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ON THE SELECTION OF PRIMAL UNKNOWNS FOR A FETI-DP
FORMULATION OF THE STOKES PROBLEM ∗
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Abstract. Selection of primal unknowns is important in the convergence of FETI-DP (dual-primal finite ele-

ment tearing and interconnecting) methods, which are known to be the most scalable dual iterative substructuring

methods. A FETI-DP algorithm for the Stokes problem without primal pressure unknowns was developed and an-

alyzed by the authors [5]. Only the velocity unknowns at the subdomain vertices are selected to be the primal

unknowns and convergence of the algorithm with a lumped preconditioner is determined by the condition number

bound C(H/h)(1 + log(H/h)), where H/h is the number of elements across subdomains. In this work, primal

unknowns corresponding to the averages on edges are introduced and a better condition number bound C(H/h) is

proved for such a selection of primal unknowns. Numerical results are included.
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1. Introduction. A FETI-DP algorithm for the Stokes problem without primal pressure

unknowns was developed by the authors in [5]. It belongs to a family of dual iterative sub-

structuring methods, see [1, 2, 3, 4, 6, 7, 8, 10]. A pair of inf-sup stable velocity and pressure

finite element spaces is given for a triangulation of the domain and unknowns in the finite

element spaces are decoupled across subdomain interfaces by introducing a partition of the

given domain into many smaller subdomains. Among the decoupled unknowns, some im-

portant unknowns are selected to be primal unknowns. A strong continuity will be enforced

to the primal unknowns and at the remaining part of unknowns the continuity will be im-

posed weakly by using Lagrange multipliers. After elimination of the unknowns other than

the Lagrange multipliers, a system on the dual unknowns, i.e., the Lagrange multipliers, is

obtained and it is solved iteratively with a preconditioner that accelerates the convergence of

the iteration.

In the previous approaches for the Stokes problem [4, 9, 10, 11, 14], the coarse space of

domain decomposition algorithms consists of both the velocity and pressure basis elements.

These algorithms require a certain inf-sup stability of the coarse space, which results in the

use of a relatively large number of velocity basis elements. In FETI-DP algorithms, the

primal unknowns are related to coarse basis elements. Differently to the previously developed
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algorithms, in the work [5] by the authors no primal pressure unknowns are selected and only

the velocity unknowns at the subdomain vertices are selected as the primal unknowns in the

FETI-DP formulation. Such a selection of primal unknowns gives a symmetric and positive-

definite coarse problem with its size smaller than those appeared in the previous approaches.

This leads to a more efficient FETI-DP algorithm, which allows the use of a more practical

lumped preconditioner and a more practical solver for the coarse problem.

The FETI-DP algorithm in [5] can be considered as an extension of the work in [13]

to the Stokes problem. In [13], FETI-DP algorithms with various selections of the primal

unknowns are introduced and analyzed for elliptic problems combined with inexact local

solvers. From these results, we observed that in the two-dimensional elliptic problems the se-

lection of primal unknowns based on averages over common edges gives a better convergence

of the algorithm compared to the choice based on the subdomain vertices.

Motivated by this observation, for the two-dimensional Stokes problem we consider a

different set of primal unknowns that are averages of velocity unknowns over subdomain

edges, which are common part of two subdomains. The primal unknowns from the velocity

values at subdomain vertices, which have been selected in our previous work [5], result in a

FETI-DP algorithm with its condition number bound C(H/h)(1 + log(H/h)), where H/h

is the number of elements across subdomains. We will prove that selection of the primal un-

knowns, which are averages of velocity unknowns on edges, gives a better condition number

bound C(H/h) as in [13].

This paper is organized as follows. In section 2, the FETI-DP algorithm without primal

pressure unknowns is introduced and in section 3, this algorithm is described for the choice of

primal velocity unknowns based on averages over common edges and a bound of its condition

number is analyzed. In section 4, numerical results are presented to confirm the obtained

bound and to compare two different choices of primal unknowns. Throughout this paper, C

denotes a generic positive constant which does not depend on any mesh parameters and the

number of subdomains.

2. A FETI-DP algorithm without primal pressure unknowns. We recall the FETI-

DP algorithm introduced in our previous work [5]. We consider the two-dimensional Stokes

problem,

−4u +∇p = f in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω,

(2.1)

where Ω is a bounded polygonal domain in R2 and f ∈ [L2(Ω)]2. A pair of velocity and pres-

sure finite element spaces (X̂, P ) ⊂ (
[H1

0 (Ω)]2, L2
0(Ω)

)
is equipped for a given triangulation

in Ω. Functions in the velocity space X̂ are continuous across the triangles, square integrable

up to their first weak derivatives, and have their values zero on ∂Ω. The pressure space P is
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obtained from a pressure space P , which consists of functions that are discontinuous across

element boundaries, i.e.,

P = P
⋂

L2
0(Ω).

Here L2
0(Ω) is the space of square integrable functions with their average zero in Ω. We

assume that the pair (X̂, P ) is inf-sup stable and obtain a discrete problem for (2.1):

find (û, p) ∈ (X̂, P ) satisfying
∫

Ω

∇û · ∇v dx−
∫

Ω

p∇ · v dx =
∫

Ω

f · v dx, ∀v ∈ X̂,

−
∫

Ω

∇ · û q dx = 0, ∀q ∈ P .

(2.2)

We now decompose Ω into a non-overlapping subdomain partition {Ωi}N
i=1 in such a

way that the subdomain boundaries align the given triangulation in Ω. We introduce local

finite element spaces,

X(i) = X̂|Ωi
, P (i) = P |Ωi

,

and the product spaces X and P ,

X =
N∏

i=1

X(i), P =
N∏

i=1

P (i),

where functions can be discontinuous across subdomain boundaries. Among those unknowns

in X , we select some unknowns on the subdomain interface as primal unknowns and enforce

strong continuity at the primal unknowns to obtain X̃ , where functions can be discontinuous

at the remaining part of the interface unknowns. We call the remaining part of unknowns

dual unknowns. The notations u
(i)
I , u

(i)
∆ , and u

(i)
Π are used to denote unknowns located at

the interior part of Ω(i), the dual unknowns on ∂Ω(i), and the primal unknowns, respectively.

The spaces X
(i)
I , X

(i)
∆ , and X

(i)
Π consist of the corresponding velocity unknowns u

(i)
I , u

(i)
∆ ,

and u
(i)
Π , respectively. Those product spaces are denoted by XI , X∆, and XΠ.

By enforcing the continuity on the dual unknowns using Lagrange multipliers λ ∈ M ,

we obtain an equivalent discrete problem to (2.2):

find ((uI , u∆, ûΠ), p, λ) ∈ X̃ × P ×M such that

(2.3)




KII KI∆ KIΠ B
T

I 0

KT
I∆ K∆∆ K∆Π B

T

∆ JT
∆

KT
IΠ KT

∆Π KΠΠ B
T

Π 0

BI B∆ BΠ 0 0

0 J∆ 0 0 0







uI

u∆

ûΠ

p

λ




=




f I

f∆

fΠ

0

0




,

where BI , B∆, and BΠ are from

−
∑

i

∫

Ωi

∇ · ũ q dx, ∀q ∈ P ,
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J∆ is a boolean matrix that computes jump of the dual unknowns across the subdomain

interface Γij ,

J∆u∆|Γij = u
(i)
∆ − u

(j)
∆ ,

and the other terms are from

∑

i

∫

Ωi

∇ũ · ∇ṽ dx.

We note that M is the space of vector unknowns of Lagrange multipliers.

In [5], to remove all the pressure unknowns by solving the independent local Stokes

problems the pressure space P is replaced with P . The space P has one more pressure

component than P , which is constant in Ω. The added constant pressure component gives an

additional condition on ũ,

(2.4)
∑

i

∫

Ωi

∇ · ũ q dx = 0, q = c,

which is equivalent to

∑

i

∫

Ωi

∇ · ũ c dx = c
∑

ij

∫

Γij

(u(i)
∆ − u

(j)
∆ ) · nij ds = 0.

Here, Γij is the common edge of Ωi and Ωj . The additional condition is in fact a linear sum

of J∆u∆ = 0. By using the pressure space P instead of P , we still obtain an equivalent

algebraic system to (2.3):

find ((uI , u∆, ûΠ), p, λ) ∈ (X̃, P, M) such that

(2.5)




KII KI∆ KIΠ BT
I 0

KT
I∆ K∆∆ K∆Π BT

∆ JT
∆

KT
IΠ KT

∆Π KΠΠ BT
Π 0

BI B∆ BΠ 0 0

0 J∆ 0 0 0







uI

u∆

ûΠ

p

λ




=




f I

f∆

fΠ

0

0




.

Here BI , B∆, and BΠ are from

−
∑

i

∫

Ωi

∇ · ũ q dx, ∀q ∈ P,

and the other terms are the same as those in (2.3).

The unknowns (uI , u∆, p) can be eliminated by solving independent local Stokes prob-

lems,

(2.6)




uI

u∆

p


 = S−1







f I

f∆

0


−




KIΠ

K∆Π

BΠ


 ûΠ −




0

JT
∆

0


λ


 ,
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where S is given by

(2.7) S =




KII KI∆ BT
I

KT
I∆ K∆∆ BT

∆

BI B∆ 0


 .

Substituting (uI ,u∆, p) into (2.5) and then solving for ûΠ

(2.8) SΠΠûΠ = fΠ −




KIΠ

K∆Π

BΠ




T

S−1







f I

f∆

0


−




0

JT
∆

0


λ


 ,

we obtain the resulting algebraic system on λ,

(2.9) FDP λ = d,

where

(2.10)

FDP =




0

JT
∆

0




T

S−1




0

JT
∆

0


 +




0

JT
∆

0




T

S−1




KIΠ

K∆Π

BΠ


S−1

ΠΠ




KIΠ

K∆Π

BΠ




T

S−1




0

JT
∆

0


 ,

d =




0

JT
∆

0




T

S−1







f I

f∆

0


−




KIΠ

K∆Π

BΠ


S−1

ΠΠ


fΠ −




KIΠ

K∆Π

BΠ




T

S−1




f I

f∆

0








 ,

and

SΠΠ = KΠΠ −




KIΠ

K∆Π

BΠ




T

S−1




KIΠ

K∆Π

BΠ


 .

The resulting system on λ is symmetric and positive semidefinite. In a more detail, when

the velocity unknowns at subdomain vertices are selected as the primal unknowns, it has one

null space component which is given by

(2.11)

(
µ

(1)
0

µ
(2)
0

)
∣∣
Γij =

(
ζijn

(1)
ij

ζijn
(2)
ij

)
, ∀Γij .

Here, µ
(1)
0 and µ

(2)
0 are Lagrange multipliers related to each x and y- components of velocity

unknowns, n
(k)
ij are each component of nij , the unit normal vector to Γij , and

(2.12) ζij(xl) =
∫

Γij

φl(x(s), y(s)) ds,
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where φl is the velocity basis element related to the node xl at Γij . For the details, we refer

[5, Section 2.2].

We now introduce a subspace of M , which is orthogonal to the null space of FDP ,

Mc =



µ ∈ M :

∑

ij

µij · ζijnij = 0



 ,

where µij = µ|Γij
. Then FDP is positive definite on Mc. The system in (2.9) is then solved

by the conjugate gradient method with a lumped preconditioner of the form,

(2.13) M̂−1 = J∆K∆∆JT
∆.

In our previous work [5], we proved the following condition number bound for the FETI-

DP algorithm equipped with the lumped preconditioner and with the velocity unknowns at

subdomain vertices as primal unknowns,

κ(M̂−1Fdp)) ≤ C(H/h)(1 + log(H/h)),

which determines the convergence of the conjugate gradient iteration. The same bound has

been proved to be optimal for the FETI-DP algorithm of the elliptic problems with a lumped

preconditioner, see [13].

In the work by Li and Widlund [11], both the velocity unknowns at the subdomain ver-

tices and the velocity averages on subdomain edges are used as the primal velocity unknowns.

In addition, primal pressure unknowns are included in their FETI-DP formulation. They in-

troduced a quite expensive Dirichlet preconditioner and obtained a condition number bound

C(1 + log(H/h))2. Due to the introduction of the primal pressure unknowns, their approach

needs both of them, i.e., velocity unknowns at subdomain vertices and averages of the ve-

locity on edges, to provide the stability of the coarse problem matrix as well as to make

them satisfy zero flux condition across subdomain interfaces. In their experimental work, a

FETI-DP algorithm with primal velocity unknowns at subdomain vertices is tested. Its con-

vergence depends on the number of subdomains and additional primal unknowns are required

to achieve a scalable algorithm.

On the other hand, for two dimensional elliptic problems, it is well known that either

primal unknowns at subdomain vertices or primal unknowns related to the averages on sub-

domain edges are enough to obtain a scalable condition number bound, which means that the

condition number bound only depends on the local problem size, see [12].

No pressure primal unknowns in the FETI-DP algorithm of our work [5] resulted in a

scalable method for the Stokes problems with only the primal velocity unknowns at subdo-

main vertices. Its condition number bound is the same as that of elliptic problems with an

inexact lumped preconditioner, see [13]. We note that in the work [13] a better condition
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Ω Ω

Ω Ω

1 2

34

λ34

λ24

λ13

λ12

λ23λ 41

FIG. 1. Example of fully redundant Lagrange multipliers: λ12, λ23, λ34, and λ41 are Lagrange multipliers

used to enforce continuity over common (closed) edges, and λ13 and λ24 are Lagrange multipliers used to enforce

continuity among the subdomains sharing only the common vertex.

number bound, CH/h, was obtained for elliptic problems with a choice of primal unknowns

which are averages over common edges.

Motivated by this fact, we will consider a set of primal velocity unknowns, which are

averages of the velocity unknowns on subdomain edges. In this case, the space X̃ consists of

the velocity unknowns that can be discontinuous at subdomain vertices and across subdomain

edges except that their averages over common edges are the same. We will show that such a

choice of primal unknowns gives an improved condition number bound,

κ(M̂−1FDP ) ≤ CH/h,

compared to the previous choice of the primal velocity unknowns at subdomain vertices.

3. Primal unknowns based on edge averages. In this section, we will provide an anal-

ysis of the condition number bound for the FETI-DP algorithm with a new set of primal

unknowns. Most part of the analysis can be done similarly to our previous work [5].

We first describe the FETI-DP algorithm with such a selection of the primal unknowns.

Differently to the primal unknowns at subdomain vertices, the velocity space X̃ has its el-

ements that can be discontinuous at subdomain vertices. We introduce fully redundant La-

grange multipliers to enforce the continuity across Γij , see Figure 1,

u
(i)
∆ − u

(j)
∆ = 0,

and our analysis is based on the fully redundant Lagrange multipliers.

We note that the resulting FETI-DP equations have the null space which has more than

one dimension. In a more detail, FDP is positive definite on Mc which is define by

Mc =
{
λ ∈ M : λ⊥Null(JT

∆) and λT µ0 = 0
}

.

Here Null(JT
∆) is the space of null components of JT

∆ and µ0 is introduced in (2.11). The

null components in Null(JT
∆) are caused by the use of the fully redundant Lagrange multipli-
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ers. All these components can be removed by the l2-orthogonal projection on Mc. We then

perform the conjugate gradient iteration on the subspace by projecting the residuals on Mc.

The other part of the FETI-DP algorithm is the same as in the previous section.

We recall the enriched primal velocity space introduced in [5],

ÊΠ =
{

v ∈ X̂ : v minimizes the discrete H1-seminorm for given values aV , aE

}
.

Here aV and aE denote the given values of v at the subdomain vertices V and the given

average values of v on subdomain edges E, respectively. The pair of velocity and pressure

spaces, (XI + ÊΠ, P ), is then inf-sup stable with a constant β, which does not depend on any

mesh parameters, see [5, Lemma 3.5].

Let

ÊI,Π = XI + ÊΠ.

We will provide a condition number bound by proving the following inequalities:

C1β
2〈M̂λ,λ〉 ≤ 〈FDP λ,λ〉 ≤ C2

H

h
〈M̂λ,λ〉, ∀λ ∈ Mc,

where β is the inf-sup constant of the pair (ÊI,Π, P ). These inequalities then lead to the

desired condition number bound

κ(M̂−1FDP ) ≤ C
1
β2

H

h
.

3.1. Lower bound analysis. LetN (x) be the set of subdomain indices sharing the point

x. We introduce an average operator,

E∆w∆(x)|∂Ωi =
1

|N (x)|
∑

j∈N (x)

w
(j)
∆ (x),

where |N (x)| is the number of elements in N (x). We then have the identity,

(3.1) w∆(x)|∂Ωi
= E∆w∆(x)|∂Ωi

+
1

|N (x)|J
T
∆J∆w∆(x)

∣∣∣∣
∂Ωi

,

since

JT
∆J∆w∆(x)|∂Ωi =

∑

j∈N (x)

(w(i)
∆ (x)−w

(j)
∆ (x)).

We introduce the matrix K which gives the discrete H1-seminorm on u ∈ X̃ , i.e.,

〈Ku, u〉 =
N∑

i=1

|u|2H1(Ωi)
.

LEMMA 3.1. For any µ ∈ Mc, there exists u ∈ X̃ such that

1. J∆u∆ = µ,
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2.
∑

i

∫
Ωi
∇ · u q dx = 0, ∀q ∈ P,

3. 〈Ku,u〉 ≤ C 1
β2 〈K∆∆JT

∆J∆u∆, JT
∆J∆u∆〉, where β is the inf-sup constant of the pair

(ÊI,Π, P ) and u∆ is the part of dual unknowns of u.

Proof. Most part of the proof is identical to [5, Lemma 4.2]. For a given µ ∈ Mc, we

select w∆ to satisfy

(3.2) J∆w∆ = µ and E∆w∆ = 0.

Similarly to the proofs in [5], from such a w∆ we can find u ∈ X̃ which satisfies the first

two conditions and

〈Ku,u〉 ≤ C
1
β2
〈K∆∆w∆, w∆〉.

From the above bound combined with (3.1), (3.2), and J∆u∆ = J∆w∆, the third require-

ment on u then follows.

REMARK 3.2. In the above Lemma, w∆ in (3.2) can be constructed as follows. Since

Mc ⊂ Range(J∆), for a given µ ∈ Mc there exists v∆ ∈ X̃ such that

J∆v∆ = µ.

For the v∆, we can find z∆ ∈ X̂ which gives that

E∆(v∆ + z∆) = 0.

Since z∆ ∈ X̂ is continuous across the subdomain interface, J∆z∆ = 0. We then obtain

w∆ = v∆ + z∆.

We introduce

(3.3) X̃(div) =
{

v ∈ X̃ :
∫

Ωi

∇ · vq dx = 0 ∀q ∈ P

}
.

We then have the identity,

(3.4) 〈FDP λ, λ〉 = max
v∈X̃(div)

〈J∆v∆, λ〉2
〈Kv, v〉 ,

where v∆ is the part of dual unknowns of v.

By using Lemma 3.1 and (3.4) we obtain the lower bound, see [5, Theorem 4.3]:

THEOREM 3.3. For any λ ∈ Mc, we have

C1β
2〈M̂λ, λ〉 ≤ 〈FDP λ,λ〉,

where β is the inf-sup constant of the pair (ÊI,Π, P ) and C1 is a positive constant that does

not depend on any mesh parameters.
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3.2. Upper bound analysis. For a given edge E, let θE denote the cut-off function

which is one inside E and is zero, otherwise. Similarly, we define the cut-off function θV

related to a vertex V . We need the following result for the upper bound analysis, see [13,

Lemma 4] for the proof:

LEMMA 3.4. Let Ωi be a two dimensional subdomain. For any u(i) ∈ X(i),

‖u(i) − cE‖2L2(E) ≤ CH|u(i)|2H1(Ωi)
,

where E is an edge of the subdomain Ωi and cE is given by

cE =

∫
E

Ih(θEu(i)) dx(s)∫
E

dx(s)
.

LEMMA 3.5. There exists a constant C such that for any u ∈ X̃ ,

〈K∆∆JT
∆J∆u∆, JT

∆J∆u∆〉 ≤ C
H

h
〈Ku, u〉,

where u∆ is the part of dual unknowns of u.

Proof. Let w∆ = JT
∆J∆u∆. We note that

〈K∆∆JT
∆J∆u∆, JT

∆J∆u∆〉 =
N∑

i=1

|w(i)
∆ |2H1(Ωi)

.

From the inverse inequality and

‖w(i)
∆ ‖2L2(Ωi)

≤ Ch‖w(i)
∆ ‖2L2(∂Ωi)

,

we obtain

(3.5) 〈K∆∆JT
∆J∆u∆, JT

∆J∆u∆〉 ≤ Ch−1
N∑

i=1

‖w(i)
∆ ‖2L2(∂Ωi)

.

We note that for x ∈ ∂Ωi

(3.6) w
(i)
∆ (x) =





u
(i)
∆ (x)− u

(j)
∆ (x), when x ∈ Eij ,∑

m∈N (x)

(
u

(i)
∆ (x)− u

(m)
∆ (x)

)
, when x ∈ V(∂Ωi),

where Eij is an open edge of Ωi, which is the common part of two subdomains Ωi and Ωj ,

and V(∂Ωi) is the set of vertices of Ωi. We decompose w
(i)
∆ into

(3.7) w
(i)
∆ =

∑

Eij⊂∂Ωi

Ih(θEij w
(i)
∆ ) +

∑

V ∈V(∂Ωi)

Ih(θV w
(i)
∆ )

and then compute each part using the formula (3.6).
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FIG. 2. Example of a path of subdomains sharing the vertex V : Eik and Ekm are edges connecting the

subdomains in the path.

For the first term of the above equation, by Lemma 3.4 we obtain

‖Ih(θEij
w

(i)
∆ )‖2L2(∂Ωi)

= ‖Ih(θEij
w

(i)
∆ )‖2L2(Eij)

≤ C‖u(i)
∆ − u

(j)
∆ ‖2L2(Eij)

= C‖u(i) − u(j)‖2L2(Eij)
(3.8)

≤ C
(
‖u(i) − cEij‖2L2(Eij)

+ ‖u(j) − cEij‖2L2(Eij)

)

≤ CH
(
|u(i)|2H1(Ωi)

+ |u(j)|2H1(Ωj)

)
,

where

cEij =

∫
Eij

Ih(θEij u
(i)) dx(s)∫

Eij
dx(s)

=

∫
Eij

Ih(θEij u
(j)) dx(s)∫

Eij
dx(s)

.

We note that u = (u(1), · · · , u(N)) ∈ X̃ , which has common edge averages across each Eij .

For the term given at a vertex V , we consider subdomains in N (V ), which share the

vertex V . Among them, we select a path from Ωi to Ωm, {Ωi,Ωk1 , · · · , Ωkn , Ωm}, which are

connected through their common edges. We may assume that the path consists of {Ωi, Ωk, Ωm},

see Figure 2. The following can also be applied to a more general case.

At the vertex V ∈ V(∂Ωi), we then have that

‖Ih(θV w
(i)
∆ )‖2L2(∂Ωi)

≤Ch
∑

m∈N (V )

|u(i)
∆ (V )− u

(m)
∆ (V )|2

≤C
∑

m∈N (V )

(
h|u(i)

∆ (V )− u
(k)
∆ (V )|2 + h|u(k)

∆ (V )− u
(m)
∆ (V )|2

)
(3.9)

≤C
∑

m∈N (V )

(
‖u(i)

∆ − u
(k)
∆ ‖2L2(Eik) + ‖u(k)

∆ − u
(m)
∆ ‖2L2(Ekm)

)

≤CH
∑

m∈N (V )

(
|u(i)|2H1(Ωi)

+ |u(k)|2H1(Ωk) + |u(m)|2H1(Ωm)

)
.
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Here we have used the fact that both Eik and Ekm contain the vertex V and the inequality

used in (3.8). Note that E denotes the closure of an open edge E. Combining (3.5) with (3.7),

(3.8), and (3.9), and using

N∑

i=1

|u(i)|21,Ωi
= 〈Ku,u〉,

the desired bound has been proved.

From the identity in (3.4) and Lemma 3.5, an upper bound then follows, see [5, Lemma

4.5]:

THEOREM 3.6. For any λ ∈ Mc, we have

〈FDP λ, λ〉 ≤ C2
H

h
〈M̂λ, λ〉,

where C2 is a positive constant that does not depend on any mesh parameters.

4. Numerical results. In this section, we provide numerical results of the FETI-DP al-

gorithms corresponding to the choice of primal unknowns. In the first choice, the velocity

unknowns at subdomain vertices are selected and in the second the unknowns related to the

velocity averages on common edges are selected. In the second case, we use the fully redun-

dant Lagrange multipliers to enforce the continuity at the remaining dual velocity unknowns

across the subdomain interface.

We will present the number of iterations and approximated condition numbers of the two

FETI-DP algorithms to confirm the bound of the condition number carried out in the previous

section. The conjugate gradient iteration is performed up to the relative residual norm reduced

by a factor of 106 and the condition numbers are approximated by the extreme eigenvalues of

the tridiagonal Lanczos matrix generated by the iteration. Our test problem is defined in the

unit rectangular domain [0, 1]2 with the exact solution,

u(x, y) =

(
sin3(πx) sin2(πy) cos(πy)

− sin2(πx) sin3(πy) cos(πx)

)
and p(x, y) = x2 − y2.

In Table 1, the results are presented as increasing the number of subdomains with a fixed

local problem size in each subdomain. The domain is partitioned into uniform rectangular

subdomains. For example, N = 42 means that the domain Ω is divided into four subdomains

in each x- and y-directional edges of Ω. The first choice of primal unknowns and the second

choice of the primal unknowns are denoted by vertex-based and edge-based, respectively.

For the both cases, the number of iterations and condition numbers do not depend on the

number of subdomains. In other words, the results shows a good scalability with respect to

the number of subdomains. For the second choice, we observe slightly less iterations and

smaller condition numbers.

In Table 2, the number of iterations and condition numbers of the two choices are pre-

sented as increasing the size of local problems. Here the domain Ω is divided into uniform
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vertex-based edge-based

N Iter κ λmin λmax Iter κ λmin λmax

22 9 4.31e+00 2.60 1.12e+01 11 8.90 2.63 2.34e+01

42 16 1.17e+01 2.55 2.98e+01 18 1.05e+01 2.60 2.72e+01

82 21 1.36e+01 2.50 3.42e+01 20 1.16e+01 2.53 2.93e+01

122 21 1.40e+01 2.50 3.50e+01 19 1.18e+01 2.51 2.98e+01

162 22 1.41e+01 2.49 3.52e+01 19 1.19e+01 2.50 2.97e+01

TABLE 1

Scalability as increase of the number of subdomains, N , with a fixed local problem size (H/h = 8): the

number of iterations Iter, the condition numbers κ, the minimum eigenvalues λmin, and the maximum eigenval-

ues λmax of the vertex-based primal unknowns (the velocity values at the subdomain vertices are selected as the

primal unknowns) and the edge-based one (the averages of velocity over common edges are selected as the primal

unknowns)

rectangular subdomains with N = 42. The results from the second choice present weaker

increase of iterations and condition numbers as the increase of the local problem size, H/h,

compared to those from the first choice. As in the analysis, the minimum eigenvalues are

almost identical for the both cases and do not depend on the size of local problems. Only

the maximum eigenvalues increase with respect to the size of local problems and the second

choice gives less increase in the maximum eigenvalues than the first choice. In Figure 3, the

constant C in the bound of condition numbers for the second choice,

κ(M−1FDP ) ≤ C
H

h
,

is estimated as H/h increases. We observe that the estimated values of C tend to converge to

some number as H/h increases. The numerical results confirm that the bound of condition

numbers are sharp.

The second choice of primal unknowns based on subdomain edges shows better perfor-

mance than the first choice based on the subdomain vertices. The only complication in the

second choice is introduction of additional null space components of the FETI-DP operator

caused by using fully redundant Lagrange multipliers. This additional null space components

can be eliminated by projecting the residual at each iteration. It is more practical to use the

second choice of primal unknowns especially when the size of local problems are relatively

large.
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