1, · · · , yn−1).

Note that φn is not a closed immersion. Rather, it is the composite of the closed
immersion X×G×m×�n−1 ↪→ X×G×m×G×m×�n−1 followed by the open immersion
X ×G×m ×G×m ×�n−1 ↪→ X ×Gm ×�n. For once and all, we fix the coordinates
(t, y1, · · · , yn) of Gm ×�n ⊂ P1 × (P1)

n
. For any irreducible cycle Z ⊂ X ×Gm ×

�n−1, let Z× denote its restriction to the open set X × G×m × �n−1. Our first
observation is the following.

Lemma 9.1. For any irreducible admissible cycle Z ∈ Tzq(X,n;m), φn(Z×) is
closed in X ×Gm ×�n.

Proof. We look at the Zariski closure W := φn(Z×) of φn(Z×) in the bigger space
X × Gm × (P1)

n
, and see what happens. The image of Z× is clearly closed in

X ×G×m ×G×m ×�n−1.
Hence W\φn(Z×) must be contained in {t = 1}∪ {y1 = 1}. By the definition of

φn, if a point in W\φn(Z×) intersects {t = 1}, then it must also intersect {y1 = 1}
in X × Gm × (P1)

n
. Hence W\φn(Z×) is in fact contained in {t = 1} ∩ {y1 = 1}

in X ×Gm× (P1)n. In particular, W\φn(Z×) cannot intersect with X ×Gm×�n.
Hence if W ′ is the Zariski closure of φn(Z×) in X × Gm × �n, then W ′\φn(Z×),
which is a subset of W\φn(Z×), does not intersect X × Gm × �n, either. This
shows that W ′ = φn(Z×). Hence, φn(Z×) is closed. �

We shall often write the morphisms such as φn in the sequel simply as rational
maps on the ambient space and also write φn(Z×) as φn(Z).

Lemma 9.2. For Z as in Lemma 9.1, the closed subvariety V := φn(Z×) satisfies
the modulus condition.

Proof. Consider the following commutative diagram.

(9.2) Z
N

fφn
//

��

f

��

V
N

��

g

��

Z //

��

V

��

X × P1 × (P1)
n−1

φn

// X × P1 × (P1)
n

Here φn(x, t, y1, · · · , yn−1) = (x, t, t−1, y1, · · · , yn−1) is the natural extension of φn.

Note also that φ̃n is induced by the dominant map Z× → V , which in turn gives

the map Z → V as φn is closed. In particular, φ̃n is projective and surjective.
Next, it is easy to check from the description of φn that φn

∗
(Fn+1,0) = Fn,0 and

φn
∗
(F 1

n+1,i) = F 1
n,i−1 for i ≥ 2. In particular, the modulus condition Mssup for Z

implies that

φ̃n
∗
◦ g∗[F 1

n+1,i+1 − (m+ 1)Fn+1,0] = f ∗ ◦ φn
∗
[F 1
n+1,i+1 − (m+ 1)Fn+1,0]
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= f ∗[F 1
n,i − (m+ 1)Fn,0] ≥ 0

for some 1 ≤ i ≤ n − 1. We conclude from the surjectivity of φ̃n and from an
easy variant of Proposition 5.2 that g∗[F 1

n+1,i+1 − (m + 1)Fn+1,0] ≥ 0 for some
1 ≤ i ≤ n− 1, which is the Mssup condition for V .

If Z satisfies the modulus condition Msum, then following the same argument as
above, we get

φ̃n
∗
◦ g∗[F 1

n+1 − (m+ 1)Fn+1,0]

≥

(
n∑
i=1

φ̃n
∗
◦ g∗[F 1

n+1,i]

)
− φ̃n

∗
◦ g∗[(m+ 1)Fn+1,0]

=

(
n∑
i=2

f ∗ ◦ φn
∗
[F 1
n+1,i]

)
− f ∗ ◦ φn

∗
[(m+ 1)Fn+1,0]

= f ∗[F 1
n − (m+ 1)Fn,0] ≥ 0.

We again conclude from the surjectivity of φ̃n and from an easy variant of Propo-
sition 5.2 that g∗[F 1

n+1 − (m + 1)Fn+1,0] ≥ 0. This shows the modulus condition
Msum for V . �

Proposition 9.3. For any irreducible admissible cycle Z ∈ Tzq(X,n;m), φn(Z×)
defines an admissible irreducible cycle in Tzq+1(X,n + 1;m), that we denote by
δ(Z). Furthermore, δ and ∂ satisfy the relation ∂δ + δ∂ = 0.

Proof. We first prove the following.
Claim : (1) ∂εn+1,1 ◦ φn = 0 for ε = 0,∞.
(2) ∂εn+1,i ◦ φn = φn−1 ◦ ∂εn,i−1 for i ≥ 2 and ε = 0,∞.

Here ∂εn+1,i is the i-th face ∂εi on Bn+1. It is easy to see from the definition of
φn that φn(Z) intersects {y1 = 1} if and only if it intersects {t = 1}. This clearly
implies (1).

For (2), we can again observe from the definition of φn that it just shifts the
coordinates of �n−1 by one. In particular, for i ≥ 2 and ε = 0,∞, the diagram

(9.3) G×m ×�n−2
ιεi−1
//

φn−1

��

G×m ×�n−1

φn
��

Gm ×�n−1
ιεi

// Gm ×�n

is Cartesian. Hence we have for i ≥ 2,

∂εn+1,i ◦ φn(Z×) = ∂εn+1,i

(
φ−1
n (F ε

n+1,i) · Z×
)

= φn−1

(
F ε
n,i−1 · Z×

)
= φn−1

(
(F ε

n,i−1 · Z)×
)

= φn−1

((
∂εn,i−1(Z)

)×)
.

This proves the Claim.
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Using the Claim and the proper intersection property of Z, we see immediately
that δ(Z) has proper intersections with faces. We also conclude from Lemma 9.2
that δ(Z) satisfies the modulus condition. Since δ does not change the dimension,
we have shown that δ(Z) is in Tzq+1(X,n+ 1;m).

Finally, if we denote the operator δ at the level n of Tzq(X, •;m) by δn, then we
have

∂ ◦ δn(Z) =
n∑
i=1

(−1)i[∂∞n+1,i ◦ δn(Z)− ∂0
n+1,i ◦ δn(Z)]

=
n∑
i=2

(−1)i[δn−1 ◦ ∂∞n,i−1(Z)− δn−1 ◦ ∂0
n,i−1(Z)]

= −

(
n−1∑
i=1

(−1)i[δn−1 ◦ ∂∞n,i(Z)− δn−1 ◦ ∂0
n,i(Z)]

)

= −δn−1

(
n−1∑
i=1

(−1)i[∂∞n,i(Z)− ∂0
n,i(Z)]

)
= −δn−1 ◦ ∂(Z),

where the second equality follows from the above Claim. This proves the proposi-
tion. �

Corollary 9.4. For every q ≥ 1, δ defines a chain map

δ : Tzq(X, •;m)→ Tzq+1(X, •;m)[1].

Proof. For an irreducible admissible cycle Z ∈ Tzq(X,n;m), we define δ(Z) as in
Proposition 9.3 and then extend linearly to Tzq(X,n;m). It is clear from (9.1) that
δ preserves the degenerate cycles. Now the corollary follows from Proposition 9.3.

�

9.1. Computation of δ2. Our next goal is show that δ2 is zero to make it into
a differential operator on the additive higher Chow groups. We achieve this by
explicitly constructing certain admissible cycles which bound δ2(Z) for any irre-
ducible admissible cycle Z. We first define certain 2-cycles in z2(Gm, 3) which are
all two dimensional analogues of variants of B. Totaro’s 1-cycles in [22]. For any
general point t ∈ Gm, the parameter u will always denote t−1 in this part of the
section.

For 1 ≤ j ≤ 4, let Γ1
j ⊂ Gm × �3 be the the 2-cycles defined by the rational

maps ψ1
j : Gm ×�→ Gm ×�3 given as follows:

(9.4)

ψ1
1(t, x) =

(
t, u, x, (1−u)x−(1−u)/(1−t)

x−(1−u)/(1−t)

)
ψ1

2(t, x) =
(
t, u, x, (1−u)x−1

x−1

)
ψ1

3(t, x) =
(
t, x, ux−1

x−1
, 1− u

)
ψ1

4(t, x) =
(
t, x, 1− x, u−x

1−x

)
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for t ∈ Gm\{1} and x ∈ �\{0}. We similarly define the 2-cycles Γ2
j ⊂ Gm × �3

given by the rational maps

(9.5)

ψ2
1(t, x) =

(
t, u2, x, (1−u2)x−(1−u2)/(1−t2)

x−(1−u2)/(1−t2)

)
ψ2

2(t, x) =
(
t, u2, x, (1−u2)x−1

x−1

)
ψ2

3(t, x) =
(
t, x, u

2x−1
x−1

, 1− u2
)

ψ2
4(t, x) =

(
t, x, 1− x, u2−x

1−x

)
ψ2

5(t, x) =
(
t, x, ux−u

2

x−u2 ,−u2
)

ψ2
6(t, x) =

(
t, u, x, ux+u2

x+u2

)
for t ∈ Gm\{1,−1} and x ∈ �\{0}.

For an irreducible 1-cycle α ⊂ Gm × �2 which is admissible and defined by a
rational map

(9.6) φ : Gm → Gm ×�2

φ(t) = (φ(t)(0), φ(t)(1), φ(t)(2)),

we shall often write α by the parametrization (φ(t)(0), φ(t)(1), φ(t)(2)) to simplify
the notations.

It is now easy to check from the definitions that all Γlj are closed in Gm × �3

and they in fact define admissible cycles in z2(Gm, 3) (cf. Lemma 9.1). Moreover,
one can also check in a straightforward way (or using the computations in [22,
Section 2]) that these cycles have the following boundaries:

(9.7)

∂Γl1 =
(
t, ul, 1−ul

1−tl

)
−
(
t, ul, 1− ul

)
−
(
t, u, 1

1−tl

)
∂Γl2 =

(
t, ul, 1− tl

)
−
(
t, ul, 1

1−tl

)
∂Γl3 =

(
t, ul, 1− tl

)
−
(
t, tl, 1− tl

)
∂Γl4 =

(
t, ul, 1− ul

)
∂Γ2

5 = 2 (t, u,−u2)− (t, u2,−u2)
∂Γ2

6 = (t, u,−u2)− (t, u, u)− (t, u,−u)

Since u = t−1, note that

(9.8)
1− ul

1− tl
=

1− t−l

1− tl
=
tl − 1

1− tl
· t−l = −t−l = −ul.

Hence, we have (
t, ul,−ul

)
=
(
t, ul, (1− ul)/(1− tl)

)
.

Using (9.7) together with this, we see at once that for l = 1, 2,

(9.9)
(
t, ul,−ul

)
= ∂Γl1 − ∂Γl2 − ∂Γl3 + 2Γl4.

We also obtain from (9.7) that

(9.10) (t, u2,−u2) = 2(t, u, u)− ∂Γ2
5 + 2Γ2

6 + 2(t, u,−u).



MOVING LEMMA FOR ADDITIVE CHOW GROUPS AND APPLICATIONS 47

Combining (9.9) and (9.10) together, we obtain that as an element of z2(Gm, 2),

(9.11)
2(t, u, u) = ∂Γ2

1 − ∂Γ2
2 − ∂Γ2

3 + 2∂Γ2
4 + ∂Γ2

5 − 2∂Γ2
6

−2(∂Γ1
1 − ∂Γ1

2 − ∂Γ1
3 + 2∂Γ1

4)
=: ∂Γ.

Let X be a smooth projective variety. For any admissible additive cycle Z ∈
Tzq(X,n;m), we can naturally consider it as a higher Chow cycle in zq(X×Gm, n−
1). For any Γlj ∈ z2(Gm, 3), we get the exterior product Z × Γlj ∈ zq+2(X ×Gm ×
Gm, n+2). Moreover, it also follows from the definition of these cycles that Z×Γlj
intersects X × Gm properly under the diagonal embedding ∆Gm : X × Gm →
X ×Gm ×Gm given by (x, t) 7→ (x, t, t). Since X is smooth, we get the pull-back
cycle Z ? Γlj = ∆∗Gm(Z × Γlj) ∈ zq+2(X ×Gm, n+ 2).

Lemma 9.5. The cycle Z?Γlj lies in Tzq+2(X,n+3;m) under the natural inclusion

Tzq+2(X,n+ 3;m) ↪→ zq+2(X ×Gm, n+ 2).

Proof. We only need to show that Z ?Γlj satisfies the modulus condition. For this,

we observe that Z ? Γlj is the closure of image of Z ′ = � × Z under the rational
map

(9.12) Ψl
j : X ×Gm ×�n → X ×Gm ×�n+2

Ψl
j(x, t, y, y1, · · · , yn−1) = (x, ψlj(0), ψlj(1), ψlj(2), ψlj(3), y1, · · · , yn−1)

in the notation of (9.6). We now follow the proof of Lemma 9.2 to prove the

modulus condition for Z ′. Let V ′ = Z ? Γlj = Ψl
j(Z

′). We consider the following
commutative diagram.

(9.13) Z
N × P1

fΨlj
//

f ′

��

V
′N

g′

��

X × P1 × P1 × (P1)
n−1

Ψlj

// X × P1 × (P1)
n+2

Here f ′ = f × Id, where f : Z
N → X × P1 × (P1)

n−1
is the normalization map for

Z as in the Diagram (9.2). Note that the map Ψl
j is defined since all the rational

maps ψlj naturally extend to morphisms ψlj : P1 × P1 → P1 × (P1)
3
.

If Z satisfies the modulus condition Mssup, then there is some 1 ≤ i ≤ n − 1

such that [f ∗(yi = 1) − (m + 1)f ∗(t = 0)] ≥ 0 on Z
N

. Since f ′ is identity on

P1, this implies that [f ′∗(yi = 1) − (m + 1)f ′∗(t = 0)] ≥ 0 on Z
N

for some

2 ≤ i ≤ n. Since Ψl
j is identity on the last (n − 1) copies of P1, we conclude

that f ′∗ ◦ Ψl
j

∗
[F 1
n+3,i − (m + 1)Fn+3,0] ≥ 0 for some 4 ≤ i ≤ n + 2, which in turn

gives Ψ̃l
j

∗
◦ g′∗[F 1

n+3,i − (m+ 1)Fn+3,0] ≥ 0 on Z
N × P1. Since Ψ̃l

j is projective and
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surjective, we conclude from Proposition 5.2 that g′∗[F 1
n+3,i − (m + 1)Fn+3,0] ≥ 0

for some 4 ≤ i ≤ n+ 2. This prove the modulus condition Mssup for Z ? Γlj.
If Z satisfies the modulus condition Msum, then we use the same argument as

above plus the proof of the Msum part of Lemma 9.2 to complete the proof of the
lemma. �

Our main interest about δ2 is the following.

Proposition 9.6. Assume that char(k) 6= 2 and let α ∈ Tzq(X,n;m) be a cycle
such that ∂(α) = 0. Then δ2(α) = 0 as a homology class in TCHq+2(X,n+ 2;m).
In particular, δ descends to a natural map of additive higher Chow groups δ :
TCHq(X, •;m)→ TCHq+1(X, •;m)[1] such that δ2 = 0.

Proof. The last part of the proposition follows from Corollary 9.4 once we prove
the first part. Since δ2 is equal to a boundary in Tzq(X, •;m) if and only if it is a
boundary of an admissible additive cycle in zq(X ×Gm, • − 1), we can work with
the latter complexes. We begin with the following.
Claim : For any α ∈ Tzq(X,n;m) and Γ as in (9.11), one has

∂(α× Γ) = α× ∂Γ− ∂α× Γ

in zq+2(X ×Gm ×Gm, n+ 2).
This is an elementary computation. Since Γ is a Z-linear combination of Γlj’s, it

suffices to prove the claim for each Γlj. We can further assume that α is represented
by an irreducible cycle Z. Then we note that for ε ∈ {0,∞}, l ∈ {1, 2},

∂εi (Z × Γlj) =

{
Z × ∂εiΓlj if 1 ≤ i ≤ 3
∂εi−3(Z)× Γlj if 4 ≤ i ≤ n+ 2.

This in turn gives

∂(Z × Γlj) =
n+2∑
i=1

(−1)i[∂∞i (Z × Γlj)− ∂0
i (Z × Γlj)]

= Z ×

{
3∑
i=1

(−1)i[∂∞i (Γlj)− ∂0
i (Γ

l
j)]

}

+

{
n+2∑
i=4

(−1)i[∂∞i−3(Z)− ∂0
i−3(Z)]

}
× Γlj

= Z × ∂(Γlj) +

{
n+2∑
i=4

(−1)i[∂∞i−3(Z)− ∂0
i−3(Z)]

}
× Γlj

= Z × ∂(Γlj) +

{
n−1∑
i=1

(−1)i+3[∂∞i (Z)− ∂0
i (Z)]

}
× Γlj

= Z × ∂(Γlj)− ∂Z × Γlj.

This proves the claim.
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Next, we see from the definition of φn in (9.1) that for any irreducible admissible
cycle Z ∈ Tzq(X,n;m), δ2(Z) is just the image of Z under the rational map

(9.14) X ×Gm ×�n−1 → X ×Gm ×�n+1

(x, t, y1, · · · , yn−1) 7→ (x, t, t−1, t−1, y1, · · · , yn−1)

= (x, t, u, u, y1, · · · , yn−1).

In particular, we see from (9.12) that δ2(Z) is the cycle Z?(t, u, u) = ∆∗Gm (Z × (t, u, u)).
Hence for any α ∈ Tzq(X,n;m), we have δ2(α) = α ? (t, u, u) as an element of
zq+2(X ×Gm, n+ 1). Since the diagram

Gm ×�n+1
ιεi

//

∆Gm
��

Gm ×�n+2

∆Gm
��

Gm ×Gm ×�n+1
ιεi

// Gm ×Gm ×�n+2

is Cartesian, we see in zq+2(X × Gm, n + 1) that for any α ∈ Tzq(X,n;m) with
∂(α) = 0, we have

2δ2(α) = 2α ? (t, u, u)
= α ? 2(t, u, u)
= α ? ∂Γ (by (9.11))
= ∆∗Gm (α× ∂Γ)
= ∆∗Gm (α× ∂Γ− ∂α× Γ)
= ∆∗Gm (∂(α× Γ)) (by the Claim)
= ∂

(
∆∗Gm(α× Γ)

)
= ∂(α ? Γ).

Since α ? Γ ∈ Tzq+2(X,n+ 3;m) by Lemma 9.5, we conclude that 2δ2(α) = 0 as a
class in TCHq+2(X,n+ 2,m). Since char(k) 6= 2, we conclude from Corollary 8.18
that the homology class of δ2(α) is zero in TCHq+2(X,n+ 2,m). �

The following is the main result of this section.

Theorem 9.7. Let X be a smooth projective variety over a field k such that
char(k) 6= 2. Then the additive higher Chow groups (TCH(X),∧) is a graded-
commutative algebra which is equipped with a differential operator δ of degree one
satisfying δ2 = 0. Moreover, this differential operator commutes with the pull-back
and push-forward maps of additive higher Chow groups.

Proof. It follows directly from Corollary 8.17 and Proposition 9.6. The commuta-
tivity of δ with the pull-back and push-forward maps can be directly checked from
its definition. �

Remark 9.8. It seems that the assumption char(k) 6= 2 in Corollary 8.18 and
Theorem 9.7 is not serious and can be removed using the infinite pro-l extension
of the field for l 6= 2. We do not go into this here.
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10. Differential operator and Leibniz rule

In this section we introduce another differential operator on the additive cycle
complexes. This differential is an analogue of the Connes’ boundary operator in
the theory of Hochschild and cyclic homology (cf. [17, Chapter 2]). We shall
show that this satisfies the Leibniz rule for the wedge product on the admissible
cycle classes. We shall comment about the relation between the two differential
operators towards the end of this section.

For 1 ≤ i ≤ n, let σi be the permutation

σi(j) =

 i if j = 1
j − 1 if 2 ≤ j ≤ i
j if j > i.

Let δi : X ×Bn → X ×Bn+1 be the rational map φin = σi ◦φn, where φn is defined
in (9.1). In particular, we have φ1

n = φn. Since σi defines an automorphism of
X ×Bn which preserves the modulus condition and proper intersection, it follows
from Proposition 9.3 that for any admissible cycle Z ∈ Tzq(X,n;m), V = φin(Z×)
defines an admissible cycle δi(Z) = V ∈ Tzq+1(X,n+ 1;m). Thus δi = σ∗i ◦ δ. We
put

(10.1) δalt =
n∑
i=1

(−1)iδi : Tzq(X,n;m)→ Tzq+1(X,n+ 1;m).

These δi’s satisfy the following identities.

Lemma 10.1. For i, j ∈ {1, · · · , n}, we have

(10.2)

{
δiδj = δj+1δi, if i ≤ j,
δiδj = δjδi−1, if i > j.

Proof. This is obvious from the definition of δi’s. �

Lemma 10.2. We have δ2
alt = 0.

Proof. Indeed δ2
alt is,(

n+1∑
i=1

(−1)iδi

)(
n∑
j=1

(−1)jδj

)
=
∑
i≤j

(−1)i+jδiδj +
∑
i≥j+1

(−1)i+1δiδj

=
∑
i≤j

(−1)i+1δiδj +
∑
i≥j+1

(−1)i+jδjδi−1.

For the right hand side, use the substitution i− 1 = j′ and j = i′ so that we have

δ2
alt =

∑
i≤j

(−1)i+jδiδj +
∑
i′≤j′

(−1)i
′+j′+1δi′δj′ = 0.

�
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One major drawback of δalt is that unlike δ = δ1, it does not have good com-
mutativity (or anti-commutativity) relations with the boundary operator ∂ of the
additive cycle complex. We shall show in the next section that δalt still defines an
operator on the homology groups. At this stage, we note that δalt and ∂ satisfy
the following properties.

Lemma 10.3. The following identities hold, where ε ∈ {0,∞}:

(10.3)

 ∂εi δk = δk−1∂
ε
i , if i < k,

∂εi δk = 0, if i = k,
∂εi δk = δk∂

ε
i−1, if i > k.

Equivalently,

(10.4)

{
δk∂

ε
i = ∂εi+1δk, if k ≤ i,

δk∂
ε
i = ∂εi δk+1, if k ≥ i.

In particular, ∂εi+1δi = ∂εi δi+1.

Proof. This is straightforward, while it takes some patience to keep track of the
indices correctly. �

We will come back to this issue about the interaction of δalt with ∂ in the next
section. See Lemma 11.7 and Question 11.8.

10.0.1. Leibniz rule. We now show that the differential δalt is in fact a derivation
for the wedge product on the additive cycle complex. We first define a new operator
on a pair of additive cycles which is the cycle theoretic analog of the cyclic shuffle
product in the Hochschild complex in [17, Section 4.3.2]. Recall that this cyclic
shuffle product is used to show that the Conne’s boundary operator is a derivation
for the wedge product on the Hochschild homology. We prove here the analogous
statement for the additive higher Chow groups.

Consider the rational map

(10.5) µ′ : X ×X ×Gm ×Gm ×�n1+n2−2 ×�→ X ×X ×Gm ×�n1+n2

µ′ (x, t1, t2, y1, · · · , yn1+n2−2, y) =

(
x, t1t2, y,

t1y − 1

t1t2y − 1
, y1, · · · , yn1+n2−2

)
.

For two irreducible admissible cycles Zi ∈ Tzqi(X,ni,m) for i = 1, 2, let Z1×′Z2

be the closure of µ′ ((Z1 × Z2)×�) in X × X × Gm × �n1+n2 , where we omit a
suitable transposition from our notations. As before, we put n = n1 + n2 − 1 and
q = q1 + q2 − 1.

Proposition 10.4. Z1×′Z2 is an admissible cycle in Tzq(X ×X,n+ 2;m).

Proof. We first prove the modulus condition for Z = Z1×′Z2. We consider the
commutative diagram

(10.6) X ×X ×Gm ×Gm ×�n1+n2−2 ×�
µ′

//

��

X ×X ×Gm ×�n1+n2

��

X ×X ×Gm ×Gm ×�n1+n2−2
µ

// X ×X ×Gm ×�n1+n2−2,
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where the vertical arrows are the natural projections. In particular, we get the
map Z → µ∗(Z1 × Z2) under the projection map. Let Z and µ∗(Z1 × Z2) denote

the closures of Z and µ∗(Z1×Z2) in X × B̂n+2 and X × B̂n respectively. Thus we
get a commutative diagram

(10.7) Z //

��

X ×X × B̂n+2

p

��

µ∗(Z1 × Z2) // X ×X × B̂n.

We have shown in Corollary 8.5 that µ∗(Z1 × Z2) satisfies the modulus condition.
Since p∗(F 1

n,i) = F 1
n+2,i and p∗(Fn,0) = Fn+2,0, we see that the modulus condition

for µ∗(Z1 × Z2) implies the same for p∗(µ∗(Z1 × Z2)). The modulus condition for
Z now follows from Proposition 2.4.

Now we compute the various boundaries of Z. It is easy to see from (10.5) that

∂0
1(Z) = 0, ∂∞1 (Z) = σn1 · (µ∗ (Z1 × δ(Z2))) ,

∂0
2(Z) = µ∗ (δ(Z1)× Z2) , ∂∞2 (Z) = δ (µ∗(Z1 × Z2)) .

For 3 ≤ i ≤ n+ 1, we have

∂εi (Z) =

{
∂εi−2(Z1)×′Z2 if 3 ≤ i ≤ n1 + 1
Z1×′∂εi−n1−1(Z1) if n1 + 2 ≤ i ≤ n+ 1.

Since Zi’s are admissible cycles, the above automatically imply the proper inter-
section property of Z. �

Using Proposition 10.4, we can define the our cyclic shuffle product as

(10.8) Z1∧̄′Z2 :=
∑

ν∈Perm(1,n1−1,n2−1)

sgn(ν)ν · (Z1 ×′ Z2) ∈ Tzq+1(X ×X,n+ 2;m),

where the permutations ν ∈ Perm(1,n1−1,n2−1) act on the given set of n objects
{(1, 2), 3, · · · , n + 1} in the obvious way, treating the element (1, 2) as a single
object. This induces the action ν · (ξ ×′ η). We extend this bilinearly to get the
cyclic shuffle product

(10.9) Tzq1(X,n1;m)⊗ Tzq2(X,n2;m)
∧̄′−→ Tzq+1(X ×X,n+ 2;m).

Proposition 10.5 (Leibniz rule). Let ξ ∈ Tzq1(X,n1;m), η ∈ Tzq2(X,n2;m).
Then, in the group Tzq+1(X ×X,n+ 1;m), we have

(10.10) δalt(ξ∧̄η)− (δaltξ)∧̄η − (−1)n1−1ξ∧̄(δaltη)

= ∂(ξ∧̄′η)− (∂ξ)∧̄′η − (−1)n1−1ξ∧̄′(∂η),

where n = n1 + n2 − 1, q = q1 + q2 − 1.
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Proof. It follows from Proposition 10.4 that

(10.11)

∂ (ξ ×′ η) =
n+1∑
i=1

(−1)i(∂∞i − ∂0
i ) (ξ ×′ η)

= δ (µ∗(ξ × η))− [σn1 · (µ∗ (ξ × δη)) + µ∗ (δξ × η)]

+
n1+1∑
i=3

(−1)i{(∂∞i−2 − ∂0
i−2)(ξ)}×′η

+
n+1∑

i=n1+2

(−1)iξ×′{(∂∞i−n1−1 − ∂0
i−n1−1)(η)}

= δ (µ∗(ξ × η))− [σn1 · (µ∗ (ξ × δη)) + µ∗ (δξ × η)]
+∂ξ×′η + (−1)n1−1ξ×′∂η.

In particular, we have

(10.12) δ (µ∗(ξ × η))− µ∗ (δξ × η)− σn1 · (µ∗ (ξ × δη))

= ∂ (ξ ×′ η)− ∂ξ×′η − (−1)n1−1ξ×′∂η.

Since the desired identity (10.10) of the proposition and (10.12) differ only by
the action of various permutations, it is now enough to show that the identity
holds on the coordinates of X ×Bn+2.

One ingredient in the proof is the application of Proposition 8.6 and Lemma 8.11
to the triple shuffles Perm(1,r,s). Observe that the map δalt can be written as a sum
over the set Perm(1,n) of double shuffles. Indeed, for the coordinate (t, y1, · · · , yn),
we have

δalt(t, y1, · · · , yn) =
n+1∑
i=1

(−1)i(t, y1, · · · , yi−1,
1

t︸︷︷︸
ith

, yi, · · · , yn)

= −
∑

τ∈Perm(1,n)

(sgn(τ))τ ·
(
t,

1

t
, y1, · · · , yn

)
.

We first compute the term on the left hand side of the identity (10.10) of the
proposition on the level the coordinates of Bn1 , Bn2 . Since the variety X doesn’t
play a role in the calculation, we shrink points of X from our notations. Let
ξ = (t1, y1, · · · , yn1−1), η = (t2, yn1 , · · · , yn−1). We then have{

ξ × η = (t1, t2, y1, · · · , yn−1)
ξ ×′ η = Ct1,t2 × (y1, · · · , yn−1).

Here Ct1,t2 := {t1}×′{t2} ⊂ Gm ×�2 is the parameterized curve

Ct1,t2 =

{(
t1t2, y,

t2y − 1

t1t2y − 1

)
|y ∈ k

}
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for any given points t1, t2 ∈ Gm. As shown before, this is an admissible 1-cycle
and its boundary is given by (cf. [19, Lemma 2.5])

(10.13) ∂Ct1,t2 =

(
t1t2,

1

t1

)
+

(
t1t2,

1

t2

)
−
(
t1t2,

1

t1t2

)
.

This property will play an important role in the calculation.
To simplify the notations, we introduce new indices r, s, u by letting r := n1 −

1, s := n2 − 1, and u := n− 1 = r + s.
Then, by a direct calculation we have for the first term of (10.10),

δalt(ξ ∧ η)

= δalt

 ∑
σ∈Perm(r,s)

(sgn(σ))σ · (µ∗ (ξ × η))


= δalt

 ∑
σ∈Perm(r,s)

(sgn(σ))σ · (t1t2, y1, · · · , yu)


=

∑
σ∈Perm(r,s)

(sgn(σ))δalt(t1t2, yσ−1(1), · · · , yσ−1(u)))

= −
∑

σ∈Perm(r,s)

(sgn(σ))
∑

τ∈Perm(1,u)

(sgn(τ))τ · (xy, 1

t1t2
, yσ−1(1), · · · , yσ−1(u))

= −
∑

σ∈Perm(r,s)

(sgn(σ))
∑

τ∈Perm(1,u)

(sgn(τ))(στ · τ) · (t1t2,
1

t1t2
, y1, · · · , yu)

= −

 ∑
ν∈Perm(1,r,s)

(sgn(ν))ν

 · (t1t2, 1

t1t2
, y1, · · · , yu),

where στ and the last equality are from Lemma 8.11.
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The second term of (10.10) is,

(δaltξ) ∧ η

= µ

 ∑
σ∈Perm(r+1,s)

(sgn(σ))σ · ((δaltξ)× η)


= −µ∗

∑
σ∈Perm(r+1,s)

(sgn(σ))σ ·

 ∑
τ∈((1,r)

(sgn(τ))τ · (t1,
1

t1
, y1, · · · , yr)

× (t2, yr+1, · · · , yu)

= −

 ∑
σ∈Perm(r+1,s)

(sgn(σ))σ

 ·
 ∑
τ∈Perm(1,r)

(sgn(τ))(τ × Ids)

 · (t1t2, 1

t1
, y1, · · · , yu)

= −

 ∑
ν∈Perm(1,r,s)

(sgn(ν))ν

 · (t1t2, 1

t1
, y1, · · · , yu),

where the last equality follows from Proposition 8.6.
Before we compute the third term of (10.10), first note that

δalt(t2, yr+1, · · · , yn) =
u+1∑
i=r+1

(−1)i−r(t2, yr+1, · · · , yi+r−1,
1

t2︸︷︷︸
i+rth

, yi+r, · · · , yn)

= −(−1)r
∑

τ∈Perm(1,s)

(sgn(τ))τ · (t2,
1

t2
, yr+1, · · · , yu).
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Hence, for the third term of (10.10), we have

(−1)rξ ∧ (δaltη)

= −

 ∑
σ∈Perm(r,s+1)

(sgn(σ))σ

 ·
 ∑
τ∈Perm(1,s)

(sgn(τ))(Idr × τ)

 · (t1t2, 1

t2
, y1, · · · , yu)

= −

 ∑
ν∈Perm(1,r,s)

(sgn(ν))ν

 · (t1t2, 1

t2
, y1, · · · , yu),

where the last equality follows from Proposition 8.6.
Thus, the left hand side of the equation (10.10) is compactified into

(10.14) δalt(ξ ∧ η)− (δaltξ) ∧ η − (−1)rξ ∧ (δaltη)

= −
∑

ν∈Perm(1,r,s)

(sgn(ν))ν ·
(

(t1t2,
1

t1
) + (t1t2,

1

t2
)− (t1t2,

1

t1t2
)

)
× (y1, · · · , yu).

On the other hand, for the coordinate points, we have for the first term of the
right hand side of (10.10),

∂(ξ∧̄′η) = ∂

 ∑
ν∈Perm(1,r,s)

(sgn(ν))ν

 · Ct1,t2 × (y1, · · · , yu).(10.15)

Since we have by (10.13) the equation(
t1t2,

1

t1

)
+

(
t1t2,

1

t2

)
−
(
t1t2,

1

t1t2

)
= ∂Ct1,t2 ,

for each ν ∈ Perm(1,r,s), the four faces of ν · (ξ×′ η) in the sum (10.15) that interact
with Ct1,t2 , i.e., ∂εi with i ∈ ν(1, 2), cancel out the corresponding terms of (10.14).
This process cancels all terms in (10.14), thus all the terms of the left hand side of
(10.10). Hence, we need to see what happens for the remaining faces of (10.15).
But we have already seen in (10.11) that for any general admissible cycles ξ and
η,

n+1∑
i=3

(−1)i(∂∞i − ∂0
i )(ξ ×′ η) =

(
n1+1∑
i=3

(−1)i(∂∞i−2 − ∂0
i−2)ξ

)
×′ η

+ξ ×′
(

n+1∑
i=n1+2

(−1)i(∂∞i−n1−1 − ∂0
i−n1−1)η

)
= (∂ξ)×′ η + (−1)n1−1ξ ×′ (∂η).
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We apply this argument for the faces ∂εi with i 6∈ ν(1, 2) to each ν · (ξ ×′ η),
where ν ∈ Perm(1,r,s), and take the signed sum. This gives the remaining terms
(∂ξ)∧̄′η + (−1)n1−1ξ∧̄′(∂η) of the right hand side of (10.10). This completes the
proof of Proposition 10.5. �

11. Normalized additive cycle complex

We have seen in the previous section that the differential operator δalt on the
additive cycle complex has all the nice properties except that it does not commute
(or anti-commute) with the boundary map ∂. In this section, we rectify this
anomaly by introducing the normalized version of the additive cycle complex. This
is analogous to the similar construction of S. Bloch in [3, Theorem 4.4.2]. It turns
out that δalt indeed has good behaviors with respect to the boundary operator
of the normalized complex. Our final goal is then achieved by showing that the
homology of the normalized additive cycle complex does not change our additive
higher Chow groups. We begin with the following construction of M. Levine which
appeared in [15] to study Bloch’s higher Chow groups. This is essentially equivalent
to the method of S. Bloch in [3]. We suitably adapt this Levine’s construction to
the additive world in what follows next.

11.1. Homotopy variety. In the following construction, we shall make an iden-
tification between � and A1 via the map

(11.1) �→ A1; y 7→ 1/(1− y).

This gives the isomorphism (P1, {0, 1,∞}) ∼= (P1, {1,∞, 0}). The boundary map of
the corresponding cycle complex under this identification is given by

∑
i(−1)i(∂0

i −
∂1
i ). Let X be a smooth projective variety and let in : WX

n → X×Gm×�n+1×P1

be the closed subvariety defined by the equation

(11.2) t0(1− yn)(1− yn+1) = t0 − t1,
where (y1, · · · , yn) are the coordinates of �n and (t0 : t1) are the homogeneous
coordinates of P1. Let πn : WX

n → X ×Gm ×�n be the map defined by

(11.3) πn(x, t, y1, · · · , yn+1, (t0 : t1)) = (x, t, y1, · · · , yn−1, yn + yn+1 − ynyn+1).

Let
(
(u1

0 : u1
1), · · · , (un+1

0 : un+1
1 )

)
denote the homogeneous coordinate of (P1)

n+1
.

We identify �n+1 to the open subset of (P1)
n+1

given by
n+1∏
i=1

{ui0 6= 0}, and we

set yi = ui1/u
i
0, y = t1/t0. In terms of these homogeneous coordinates, the projec-

tivization WX
n of WX

n in X ×�× (P1)
n+1 × P1 is given by the equation

(11.4) t0(un0 − un1 )(un+1
0 − un+1

1 ) = un0u
n+1
0 (t0 − t1).

Let θn : X×�× (P1)
n+1×P1 → X×�× (P1)

n−1×P1 be the natural projection
map given by

(11.5) θn
(
x, t, (u1

0;u1
1), · · · , (un+1

0 : un+1
1 ), (t0 : t1)

)
=(

x, t, (u1
0;u1

1), · · · , (un−1
0 : un−1

1 ), (t0 : t1)
)
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and let θn be its restriction to the open set X ×Gm×�n+1×�. Here we identify
Gm as �\{1}. Let πn : WX

n → X × � × (P1)
n−1 × P1 be the restriction of θn to

WX
n .
Let pn : X ×Gm ×�n+1 × P1 → X ×Gm ×�n+1 be the natural projection.

Lemma 11.1. WX
n ∩ {t0 = 0} = ∅ and hence WX

n is in fact contained in the

open subset X × Gm × �n+1 × �. The variety WX
n (and hence WX

n ) is smooth.
Moreover, πn and πn are flat and surjective morphisms of relative dimension one.

Proof. The first assertion is immediate from the defining equation of WX
n . Using

this assertion, we can write the restriction of pn on WX
n as

WX
n ↪→ X ×Gm ×�n+1 ×�→ X ×Gm ×�n+1,

where the first inclusion is given by the equation y = yn + yn+1− ynyn+1. Since X
is smooth, it is now easy to see using the Jacobian criterion that WX

n is smooth
and the above composite map is an isomorphism. Furthermore, under this isomor-
phism, the map πn is just the projection (x, t, y1, · · · , yn, y) 7→ (x, t, y1, · · · , yn−1, y),
as can be checked from the equation of WX

n . This also shows that πn is in fact
smooth and surjective map of relative dimension one. To prove the smooth-
ness of WX

n , we can check it locally on an open set of points with coordinates(
x, t, (u1

0 : u1
1), · · · , (un+1

0 : un+1
1 ), (t0 : t1)

)
where either of uni , u

n+1
i , ti is non-zero

for i = 0, 1. In any such open set, WX
n has the equation of the form that defines

WX
n and hence is smooth. It is also easy to check using these local coordinates that

πn is of relative dimension one. Moreover, as θn is projective and πn is surjective,
we see that πn is projective and surjective. In particular, it is flat (cf. [11, Exercise
III-10.9]). This proves the lemma. �

Lemma 11.2. The diagram

(11.6) WX
n

in
//

πn
''PPPPPPPPPPPPPP X ×Gm ×�n+1 ×�

jn
//

θn

��

X ×�× (P1)
n+1 × P1

θn
��

X ×Gm ×�n

j′n

// X ×�× (P1)
n

commutes.

Proof. By Lemma 11.1, WX
n is contained in the open subset X × Gm × �n+1 ×

�, where it is given by the equation y = yn + yn+1 − ynyn+1. It is clear from
the definition of θn in (11.5) that the triangle on the left commutes. The right
square commutes by the definitions of θn and θn. Hence the outer trapezium also
commutes. �

Lemma 11.3. Let Z ⊂ X × Gm × �n be a closed subvariety which satisfies the
modulus condition Msum. Let Z ′ = (in)∗ (πn

∗(Z)). Then Z ′ also satisfies the
modulus condition Msum.
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Proof. Let Z and Z
′
denote the closures of Z and Z ′ in X×�×(P1)

n
and X×�×

(P1)
n+1× P1 respectively. Let Z

N
and Z

′N
denote the normalizations of Z and Z

′

respectively. Using Lemmas 11.1, 11.2 and the projectivity of the map θn, we see

that θn(Z
′
) = Z in the Diagram (11.6). Since WX

n smooth, we get the following
commutative diagram:

(11.7) Z
′N

g
//

f

��

ν′Z
--

WX
n in

//

πn ((PPPPPPPPPPPPPP X ×�× (P1)
n+1 × P1

θn
��

Z
N

νZ
// X ×�× (P1)

n
,

where f is the map of normal k-schemes induced by the surjective map Z
′ → Z.

As before, let F∞n+1,i denote the Cartier divisor on (P1)
n

defined by {yi = ∞} for

1 ≤ i ≤ n and we have similar Cartier divisors F∞n+2,i on (P1)
n+1

for 1 ≤ i ≤ n+ 1.

It is then easy to see from the defining equation of WX
n in (11.4) that

(11.8)

π∗n(F∞n+1,n) = i
∗
n(y =∞)

= i
∗
n(t0 = 0)

≤ i
∗
n[(un0 = 0) + (un+1

0 = 0)]

= i
∗
n[(yn =∞) + (yn+1 =∞)]

= i
∗
n[F∞n+2,n + F∞n+2,n+1].

Since Z
′N → WX

n is a map of normal k-schemes, and since θ
∗
n(F∞n+1,i) = F∞n+2,i for

1 ≤ i ≤ n− 1, we have

(11.9)

ν∗Z′ ◦ θ
∗
n(F∞n+1) =

n∑
i=1

ν∗Z′ ◦ θ
∗
n(F∞n+1,i)

= ν∗Z′ [
n−1∑
i=1

F∞n+2,i] + g∗ ◦ π∗n(F∞n+1,n)

≤ ν∗Z′ [
n−1∑
i=1

F∞n+2,i] + g∗ ◦ i∗n[F∞n+2,n + F∞n+2,n+1]

= ν∗Z′ [
n+1∑
i=1

F∞n+2,i]

= ν∗Z′(F
∞
n+2).

Now the modulus condition for Z implies that ν∗Z [(m+ 1)Fn+1,0] ≤ ν∗Z [F∞n+1] which
implies that f ∗ ◦ ν∗Z [(m + 1)Fn+1,0] ≤ f ∗ ◦ ν∗Z [F∞n+1]. This in turn implies that

ν∗Z′ ◦ θ
∗
n[(m + 1)Fn+1,0] ≤ ν∗Z′ ◦ θ

∗
n[F∞n+1]. Since θ

∗
n(Fn+1,0) = Fn+2,0, we conclude

from (11.9) that ν∗Z′ [(m+1)Fn+2,0] ≤ ν∗Z′ [F
∞
n+2] which proves the modulus condition

for Z ′. �
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For any closed subvariety Z ⊂ X ×Gm ×�n, let

(11.10) WX
n (Z) := (pn)∗ ◦ (in)∗ ◦ π

∗
n(Z).

Note that WX
n (Z) is a closed subvariety of X ×Gm ×�n+1 since pn is projective.

Lemma 11.4 (cf. [15]). For Z as above, one has
(1) WX

n (Z) · {yn = 0} = Z = WX
n (Z) · {yn+1 = 0}.

(2) Z ∈ zq(X ×Gm, n)⇒ WX
n (Z) ∈ zq(X ×Gm, n+ 1).

Proof. Let Z ′ = (in)∗ ◦ π∗n(Z). Let �i denote the ith factor of �n+1 in X ×Gm ×
�n+1 ×� in Diagram (11.6). Then we see from Diagram (11.6) that

(11.11) Z ′ = (Z×�n×�n+1) ·WX
n = (Z×�n×�n+1) ·{y = yn+yn+1−ynyn+1}.

Combining this with the equation of WX
n in (11.2), we see that

Z ′ · {yn = ε} = (Z ×�n ×�n+1) · {y = yn+1} for ε = 0, 1.

Thus we get

WX
n (Z) · {yn = 0} = pn(Z ′) · {yn = 0} = (pn)∗[(Z ×{0}×�n+1) · {y = yn+1}] = Z.

Using the same steps, we also see that

WX
n (Z) · {yn = 1} = (Z · {y = 1})×�.

Since Z ′ · {yn+1 = ε} = (Z ×�n×�n+1) · {y = yn}, the same calculation as before
shows that WX

n (Z) · {yn+1 = 0} = Z and WX
n (Z) · {yn+1 = 1} = (Z · {y = 1})×�.

This proves (1). This in particular shows that the intersection WX
n (Z) · {yi = ε}

is proper for i = n, n+ 1 and ε = 0, 1.
Now we calculate the other boundaries ofWX

n (Z). It follows directly from (11.11)
that for 1 ≤ i ≤ n − 1, one has WX

n (Z) · {yi = ε} = WX
n−1(Z · {yi = ε}). Since

πn−1 is flat of relative dimension one as shown in Lemma 11.1, we see that this
intersection is proper. This proves (2), thus the lemma. �

Proposition 11.5. For the modulus condition Msum, let Z ∈ Tzq(X,n+ 1;m) be
an irreducible admissible cycle. Then WX

n (Z) ∈ Tzq(X,n+ 2;m).

Proof. This follows by combining Lemmas 11.3 and 11.4. �

Using Proposition 11.5, we can define for every n ≥ 0, a group homomorphism

(11.12) WX
n : Tzq(X,n+ 1;m)sum → Tzq(X,n+ 2;m)sum

by extendingWX
n linearly. This homomorphism has the property that ∂0

i ◦WX
n = Id

for i = n, n+ 1 as shown in Lemma 11.4.
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11.2. Normalized additive cycle complex. We now define the normalized ver-
sion of our additive cycle complexes and study their properties. These complexes
are the additive analogues of the similar constructions of S. Bloch and M. Levine
[3, 15] for higher Chow groups. It turns out that the normalized additive cy-
cle complex has better properties. One expects that the resulting additive Chow
groups also form a kind of Witt complex so that all the expected maps from the
relative K-groups of the infinitesimal deformations of smooth schemes to the addi-
tive higher Chow groups actually factors through these normalized additive higher
Chow groups. Another outcome of using the normalized additive cycle complex is
the invention of the motivic version of the cycilc homology of A. Connes [17]. We
shall deal with this aspect in the end of this section.

Definition 11.6. Let X be a smooth projective variety and let M be any of the
modulus conditions Msum,Msup,Mssup. For n,m ≥ 1, let TzqN(X,n;m) be the
subgroup of Tzq(X,n;m) of cycles α such that ∂0

i (α) = 0 for 1 ≤ i ≤ n − 1 and
∂∞i (α) = 0 for 2 ≤ i ≤ n − 1. Using the simplicial structure of the additive cycle
complex, it easy to see that for α ∈ TzqN(X,n;m), one has ∂∞1 ◦∂∞1 (α) = 0. Writing
∂∞1 as ∂N , we thus get a subcomplex

(
TzqN(X, •;m), ∂N

)
of (Tzq(X, •;m), ∂). We

shall call TzqN(X, •;m) the “normalized additive cycle complex” for any given
modulus condition.

We define the normalized additive higher Chow groups ofX by TCHq
N(X,n;m) =

Hn (TzqN(X, •;m)).
The point of using this normalized complex is the following lemma regarding its

interaction with δalt in the previous section.

Lemma 11.7. (1) For all i ∈ {1, · · · , n}, we have δi(TzqN(X,n;m)) ⊂ Tzq+1
N (X,n+

1;m).
(2) For ∂N = ∂∞1 , we have δalt∂

N + ∂Nδalt = 0 on Tz∗N(X, •;m).

Proof. (1) follows immediately from (10.3). To prove (2), we have for any in
TzqN(X,n;m),

δalt∂
N = δalt∂

∞
1

=
n+1∑
i=1

(−1)iδi∂
∞
1

=
n+1∑
i=1

(−1)i∂∞1 δi+1

= ∂∞1

(
n+1∑
i=1

(−1)iδi+1

)
= −∂∞1 δ1 − ∂∞1

(
n+2∑
i=2

(−1)iδi

)
= −∂∞1

(
n+2∑
i=1

(−1)iδi

)
= −∂Nδalt,

where the third equality holds from (10.4) and the fifth one follows from (10.3).
This finishes the proof of (2). �
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It was shown in [3, Theorem 4.4.2] that the normalized cycle complex for the
usual higher Chow groups is quasi-isomorphic to the original cycle complex. This
prompts one to ask the following.

Question 11.8. Is the natural inclusion
(
TzqN(X, •;m), ∂N

)
↪→ (Tzq(X, •;m), ∂)

of complexes a quasi-isomorphism?

Our next goal is to show that the answer to this Question 11.8 is indeed affir-
mative for the modulus condition Msum. We also derive some crucial consequences
of this for the additive higher Chow groups. Although we can not prove this for
the other two modulus conditions at this moment for certain technical reasons, we
definitely expect this to be the case for all modulus conditions.

For n ≥ 1, let C(n − 1) = ⊕qTzq(X,n;m). Let D(n − 1) ⊂ C(n − 1) be the

subgroup of degenerate cycles. Let C(n−1)0 =
⋂n−1
i=1 ker(∂0

i ) ⊂ C(n−1). Note that⊕
n≥1C(n− 1)0 is a subcomplex of

⊕
n≥1C(n− 1) with respect to the boundary

map ∂ =
n−1∑
i=1

(−1)i∂∞i . We shall write this subcomplex as (C(∗), ∂).

Proposition 11.9. C(n− 1) = D(n− 1)⊕ C(n− 1)0. Thus, we can identify⊕
q

Tzq(X,n;m) =
⊕
q

Tzq(X,n;m)/Tzq(X,n;m)degn

with its subgroup C(n− 1)0 =
⋂n−1
i=1 ker(∂0

i ).

Proof. We first prove that C(n−1) = D(n−1)+C(n−1)0. Let z ∈ C(n−1), and
suppose that ∂0

r+1(z) = · · · = ∂0
n−1(z) = 0, to use a backward induction argument

on the subscripts. Let z′ := z − πr ◦ ∂0
r (z), where πr is the pull-back via the

projection (x, t, y1, · · · , yn−1) 7→ (x, t, y1, · · · , ŷi, · · · , yn−1). One easily checks that
∂jν ◦ πν = 1. Hence, ∂0

r (z
′) = ∂0

r (z)− ∂0
r (π ◦ ∂0

r (z)) = ∂0
r (z)− ∂0

r (z) = 0. For s > r,
one first easily sees that ∂kµ−1◦∂jν = ∂jν◦∂kµ and πν◦∂jµ−1 = ∂jµ◦πν for ν < µ from the
standard cubical identities. Hence, using these two and the induction hypothesis
that ∂0

s (z) = 0, we obtain ∂0
s (z
′) = ∂0

s (z)− ∂0
s (πr ◦ ∂0

r (z)) = 0− πr ◦ ∂0
s−1 ◦ ∂0

r (z) =
−πr∂0

r∂
0
s (z) = 0. Hence, by induction we may write z as a sum of elements in

D(n− 1) and C(n− 1)0.
To prove that the sum is direct, let r be the minimum such that there is a non-

zero z ∈ C(n− 1)0 with z =
∑r

i=1 πiwi for some wi. Since ∂0
r = 0 and ∂0

r ◦ πr = 1,
by applying ∂0

r to z, we obtain

wr = −
r−1∑
i=1

∂0
r ◦ πiwi = −

r−1∑
i=1

πi
(
∂0
r−1wi

)
,

where for the second equation we used the cubical identity πν ◦ ∂jµ−1 = ∂jµ ◦ πν for
ν < µ. Hence, by plugging this back into the expression of z, we have

z =
r−1∑
i=1

πiwi + πrwr =
r−1∑
i=1

πi
(
wi − πr−1 ◦ ∂0

r−1wi
)
,
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where for the second equation we used the cubical identity πν ◦ πµ−1 = πµ ◦ πν for
ν < µ. This contradicts the minimality of r. Hence the sum is direct. This proves
the proposition. �

Theorem 11.10. Let X be a smooth projective variety. Then for the modulus
condition Msum, the natural inclusion TzqN(X, •;m) ↪→ Tzq(X, •;m) of complexes
is a quasi-isomorphism.

Proof. In this proof, we again temporarily identify � with A1 via the isomorphism
of (11.1). Recall that this gives the isomorphism (P1, {0, 1,∞}) ∼= (P1, {1,∞, 0}).
Thus we need to show that the inclusion

(
TzqN(X, •;m), ∂N

)
↪→ (Tzq(X, •;m), ∂)

is a quasi-isomorphism, where ∂ =
∑n−1

i=1 (−1)i(∂0
i − ∂1

i ). We make the appropriate
identification for C(∗)0 as well.

Using Proposition 11.9, we only need to show that the inclusion TzqN(X, •;m) ↪→
C(∗)0 is a quasi-isomorphism. In particular, we can assume that for all cycles
α ∈ Tzq(X,n+ 1;m), one has ∂1

i (α) = 0 for 1 ≤ i ≤ n. For i ≥ 0, let

C(∗)0
i = {α ∈ C(∗)0|∂0

j (α) = 0 for j ≥ i+ 2}.

Let τj ∈ Permn be the permutation such that

τj(i) =

 i if i < j
i− 1 if i > j
n if i = j.

For any 0 ≤ i ≤ n and admissible cycle α ∈ Tzq(X,n+ 1;m), let

Hn
i (α) = (−1)n+1−iτn+1−i ·WX

n (α).

By Proposition 11.5, WX
n (α) ∈ Tzq(X,n + 2;m). Since τ clearly preserves the

admissibility, we get a homomorphism Hn
i : Tzq(X,n+ 1;m)→ Tzq(X,n+ 2;m).

Now we use the computations of the boundaries of WX
n (α) in Lemma 11.4 to see

that Hn
i restricts to a map

(11.13) Hn
i : C(∗)0

n → C(∗)0
n+1.

Define ψ0 : C(∗)0
n → C(∗)0

n by ψ0 = Id − (∂ ◦ H0 + H0 ◦ ∂) and we inductively
define ψi+1 = (Id− (∂ ◦Hn +Hn ◦ ∂)) ◦ ψi. In particular, we have

ψ := ψn = (Id− (∂ ◦Hn +Hn ◦ ∂)) ◦ · · · ◦ (Id− (∂ ◦H0 +H0 ◦ ∂)) ,

where ∂ =
∑

(−1)i∂0
i . Thus ψ defines an endomorphism of C(∗)0 which is ho-

motopic to identity. Furthermore, Lemma 11.4 implies that the restriction of ψ
on C(∗)0

0 = TzqN(X,n + 1;m) is identity. The proof of the theorem will now be
complete from the following.
Claim : ψi

(
C(∗)0

n−i−1

)
⊂ C(∗)0

n−i−2 for 0 ≤ i ≤ n− 2.
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We prove it for ψ0 and other cases are exactly similar and can be proved induc-
tively. We have

H0 ◦ ∂ = Hn−1
0 ◦ ∂

= (−1)nWX
n−1 ◦ ∂

= (−1)n
n−1∑
i=1

(−1)i[WX
n−1 ◦ ∂0

i ] + (−1)2n[WX
n−1 ◦ ∂0

n].

On the other hand, we have

∂ ◦H0 = ∂ ◦Hn
0

= (−1)n+1∂ ◦WX
n

= (−1)n+1
n+1∑
i=1

(−1)i∂0
i ◦WX

n

= (−1)n+1
n−1∑
i=1

(−1)i[∂0
i ◦WX

n ]

+(−1)2n+1∂0
i ◦WX

n + (−1)2n+2∂0
i ◦WX

n

= (−1)n+1
n−1∑
i=1

(−1)i[WX
n−1 ◦ ∂0

i ]

+(−1)2n+1id+ (−1)2n+2Id

= (−1)n+1
n−1∑
i=1

(−1)i[WX
n−1 ◦ ∂0

i ],

where the fifth equality follows from Lemma 11.4 and (11.12). Thus we get H0◦∂+
∂ ◦H0 = WX

n−1 ◦∂0
n. However, we see from Lemma 11.4 again that ∂0

n ◦WX
n−1 ◦∂0

n =
∂0
n. This shows that ψ0

(
C(∗)0

n−1

)
⊂ C(∗)0

n−2. This proves the claim and the
theorem. �

Although we are unable to prove Theorem 11.10 for the modulus conditions Msup

and Mssup in this paper, the following result gives a partial answer to Question 11.8
in these cases.

Theorem 11.11. Let X be a smooth projective variety over k. Then for any
modulus condition and for any n,m ≥ 1, the natural map TCHq

N(X,n;m) →
TCHq(X,n;m) is injective. In particular, the map TCHn

N(k, n;m)→ TCHn(k, n;m)
is an isomorphism.

Proof. Let X0 = X × Gm. We have seen before that forgetting the modulus
condition, one has a natural inclusion of cubical objects

(n 7→ (Tzq(X,n;m), ∂εi ))→
(
n 7→ (zq(X0, n), ∂εi )

)
,

where the right side is the cubical object for the higher Chow group. This induces
a natural inclusion of chain complexes iX : Tzq(X, •;m) ↪→ zq(X0, •) such that
a cycle z ∈ Tzq(X, •;m) is degenerate if and only if iX(z) ∈ zq(X0, •) is so.
Considering the normalized version of these complexes, we get a commutative
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diagram

(11.14) TzqN(X,n;m) //

��

zqN(X0, n− 1)

��

Tzq(X,n;m) // zq(X0, n− 1)

which is clearly Cartesian and all arrows are injective. Let

Tz
q
(X,n;m) = Image

(
zqN(X0, n− 1)⊕ Tzq(X,n;m)→ zq(X0, n− 1)

)
.

Then we get the exact sequence of complexes

0→ TzqN(X, •;m) // zqN(X0, •)⊕ Tzq(X, •;m) // Tz
q
(X, •;m)→ 0.

The theorem would follow if we show that the map

Hn

(
zqN(X0, •)

)
→ Hn

(
Tz

q
(X, •;m)

)
is injective for all n ≥ 1. For this, we consider the inclusions

zqN(X0, •) ↪→ Tz
q
(X, •;m) ↪→ zq(X0, •).

By [3, Theorem 4.4.2], the composite map is a quasi-isomorphism. Hence the map
Hn (zqN(X0, •)) → Hn

(
Tz

q
(X, •;m)

)
is in fact split injective. This finishes the

proof of the theorem.
To prove the isomorphism of the additive higher Chow groups of zero cycles,

we simply note that the inclusion map TznN(k, n;m) ↪→ Tzn(k, n;m) is in fact an
isomorphism and hence the map TCHn

N(k, n;m) → TCHn(k, n;m) is surjective
too. �

For our purposes, the following is the main application of Theorems 11.10
and 11.11.

Corollary 11.12. For the modulus condition Msum, the map δalt defines a homo-
morphism

δalt : TCHq(X,n;m)→ TCHq+1(X,n+ 1;m)

satisfying δ2
alt = 0.

For the modulus condition Mssup, δalt defines a homomorphism

δalt : TCHn(k, n;m)→ TCHn+1(k, n+ 1;m)

satisfying δ2
alt = 0.

Proof. This follows immediately by combining Lemmas 10.2, 10.3, Lemma 11.7,
and Theorem 11.10. The second statement about the additive zero cycles follows
in the same way, where we now use Theorem 11.11 in place of Theorem 11.10. �

We complete our study of CDGA structures on the additive higher Chow groups
with the following main result of this section.
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Theorem 11.13. Let X be a smooth projective variety over a field k. Then for
the modulus condition Msum, the additive higher Chow groups (TCH(X),∧, δalt)
form a graded-commutative differential graded algebra, where δalt is the graded
derivation for the wedge product ∧. This derivation commutes with the pull-back
and push-forward maps of additive higher Chow groups.

Proof. This follows directly from Corollary 8.17, Proposition 10.5 and Corollary 11.12.
The commutativity property of δalt with the pull-back and push-forward maps fol-
lows from the similar property of δ in Theorem 9.7. �

Remark 11.14. It follows from the above results that for the modulus condition
Msum, TCH(X) has two differentials, namely, δ of Theorem 9.7 and δalt of Theorem
11.13. But one can in fact show that the latter is just a finitely many copies
of the former. To see this, one needs to know that each σ ∈ Permn acts on
TCHq(X,n + 1,m) as sgn(σ) · Id. Using this, one can also see that while δ is
analogous to the exterior derivation of Kähler differentials, δalt corresponds to the
exterior derivation of the Hochschild homology. These differential operators are
related by a kind of anti-symmetrizer maps defined via permutations (cf. [17]).

Remark 11.15. We see from Corollary 8.17 and Proposition 10.5 that (TCH(X),∧, δalt)
is a differential graded algebra also for the modulus condition Mssup if the answer
to Question 11.8 is affirmative. As we have already remarked before, this is very
much expected and a proof of this should be available in a near future. For now,
it does follow from Corollary 11.12 that the groups

(
{TCHn(k, n;m)}n≥1,∧, δalt

)
form a CDGA.

11.3. Motivic cyclic homology. We end this section by showing how one can
use the normalized additive Chow groups and Theorem 11.10 to define a motivic
version of the cyclic homology of A. Connes. We see from Lemmas 10.2 and 11.7
that there is a bicomplex

(11.15) ...

∂N

��

...

∂N

��

...

∂N

��

Tzq+2
N (n+ 2)

∂N

��

Tzq+1
N (n+ 1)

δalt
oo

∂N

��

TzqN(n)
−δalt
oo

∂N

��

· · ·δalt
oo

Tzq+2
N (n+ 1)

∂N

��

Tzq+1
N (n)

−δalt
oo

∂N

��

TzqN(n− 1)
δalt

oo

∂N

��

· · ·−δalt
oo

...
...

...

where TzqN(n) := TzqN(X,n;m). This allows us to propose a cyclic analogue of ad-
ditive cycle complex, regarding the additive cycle complex as the motivic analogue
of the Hochschild complex. Let Tz(n) :=

⊕q Tzq(n). Note that ∂N decreases only
n by 1, while δalt increases both q and n by +1. The above bicomplex then reads,
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(11.16) ...

∂N

��

...

∂N

��

...

∂N

��

...

∂N

��

Tz(4)

∂N

��

Tz(3)
δalt
oo

∂N

��

Tz(2)
−δalt
oo

∂N

��

Tz(1)
δalt
oo

Tz(3)

∂N

��

Tz(2)
−δalt
oo

∂N

��

Tz(1)
δalt
oo

Tz(2)

∂N

��

Tz(1)
δalt
oo

Tz(1).

Let BZ be this bicomplex. This is a mixed complex in the sense of A. Connes
(cf. [17, p. 79]). We apply the usual formalism of mixed complexes to BZ. By
definition, its homology Hn(BZ) is the homology of the first column and this is
just the additive higher Chow groups TCH∗N(X,n − 1;m). Its cyclic homology
HCn(BZ) is the homology Hn(Tot(BZ)) of the total complex. Notice that the
bicomplex (11.15) itself is not a mixed complex, but since BZ is the direct sum of
these, the groups Hn(BZ) and HCn(BZ) have natural decompositions.

We define the motivic cyclic homology CCH∗(X,n;m) as the cyclic homology
HCn(BZ) of the bicomplex BZ. In this analogy, we could as well call our additive
higher Chow groups as motivic Hochschild homology. The group CCHq(X,n;m)
is the direct summand of CCH∗(X,n;m) that comes from the diagonal of (11.15)
that contains TzqN(n) in the first column. Note that, despite the double index
(q, n), the group CCHq(X,n;m) contains cycles not just from TzqN(n), but also
from

min{q,bn−1
2 c}⊕

i≥0

Tzq−iN (n− 2i).

Following the formalism of mixed complexes (cf. [17, 2.5.3]), we have the long
exact sequence of complexes

0→ (Tz(∗), ∂N)
I→ Tot(BZ)

S→ Tot (BZ[1, 1])→ 0.

Notice that Tot (BZ[1, 1]) = (Tot(BZ)) [2]. Thus, we obtain its long exact se-
quence, which is the Connes’ periodicity exact sequence, that decomposes as fol-
lows:
Corollary 11.16. Suppose the modulus condition is Msum. Then there is a Connes’
periodicity exact sequence involving TCH and CCH:

· · · B→ TCHq(X,n;m)
I→ CCHq(X,n;m)

S→ CCHq−1(X,n− 2;m)
B→

TCHq(X,n− 1;m)
I→ · · · ,

where the maps I, S,B have bidegrees (0, 0), (−1,−2), (+1,+1) in (q, n) respec-
tively.

As a consequence, we have the following motivic interpretation of the top Hodge
piece HCn−1

n−1(k) of the cyclic homology HCn−1(k) of the ground field.
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Corollary 11.17. Assume that char(k) 6= 2. Then, for any modulus condition
and for n,m ≥ 1, there is an isomorphism

CCHn(k, n;m)
∼=−→WmΩn−1

k/Z /dWmΩn−2
k/Z .

Proof. By definition,

CCHn(k, n;m) =
TznN(k, n)

∂NTznN(k, n+ 1) + δaltTzn−1
N (k, n− 1)

.

By Theorems 3.4 and 11.11, we have TznN(k, n)/∂NTznN(k, n + 1) ' WmΩn−1
k/Z .

On the other hand, combining these two theorems with Theorem 11.11 and Re-
mark 11.15, we see that the elements of the group δaltTzn−1

N (k, n− 1) are exact de
Rham-Witt forms. This finishes the proof. �

Further study of the above motivic cyclic homology using algebraic cycles and
its applications to additive higher Chow groups will be taken up in a sequel.

12. Remarks and computations

12.1. Moving modulus conditions. We saw that Msum and Mssup apparently
have much better structural behavior than the modulus condition Msup studied in
[14, 18], and this makes the former better suited for being a motivic cohomology.
On the other hand, in the main theorem of [18], the regulators on 1-cycles were
defined with the modulus condition Msup. Although we have seen that this regula-
tor map does exist and has good properties with the modulus condition Mssup, its
construction doesn’t automatically generalize to the groups with Msum. So, one
may ask the following :

Question 12.1. Given an Msum-admissible cycle ξ with ∂ξ = 0, can one find
Msup-admissible cycles η and Γ such that ξ = η + ∂Γ?

A positive answer to this question will immediately solve one part of Conjec-
ture 2.9. This is a kind of deeper moving lemma than we have proved in this paper.
This moving lemma allows one to move the modulus as well as the proper inter-
section property when we move a cycle. On the other hand, the moving lemma of
this paper does not allow changing the modulus conditions. We expect the answer
to the above question to be much harder.

12.2. Examples.

Example 12.2. We give an example where the homotopy used in [1, 16] doesn’t
preserve the modulus conditions for additive Chow groups of quasi-projective va-
rieties, even for the simplest possible cases.

Take X = A1
k and n = 1, so, we are interested in admissible cycles in X × B̃1 =

X × A1
k. Admissible closed subvarieties Z ⊂ X × A1

k are given by the condition
Z ∩ (X × {0}) = ∅. Let Ga,k = A1

k act on X by translation, and take its function
field K = k(s), s transcendental over k. Take the line φ : �1

K → Ga,K defined by
y 7→ sy/(y − 1) that sends 0 to 0 and ∞ to the k-generic point s of Ga,k, which is
K-rational in Ga,K .
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Take Z given by the ideal (xt+1) ⊂ k[x, t], which is in Tz1(A1, 1;m). Then, ZK
is given by (xt+ 1) ⊂ K[x, t] and pr′∗ZK is given by (xt+ 1) ⊂ K[x, t, y/(y − 1)].
Pulling back through µφ, we get (x+ sy/(y − 1)) t + 1 = 0. This is the equation
for our homotopy variety Z ′. Rewriting it as 1 − y = t((y − 1)x + sy), we see
that it doesn’t satisfy any of the given modulus conditions Msum,Msup,Mssup. For
instance, for a given m ≥ 1, we need 1 − y to be divisible by at least t1+m where
m ≥ 1, which is obviously false in this case. Hence Z ′ 6∈ Tz1(A1

K , 2;m).

Example 12.3. Recall from Remark 5.3 that if X is projective, then admissible

cycles in X×B̃1 = X×A1 have a very simple description : an admissible irreducible
closed subvariety Z should be of the form Y × {∗} ⊂ X × A1 for some closed
subvariety Y ⊂ X, and a closed point {∗} 6= {0} of A1. This variety obviously
satisfies all of the modulus conditions.

Note that the admissible variety Z in Example 12.2 is not of the form Y × {∗}:
this happens because X = A1

k is not complete.
These two examples show that the additive higher Chow groups of quasi-projective

varieties may have a bit more complicated structures than those of projective vari-
eties. The authors don’t know yet what extra-structures one can expect in general
for this quasi-projective case.

12.3. A computation. We finish the paper with a calculation of some additive
higher Chow groups, which the authors had worked out while working on this
paper. The following extends [5, Theorem 6.4, p. 153] to affine spaces.

Theorem 12.4. Let M be the modulus condition Msum, Msup, or Mssup. Let
X = Ar

k, and let m = 1. Then, the additive higher Chow groups of zero-dimensional
cycles of X are the absolute Kähler differentials of k:

TCHr+n+1(X,n; 1) ' Ωn−1
k/Z .

Remark 12.5. Note that, although it looks similar, this theorem does not imply
that additive higher Chow groups have A1-homotopy invariance. For the structure

morphism Ar
k → Spec(k), the pull-backs of 0-cycles on Spec(k) × B̃n to X × B̃n

are r-cycles, not 0-cycles.

Proof. The proof is very similar to that of [5, Theorem 6.4, p. 153]. For a closed

point p ∈ X × B̃n that does not intersect the faces and the divisor {t = 0}, we
define a homomorphism by setting

ψ(p) := Trk(p)/k

(
1

t

dy1

y1

∧ · · · ∧ dyn−1

yn−1

)
(p) ∈ Ωn−1

k/Z .

In other words, we ignore the coordinate of X. This defines a homomorphism
ψ : Tzr+n+1(X,n; 1)→ Ωn−1

k/Z .

Claim (1): The composition

ψ ◦ ∂ : Tzr+n+1(X,n+ 1; 1)
∂→ Tzr+n+1(X,n; 1)

ψ→ Ωn−1
k/Z

is zero.
It just follows from [5, Proposition 6.2, p. 150].
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Claim (2): Any two closed admissible points p, p′ ∈ X× B̃n for which only the
coordinates of X differ are equivalent as additive higher Chow cycles.
Abusing notations, write p = (a, b, s1, · · · , sn−1), p′ = (a′, b, s1, · · · , sn−1), where
a, a′ are closed points of X, where b 6= 0, si 6= 0,∞. Consider a parametrized line

C =

{(
a

y

y − 1
+ a′

(
1− y

y − 1

)
, b, y, s1, · · · , sn−1

)
∈ X × B̃n+1| y ∈ �1

}
.

This 1-cycle satisfies all the modulus conditions Msum,Msup,Mssup having b 6= 0,
and it intersects all faces properly having constant yi-coordinate values si.

By direct calculations, ∂0
1(C) = p′, ∂∞1 (C) = p, and ∂εi (C) = 0 for i ≥ 2 and

ε ∈ {0,∞}. Hence, ∂(C) = p′ − p proving Claim (2).
Given Claim (2), by [5, Proposition 6.3] and the rest of the arguments of [5,

Theorem 6.4], this theorem follows. �

We remark that the same arguments work for any variety X as long as we can
prove Claim (2). In particular, for any connected union of affine spaces, irreducible
or not, we can conclude the same results.
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